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Abstract Hyperbox classifiers are one of the most appealing and intuitively transparent classification 
schemes. As the name stipulates, these classifiers are based on a collection of hyperboxes - generic 
and highly interpretable geometrie descriptors of data belonging to a given class. The hyperboxes 
translate into conditional statements (rules) of the form "iffeature, is in [a,b] and feature2 is in [d,f] 
and „ and feature0 is in [w,z] then class ro" where the intervals ([a,b], ... [w,z]) are the respective 
edges of the hyperbox. The proposed design process ofhyperboxes comprises of two main phases. In 
the first phase, a collection of "seeds" of the hyperboxes is formed through data clustering (realized 
by means of the Fuzzy C-Means algorithm, FCM). In the second phase, the hyperboxes are "grown" 
by applying mechanisms of genetic optimization (and genetic algorithm, in particular). We reveal 
how the underlying geometry of the hyperboxes supports an immediate interpretation of software 
data concerning software maintenance and dealing with mies describing a number of changes made 
to software modules and their linkages with various software measures (such as size of code, 
McCabe cyclomatic complexity, number of comments, number of characters, etc.) 

Keywords Software quality, hyperbox geometry of classifiers, software measures, genetic 
algorithms, fuzzy clustering, fuzzy C-Means (FCM) 



1. Introductory Comments 

Patiem classifiers [ 4] come with their underlying geometry. As a matter of fact, the geometry and 
related learning mechanisms are the two essential elements that determine the resulting performance 
of any paltem classifier. What we witness today is an evident panoply of technologies used to design 
classifiers: neural networks, fuzzy rule-based systems (and ensuing fuzzy classifiers), k-Nearest 
Neighbor (k-NN) classifiers, and genetic optimization are just a few representative categories of 
pattem classifiers. The assumed geometry of the classifier (say, hyperplanes, receptive fields, etc.) 
implies its learning capabilities and resulting accuracy. Quantitative Software Engineering inherently 
dwells on empirical data that need to be carefully analyzed. As there are no physical underpinnings 
characterizing software processes and ensuing software products, the commonly encountered 
assumptions that govem "standard" regression models and classifiers do not hold and could be 
difficult to justify. On the other hand, we anticipate that models developed in the realm of Software 
Engineering should be transparent meaning that their readability and a level of comprehension are 
high. Being faced by the Jack of physical underpinnings on one hand and the need for the user­
friendliness on the other, it becomes advisable to set up a logic-based development framework and 
adopt Jogic as a paramount feature of the resulting constructs. In this way the interpretability of the 
models is inherently associated with the Jogic roots of the environment. Likewise their geometry is 
also implied by the logic fundamentals we have started with at the beginning. The quest for 
interpretability of models in Software Engineering comes with a variety of facets and diverse 
applications including software specification, software maintenance, reliability, portability. 
Apparently, some categories of models are geared towards interpretational clarity and make it one of 
the dominant features. This becomes visible in rule-based systems, cf. [3][6] [16] in which this 
feature comes hand in hand with the requirement of high accuracy and substantial prediction 
capabilities. Overall, there are several generał observations worth making with this respect 
• software processes and products are human-centric and do not adhere to any physical 

underpinnings. It light of their origin, it is legitimate to focus on Jogic-rich and transparent 
models 

• domain knowledge becomes an integral part of the model especially in case of its availability and 
limited availability of experimental data as well as substantial variability of the software products 
and processes 

• interpretability of the developed models becomes an important and highly desirable feature of 
models of software artifacts which helps designer and manager gain a better insight into the 
specificity of the particular model and derive conclusions. In a nutshell, the geometry of the 
model (say a predictor or classifierO needs to be easily comprehended by the user. 

• Software measures (metrics) [7][14][15][17] becomes essential indicators of software quality 
(such as reliability, maintenance effort, development cost, etc). It becomes then essential to 
develop models that are easily understood by the managing personnel and designers to look at 
possible scenarios and pursue any "what-if' considerations. 
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The geometry of the feature space imposed by the classifier is also inherently associated with our 
ability to interpret classification processes and comprehend the decision boundaries produced by the 
classifier. In generał, these are nonlinear. In an ideał situation they may coincide with those produced 
by a Bayesian classifier [ 4]. From the interpretation point of view, the most intuitive ones are those 
built in the form of boxes (in two-dimensional space) or hyperboxes (in multi-dimensional space), 
refer to Figure I. 
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Figure I. Examples ofhyperbox-based classifier formed in a two-dimensional space; note a number 
ofhyperboxes (boxes) formed there and "covering" patterns (data) belonging to class 001 (dots). The 

second class is denoted by small squares and its elements are excluded from the hyperbox 

Subsequently, when using boxes (and hyperboxes in generał), any classification rule becomes 
straightforward and emerges as a result of enlisting of the edges of the boxes: 

assign (classify) patiem xEK' to class w, if x belongs to one of the hyperboxes H,. 
Hz, ... ,Hc describing (localizing) patterns belonging to the class under interest. 

The hyperbox classifier exhibits two interesting properties. First, the concept of the classifier is 
profoundly simple. Potentially we can improve the classification rate by moving to the higher level 
of detail and increasing the number of the boxes white making them smaller and in this way refining 
the classifier. Second, the classifier directly translates into a set if transparent rules (since each box is 
a rule itself) whose condition parts assume a straightforward interpretation. Note thai a hyperbox is 
just a Cartesian product of the intervals forming its edges. The rules read as "if x is in H; then ooi", 
i= I, 2, ... ,c. Alternatively, we can allude to the edges of the hyperbox and spe Il out a collection of the 
conditions, that is" ifx1 is in [ai, bi] and x2 is in [a2, b2] and . . . and [an, bn] then ooi". Owing to their 
interpretability, hyperbox classifiers have been studied in the literature quite intensively, cf. 
[6][18][19][16]. The most popular approach to the design of these classifiers is perhaps the one 
proposed by Simpson [18][19] where he discusses both supervised and unsupervised mode of 
learning. What somewhat hampers the development of the hyperbox classifiers is a lack of learning 
algorithms which is not so surprising considering the geometry of the classifiers (that do not come 
with differentiable boundaries of the hyperboxes and in this way are not suitable for gradient-based 
optimization techniques). 

The objective of this study is to develop a hybrid, two-phase design of hyperbox classifiers and 
discuss their essential role in analysis and classification of software data. In the first phase of the 
design, we "seed" the hyperboxes by using fuzzy clustering in which designed are the prototypes 
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(centers) of the clusters. In our case there play a role ofseeds around which the we start ":growing' 
the boxes by expanding the size of the box and pushing its walls further from the center. This 
process is followed by the second phase in which we "grow " the hyperboxes via genetic 
optimization. This hybrid approach helps us capture the nature of the software data by identifying the 
clusters first and then form its geometry with the aid of genetic optimization. 

The materia! is arranged into 4 sections. Following the introductory comments, Section 2 provides 
with a detailed design process of the hyperbox classifier. This is followed by intensive experimental 
studies involving MIS software data [ I 5] presented in Section 3. Conclusions are covered in Section 
4. 

In this study, we adhere to the basie notation being commonly encountered in paltem recognition. To 
focus attention on the essence of the problem, we consider a two-class problem involving two 
categories of patterns (denoted here by ~ and ro1, respectively). Patterns are distributed in an n­
dimensional space of reals that is x1, x2, •. . , XN e R". As already stated, the hyperbox classifier is 
based on a collection of hyperboxes represented here as 

The ith hyperbox, H;, is fully described by two vectors of its bounds, namely H; = (a;, b;) where a;i :5 
bu denote the !ower and upper bounds of the l feature for the ith hyperbox. 

Prior to moving inio the development of the classifier, it is advantageous to elaborate here in more 
detail on the software data being used in this case study. The Medical Imaging System (MIS) [15] is 
a commercial software system consisting of approximately 4500 routines written in about 400,000 
lines of Pascal, FORTRAN and PUM assembly code. The MIS development took five years, and the 
system has been in commercial use at severa! hundred sites for quite a few years. The MIS data were 
collected as the number of changes made to each module due to faults discovered during system 
testing and maintenance over an observation period of three years. Along with the above parameter, 
eleven software complexity measures (metrics) were provided, refer to Table I . In this study, MIS is 
represented by a subset of the whole MIS data with 390 modules written in Pascal and FORTRAN. 
These modules consist of approximately 40,000 lines of code. Our goal is to develop a prediction 
model of software quality in which the number ofmodifications (changes) is projected on a basis of 
the values of the 11 software metrics that is used to characterize a software module. We cast the 
problem in the setting of classification and because of this assumed format, the output variable 
(number of changes) is discretized (categorized) by distinguishing between severa! limited, but 
intuitively appealing, categories (say, class_! : software modules with no changes; these could be 
eventually deemed to be fault-free, class_ 2: software modules with number of modifications between 
I and I O, and software modules with the number of changes over I O; this category can be sought as 
potentially highly faulty modules where most of our testing and maintenance effort should be 
focused) . 

Software Measure Detailed Description 
Changes Number of changes 

LOC Number of lines of code including comments, declarations and the main 
body of the code 
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CL Number of lines of code, excluding comments 
TChar Number of characters 

TComm Number of comments 
MChar Number of comment characters 
DChar Number of code characters 

N Halstead's Program Length N = N1+N2, N1 is the total number of 
operators, N2 is the total number of operands 

N' Halstead's Estimate of Program Length N'= n1 log2n2 + n2 log2n2, n1 is 
the number of unique opera tors, n2 is the number of unique operands 

NF Jensen's Estimate of Program Length Metric log2ni! + log2n2! 
V(G) McCabe's Cyclomatic Complexity Metric, where V(G)=e-n+2, and e 

represents the number of edges in a control graph of n nodes 
BW Belady's bandwidth measure BW=l/n l:;i~, L; represents the number of 

nodes at level " i" in a nested control flow graph of n nodes. This 
measure indicates the average level of nesting or width of the control 
flow graph representation of the program 

Table I. Description of the MIS dataset with a detailed characterization of the software measures; for 
details refer to [ I 8] 

2. The Design of the Classifier 

In this section, we elaborate on the development of the classifier. As already stated in the previous 
section, the hyperboxes being a crux of the classifier are formed in two phases. First, Fuzzy C-Means 
(FCM) [2] traverses trough the multidimensional data space, finds clusters and describe them via 
their prototypes v1, v2, ... , v0 • These prototypes form "seeds" of the hyperboxes to be developed in the 
second design phase. In essence, this second step is about "growing" the hyperboxes around the 
prototypes. As each hyperbox is completely described by its !ower and upper bounds (yielding 
corresponding hyperplanes) that are positioned relative to the prototype, we are concemed with the 
determination of the values of such parameters. In generał, gradient-based methods (especially in 
case of highly dimensional feature space and a significant number of the prototypes) may not allow 
us to explore intensively the resulting search space and arrive at a global minimum. Therefore our 
in tent is to apply techniques of genetic optimization, and genetic algorithms [I][ 5] [8] [9][ I O][ 12] [ 13] 
in particular. In what follows, we move to the pertinent algorithmic details and afterwards discuss an 
overall flow of the algorithmic pursuits along with the corresponding implementation details. 

2.1 The Fuzzy C-Means (FCM) Algorithm 

The aim of the FCM approach (which is regarded as one among standard and commonly exploited 
clustering techniques) is aimed at revealing a structure in multidimensional data sets. This is 
accomplished by minimizing the following objective function 

(I) 
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The minimization of Q is realized with respect to the pivotal descriptors of the structure that is a 
partition matrix U= [u;k], i= I, 2, ... , c, k = I, 2, ... , N and prototypes (centers) of the clusters v1, 

v2 . .. v c• (I) is a sum of dis tan ces from the prototypes where these distances are weighted by the 
values of the partition matrix (membership grades ofpattems to the clusters). d;k denotes the distance 
between paltem (datum) Xk and prototype v;: d;k = llxk - v;II. The fuzzification factor m (>!) controls a 
shape of the fuzzy sets and, in the sequel, a level of overlap occurring between the clusters. Usually 
we set up 'm' to 2. The minimization of (I) is carried out under a set of constraints expressed with 
respect to U, namely 

N 

0< I,uik < N i=l,2 ... c (2) 
k=I 

k=l,2 ... n (3) 

By introducing constraint (2) we make sure that the clusters are neither empty nor consist of the 
entire space. Constraint (3) states that the total membership of each paltem over all clusters is equal 
to I. 

The constrained optimization is realized through an iterative process by updating prototypes and 
partition matrix U govemed by the following expressions 

N 

I,(uik)mx• 

vi =~•~=~---- (4) 

L,(U;k)m 
k=I 

(5) 

The FCM phase is introduced to prevent the GA from exploring empty regions of the space or areas 
where only paltems belonging to class ~ are found. This is a waste of computational power if it can 
be avoided, as we know that including such areas would not improve the performance of the 
classifier. We therefore looked for a way to narrow down the search space and make the search more 
focused. FCM directs the GA to explore only areas that are known to have concentration of class co, 
vectors. By its nature, FCM is known to locale (position) prototypes in regions where we encounter 
the highest density of data, which is an essence of clustering. In light of the two-class paltem 
classification we consider here, we cluster only paltems belonging to class co,, leaving out paltems of 
class ~- We can therefore assume that wherever the prototypes are found, should be contained 
inside the hyperboxes and grow the hyperboxes around these seeds. 
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Let us stress that the FCM algorithm does come with certain pitfalls. These are primarily related to 
the number of the clusters (prototypes). This parameter is usually fixed in advance and may not 
coincide with the "real" structure existing in the data set. If this is the case, we should become aware 
of the consequences of such mismatch. If there are fewer prototypes than clusters, some or all of the 
prototypes may be placed by the algorithm in regions between the clusters. There is no information 
about this region, and we do not know whether this region is empty or filled with class ~ vectors, 
which are omitted from the FCM algorithm. Another problem arises in the opposite case as well . 
When there are more prototypes than clusters, the arrangement of the prototypes is highly dependent 
on their original placement, which, as mentioned, is random. For example, given 4 clusters, and 8 
prototypes, there is no guarantee that the finał arrangement would include 2 prototypes per cluster. 
Therefore, a cluster that would need more hyperboxes to be defined accurately may only be able to 
utilize fewer hyperboxes than another cluster, which may not require as many. 

2.2 Genetic Algorithms as a Vehicle ofEvolutionary Optimization 

The genetic optimization phase of the design uses a "standard" real coded GA (RCGA) [5][9](10] 
where chromosomes are represented using real valued vectors. This representation poses some 
advantages over the traditional binary coded GA (BCGA) where chromosomes are represented using 
binary strings. RCGA offers higher precision while avoiding coding problems, such as the 
"Hamming cliff' phenomenon [8], and the representation of the problem to GA space is fairly 
straightforward. The fundamental architectural and functional considerations involve problem 
representation, genetic operations, and a fitness function. 

I. Problem Representation: As noted, the number ofhyperboxes is fixed in advance as being in 
one-to-one correspondence with the prototypes determined by the FCM algorithm. We 
organize "n" variables (edges) of the "c" hyperboxes as successive entries of the chromosome 
of length 2*n*c. All the entries in the chromosome are confined to the unit interval; this leads 
to a chromosome whose content is more homogeneous and therefore easily interpretable. 
When retuming the content of the chromosome and produce a result in a phenotype space, we 
convert the entry of the chromosome by scaling it. For instance, we transform a' 14 to a1 4 by 
multiply it by the range it could have assumed that is D; we thus have a14=D* a' 14. lf the 
prototype for box I is found to be at (40, 90), the domain for the feature x1 is (60, 100] 
(determined by finding the range ofthis feature), and a' 14 assumes the value equal to 0.6, then 
the value of a14 computes as (100-90)*0.6=6. Likewise the upper bound for box I in the 
feature space (phenotype) x I is given as 90+6=96. 

2. Selection: we use an elitist ranking selection [!]. This selection mechanism means that 
individuals to be selected for the next generation are based on their relative rank in the 
population, as determined by the fitness function. The best individual from each generation is 
always carried over to the next generation, so the best solution found so far during the genetic 
optimization is guaranteed to never disappear. 

3. Mutation: we use the random mu talion operator (9]. Given an individual a = [a1,a2, ... ,a20] 
we generale a'= [a1',a2', ... ,a2n'] where a;', i=!, 2, ... ,2n, is a random number confined in the 
range of (O, I] and subject to the following rule: a; is mutated thai is replaced by a;• with some 
probability ofmutation (Pm) otherwise the entry of the chromosome is left intact, a;'=a;. 
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4. Crossover: the crossover operation is realized as the BLX-0.5 crossover operator [I I], which 
is carried out as follows. Given two individuals a= [a,, a2, . . . , a2n] and b = [b1, b2, .. . , b2n], 
their resulting offspring are formed as a'= [a,', a2', ... , a2n'] and b' = [b,', bi', ... , b2n'], 
where a;', b;', i=l,2, .. . ,2n, are random numbers in the range [max(0, min;-0.51), min(!, 
max;+0.51)]. In the above calculations, min;= min (a;, b;), max;= max (a;, b;), and I= max; -
min;, see Figure 2 for a detailed illustration of the realization of this operation. This particular 
crossover operation provides a good balance between using the information of the parents 
and avoiding premature convergence, cf. O. Furthermore the crossover operator defined in 
this manner ensures thai all values of the generated offspring are confined to the unit interval 
[O, I] . The operator is employed with probability of crossover, Pe, otherwise the individuals 
are left unchanged a'=a and b'=b. 

(a) (b) 

Figure 2. A realization of the mutation operator used in the genetic optimization: !ower 
(a) and upper (b) bounds of the range 

5. Fitness Function: As each individual is an instance of a hyperbox classifier, the fitness 
function is the same is the primary evaluation criteria of the classifier, which is its accuracy 
[4]. The classifier's accuracy is defined as (TP+TN)/N whose definition is self-evident once 
related to the confusion matrix shown in Table I, where N denotes the total number of 
pattems. The confusion matrix summarizes the number of correctly predicted negatives, or 
True Negative (TN), incorrectly predicted positives, or False Positive (FP), etc. Once we 
reach a fitness value equal to I, the GA process is stopped. In our study, the genetic 
optimization is guided by the accuracy of the developed classifier 
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Table 1 C f ' on us1on matrix or a two-c ass p . ~ roblem 
Actual coo Actual co 1 

Predicted ~ TN FN 

Predicted co 1 FP TP 

3. Experiments with Software Data 

This section reports on the hyperbox classifiers applied to the MIS data. Prior to these experiments, 
we present severa! illustrative two-dimensional examples whose selection helps quantify and 
visualize the resulting two-dimensional constructs (boxes) of the classifier. 

Example O. We are concemed with the two-class problems where one class forms an oval shape 
being surrounded by the second class, Figure 3. When designing the classifier, we require a number 
of box es whose unio n attempts to "cover" data belonging to a certain class while eliminating patterns 
belonging to second class. As becomes obvious, the resulting union follows the original geometry 
with the intent of the minimal approximation error (viz. the minimal classification error). A single 
box provides some approximation and we see thai it attempts to do the best by minimizing the 
involvement of the patiem belonging to the second class. Overall, the classification rate is around 
97% (and this figure is almost the same for the training and testing set). With the increase of the 
boxes to two, the approximation improves (as is well visualized) resulting in the classification rate 
increased to 98%. Further increase to 4 boxes has resulted in the 99% classification rate. 

(a) (b) 

(c) 
Figure 3. Examples oftwo-dimensional data belonging to two classes and its box classification 

involving one (a), two (b), and four (c) boxes 
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Proceeding with the MIS data, the hyperbox classifier is developed by treating the output (the 
number of changes) as a binary variable so thai we end up with a two-class classification problem. 
This quantification is very much problem-dependent and varies from the standpoint we assume when 
analyzing the data. As commonly encountered in the literature and software engineering practice, the 
number of changes made to some software artifact impacts its quality, projects on the complexity of 
the undertaking, and reflects upon its future performance. 

In the ensuing experiments, we fix the parameters of the environment of the genetic optimization. 
The size of the population was set to I 00 individuals; the GA was run for 500 generations with the 
probability of crossover and mutation equal to 0.80 and O.OS, respectively. 

Experiment I. Here we describe a category of software modules for which the number of changes 
varies between 5 and 12. Those are the modules thai could be characterized as requiring a medium 
level of maintenance effort. The remaining modules form the altemative class. The genetic 
optimization was carried out for c = 1, 2,3, and 4 hyperboxes. To assess the performance of the 
classifier, the dataset was split inio the three disjoint subsets of a training, validation, and testing set 
with each of them playing the role outlined in the previous section. For each case, the experiment 
was repeated JO times so that the results become statistically legitimate. The classification rate 
obtained for the training and testing set are shown in Figure 4 (reported here are the mean values of 
the classification rate that is the classification accuracy). 

100 ~---------~ 
90 +--------==-- -....---J 
80 +■1---1----1•-----ł 
70 

60 

50 

40 

30 

20 

10 

o 
2 3 4 

number ofhyperboxes 

Figure 4. Accuracy of the hyperbox classifier versus number of hyperboxes used in the construct: 
training set - black bars, testing set - gray bars 

From this figure we can conclude that the optima! number of hyperboxes is two; while the training 
set returns better results for three hyperboxes, we see a slightly better performance on the testing set 
when using two hyperboxes. As usual, we always prefer to use the most compact structure and thus 
the choice of the two hyperboxes. Here the best experiment out of the ten runs produced 86.6% and 
82.2% for the training and testing set, respectively. The performance of the GA is reported in the 
form of the fitness function, Figure 5, whose values are visualized for the best and average individual 
as obtained in the successive generations of the genetic optimization. These are typical plots for the 
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genetic optimization: the best individual (as we used the elitist strategy) is subject to substantial 
improvements at the early generations and afterwards is left unchanged. The average fitness of the 
entire population fluctuates from generation to generation and becomes a reflection of the ongoing 
search completed in the geometry of the hyperboxes. 

0.85 

0.84 

0.83 

0.82 

0.81 

0.8 

0.79 

0.78 

0.77 
1 

fitness 

r' ,JvA"''"'"'t"·1''J1"1h/1v'4Yl1 ,,,,,,,,n½'\IN/f'v/W'·.r>,1111,1,NL><.r 
d 

generation no. 490 

Figure 5. Fitness function in successive generations (average and best individual); the results 
concems one of the ten runs of the experiment 

The location of the hyperboxes in the input space is visualized in Figure 6; here the endpoints of the 
corresporiding axes (variables) are shown vis-a-vis the ranges of the individual software measures. 

(a) 

Il 
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1 2 3 4 5 6 7 6 9 10 11 
0.1 ~---

(b) 
Figure 6. Location of the hyperboxes in the space of the software measures for the first (a) and 

second (b) hyperbox 

This form of visualization becomes beneficial in providing a certain insight inio the specificity of the 
box with respect to the overall range of the feature . We can make two observations with this respect. 
First, there are some software measures for which the hyperboxes are quite narrow. This concems the 
number of Iines of code excluding comments, number of characters, and the number of code 
characters. These software measures could be then alluded to as the most discriminative features in 
the classification problem. Secondly, the hyperboxes can overlap (which is not surprising as they are 
formed in a highly dimensional feature space) with respect to some software measures and become 
quite distinct as far as some other features are concemed. This occurs for the number of lines of code 
and the number of comments. 

Experiment 2. Here we are interested in the description of software modules requmng low 
maintenance effort by defining a group of modules with the number of changes less !han 7 so we are 
concemed with the description of low maintenance software modules. The results are reported in a 
slmilar format as shown in the first experiment. Here we consider I and 2 hyperboxes as the two 
design altematives of interes!. Because of the anticipated character of the class (involving low 
maintenance moduł es), we can envision that the hyperbox will be eventually spreading from the low 
bounds assumed by the software measures towards their higher values. As illustrated in Figure 7, 
one hyperbox leads to better results than those coming with the use of the two or more hyperboxes. 

89 ~----------~ 

88 +---------
87 

88 

85 

84 

83 

82 

81 
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Figure 7. Classification rate for one and two hyperboxes for the training (dark bars) and testing data 
(gray bars); shown are average values of the rates 

The coverage of the hyperbox expressed in terms of the individual software measures helps us assess 
a discriminative property of the features . To quantify this effect, for each feature we introduce the 
following ratio 

length of interval (upper - !ower bound) 
p= 

lenght of bound of feature 

The !ower the value of p, the more discriminative the variable. lntuitively, if p tends to approach I, 
the corresponding software measure is not meaningful (any of its value is relevant to the same class 
and there is no discrimination abilities present). As visualized in Figure 8, we note thai the most 
discriminative software measures are the number of Iines of code, program length, and the number of 
code characters. The ranking of the features with respect to their discriminative power can be 
mapped onto the form of the rules where we reflect !his in the order of the conditions in the rules. 
For instance, the rules could read as follows 

- if number of Iines of code is A and program length is B, and the number of code characters 
is C ... and .... !hen the software module exhibits low Ievel of maintenance 

with A, B, and C denoting the intervals of the values of the corresponding features 
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Figure 8. Plot ofratios p for software measures in the MIS data 

4. Conclusions 

We have developed a comprehensive design process of hyperbox classifiers. The two-phase 
development environment appeared to be a viable optimization structure. By initiating the 
development of the hyperboxes through fuzzy clustering we were able to concentrate a search for the 
geometry of the data and focus the ensuing genetic optimization on the most promising regions of the 
feature space. The most visible advantage of the hyperbox classifier Iies in its interpretability and this 
feature is fully exploited in the design of the classifier for the software data. The equivalent 
representation of the hyperbox classifier comes as a collection of rules where each hyperbox 
corresponds to a single rule. We experimented with the software MIS dataset and showed how the 

13 



classifier leads to a collection of mies describing software modules of same assumed quantification 
of software modules. 

While in this study we have confined ourselves to a two-class problem (thai is usually treated as a 
generic classification environment), the approach readily extends to a multiclass problem. 
Interestingly, the use of the genetic algorithm itself could be helpful in an overall optimization of the 
resulting ensemble of the classifiers. 
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