

Genetic Granular Classifiers in Modeling Software Quality

Witold Pedrycz* and Giancarlo Succi**

*Department of Electrical and Computer Engineering
Universtiy of Alberta
Edmonton, AB, Canada T6G 2G7

** Department of Computer Science
University of Bozen
Bozen, Italy

Abstract Hyperbox classifiers are one of the most appealing and intuitively transparent classification
schemes. As the name stipulates, these classifiers are based on a collection of hyperboxes — generic
and highly interpretable geometric descriptors of data belonging to a given class. The hyperboxes
translate into conditional statements (rules) of the form “if feature, is in [a,b] and feature; is in [d,f]
and .. and feature, is in [w,z) then class ®” where the intervals ({a,b],...[w,z]) are the respective
edges of the hyperbox. The proposed design process of hyperboxes comprises of two main phases. In
the first phase, a collection of “seeds” of the hyperboxes is formed through data clustering (realized
by means of the Fuzzy C-Means algorithm, FCM). In the second phase, the hyperboxes are “grown”
by applying mechanisms of genetic optimization (and genetic algorithm, in particular). We reveal
how the underlying geometry of the hyperboxes supports an immediate interpretation of software
data concerning software maintenance and dealing with rules describing a number of changes made
to software modules and their linkages with various software measures (such as size of code,
McCabe cyclomatic complexity, number of comments, number of characters, etc.)

Keywords Software quality, hyperbox geometry of classifiers, software measures, genetic
algorithms, fuzzy clustering, fuzzy C-Means (FCM)

1. Introductory Comments

Pattern classifiers [4] come with their underlying geometry. As a matter of fact, the geometry and
related learning mechanisms are the two essential elements that determine the resulting performance
of any pattern classifier. What we witness today is an evident panoply of technologies used to design
classifiers: neural networks, fuzzy rule-based systems (and ensuing fuzzy classifiers), k-Nearest
Neighbor (k-NN) classifiers, and genetic optimization are just a few representative categories of
pattern classifiers. The assumed geometry of the classifier (say, hyperplanes, receptive fields, etc.)
implies its learning capabilities and resulting accuracy. Quantitative Software Engineering inherently
dwells on empirical data that need to be carefully analyzed. As there are no physical underpinnings
characterizing software processes and ensuing software products, the commonly encountered
assumptions that govern “standard” regression models and classifiers do not hold and could be
difficult to justify. On the other hand, we anticipate that models developed in the realm of Software
Engineering should be transparent meaning that their readability and a level of comprehension are
high. Being faced by the lack of physical underpinnings on one hand and the need for the user-
friendliness on the other, it becomes advisable to set up a logic-based development framework and
adopt logic as a paramount feature of the resulting constructs. In this way the interpretability of the
models is inherently associated with the logic roots of the environment. Likewise their geometry is
also implied by the logic fundamentals we have started with at the beginning. The quest for
interpretability of models in Software Engineering comes with a variety of facets and diverse
applications including software specification, software maintenance, reliability, portability.
Apparently, some categories of models are geared towards interpretational clarity and make it one of
the dominant features. This becomes visible in rule-based systems, cf. [3][6] [16] in which this
feature comes hand in hand with the requirement of high accuracy and substantial prediction
capabilities. Overall, there are several general observations worth making with this respect
e software processes and products are human-centric and do not adhere to any physical
underpinnings. It light of their origin, it is legitimate to focus on logic-rich and transparent
models

e domain knowledge becomes an integral part of the model especially in case of its availability and
limited availability of experimental data as well as substantial variability of the software products
and processes

* interpretability of the developed models becomes an important and highly desirable feature of
models of software artifacts which helps designer and manager gain a better insight into the
specificity of the particular model and derive conclusions. In a nutshell, the geometry of the
model (say a predictor or classifier0 needs to be easily comprehended by the user.

e Software measures (metrics) [7][14][15][17] becomes essential indicators of software quality
(such as reliability, maintenance effort, development cost, etc). It becomes then essential to
develop models that are easily understood by the managing personnel and designers to look at
possible scenarios and pursue any “what-if” considerations.

The geometry of the feature space imposed by the classifier is also inherently associated with our
ability to interpret classification processes and comprehend the decision boundaries produced by the
classifier. In general, these are nonlinear. In an ideal situation they may coincide with those produced
by a Bayesian classifier [4]. From the interpretation point of view, the most intuitive ones are those
built in the form of boxes (in two-dimensional space) or hyperboxes (in multi-dimensional space),
refer to Figure 1.

u]
a " o
QGDD o
[~} DDDD
Ofeo| oz -
MD@%%%IS
0 o]
a

Figure 1. Examples of hyperbox-based classifier formed in a two-dimensional space; note a number
of hyperboxes (boxes) formed there and “covering” patterns (data) belonging to class @, (dots). The
second class is denoted by small squares and its elements are excluded from the hyperbox

Subsequently, when using boxes (and hyperboxes in general), any classification rule becomes
straightforward and emerges as a result of enlisting of the edges of the boxes:

assign (classify) pattern xeR" to class w; if x belongs to one of the hyperboxes H),
H,,...,H, describing (localizing) patterns belonging to the class under interest.

The hyperbox classifier exhibits two interesting properties. First, the concept of the classifier is
profoundly simple. Potentially we can improve the classification rate by moving to the higher level
of detail and increasing the number of the boxes while making them smaller and in this way refining
the classifier. Second, the classifier directly translates into a set if transparent rules (since each box is
a rule itself) whose condition parts assume a straightforward interpretation. Note that a hyperbox is
just a Cartesian product of the intervals forming its edges. The rules read as “if x is in H; then @,”,
i=1, 2,...,c. Alternatively, we can allude to the edges of the hyperbox and spell out a collection of the
conditions, that is * if x, is in [a;, by] and X, is in [az, b,] and ... and [a,, b,) then wi”. Owing to their
interpretability, hyperbox classifiers have been studied in the literature quite intensively, cf.
[6][18]{19]{16). The most popular approach to the design of these classifiers is perhaps the one
proposed by Simpson [18][19] where he discusses both supervised and unsupervised mode of
learning. What somewhat hampers the development of the hyperbox classifiers is a lack of learning
algorithms which is not so surprising considering the geometry of the classifiers (that do not come
with differentiable boundaries of the hyperboxes and in this way are not suitable for gradient-based
optimization techniques).

The objective of this study is to develop a hybrid, two-phase design of hyperbox classifiers and
discuss their essential role in analysis and classification of software data. In the first phase of the
design, we “seed” the hyperboxes by using fuzzy clustering in which designed are the prototypes

(centers) of the clusters. In our case there play a role of seeds around which the we start “:growing’
the boxes by expanding the size of the box and pushing its walls further from the center. This
process is followed by the second phase in which we “grow “ the hyperboxes via genetic
optimization. This hybrid approach helps us capture the nature of the software data by identifying the
clusters first and then form its geometry with the aid of genetic optimization.

The material is arranged into 4 sections. Following the introductory comments, Section 2 provides
with a detailed design process of the hyperbox classifier. This is followed by intensive experimental
studies involving MIS software data [15] presented in Section 3. Conclusions are covered in Section
4,

In this study, we adhere to the basic notation being commonly encountered in pattern recognition. To
focus attention on the essence of the problem, we consider a two-class problem involving two
categories of patterns (denoted here by wy and , respectively). Patterns are distributed in an n-
dimensional space of reals that is x,, Xy, ..., xy € R". As already stated, the hyperbox classifier is
based on a collection of hyperboxes represented here as

H={H,,Hy, ... H}

The i® hyperbox, H;, is fully described by two vectors of its bounds, namely H; = (a;, b;) where a; <
b;; denote the lower and upper bounds of the j" feature for the i™ hyperbox.

Prior to moving into the development of the classifier, it is advantageous to elaborate here in more
detail on the software data being used in this case study. The Medical Imaging System (MIS) [15] is
a commercial software system consisting of approximately 4500 routines written in about 400,000
lines of Pascal, FORTRAN and PL/M assembly code. The MIS development took five years, and the
system has been in commercial use at several hundred sites for quite a few years. The MIS data were
collected as the number of changes made to each module due to faults discovered during system
testing and maintenance over an observation period of three years. Along with the above parameter,
eleven software complexity measures (metrics) were provided, refer to Table 1. In this study, MIS is
represented by a subset of the whole MIS data with 390 modules written in Pascal and FORTRAN.
These modules consist of approximately 40,000 lines of code. Our goal is to develop a prediction
model of software quality in which the number of modifications (changes) is projected on a basis of
the values of the 11 software metrics that is used to characterize a software module. We cast the
problem in the setting of classification and because of this assumed format, the output variable
(number of changes) is discretized (categorized) by distinguishing between several limited, but
intuitively appealing, categories (say, class_l: software modules with no changes; these could be
eventually deemed to be fault-free, class_2: software modules with number of modifications between
! and 10, and software modules with the number of changes over 10; this category can be sought as
potentially highly faulty modules where most of our testing and maintcnance effort should be
focused).

Software Measure Detailed Description
Changes Number of changes
LOC Number of lines of code including comments, declarations and the main
body of the code

CL Number of lines of code, excluding comments
TChar Number of characters
TComm Number of comments
MChar Number of comment characters
DChar Number of code characters
N Halstead’s Program Length N = N;+N,, N; is the total number of
operators, N is the total number of operands
N’ Halstead’s Estimate of Program Length N’= n, logzn; + n logzny, n; is
the number of unique operators, nj is the number of unique operands
NF Jensen’s Estimate of Program Length Metric logon! + logon,!
V(G) McCabe’s Cyclomatic Complexity Metric, where V(G)=e-n+2, and e
_represents the number of edges in a control graph of n nodes
BW Belady’s bandwidth measure BW=1/n ZiiL;, L; represents the number of
nodes at level “i” in a nested control flow graph of n nodes. This
measure indicates the average level of nesting or width of the control
flow graph representation of the program

Table 1. Description of the MIS dataset with a detailed characterization of the software measures; for
details refer to [18]

2. The Design of the Classifier

In this section, we elaborate on the development of the classifier. As already stated in the previous
section, the hyperboxes being a crux of the classifier are formed in two phases. First, Fuzzy C-Means
(FCM) [2] traverses trough the multidimensional data space, finds clusters and describe them via
their prototypes vi, v,..., Ve. These prototypes form “seeds™ of the hyperboxes to be developed in the
second design phase. In essence, this second step is about “growing” the hyperboxes around the
prototypes. As each hyperbox is completely described by its lower and upper bounds (yielding
corresponding hyperplanes) that are positioned relative to the prototype, we are concerned with the
determination of the values of such parameters. In general, gradient-based methods (especially in
case of highly dimensional feature space and a significant number of the prototypes) may not allow
us to explore intensively the resulting search space and arrive at a global minimum. Therefore our
intent is to apply techniques of genetic optimization, and genetic algorithms [1]{5][8][9][10][12][13]
in particular. In what follows, we move to the pertinent algorithmic details and afterwards discuss an
overall flow of the algorithmic pursuits along with the corresponding implementation details.

2.1 The Fuzzy C-Means (FCM) Algorithm

The aim of the FCM approach (which is regarded as one among standard and commonly exploited
clustering techniques) is aimed at revealing a structure in multidimensional data sets. This is
accomplished by minimizing the following objective function

¢ N
Q=YY (u,)"d (n

i=1 k=1

The minimization of Q is realized with respect to the pivotal descriptors of the structure that is a
partition matrix U = [ux],i=1, 2,..., ¢, k=1, 2,..., N and prototypes (centers) of the clusters vy,
v2...¥.. (1) is a sum of distances from the prototypes where these distances are weighted by the
values of the partition matrix (membership grades of patterns to the clusters). dix denotes the distance
between pattern (datum) x, and prototype vi: dix = {|xx - vil|. The fuzzification factor m (>1) controls a
shape of the fuzzy sets and, in the sequel, a level of overlap occurring between the clusters, Usually
we set up ‘m’ to 2. The minimization of (1) is carried out under a set of constraints expressed with
respect to U, namely

N

0<Yu, <N i=1,2...c)
k=1

Yo, =1 k=1,2...n 3)

By introducing constraint (2) we make sure that the clusters are neither empty nor consist of the
entire space. Constraint (3) states that the total membership of each pattern over all clusters is equal
to 1.

The constrained optimization is realized through an iterative process by updating prototypes and
partition matrix U governed by the following expressions

N
Z(uik)X,
A)

N
Z(Uik)m

1y = ©)
c d(Vi ’xk) m-|

| divysx)

The FCM phase is introduced to prevent the GA from exploring empty regions of the space or areas
where only patterns belonging to class ay are found. This is a waste of computational power if it can
be avoided, as we know that including such areas would not improve the performance of the
classifier. We therefore looked for a way to narrow down the search space and make the search more
focused. FCM directs the GA to explore only areas that are known to have concentration of class w;
vectors. By its nature, FCM is known to locate (position) prototypes in regions where we encounter
the highest density of data, which is an essence of clustering. In light of the two-class pattern
classification we consider here, we cluster only patterns belonging to class ®,, leaving out patterns of
class ay. We can therefore assume that wherever the prototypes are found, should be contained
inside the hyperboxes and grow the hyperboxes around these seeds.

Let us stress that the FCM algorithm does come with certain pitfalls. These are primarily related to
the number of the clusters (prototypes). This parameter is usually fixed in advance and may not
coincide with the “real” structure existing in the data set. If this is the case, we should become aware
of the consequences of such mismatch. If there are fewer prototypes than clusters, some or all of the
prototypes may be placed by the algorithm in regions between the clusters. There is no information
about this region, and we do not know whether this region is empty or filled with class wy vectors,
which are omitted from the FCM algorithm. Another problem arises in the opposite case as well.
When there are more prototypes than clusters, the arrangement of the prototypes is highly dependent
on their original placement, which, as mentioned, is random. For example, given 4 clusters, and 8
prototypes, there is no guarantee that the final arrangement would include 2 prototypes per cluster,
Therefore, a cluster that would need more hyperboxes to be defined accurately may only be able to
utilize fewer hyperboxes than another cluster, which may not require as many.

2.2 Genetic Algorithms as a Vehicle of Evolutionary Optimization

The genetic optimization phase of the design uses a “standard” real coded GA (RCGA) [5){9}{10]
where chromosomes are represented using real valued vectors. This representation poses some
advantages over the traditional binary coded GA (BCGA) where chromosomes are represented using
binary strings. RCGA offers higher precision while avoiding coding problems, such as the
“Hamming cliff” phenomenon [8], and the representation of the problem to GA space is fairly
straightforward. The fundamental architectural and functional considerations involve problem
representation, genetic operations, and a fitness function.

1. Problem Representation: As noted, the number of hyperboxes is fixed in advance as being in
one-to-one correspondence with the prototypes determined by the FCM algorithm. We
organize “n” variables (edges) of the “c” hyperboxes as successive entries of the chromosome
of length 2*n*c. All the entries in the chromosome are confined to the unit interval; this leads
to a chromosome whose content is more homogeneous and therefore easily interpretable.
When returning the content of the chromosome and produce a result in a phenotype space, we
convert the entry of the chromosome by scaling it. For instance, we transform a’y4 to aj4 by
multiply it by the range it could have assumed that is D; we thus have a;4=D* a’y4. If the
prototype for box 1 is found to be at (40, 90), the domain for the feature x, is [60, 100]
(determined by finding the range of this feature), and a’4 assumes the value equal to 0.6, then
the value of a;4 computes as (100-90)*0.6=6. Likewise the upper bound for box 1 in the
feature space (phenotype) x; is given as 90+6=96.

2. Selection: we use an elitist ranking selection [1]. This selection mechanism means that
individuals to be selected for the next generation are based on their relative rank in the
population, as determined by the fitness function. The best individual from each generation is
always carried over to the next generation, so the best solution found so far during the genetic
optimization is guaranteed to never disappear.

3. Mutation: we use the random mutation operator [9]. Given an individual a = [a,,a,,...,a2,)
we generate a’ = [a,°,a°, ...,a2,"] where a7, i=1, 2,...,2n, is a random number confined in the
range of [0,1] and subject to the following rule: a; is mutated that is replaced by a;” with some
probability of mutation (P,,) otherwise the entry of the chromosome is left intact, a;’=a;.

7

4. Crossover: the crossover operation is realized as the BLX-0.5 crossover operator [11], which
is carried out as follows. Given two individuals a = [ay, a,, ..., 22,] and b = [by, by, ..., bay],
their resulting offspring are formed as a’ = [a,’, a2’, ..., axy’] and b’ = [b)’, by’, ..., b2'],
where a;, b, i=1,2,...,2n, are random numbers in the range [max(0, min;-0.5I), min(1,
max;+0.51)]. In the above calculations, min; = min (a;, b;), max; = max (a;, b)), and I = max; -
min;, see Figure 2 for a detailed illustration of the realization of this operation. This particular
crossover operation provides a good balance between using the information of the parents
and avoiding premature convergence, cf. 0. Furthermore the crossover operator defined in
this manner ensures that all values of the generated offspring are confined to the unit interval
[0, 1]. The operator is employed with probability of crossover, P, otherwise the individuals
are left unchanged a’=a and b’=b.

(@)

Figure 2. A realization of the mutation operator used in the genetic optimization: lower
(a) and upper (b) bounds of the range

5. Fitness Function: As each individual is an instance of a hyperbox classifier, the fitness
function is the same is the primary evaluation criteria of the classifier, which is its accuracy
[4]. The classifier’s accuracy is defined as (TP+TN)/N whose definition is self-evident once
related to the confusion matrix shown in Table 1, where N denotes the total number of
patterns. The confusion matrix summarizes the number of correctly predicted negatives, or
True Negative (TN), incorrectly predicted positives, or False Positive (FP), etc. Once we
reach a fitness value equal to 1, the GA process is stopped. In our study, the genetic
optimization is guided by the accuracy of the developed classifier

