
Raport Badawczy

Research Report
RB/5/2003

Genetic granular classifiers
in modeling software quality

W. Pedrycz, G. Succi

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. N ew el ska 6

O 1-44 7 Warszawa

tel. : (+48) (22) 83 73 578

fax: (+48) (22) 8372772

Kierownik Pracowni zgłaszający pracę :

Prof dr hab. inż . Janusz Kacprzyk

Warszawa 2003

Genetic Granular Classifiers in Modeling Software Quality

Witold Pedrycz* and Giancarlo Succi**

*Department ofElectrical and Computer Engineering
Universtiy of Alberta

Edmonton, AB, Canada T6G 2G7

** Department ofComputer Science
University of Bozen

Bozen, ltaly

Abstract Hyperbox classifiers are one of the most appealing and intuitively transparent classification
schemes. As the name stipulates, these classifiers are based on a collection of hyperboxes - generic
and highly interpretable geometrie descriptors of data belonging to a given class. The hyperboxes
translate into conditional statements (rules) of the form "iffeature, is in [a,b] and feature2 is in [d,f]
and „ and feature0 is in [w,z] then class ro" where the intervals ([a,b], ... [w,z]) are the respective
edges of the hyperbox. The proposed design process ofhyperboxes comprises of two main phases. In
the first phase, a collection of "seeds" of the hyperboxes is formed through data clustering (realized
by means of the Fuzzy C-Means algorithm, FCM). In the second phase, the hyperboxes are "grown"
by applying mechanisms of genetic optimization (and genetic algorithm, in particular). We reveal
how the underlying geometry of the hyperboxes supports an immediate interpretation of software
data concerning software maintenance and dealing with mies describing a number of changes made
to software modules and their linkages with various software measures (such as size of code,
McCabe cyclomatic complexity, number of comments, number of characters, etc.)

Keywords Software quality, hyperbox geometry of classifiers, software measures, genetic
algorithms, fuzzy clustering, fuzzy C-Means (FCM)

1. Introductory Comments

Patiem classifiers [4] come with their underlying geometry. As a matter of fact, the geometry and
related learning mechanisms are the two essential elements that determine the resulting performance
of any paltem classifier. What we witness today is an evident panoply of technologies used to design
classifiers: neural networks, fuzzy rule-based systems (and ensuing fuzzy classifiers), k-Nearest
Neighbor (k-NN) classifiers, and genetic optimization are just a few representative categories of
pattem classifiers. The assumed geometry of the classifier (say, hyperplanes, receptive fields, etc.)
implies its learning capabilities and resulting accuracy. Quantitative Software Engineering inherently
dwells on empirical data that need to be carefully analyzed. As there are no physical underpinnings
characterizing software processes and ensuing software products, the commonly encountered
assumptions that govem "standard" regression models and classifiers do not hold and could be
difficult to justify. On the other hand, we anticipate that models developed in the realm of Software
Engineering should be transparent meaning that their readability and a level of comprehension are
high. Being faced by the Jack of physical underpinnings on one hand and the need for the user­
friendliness on the other, it becomes advisable to set up a logic-based development framework and
adopt Jogic as a paramount feature of the resulting constructs. In this way the interpretability of the
models is inherently associated with the Jogic roots of the environment. Likewise their geometry is
also implied by the logic fundamentals we have started with at the beginning. The quest for
interpretability of models in Software Engineering comes with a variety of facets and diverse
applications including software specification, software maintenance, reliability, portability.
Apparently, some categories of models are geared towards interpretational clarity and make it one of
the dominant features. This becomes visible in rule-based systems, cf. [3][6] [16] in which this
feature comes hand in hand with the requirement of high accuracy and substantial prediction
capabilities. Overall, there are several generał observations worth making with this respect
• software processes and products are human-centric and do not adhere to any physical

underpinnings. It light of their origin, it is legitimate to focus on Jogic-rich and transparent
models

• domain knowledge becomes an integral part of the model especially in case of its availability and
limited availability of experimental data as well as substantial variability of the software products
and processes

• interpretability of the developed models becomes an important and highly desirable feature of
models of software artifacts which helps designer and manager gain a better insight into the
specificity of the particular model and derive conclusions. In a nutshell, the geometry of the
model (say a predictor or classifierO needs to be easily comprehended by the user.

• Software measures (metrics) [7][14][15][17] becomes essential indicators of software quality
(such as reliability, maintenance effort, development cost, etc). It becomes then essential to
develop models that are easily understood by the managing personnel and designers to look at
possible scenarios and pursue any "what-if' considerations.

2

The geometry of the feature space imposed by the classifier is also inherently associated with our
ability to interpret classification processes and comprehend the decision boundaries produced by the
classifier. In generał, these are nonlinear. In an ideał situation they may coincide with those produced
by a Bayesian classifier [4]. From the interpretation point of view, the most intuitive ones are those
built in the form of boxes (in two-dimensional space) or hyperboxes (in multi-dimensional space),
refer to Figure I.

•

•

• •
• •

• • • • • •
• • l®0,~~i1g

o •• o ••• • • •
• re,, •

Figure I. Examples ofhyperbox-based classifier formed in a two-dimensional space; note a number
ofhyperboxes (boxes) formed there and "covering" patterns (data) belonging to class 001 (dots). The

second class is denoted by small squares and its elements are excluded from the hyperbox

Subsequently, when using boxes (and hyperboxes in generał), any classification rule becomes
straightforward and emerges as a result of enlisting of the edges of the boxes:

assign (classify) patiem xEK' to class w, if x belongs to one of the hyperboxes H,.
Hz, ... ,Hc describing (localizing) patterns belonging to the class under interest.

The hyperbox classifier exhibits two interesting properties. First, the concept of the classifier is
profoundly simple. Potentially we can improve the classification rate by moving to the higher level
of detail and increasing the number of the boxes white making them smaller and in this way refining
the classifier. Second, the classifier directly translates into a set if transparent rules (since each box is
a rule itself) whose condition parts assume a straightforward interpretation. Note thai a hyperbox is
just a Cartesian product of the intervals forming its edges. The rules read as "if x is in H; then ooi",
i= I, 2, ... ,c. Alternatively, we can allude to the edges of the hyperbox and spe Il out a collection of the
conditions, that is" ifx1 is in [ai, bi] and x2 is in [a2, b2] and . . . and [an, bn] then ooi". Owing to their
interpretability, hyperbox classifiers have been studied in the literature quite intensively, cf.
[6][18][19][16]. The most popular approach to the design of these classifiers is perhaps the one
proposed by Simpson [18][19] where he discusses both supervised and unsupervised mode of
learning. What somewhat hampers the development of the hyperbox classifiers is a lack of learning
algorithms which is not so surprising considering the geometry of the classifiers (that do not come
with differentiable boundaries of the hyperboxes and in this way are not suitable for gradient-based
optimization techniques).

The objective of this study is to develop a hybrid, two-phase design of hyperbox classifiers and
discuss their essential role in analysis and classification of software data. In the first phase of the
design, we "seed" the hyperboxes by using fuzzy clustering in which designed are the prototypes

3

(centers) of the clusters. In our case there play a role ofseeds around which the we start ":growing'
the boxes by expanding the size of the box and pushing its walls further from the center. This
process is followed by the second phase in which we "grow " the hyperboxes via genetic
optimization. This hybrid approach helps us capture the nature of the software data by identifying the
clusters first and then form its geometry with the aid of genetic optimization.

The materia! is arranged into 4 sections. Following the introductory comments, Section 2 provides
with a detailed design process of the hyperbox classifier. This is followed by intensive experimental
studies involving MIS software data [I 5] presented in Section 3. Conclusions are covered in Section
4.

In this study, we adhere to the basie notation being commonly encountered in paltem recognition. To
focus attention on the essence of the problem, we consider a two-class problem involving two
categories of patterns (denoted here by ~ and ro1, respectively). Patterns are distributed in an n­
dimensional space of reals that is x1, x2, •. . , XN e R". As already stated, the hyperbox classifier is
based on a collection of hyperboxes represented here as

The ith hyperbox, H;, is fully described by two vectors of its bounds, namely H; = (a;, b;) where a;i :5
bu denote the !ower and upper bounds of the l feature for the ith hyperbox.

Prior to moving inio the development of the classifier, it is advantageous to elaborate here in more
detail on the software data being used in this case study. The Medical Imaging System (MIS) [15] is
a commercial software system consisting of approximately 4500 routines written in about 400,000
lines of Pascal, FORTRAN and PUM assembly code. The MIS development took five years, and the
system has been in commercial use at severa! hundred sites for quite a few years. The MIS data were
collected as the number of changes made to each module due to faults discovered during system
testing and maintenance over an observation period of three years. Along with the above parameter,
eleven software complexity measures (metrics) were provided, refer to Table I . In this study, MIS is
represented by a subset of the whole MIS data with 390 modules written in Pascal and FORTRAN.
These modules consist of approximately 40,000 lines of code. Our goal is to develop a prediction
model of software quality in which the number ofmodifications (changes) is projected on a basis of
the values of the 11 software metrics that is used to characterize a software module. We cast the
problem in the setting of classification and because of this assumed format, the output variable
(number of changes) is discretized (categorized) by distinguishing between severa! limited, but
intuitively appealing, categories (say, class_! : software modules with no changes; these could be
eventually deemed to be fault-free, class_ 2: software modules with number of modifications between
I and I O, and software modules with the number of changes over I O; this category can be sought as
potentially highly faulty modules where most of our testing and maintenance effort should be
focused) .

Software Measure Detailed Description
Changes Number of changes

LOC Number of lines of code including comments, declarations and the main
body of the code

4

CL Number of lines of code, excluding comments
TChar Number of characters

TComm Number of comments
MChar Number of comment characters
DChar Number of code characters

N Halstead's Program Length N = N1+N2, N1 is the total number of
operators, N2 is the total number of operands

N' Halstead's Estimate of Program Length N'= n1 log2n2 + n2 log2n2, n1 is
the number of unique opera tors, n2 is the number of unique operands

NF Jensen's Estimate of Program Length Metric log2ni! + log2n2!
V(G) McCabe's Cyclomatic Complexity Metric, where V(G)=e-n+2, and e

represents the number of edges in a control graph of n nodes
BW Belady's bandwidth measure BW=l/n l:;i~, L; represents the number of

nodes at level " i" in a nested control flow graph of n nodes. This
measure indicates the average level of nesting or width of the control
flow graph representation of the program

Table I. Description of the MIS dataset with a detailed characterization of the software measures; for
details refer to [I 8]

2. The Design of the Classifier

In this section, we elaborate on the development of the classifier. As already stated in the previous
section, the hyperboxes being a crux of the classifier are formed in two phases. First, Fuzzy C-Means
(FCM) [2] traverses trough the multidimensional data space, finds clusters and describe them via
their prototypes v1, v2, ... , v0 • These prototypes form "seeds" of the hyperboxes to be developed in the
second design phase. In essence, this second step is about "growing" the hyperboxes around the
prototypes. As each hyperbox is completely described by its !ower and upper bounds (yielding
corresponding hyperplanes) that are positioned relative to the prototype, we are concemed with the
determination of the values of such parameters. In generał, gradient-based methods (especially in
case of highly dimensional feature space and a significant number of the prototypes) may not allow
us to explore intensively the resulting search space and arrive at a global minimum. Therefore our
in tent is to apply techniques of genetic optimization, and genetic algorithms [I][5] [8] [9][I O][12] [13]
in particular. In what follows, we move to the pertinent algorithmic details and afterwards discuss an
overall flow of the algorithmic pursuits along with the corresponding implementation details.

2.1 The Fuzzy C-Means (FCM) Algorithm

The aim of the FCM approach (which is regarded as one among standard and commonly exploited
clustering techniques) is aimed at revealing a structure in multidimensional data sets. This is
accomplished by minimizing the following objective function

(I)

5

The minimization of Q is realized with respect to the pivotal descriptors of the structure that is a
partition matrix U= [u;k], i= I, 2, ... , c, k = I, 2, ... , N and prototypes (centers) of the clusters v1,

v2 . .. v c• (I) is a sum of dis tan ces from the prototypes where these distances are weighted by the
values of the partition matrix (membership grades ofpattems to the clusters). d;k denotes the distance
between paltem (datum) Xk and prototype v;: d;k = llxk - v;II. The fuzzification factor m (>!) controls a
shape of the fuzzy sets and, in the sequel, a level of overlap occurring between the clusters. Usually
we set up 'm' to 2. The minimization of (I) is carried out under a set of constraints expressed with
respect to U, namely

N

0< I,uik < N i=l,2 ... c (2)
k=I

k=l,2 ... n (3)

By introducing constraint (2) we make sure that the clusters are neither empty nor consist of the
entire space. Constraint (3) states that the total membership of each paltem over all clusters is equal
to I.

The constrained optimization is realized through an iterative process by updating prototypes and
partition matrix U govemed by the following expressions

N

I,(uik)mx•

vi =~•~=~---- (4)

L,(U;k)m
k=I

(5)

The FCM phase is introduced to prevent the GA from exploring empty regions of the space or areas
where only paltems belonging to class ~ are found. This is a waste of computational power if it can
be avoided, as we know that including such areas would not improve the performance of the
classifier. We therefore looked for a way to narrow down the search space and make the search more
focused. FCM directs the GA to explore only areas that are known to have concentration of class co,
vectors. By its nature, FCM is known to locale (position) prototypes in regions where we encounter
the highest density of data, which is an essence of clustering. In light of the two-class paltem
classification we consider here, we cluster only paltems belonging to class co,, leaving out paltems of
class ~- We can therefore assume that wherever the prototypes are found, should be contained
inside the hyperboxes and grow the hyperboxes around these seeds.

6

..,

Let us stress that the FCM algorithm does come with certain pitfalls. These are primarily related to
the number of the clusters (prototypes). This parameter is usually fixed in advance and may not
coincide with the "real" structure existing in the data set. If this is the case, we should become aware
of the consequences of such mismatch. If there are fewer prototypes than clusters, some or all of the
prototypes may be placed by the algorithm in regions between the clusters. There is no information
about this region, and we do not know whether this region is empty or filled with class ~ vectors,
which are omitted from the FCM algorithm. Another problem arises in the opposite case as well .
When there are more prototypes than clusters, the arrangement of the prototypes is highly dependent
on their original placement, which, as mentioned, is random. For example, given 4 clusters, and 8
prototypes, there is no guarantee that the finał arrangement would include 2 prototypes per cluster.
Therefore, a cluster that would need more hyperboxes to be defined accurately may only be able to
utilize fewer hyperboxes than another cluster, which may not require as many.

2.2 Genetic Algorithms as a Vehicle ofEvolutionary Optimization

The genetic optimization phase of the design uses a "standard" real coded GA (RCGA) [5][9](10]
where chromosomes are represented using real valued vectors. This representation poses some
advantages over the traditional binary coded GA (BCGA) where chromosomes are represented using
binary strings. RCGA offers higher precision while avoiding coding problems, such as the
"Hamming cliff' phenomenon [8], and the representation of the problem to GA space is fairly
straightforward. The fundamental architectural and functional considerations involve problem
representation, genetic operations, and a fitness function.

I. Problem Representation: As noted, the number ofhyperboxes is fixed in advance as being in
one-to-one correspondence with the prototypes determined by the FCM algorithm. We
organize "n" variables (edges) of the "c" hyperboxes as successive entries of the chromosome
of length 2*n*c. All the entries in the chromosome are confined to the unit interval; this leads
to a chromosome whose content is more homogeneous and therefore easily interpretable.
When retuming the content of the chromosome and produce a result in a phenotype space, we
convert the entry of the chromosome by scaling it. For instance, we transform a' 14 to a1 4 by
multiply it by the range it could have assumed that is D; we thus have a14=D* a' 14. lf the
prototype for box I is found to be at (40, 90), the domain for the feature x1 is (60, 100]
(determined by finding the range ofthis feature), and a' 14 assumes the value equal to 0.6, then
the value of a14 computes as (100-90)*0.6=6. Likewise the upper bound for box I in the
feature space (phenotype) x I is given as 90+6=96.

2. Selection: we use an elitist ranking selection [!]. This selection mechanism means that
individuals to be selected for the next generation are based on their relative rank in the
population, as determined by the fitness function. The best individual from each generation is
always carried over to the next generation, so the best solution found so far during the genetic
optimization is guaranteed to never disappear.

3. Mutation: we use the random mu talion operator (9]. Given an individual a = [a1,a2, ... ,a20]
we generale a'= [a1',a2', ... ,a2n'] where a;', i=!, 2, ... ,2n, is a random number confined in the
range of (O, I] and subject to the following rule: a; is mutated thai is replaced by a;• with some
probability ofmutation (Pm) otherwise the entry of the chromosome is left intact, a;'=a;.

7

4. Crossover: the crossover operation is realized as the BLX-0.5 crossover operator [I I], which
is carried out as follows. Given two individuals a= [a,, a2, . . . , a2n] and b = [b1, b2, .. . , b2n],
their resulting offspring are formed as a'= [a,', a2', ... , a2n'] and b' = [b,', bi', ... , b2n'],
where a;', b;', i=l,2, .. . ,2n, are random numbers in the range [max(0, min;-0.51), min(!,
max;+0.51)]. In the above calculations, min;= min (a;, b;), max;= max (a;, b;), and I= max; -
min;, see Figure 2 for a detailed illustration of the realization of this operation. This particular
crossover operation provides a good balance between using the information of the parents
and avoiding premature convergence, cf. O. Furthermore the crossover operator defined in
this manner ensures thai all values of the generated offspring are confined to the unit interval
[O, I] . The operator is employed with probability of crossover, Pe, otherwise the individuals
are left unchanged a'=a and b'=b.

(a) (b)

Figure 2. A realization of the mutation operator used in the genetic optimization: !ower
(a) and upper (b) bounds of the range

5. Fitness Function: As each individual is an instance of a hyperbox classifier, the fitness
function is the same is the primary evaluation criteria of the classifier, which is its accuracy
[4]. The classifier's accuracy is defined as (TP+TN)/N whose definition is self-evident once
related to the confusion matrix shown in Table I, where N denotes the total number of
pattems. The confusion matrix summarizes the number of correctly predicted negatives, or
True Negative (TN), incorrectly predicted positives, or False Positive (FP), etc. Once we
reach a fitness value equal to I, the GA process is stopped. In our study, the genetic
optimization is guided by the accuracy of the developed classifier

8 •

Table 1 C f ' on us1on matrix or a two-c ass p . ~ roblem
Actual coo Actual co 1

Predicted ~ TN FN

Predicted co 1 FP TP

3. Experiments with Software Data

This section reports on the hyperbox classifiers applied to the MIS data. Prior to these experiments,
we present severa! illustrative two-dimensional examples whose selection helps quantify and
visualize the resulting two-dimensional constructs (boxes) of the classifier.

Example O. We are concemed with the two-class problems where one class forms an oval shape
being surrounded by the second class, Figure 3. When designing the classifier, we require a number
of box es whose unio n attempts to "cover" data belonging to a certain class while eliminating patterns
belonging to second class. As becomes obvious, the resulting union follows the original geometry
with the intent of the minimal approximation error (viz. the minimal classification error). A single
box provides some approximation and we see thai it attempts to do the best by minimizing the
involvement of the patiem belonging to the second class. Overall, the classification rate is around
97% (and this figure is almost the same for the training and testing set). With the increase of the
boxes to two, the approximation improves (as is well visualized) resulting in the classification rate
increased to 98%. Further increase to 4 boxes has resulted in the 99% classification rate.

(a) (b)

(c)
Figure 3. Examples oftwo-dimensional data belonging to two classes and its box classification

involving one (a), two (b), and four (c) boxes

9

Proceeding with the MIS data, the hyperbox classifier is developed by treating the output (the
number of changes) as a binary variable so thai we end up with a two-class classification problem.
This quantification is very much problem-dependent and varies from the standpoint we assume when
analyzing the data. As commonly encountered in the literature and software engineering practice, the
number of changes made to some software artifact impacts its quality, projects on the complexity of
the undertaking, and reflects upon its future performance.

In the ensuing experiments, we fix the parameters of the environment of the genetic optimization.
The size of the population was set to I 00 individuals; the GA was run for 500 generations with the
probability of crossover and mutation equal to 0.80 and O.OS, respectively.

Experiment I. Here we describe a category of software modules for which the number of changes
varies between 5 and 12. Those are the modules thai could be characterized as requiring a medium
level of maintenance effort. The remaining modules form the altemative class. The genetic
optimization was carried out for c = 1, 2,3, and 4 hyperboxes. To assess the performance of the
classifier, the dataset was split inio the three disjoint subsets of a training, validation, and testing set
with each of them playing the role outlined in the previous section. For each case, the experiment
was repeated JO times so that the results become statistically legitimate. The classification rate
obtained for the training and testing set are shown in Figure 4 (reported here are the mean values of
the classification rate that is the classification accuracy).

100 ~---------~
90 +--------==-- -....---J
80 +■1---1----1•-----ł
70

60

50

40

30

20

10

o
2 3 4

number ofhyperboxes

Figure 4. Accuracy of the hyperbox classifier versus number of hyperboxes used in the construct:
training set - black bars, testing set - gray bars

From this figure we can conclude that the optima! number of hyperboxes is two; while the training
set returns better results for three hyperboxes, we see a slightly better performance on the testing set
when using two hyperboxes. As usual, we always prefer to use the most compact structure and thus
the choice of the two hyperboxes. Here the best experiment out of the ten runs produced 86.6% and
82.2% for the training and testing set, respectively. The performance of the GA is reported in the
form of the fitness function, Figure 5, whose values are visualized for the best and average individual
as obtained in the successive generations of the genetic optimization. These are typical plots for the

10

genetic optimization: the best individual (as we used the elitist strategy) is subject to substantial
improvements at the early generations and afterwards is left unchanged. The average fitness of the
entire population fluctuates from generation to generation and becomes a reflection of the ongoing
search completed in the geometry of the hyperboxes.

0.85

0.84

0.83

0.82

0.81

0.8

0.79

0.78

0.77
1

fitness

r' ,JvA"''"'"'t"·1''J1"1h/1v'4Yl1 ,,,,,,,,n½'\IN/f'v/W'·.r>,1111,1,NL><.r
d

generation no. 490

Figure 5. Fitness function in successive generations (average and best individual); the results
concems one of the ten runs of the experiment

The location of the hyperboxes in the input space is visualized in Figure 6; here the endpoints of the
corresporiding axes (variables) are shown vis-a-vis the ranges of the individual software measures.

(a)

Il

100000 ~-----------~

1 2 3 4 5 6 7 6 9 10 11
0.1 ~---

(b)
Figure 6. Location of the hyperboxes in the space of the software measures for the first (a) and

second (b) hyperbox

This form of visualization becomes beneficial in providing a certain insight inio the specificity of the
box with respect to the overall range of the feature . We can make two observations with this respect.
First, there are some software measures for which the hyperboxes are quite narrow. This concems the
number of Iines of code excluding comments, number of characters, and the number of code
characters. These software measures could be then alluded to as the most discriminative features in
the classification problem. Secondly, the hyperboxes can overlap (which is not surprising as they are
formed in a highly dimensional feature space) with respect to some software measures and become
quite distinct as far as some other features are concemed. This occurs for the number of lines of code
and the number of comments.

Experiment 2. Here we are interested in the description of software modules requmng low
maintenance effort by defining a group of modules with the number of changes less !han 7 so we are
concemed with the description of low maintenance software modules. The results are reported in a
slmilar format as shown in the first experiment. Here we consider I and 2 hyperboxes as the two
design altematives of interes!. Because of the anticipated character of the class (involving low
maintenance moduł es), we can envision that the hyperbox will be eventually spreading from the low
bounds assumed by the software measures towards their higher values. As illustrated in Figure 7,
one hyperbox leads to better results than those coming with the use of the two or more hyperboxes.

89 ~----------~

88 +---------
87

88

85

84

83

82

81

12

Figure 7. Classification rate for one and two hyperboxes for the training (dark bars) and testing data
(gray bars); shown are average values of the rates

The coverage of the hyperbox expressed in terms of the individual software measures helps us assess
a discriminative property of the features . To quantify this effect, for each feature we introduce the
following ratio

length of interval (upper - !ower bound)
p=

lenght of bound of feature

The !ower the value of p, the more discriminative the variable. lntuitively, if p tends to approach I,
the corresponding software measure is not meaningful (any of its value is relevant to the same class
and there is no discrimination abilities present). As visualized in Figure 8, we note thai the most
discriminative software measures are the number of Iines of code, program length, and the number of
code characters. The ranking of the features with respect to their discriminative power can be
mapped onto the form of the rules where we reflect !his in the order of the conditions in the rules.
For instance, the rules could read as follows

- if number of Iines of code is A and program length is B, and the number of code characters
is C ... and !hen the software module exhibits low Ievel of maintenance

with A, B, and C denoting the intervals of the values of the corresponding features

9 4

Figure 8. Plot ofratios p for software measures in the MIS data

4. Conclusions

We have developed a comprehensive design process of hyperbox classifiers. The two-phase
development environment appeared to be a viable optimization structure. By initiating the
development of the hyperboxes through fuzzy clustering we were able to concentrate a search for the
geometry of the data and focus the ensuing genetic optimization on the most promising regions of the
feature space. The most visible advantage of the hyperbox classifier Iies in its interpretability and this
feature is fully exploited in the design of the classifier for the software data. The equivalent
representation of the hyperbox classifier comes as a collection of rules where each hyperbox
corresponds to a single rule. We experimented with the software MIS dataset and showed how the

13

classifier leads to a collection of mies describing software modules of same assumed quantification
of software modules.

While in this study we have confined ourselves to a two-class problem (thai is usually treated as a
generic classification environment), the approach readily extends to a multiclass problem.
Interestingly, the use of the genetic algorithm itself could be helpful in an overall optimization of the
resulting ensemble of the classifiers.

Acknowledgments

Support from the Canada Research Chair Program (W. Pedrycz), Natural Sciences and Engineering
Research Council of Canada (NSERC) and Alberta Software Engineering Research Consortium
(ASERC) is gratefully acknowledged.

5. References

[I) J. E. Baker, Adaptive selection methods for genetic algorithms, Proc. of the First International
Conference on Genetic Algorithms, pp. 101-111, 1985.

[2) J. C. Bezdek, Pattern Recognition with Fuzzy Objective Functions, Plenum, N.Y. 1981

[3) I. De Falco, A. Della Cioppa, and E. Tarantino, Discovering interesting classification mies with
genetic programming, Applied Soft Computing 1, pp. 257-269, 2002

[4) R. Duda and P. Hart, Pa/tern Classification and Scene Analysis, Wiley, New York, 1973.

[5] L. J. Eshelman and J. D. Schaffer, Real-coded Genetic Algorithms and lnterval Schemata, in
Foundations of Genetic Algorithms 2, Morgan Kaufman Publishers, San Mateo, CA, pp. I 87-
202, 1993

[6) B. Gabrys, A. Bargieła, General fuzzy Min-Max neural network for clustering and classification,
IEEE Trans. Neural Networks, Vol. 11, issue 3, pp 769-783, 2001

[7) D. Garmus, D. Herron, Measuring The Software Process, Prentice Hall, Upper Saddle River, NJ,
1996.

[8) D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison­
Wesley, 1989

[9) D.E. Goldberg, Real-coded genetic algorithms, virtual alphabets, and blocking, Complex Systems,
(5), pp 139-167, 1991.

[JOJ R. L. Haupt, S. E. Haupt, Practical Genetic Algorithms, J. Wiley & Sans, N. York, 1998.

[I I) F. Herrera, M. Lozano, and J.L. Verdegay, Tackling real-coded genetic algorithms: Operators
and tools for behavioral analysis, Artificial Intelligence Review, vol. 12, pp. 265-319, 1998

14

[12] J. H. Holland, Adaptation of Natura{ and Artificial Systems, The University of Michigan Press,
Ann Arbor, 1975

[13] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer­
Verlag, Heidelberg, 3rd edition, 1996

[14] K.H. Muller, D.J. Paulish, Software Metrics, IEEE Press/Chapman & Hall, London, 1993.

[15] J. C. Munson, T. M. Khoshgoftaar, Software metrics for reliability assessment, in: Handbook of
Software Reliability and System Reliability, McGraw-Hill, Hightstown, NJ, 1996.

[16] W. Pedrycz, G. Succi, M.G. Chun, Association analysis of software measures, Int. J of Software
Engineering and Knowledge Engineering, 12, no.3, 2002, 291-316.

[17] W. Pedrycz, G. Succi, P. Musilek, X. Bai, Using self-organizing maps to analyze object­
oriented software measures, J. of Systems and Software, 59, 2001, 65-82.

[18] P. K. Simpson, Fuzzy Min-Max Neural Networks - Part 1: Classification, IEEE Trans. Neural
Networks, vol. 3, pp 776-786, 1992

[19] P. K. Simpson, Fuzzy Min-Max Neural Networks-Part 2: Clustering, IEEE Trans. Fuzzy
Systems, vol. 1, no. I, pp. 32-45, 1993

[20] G. Succi, W. Pedrycz, M. Stefanovic, B. Russo, An investigation on the occurrence of service
requests in commercial software applications, Empirical Software Engineering, 8, 2003, 197-215.

15

