
www.elsevier.com/locate/jss

The Journal of Systems and Software 76 (2005) 65–76
Effects of introducing survival behaviours into automated
negotiators specified in an environmental and behavioural framework

Peter Henderson, Stephen Crouch *, Robert John Walters, Qinglai Ni 1

Declarative Systems and Software Engineering, School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK

Received 15 December 2003; received in revised form 15 April 2004; accepted 15 June 2004
Available online 26 August 2004
Abstract

With the rise of distributed e-commerce in recent years, demand for automated negotiation has increased. In turn, this has engen-
dered a demand for ever more complex algorithms to conduct these negotiations. As the complexity of these algorithms increases,
our ability to reason about and predict their behaviour in an ever larger and more diverse negotiation environment decreases. In
addition, with the proliferation of internet-based negotiation, any algorithm also has to contend with potential reliability issues
in the underlying message-passing infrastructure. These factors can create problems for building these algorithms, which need to
incorporate methods for survival as well as negotiation.

This paper proposes a simple yet effective framework for integrating survivability into negotiators, so they are better able to with-
stand imperfections in their environment. An overview of this framework is given, with two examples of how negotiation behaviour
can be specified within this framework. Results of an experiment which is based on these negotiation algorithms are provided. These
results show how the stability of a negotiation community is affected by incorporating an example survival behaviour into negoti-
ators operating in an environment developed to support this framework.
� 2004 Elsevier Inc. All rights reserved.

Keywords: E-commerce; Automated negotiation; Negotiation framework; Pseudocode
1. Introduction

1.1. Background

The choice of algorithm used to carry out automated
negotiation on behalf of a client is a significant problem
in distributed e-commerce (Bichler et al., 1998; Burg,
2002; Cranor and Resnick, 1997; Farhoodi and Fingar,
1997; Fingar et al., 2000; Henderson, 2002). Further-
0164-1212/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2004.06.024

* Corresponding author. Tel.: +44 23 8059 7684; fax: +44 23 8059
3045.

E-mail addresses: p.henderson@ecs.soton.ac.uk (P. Henderson),
s.crouch@ecs.soton.ac.uk (S. Crouch), r.j.walters@ecs.soton.ac.uk
(R.J. Walters), q.ni@reading.ac.uk (Q. Ni).

1 Present address: School of Plant Sciences, University of Reading,
Reading, Berkshire RG6 6AS, UK.
more, predicting how well a given algorithm will per-
form in a given environment is difficult.

The ability of an algorithm to succeed in an auto-
mated negotiation environment is dependent on its
ability to survive in that environment. Automated nego-
tiators, on their own terms, must be able to make sense
of and conduct negotiation on the web in which there
are no guarantees of the reliability of the underlying
message-passing infrastructure. As the web increases in
size and interconnectivity, this will become an even
greater problem. In some cases, offers sent may not be
received at all, but equally problematic is that offers re-
ceived are out of date. Suppose a negotiator receives an
offer that has spent an inordinate amount of time in
transit. Despite replying promptly in sending an accept
to this offer, the negotiator finds their acceptance re-
jected because the offer�s sender has already sold their

mailto:p.henderson@ecs.soton.ac.uk
mailto:s.crouch@ecs.soton.ac.uk
mailto:r.j.walters@ecs.soton.ac.uk
mailto:q.ni@reading.ac.uk

Evaluate the
new offer

Wait for new
offer to arrive

Send counter-
offer

Send
acceptance

Quit
negotiations

Send initial
offer

Fig. 1. Reactive negotiation process.

66 P. Henderson et al. / The Journal of Systems and Software 76 (2005) 65–76
last stock to someone else. Agreement is not reached be-
cause of inconsistent views of negotiation, caused by
inconsistent information. The ability to tolerate this
information inconsistency, and being able to minimise
its negative effects by taking corrective or compensating
action, may reward the negotiator with greater success.

To compound these issues, a negotiator cannot be cer-
tain whether their experience of such problems with an-
other negotiator is because of natural occurrence, or
faulty or even malicious behaviour. It is also possible that
the two negotiators are simply unable to reach agreement
because they exhibit mutually incompatible negotiation
strategies. To succeed, automated negotiators must be
able to survive and progress despite such eventualities,
without knowing the intent of other negotiators.

It is not uncommon for communities of automated
negotiators to establish stable norms of behaviour. Over
time, despite negotiators� different behavioural charac-
teristics, initially erratic patterns of negotiation can
eventually settle into predictable patterns of apparent
co-operation (Fogel, 2000; Young, 1998). However,
making successful predictions about how and in what
form such stability will emerge can prove difficult
(Axelrod, 1984, 1997). Even more difficult are attempts
to predict how the community will react when poten-
tially disruptive elements are introduced into the
environment.

1.2. Previous work

Previously we have examined architectures for e-com-
merce systems (Henderson, 1998, 2002; Henderson and
Walters, 2001), to investigate how federations of appli-
cations co-operate. We have also investigated the use
of a fixed-length tournament-based approach to judge
the fitness of negotiation algorithms against each other
(Henderson et al., 2003). Certain patterns of negotiation
were observed during the tournament between various
algorithms, where certain pairs of algorithms did consis-
tently better with each other than others. Examining
their negotiation traces, we observed that stability
would often emerge in their negotiations; their behav-
iour following a predictable path until negotiation was
positively or negatively concluded. However, due to
the nature of the experiment, negotiation between two
participants did not affect other participants during a
simulation. This meant that we were unable to investi-
gate how stability would emerge at a communal level.
Essentially, the environment was incapable of answering
some interesting questions. Given a community of algo-
rithms, would stability emerge? If so, in what form?
Then, if a stability were to emerge in a community of
negotiators, how would this stability be affected if we:
introduce or extract an algorithm mid-experiment?
Introduce an unreliable environment? Adapt algorithms
to cope with this environment?
In this paper, we attempt to explore, and to some ex-
tent answer, the above questions. We extend the fixed-
length tournament approach to encompass the concept
of a continuously operational environment where nego-
tiators may join and leave this community at any time.
In our implementation of such an environment we are
able to develop new algorithms using the framework de-
scribed in this paper, then introduce, observe and evalu-
ate them as they participate in negotiations with others.
We are also able to introduce uncertainty into the mes-
sage-passing infrastructure, and observe how this affects
the participants. Of particular interest is how these
changes affect the stability of negotiation communities.
2. Reactive and proactive negotiation

In essence, the negotiation process consists of a num-
ber of offers being exchanged between two participants
until agreement is reached. This process consists of the
following steps: wait until an offer is received, evaluate
the new offer, then either reply with a counter-offer
(going back to the first step), or send an acceptance or
quit negotiations.

Notwithstanding the initial offer from either of the
participants, this process is a reactive cycle. This process
is depicted in Fig. 1. The dashed box at the top repre-
sents an initial action conducted by only one of the par-
ticipants. This is the only proactive task in the process.

It is natural to assume that the structure of algo-
rithms should follow this same rigid process. This idea
is also easily extended to allow multiple negotiations
with multiple participants.

In practice, adopting a purely reactive approach to
the negotiation process is simply not sufficient. Develop-
ing negotiators in such a way does provide clarity of
process, and simplicity of implementation. However,
the success of the negotiator becomes ultimately depen-
dent on the success of the negotiation process, which is
itself dependent on the reliability of the operating envi-
ronment. Notwithstanding �bad� behaviour exhibited by
negotiators, when this environment becomes unstable,
the negotiation process is liable to collapse.

P. Henderson et al. / The Journal of Systems and Software 76 (2005) 65–76 67
What is required is a more abstract, proactive ap-
proach to conducting negotiation (Murugesan, 2000).
An approach that allows negotiators to reason about
their circumstances at a higher level than the negotiation
process alone, and adopt a more proactive view. Such a
proactive approach should view negotiation as a fully
manageable process: a means to achieve its objectives.
In this way, a negotiator accepts more responsibility
for its survival and success, and reduces dependence
on a potentially imperfect operating environment. Ide-
ally, we would like the clarity offered by a reactive
approach, coupled with the managerial power offered
by the proactive approach.

In the context of this paper, we define success as a
measurement of how well a negotiator performs, and
we define survival as a measurement of whether a nego-
tiator is able to progress in its environment. As will be
observed later, recognising this separation of task suc-
cess and environmental survival can enable more robust
negotiators to be built.
Table 1
A typical example set

Days Price

9 250
6 100
3. The simulator

3.1. The car hire scenario

The scenario adopted for the negotiation simulation
was car hire. If we consider a single participant in this
environment, their objective is to secure a set number
of �hires� per day with respect to a given set of car spec-
ifications. For Buyers, we use a �hire� unit to represent
the number of cars they are in possession of for a given
day. For Sellers, this unit represents the number of cars
that are hired out for a given day.

The participant has their own set of example deals
they would ideally like to achieve. Each entry in this
set consists of two attribute name and value pairs for
the following attributes:

• Days the length of time we wish to hire the car.
• Price the price we would like to pay.

A set of examples consists of a number of these pair-
ings, each representing an acceptable outcome of nego-
tiation. In practice, an instance of a Buyer participant
within this framework uses their examples as deal tar-
gets for acquiring a number of hire cars, whilst an in-
stance of a Seller participant views their examples as
deal targets for hiring out available stock. Since negoti-
ation is based on two attributes, negotiators are poten-
tially able to compromise and thus avoid a myopic
focus on ‘‘best price’’ (Youll, 2001). A more realistic
model of car hire would incorporate more attributes,
(e.g. car size, car features, etc.), introducing more oppor-
tunities for compromise, however the main objective of
the experimentation is to observe overall communal
behaviours, and so we have kept the model simple.

Specifying negotiation criteria as examples provides
an abstract yet flexible method of stating a negotiator�s
desires, although the potential exists for ambiguity be-
tween these example criteria. There is not always a clear
correlation between these examples, and the process of
interpreting these examples in the context of the negoti-
ation process is a task for the negotiator (Sesseler, 2001).

Consider the example set in Table 1. If we assume
they are a set of Buyer examples, we can easily deter-
mine that they would be willing to pay 250 for 9 days
of car hire, but also would pay significantly less on a cost
per day basis for 6 days. In reality, such a discrepancy is
often reasonable. It may be that the creator of this
example set unavoidably requires a car for 9 days, so
therefore ideally wants 9 days of car hire. If this were
unavailable, the Buyer would be willing to accept 6 days
of hire, but for a lot less per day to compensate for the
extra effort of having to acquire 3 days of car hire after 6
days. If the Buyer receives an offer close to one of these
examples, they would be inclined to accept it. If they
have to make a counter-offer, the method they use takes
into account their examples and offers received. If, for
example, a Buyer negotiator who requires 2 cars per
day (its quota) were able to reach agreement for this
quantity with a Seller for 9 days at 250, as in the set
of examples, they would not need to negotiate again
for another 9 days. If they only succeeded in obtaining
1 car for the same deal, they would need to attempt to
find another deal somewhere else for the remaining
car. The possibility exists that they will only be able to
achieve their hires per day objective in part, or perhaps
not at all.

3.2. The negotiation environment

An environment was developed which enables auto-
mated Buyers and Sellers to participate in the described
scenario. This environment is similar in concept to a
market run over an indefinite number of days; where
Buyers and Sellers enter and leave at will on a daily ba-
sis. There are no restrictions on how many days they are
able to participate, or how and with whom they conduct
negotiations, although Buyers only negotiate with Sell-
ers, and vice versa. Since there is no fixed duration to
the simulation, negotiators cannot take advantage of
other negotiators by exploiting the length of the simula-
tion (Binmore and Vulkan, 1999).

68 P. Henderson et al. / The Journal of Systems and Software 76 (2005) 65–76
Participants are able to negotiate with anyone at any
time. Their algorithm determines the manner in which
they conduct negotiations with others to achieve their
objectives. This allows us to construct and observe
behaviour-rich simulations.

The environment consists of two components:

• Supervisor initiates, maintains and controls the envi-
ronment, including the negotiators. Also maintains
measures of negotiator performance.

• Negotiator given a set of negotiation parameters
(including a set of examples and a target for the num-
ber of cars to possess/hire out each day), and is
responsible for conducting negotiation.

To initiate a new environment, the Supervisor is
launched, which then enables negotiators to be config-
ured and instantiated, so they may participate in the
simulation. Performance is measured by two factors:
average hires per day, and average money spent/accrued
per day. Each average calculation is based over the over
last 6 days. This effectively gives us a running indicator
of success (money per day) and survival (hires per day)
as the simulation progresses. In short, if a negotiator
is managing a high number of hires per day, it is surviv-
ing. If it manages a high amount of money for a seller––
or a low amount for a buyer––per day, it is succeeding.
Success and survivability are not only dependent on the
reliability of communications, but on the structure of
the community itself. If there is a shortage of car hire
for sale, Buyers will do badly. If there is a shortage of
demand, Sellers will do badly. In addition, in most cases
the further apart the Buyer and Seller example sets are,
the lower the likelihood of many deals being reached.

Fig. 2 details the operation and message flow within
the negotiation environment.

A message (e.g. offer) sent from one negotiator to an-
other is stored in the receiving negotiators first-in-first-
out �message inbox�, and it is each negotiator�s responsi-
bility to service their inbox and process its contents.
Within this negotiation model, either negotiator (Buyer
or Seller) may send an initial offer to the other. An arbi-
trary number of counter-offers are then subsequently
made until one sends a request to accept their partner�s
last sent offer (accept). With each message type, a quan-
offer, accept, acceptAccept,
acceptReject

Negotiator

Negotiator

dayStart,
dayEnd,

doProcessing

dayStart,
dayEnd,

doProcessing

 participantState participantState

Fig. 2. Operation and message flow within the negotiation
environment.
tity is attached. For a Buyer, this represents the quantity
of cars they want for that deal. For a Seller, this repre-
sents the quantity of cars they wish to hire out.

In such an asynchronous system, offers may become
out of date; the negotiator may no longer be able to sup-
ply the quantity requested. Therefore, on receipt of an
accept, an acknowledgement is required. This acknowl-
edgement is either an acceptAccept, which is confirma-
tion that the deal is accepted, or acceptReject, which is
rejection. During this handshake, the quantity of re-
sources stated in an accept are locked until either confir-
mation is received. This ensures that only one party
accepts these resources. The handshake is also designed
to protect against accept-ing an offer for a quantity great-
er than that which is in stock by the supplying party (Sell-
er), or required by the requesting party (Buyer).
Essentially, if either is true, the accept still goes ahead,
but for a maximum quantity that satisfies both Buyer
and Seller requirements. For example, if a Buyer re-
quested 6 hires for a day but whose quota was 4, and
the Seller was able to supply 4, the quantity would be
4. If the Seller could only manage 2, the quantity would
be 2. If the Buyer�s quota was 2, but requested 6, and
the Seller could supply 4, the quantity would be 2, and
so on and so forth. The reason for this relaxed atti-
tude when dealing with offer quantities is explained in
Section 4.3.

How the Supervisor and Negotiator fit into this
framework is examined in more detail in the following
section.
4. Specification of the framework

Each specification follows an event-driven paradigm,
described using an abstract pseudocode. The design of
the pseudocode was important; it needed to be powerful
and descriptive yet not too strict or laborious, and var-
ious languages with different descriptive styles and levels
of abstraction were devised before one was selected. It is
from the pseudocode specifications of each algorithm
that implementations of each behaviour can be derived
mechanistically and inserted into the simulator for
experimentation. In the next three sections we will dis-
cuss the specification of each part of the above frame-
work, and how they integrate together.

4.1. Supervisor

The Supervisor coordinates the environment accord-
ing to the behaviour shown in Fig. 3.

Here we can observe how the Supervisor manages the
negotiators. Essentially, the simulation runs forever, and
for each hour of each day, all the negotiators are re-
quested to do a single �chunk� of processing (doProcess-
ing()). dayStart() and dayEnd() are called on each

on startSimulation {

 do forever {

 for each participant in Participants {

 participant.dayStart()

 }

 for hours = 1 to 24 {

 randomize order of Participants

 for each participant in Participants {

 participant.doProcessing()

 }

 }

 for each participant in Participants {

 participant.dayEnd()

} } }

Fig. 3. Specification of the Supervisor.

on receive offer from participant {

 // What to do when an offer is received

}

on receive accept from participant {

 // Agree to an acceptance proposal?

 // (i.e. the other participant wishes to

 // accept your last offer)

 // Returns either True or False

}

on receive acceptAccept from participant {

 // What to do when an acceptance to a

 // previously sent accept is received. Here,

// negotiation is positively concluded with

// ‘participant’

}

on receive acceptReject from participant {

 // What to do when a reject to a previously

 // sent accept is received. Here, negotiation

 // is negatively concluded with ‘participant’

}

on algorithmProcess {

 // proactive behaviour is specified here

}

Fig. 4. Outline specification of reactive and proactive behaviour.

P. Henderson et al. / The Journal of Systems and Software 76 (2005) 65–76 69
negotiator at the beginning and end of each day for
performance measurement and maintenance purposes.

The randomize order of Participants statement intro-
duces an element of fairness into the simulation. Without
this statement, each participant in the list of Participants
would always be called in the same order; the simulation
would perhaps favour the first negotiator, since they
have a greater chance of securing the first deal.

4.2. Negotiator

A negotiator developed in the framework requires
two distinct areas of its behaviour to be specified: reac-
tive and proactive. The reactive aspect of its behaviour
handles the negotiation process. The proactive aspect
of the negotiator�s behaviour handles survival issues,
assessing its situation and instigating corrective actions
based on negative aspects of this assessment. Both these
aspects are shown in Fig. 4. Algorithmic behaviour, cov-
ered in the next section, is inserted into this skeleton
framework.

The conditionally proactive behaviour in algorithm-
Process() is specified as rules, in the form of condi-
tion! action pairs. As will be demonstrated later with
an example, we are able to specify survival behaviours
within this function.

When the Supervisor invokes a negotiator�s doPro-
cessing() instruction, the framework performs two
actions transparent to the algorithm�s creator:

• Reactive––Service message box new messages are read
and the negotiator�s appropriate on receive functions
are invoked depending on the message type of each.

• Proactive––Invoke algorithm�s proactive function

(algorithmProcess) this allows the negotiator the
opportunity to evaluate their situation, and possibly
take proactive action.
Thus, in this framework, there is a distinct separation
between the reactive and proactive parts of the negotia-
tion process. Suppose a negotiator initiates negotiation
with another negotiator by sending them an initial offer.
From this point, the negotiation process is dealt with by
the reactive functions; multiple negotiations with multi-
ple partners are handled automatically. However, the
algorithm is still able to take proactive action if re-
quired, enabling the negotiator to monitor and manage
these negotiation processes at a more abstract level.

Each negotiator is responsible for a number of nego-
tiation processes; a maximum of one per partner at any
given time. As a result, the possibility exists that negoti-
ations with one party will be abandoned in favour of
accepting another deal from another party. However,
this does not prevent the original two negotiators from
resuming negotiations (from where they were aban-
doned) at a later date, if both are prepared to do so.
The algorithms present in this experiment do exhibit this
forgiving behaviour, not forcing negotiations with the
one who abandoned the negotiation to begin at the start

on receive offer from participant {

if (haven’t filled our quota for today) {

 makeOfferDecision(offer, participant)

} else {

 put offer back in MessageBox for next round

} }

on receive accept from participant {

clear sent offer history with participant

return True

}

on receive acceptAccept from participant {

clear sent offer history with participant

}

on receive acceptReject from participant {

clear sent offer history with participant

}

on algorithmProcess {

if (we haven’t filled our quota for today) {

 for each participant in opponentList {

 if (offers made to participant == 0)

 makeInitialOffer(participant)

} } }

Fig. 5. Specification of the core negotiation process in abstract
pseudocode.

70 P. Henderson et al. / The Journal of Systems and Software 76 (2005) 65–76
of their behavioural process. As will be observed in the
next section, this leads to some interesting behaviour.

4.3. Algorithm

For this experiment, we initially wished to examine
the behaviour of negotiation algorithms based on the
reactive negotiation process given in Section 2. There-
fore, the behavioural structure of the algorithms used
in the experiment was based around the same core nego-
tiation process specification. Before the core process is
presented, we need to state a few points about the
pseudocode:

• The pseudocode provides some basic means of deter-
mining various parameters and state for a negotiator.
Examples() is an ordered list of (day, price) tuples of
negotiator examples given to the negotiator upon cre-
ation. opponentList is a list of negotiators of the
opposing type (Buyer or Seller instances). In addi-
tion, access to a history is provided which logs the
history of actions in a set of negotiations with each
participant. This essentially forms a negotiation
�memory� for the negotiator.

• Other than the negotiation histories, the pseudocode
does not dictate how local state is to be stored or
retrieved. Negotiators may wish to store and retrieve
certain data as negotiations progress, to aid later in
decisions in the negotiation process. However, pro-
viding a strict means of specifying this tended to dis-
tract the reader from clearly understanding the core
behaviour of the negotiator, which the pseudocode
is primarily designed to convey.

• Negotiators may send offers to their own message
boxes. This enables negotiators to postpone dealing
with an offer they are not interested in at the time
of first reading until the next round. This allows nego-
tiators to resume negotiations at a later date, essen-
tially �pausing� negotiation with the other party.

The core negotiation process is specified in Fig. 5.
This constitutes the common negotiation process of

each of the two algorithms. Appended to this are the
functions makeInitialOffer() and makeOfferDecision(),
which together form the different behaviour for each
of the two algorithms and is defined separately. Within
these functions, algorithms conditionally elect to send
offers to participants using the send directive, which is
an intrinsic part of the framework (see Section 5.2 for
examples of how this is employed). The format for send
is simple:

send <m> to <r> with quantity <q>

Where m represents the type of message, r represents
the unique identity of the intended recipient, and q the
quantity desired. If we wished to define/alter properties
of a message, we can directly access m. For example, if
we wished to send a reply to an offer we had received,
which was based on that offer but with a 10% reduction
on price, we could say:

on receive offer from somebody {
offer.price = offer.price * 0.9
send offer to somebody with quantity 1

}

It should be clear that the pseudocode is very loosely
typed. However, although we are using offer to repre-
sent a type and an object, the intended behaviour
should be obvious. It should be emphasised that this
is not an implementation language, nor is it a formal
specification language. Utilising a well-defined type sys-
tem would add further complexity. It is the essence of
behaviour we wish to convey, not implementation. With
judicious use of appropriate programming constructs,
and maintaining a consistent style, ambiguity is
avoided.

P. Henderson et al. / The Journal of Systems and Software 76 (2005) 65–76 71
To react to receiving message type m, an entry for the
event is defined in the receiver thus:

on receive <m> from <p> { . . . }

Of course, in this framework the negotiation message
�policy� is fixed to a set series of message types as de-
picted in Section 4.2, so effectively only the offer and
accept types can be �sent� from a negotiator. The hand-
shake process (the sending of acceptAccept or acceptRe-
ject in response to accept) is handled by the framework,
but the algorithm is free to respond to these events. In
the case of the accept receive event, the algorithm
can decide whether to accept an accept (see Section
4.2), although in this core negotiation process, assum-
ing no rules are broken, accepts are accepted
automatically.

Various safeguards were built into the framework to
ensure that algorithms could not �cheat� e.g. renege on
deals, change offer details when accepting, etc. However,
as discussed in Section 3.2, a relaxed attitude was em-
ployed when dealing with quantities. This is not neces-
sarily unreasonable. For example, if a Buyer required
4 cars for one day, he may send many initial offers to
many Sellers. If, however, following negotiations the
Seller offering the best deal could only offer 3 cars, (per-
haps a number of cars were hired out to others during
the negotiation process), renegotiation on quantity
would be required. As discussed, the framework deals
with this discrepancy; the quantity agreed being the
highest common denominator of supply/demand be-
tween the Seller and Buyer. This means specifications
do not have to handle this detail which detracts from
the clarity of the specified behaviour. If this were not
the case, the framework and specifications would be
far more complex.

Upon completion of negotiation with a participant,
our specification of the core negotiation process clears
the offer history with that participant. Therefore, the
offer history is used as a means of holding state for cur-
rent negotiations only. This reflects the simplistic nature
of the reactive negotiation process we wish to model.
Both algorithms defined within this framework work
on a per-negotiation basis; they do not attempt to take
into account previous dealings with a participant when
negotiating. In addition, more complex means of dealing
with and analysing histories is possible, but the algo-
rithms defined in the next section were not designed to
be realistic; rather, they were designed to be straightfor-
ward and simple so that we could readily reason about
their behaviour in a complex interacting environment.
Therefore, from the behavioural characteristics of auton-
omy, cooperation and learning (Murugesan, 2000), the
algorithms presented here possess autonomy and coop-
eration. They are able to operate independently from
human intervention during negotiation, and are able
to cooperate with other negotiators to achieve their
goals. However, they do not actively learn from negoti-
ation to negotiation and subsequently adapt their
strategy.

Notice that algorithmProcess() is used to perform the
only proactive task in the specification: makeInitialOf-
fer(), used to initiate negotiations with another. It is
performed when a negotiator has not filled their quota
for the day. For every participant with whom we are
not negotiating, we send an initial offer to initiate nego-
tiations with that party.
5. The experiment

5.1. Overview

This paper will detail one experiment, which consists
of four simulations. Other experiments were conducted
which used different algorithms and different example
sets. The results presented here are representative of
these other experiments.

The first simulation establishes how a community
of negotiators develops in a reliable message-passing
environment. The negotiators are nave in that they
adopt a purely reactive approach to negotiation, as
discussed.

In the second simulation, it is established how the
same community of negotiators develops with an ele-
ment of uncertainty introduced into the message-passing
environment. In this simulation, there is a 10% chance
that a sent offer will not reach its destination. This ran-
dom unreliability only has an effect at the message com-
munication level. Connections between negotiators are
unaffected.

For the third simulation, it will be shown how each
algorithm can be adapted to incorporate an example
proactive survival behaviour, and the simulation exe-
cuted again with reliable communications. This provides
us with an opportunity to observe how these adapted
algorithms behave in a reliable environment.

The fourth simulation illustrates how these adapted
algorithms behave in the unreliable communications
environment.

After each day, the performance of each negotiator is
evaluated, with respect to average hires per day and
average money accrued (Seller) or spent (Buyer) per
day. Thus, we have measures of survival and success
respectively. This paper focuses on the results for aver-
age hires per day, since we wish to examine the surviv-
ability of the community. By examining how the
number of hires per day for each participant changes
over time, we are able to reason about the survivability
of the negotiation processes conducted by the negotia-
tors, and ultimately, the survivability of the negotiation
community.

function makeInitialOffer(participant) {

offer = first example

r = daily quota requirement – hires made today

send offer to participant with quantity r

}

function makeOfferDecision(offer, participant) {

if (offers made to participant != 0) {

lso = last sent offer to participant

compareSet() = (lso)

concession = concession made in lso

exNum = example we used as basis for lso

} else {

compareSet() = (Examples())

concession = 0

exNum = 1

}

if (evaluateOffer(offer, compareSet())) {

r = daily quota requirement –

hires made today

send accept to participant with quantity r

} else {

concession = concession + 2

if (concession > 20) {

concession = 0

exNum = exNum + 1

if (exNum > #Examples()) exNum = 1

} elseif (offer.days !=

Examples(exNum).days) {

concession = 0

72 P. Henderson et al. / The Journal of Systems and Software 76 (2005) 65–76
5.2. The algorithms

In each simulation, instances of two algorithms form
the negotiation community. These algorithms were not
designed to be realistic negotiators. Rather, their strate-
gies are designed to be sufficiently simple that we are
able to reason about their behaviour in a complex,
evolving community. Each of the specifications of the
following algorithms integrates with the negotiation
process specification given in Section 4.3.

5.2.1. Stubborn

This algorithm exhibits �stubborn�, anti-concession-
ary behaviour by sending only its examples as offers to
a negotiation partner. It does not attempt to reason
about the offers received. Initially, it sends its first exam-
ple, then its second, etc. When it has sent all its exam-
ples, it starts again. After 30 rounds of negotiation, it
simply accepts the last received offer from its partner.

Fig. 6 shows the behaviour of this algorithm. Whilst
the first two functions integrate with the negotiator
framework, the third function provides an algorithm-
specific means of evaluating an offer for acceptance.

From the specification above, the algorithm�s simple
behaviour is obvious. In the experiment, the Stubborn
algorithms are only given a target of 1 hire per day, so
for clarity the pseudocode above dictates this constant
instead of determining it.

5.2.2. Experimental
This is a far more reactive and concessionary algo-

rithm than stubborn. Its first example forms its initial
function makeInitialOffer(participant) {

 offer = first example

 send offer to participant with quantity 1

}

function makeOfferDecision(offer, participant) {

 if (evaluateOffer(participant)) {

 send accept to participant with quantity 1

 } else {

 num = offers made to participant + 1

 if (num > #Examples()) then num = 1

 offer = Examples(num)

 send offer to participant with quantity 1

} }

function evaluateOffer(participant) {

 if (offers made to participant > 30)

 return True else return False

}

Fig. 6. Specification of the Stubborn algorithm.

if (exists x where offer.days ==

Examples(x).days)

exNum = x else exNum = 1

}

offer = Examples(exNum)

offer.price = concede concession

on offer.price

r = daily quota requirement – hires made

today

send offer to participant with quantity r

} }

function evaluateOffer(offer, compareSet()) {

for each cOffer in compareSet {

if (cOffer.days = offer.days &&

cOffer.price is close to offer.price) {

return True

} }

// Otherwise…

return False

}

Fig. 7. Specification of the Experimental algorithm.

Table 4
Experimental Buyer example set

Days Price

2 140
4 320

Table 5
Experimental Seller example set

Days Price

1 100
2 180
3 200
4 300
5 340
6 360
7 400

P. Henderson et al. / The Journal of Systems and Software 76 (2005) 65–76 73
offer. When a new offer is received, it attempts to find an
example that matches the number of days in the received
offer. If found, it sends a sequence of offers for this
example, each a little more concessionary on price. If
not found, it states the first example. Concessions are
made progressively only as long as negotiations con-
tinue on the same number of days. Otherwise, the con-
cession process begins again. When it reaches a $20
concession on price for the selected example, it attempts
to move negotiation cyclically to its next example by
specifying it as the next offer. The specification of this
algorithm is given in Fig. 7.

This algorithm requires a more sophisticated offer
evaluation function. It compares a received offer with
either the last offer that was sent to the other participant,
or the contents of the example set. Therefore, this func-
tion takes an offer and compares it against a set of offers.
If the received offer is deemed close enough to any offer
in the set, the function returns True, and the algorithm
accepts the received offer.

5.3. The negotiation community

Initially, a simulation begins with 2 �Stubborn� buyers
and 2 �Stubborn� sellers conducting negotiations. After
20 days of negotiation, an �Experimental� buyer and
�Experimental� seller are introduced to observe how this
affects the community.

5.4. Negotiator example sets and objectives

Each algorithm has different Buyer and Seller exam-
ple sets. However, for each algorithm, every Buyer is
given the same set of Buyer examples, and every Seller
is given the same set of Seller examples. The Stubborn
Buyer and Seller example sets are given in Tables 2
and 3 respectively.

The Buyer and Seller example sets for the Experimen-
tal algorithms are given in Tables 4 and 5.

The Stubborn and Experimental example sets are
deliberately designed to be �close� together, to encourage
Table 2
Stubborn Buyer example set

Days Price

2 160
4 240

Table 3
Stubborn Seller example set

Days Price

1 100
2 180
3 200
negotiations between the two behaviours. In the case of
the Experimentals, if the Seller and Buyer examples were
sufficiently far apart, they would never reach agreement,
since their mutual concessions would not go far enough
to appease either one of them.

The objective of each Stubborn Buyer and Seller is to
make one deal per day, whilst the objective of the Exper-
imental Buyer and Sellers is to make four hires per day.
However, this is very difficult for the Stubborn negotia-
tors to achieve, due to the length of their negotiation
process. It is not impossible, however, as will be ob-
served in the results in the next section.
6. Results

Fig. 8 shows the results of simulation 1, representing
average hires per day for each negotiator (y-axis) over a
40 day period (x-axis). The four lines clustered at the
bottom represent the four Stubborn negotiators, whilst
the two at the top represent the two Experimental nego-
tiators introduced after 20 days.
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Fig. 8. Simulation 1: average hires per day.

on algorithmProcess {

...

for each participant in Participants {

if (have sent offer to Participant &

 have not had reply in last 3 hours) {

send last sent offer to participant

}

}

...

}

Fig. 10. Specification of the timeout proactive survival behaviour.

74 P. Henderson et al. / The Journal of Systems and Software 76 (2005) 65–76
Since Stubborn always takes 30 rounds (hours) to
reach a deal, we observe that there are no deals struck
on the first day. After about 4 days, in which all negoti-
ators perform equally well, these negotiators begin to
exhibit a certain communal behaviour. Note that no
Stubborn reaches their maximum hires per day. This is
due to the inflexible, laborious nature of the Stubborn
algorithm.

One might expect a strict pattern to be observed.
However, there are two reasons why this is not the case.
Firstly, the environment has been designed with fairness
in mind. As mentioned in Section 4.1 the order in which
negotiators perform processing is random. Secondly,
participants are able to abandon negotiations with a
particular party, and resume them at a later date (see
Section 4.2). Together, these factors decrease the like-
lihood that such behavioural harmonics will occur.

Also interesting are the results of the two Experimen-
tal algorithms. Following their introduction after 20
days, they remain very stable in their behaviour, in fact
achieving their maximum required hires per day for
nearly 10 days. After this however, a significant slump
occurs. This is because initially, they deal only with each
other; their negotiation process is far more efficient than
Stubborn�s, and they reach agreement quickly. Follow-
ing this, however, one of them chances to strike a deal
with one of the Stubborn negotiators, and this causes
the Experimentals to be affected by their erratic negoti-
ation strategy. The reason that one of the Experimental
negotiators makes this choice, despite it resulting in de-
creased hires per day, is that they are not able to antic-
ipate that this will have a negative impact later. They
make a choice that appears optimal at the time, but have
no way of knowing that it represents a poor global
choice (Schelling, 1978).

Fig. 9 illustrates the effects of introducing a 10%
chance of an offer being lost. The results are as expected.
The Stubborn negotiators are unable to reach agreement
at all and do not even appear in the figure. After the two
0

0.5

1

1.5

2

2.5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Fig. 9. Simulation 2: average hires per day.
Experimentals are introduced, they do better due to
their more efficient negotiation process. They reach
agreement quickly (with each other), but following this,
they are unable to maintain their initial success. Their
negotiation processes also become affected by their
inability to reason about their failure and take corrective
action.

In order to conduct the third simulation, a survival
behaviour had to be integrated into both algorithms.
The example survival behaviour chosen was a timeout.
The behaviour was specified as shown in Fig. 10.

Essentially, if we have not received a response to an
offer sent in the last 3 h, just resend the offer. The results
of simulation 3 are given in Fig. 11.

The results were not as expected. Introducing this
survival behaviour into this system has maximised the
efficiency of the community; they are achieving greater
hires per day on average. Even more surprising is the
stability that has clearly emerged among the Stubborn
negotiators. These effects are being observed because
the survival behaviour has affected the negotiation pro-
cess of the algorithms. This behaviour essentially takes
action in response to unresponsive negotiators. So, even
under normal circumstances, it is still likely this behav-
iour will be instigated. Effectively, a negotiator now
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Fig. 11. Simulation 3: average hires per day.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Fig. 12. Simulation 4: average hires per day.

P. Henderson et al. / The Journal of Systems and Software 76 (2005) 65–76 75
responds to abandonment from another negotiator by
resending their last offer.

As with the first simulation, both algorithm groups
initially reach agreement only with those of their own
type, but are eventually tempted by negotiations with
the other group. Here we clearly observe that this behav-
iour affects the stability of the community as a whole.

Fig. 12 displays the results of simulation 4. Surpris-
ingly, introducing a 10% message loss to the more ro-
bust community of negotiators has not dramatically
affected the survival of their community. In fact, despite
an initial inability to attain the stability noticed in sim-
ulation 3, the community eventually achieves a similar
degree of survival. More significantly, this community
achieves a greater degree of survival than observed in
the first simulation. The result that the experimental
algorithms always achieve their objectives is anomalous
in this case, and not representative.

Why is it that the negotiators in both simulations 3
and 4 survive so much better? The reason is because
we have introduced chaos and opportunity into the com-
munity. By introducing the survival behaviours into
these algorithms, we have improved their ability to sur-
vive in an unreliable environment. But, as a side-effect
we have also made their individual negotiation processes
more agile; they no longer follow a rigid reactive path to
a negotiation�s conclusion. But, as a result, the negotia-
tion process that occurs between two negotiators is less
predictable. If we extend this perspective and observe
the actions of the community as a whole, it has become
more chaotic. However, this chaos has introduced a very
welcome factor: opportunity. Negotiators are making
more offers to their partners. This increases the chances
that their quota is achieved.

The unreliable environment depicted in simulations 3
and 4 represents an unfortunate reality in which negoti-
ators are often expected to survive and progress. Or at
the very least, an unreliable environment potentially
exists. When this happens, it would be advantageous
for our negotiators to be able to survive and progress
despite this. If we examine the results of the second sim-
ulation, the lack of progress in a negotiation can be
characterised by the views of the negotiation process
of each party becoming, and then continually remaining,
inconsistent. Of course, since we have adopted an asyn-
chronous model of communication, each party�s view of
negotiation will often be inconsistent because of offers in
transit. But, with reliable communication, this inconsis-
tency is eventually resolved and negotiation continues.
However, in an unreliable environment, where an offer
is made by one party which is lost, this results in both
parties always believing they are waiting for the other
to make an offer, which cannot be true. This inconsis-
tency is an unfortunate state caused by the unfortunate
reality of the unreliable environment. These negotiators
have no control over this environment, just as software
working over the internet has no control over the inter-
net. Inconsistency and unreliability are simply inherent
properties of such an environment. Endowing software
with additional survival behaviours to help resolve
inconsistencies is important, but realising the full conse-
quences of such changes is equally as important.
7. Conclusion

Developing robust automated negotiators able to sur-
vive and succeed in the complex, evolving environment
of the internet will become increasingly difficult. The
ability to evaluate progress and proactively take correc-
tive or compensatory action outside of the rigid negoti-
ation process confers a greater degree of survival.

This paper has described a three-layer negotiation
framework and specified this using a behavioural
pseudocode developed for the purpose. Within this envi-
ronmental framework an algorithm�s behaviour may be
specified, and then its operation in the context of other
algorithmic behaviours observed. This algorithmic side
of the framework enables the developer to specify reac-
tive and proactive behaviour separately. Developers are
able to specify conditional behaviour at a higher level
than the negotiation process that is able to manage
and optimise this process. By integrating an example
survival behaviour into the algorithms we have demon-
strated that not only has this improved their ability to
take proactive action in cases of suspected message loss,
but as a side-effect have made their negotiation pro-
cesses more agile. By responding to ineffectual negotia-
tions at this abstract level with our example survival
behaviour, we have created more opportunities for suc-
cess. Negotiators are no longer strictly adhering to the
rigidity of the reactive negotiation process; they proac-
tively increase their potential to make more deals by
maximising efficiency within this process.

With the need to increase the robustness of negotia-
tors in an ever more complex environment, we need to

76 P. Henderson et al. / The Journal of Systems and Software 76 (2005) 65–76
be able to predict how this robustness will affect their
behaviour with others. When implementing self-protec-
tion measures to ensure survival, we need to know that
we are not hindering the negotiator�s ability to succeed.
References

Axelrod, R., 1984. The Evolution of Co-operation. Basic Books Inc.,
New York.

Axelrod, R., 1997. The Complexity of Cooperation. Basic Books Inc.,
New York.

Burg, B., 2002. In: Agents in the World of Active Web ServicesLecture
Notes in Computer Science, vol. 2362. Springer-Verlag, pp. 343–
356.

Bichler, M. et al., 1998. Component-based e-commerce: assessment of
current practices and future directions. ACM Sigmod Record:
Special Section on Electronics Commerce 27 (4), 7–14.

Binmore, K., Vulkan, N., 1999. Applying game theory to automated
negotiation, Netonomics, January. Available from <http://
www.worcester.ox.ac.uk/fellows/vulkan>.

Cranor, L.F., Resnick, P., 1997. Protocols for automated negotiations
with buyer anonymity and seller reputations. In: Proceedings of the
Telecommunications Policy Research Conference (TPRC 97).
Available from <http://www.si.umich.edu/~presnick>.

Farhoodi, F., Fingar, P., 1997. Developing enterprise systems with
intelligent agent technology, distributed object computing. Object
Management Group.

Fingar, P. et al., 2000. Enterprise E-Commerce, first ed. Meghan-
Kiffer Press, Tampa, FL.

Fogel, D.B., 2000. Applying Fogel and Burgin�s �Competitive Goal-
Seeking through Evolutionary Programming� to Coordination,
Trust and Bargaining Games. In: Proceedings of the 2000 Congress
on Evolutionary Computation (CEC 2000). IEEE Press, Piscata-
way, NJ, pp. 1210–1216.

Henderson, P. et al., 2003. In: A Comparison of Some Negotiation
Algorithms Using a Tournament-Based ApproachLecture Notes
for Computer Science, vol. 2592. Springer-Verlag, Berlin, pp. 137–
150.

Henderson, P., 1998. Laws for dynamic systems. In: Proceedings of the
Fifth International Conference on Software Reuse (ICSR 98).
IEEE Computer Society Press, pp. 330–336. Available from
<http://www.ecs.soton.ac.uk/~ph/papers>.

Henderson, P., Walters, R.J., 2001. Behavioural analysis of compo-
nent-based systems. Information and Software Technology 43 (3),
161–169.

Henderson, P., 2002. Asset mapping––developing inter-enterprise
solutions from legacy components. In: Systems Engineering for
Business Process Change––New Directions. Springer-Verlag, UK,
pp. 1–12.

Murugesan, S., 2000. Negotiation by software agents in electronic
marketplace. In: Proceedings of the IEEE Region 10 Conference
(TENCON 2000), vol. 2, pp. 286–290.

Schelling, T.C., 1978. Micromotives and Macrobehaviour. W.W.
Norton and Company, Inc., New York.

Sesseler, R., 2001. Building agents for service provisioning out of
components. In: Proceedings of the Fifth International Conference
on Autonomous Agents, Montreal, Quebec, Canada, pp. 218–
219.

Young, H.P., 1998. Individual Strategy and Social Structure: An
Evolutionary Theory of Institutions. Princeton University Press,
Princeton, NJ.

Youll, J., 2001. Agent-based electronic commerce: opportunities and
challenges. In: Proceedings of the 5th International Symposium on
Autonomous Decentralized Systems (ISADS 2001), pp. 146–148.

Peter Henderson is Professor of Computer Science in the School of
Electronics and Computer Science at the University of Southampton
in the UK. Prior to his move to Southampton in 1987 he was Professor
at the University of Stirling. Henderson is also an ICL Fellow. He is
head of the Declarative Systems and Software Engineering group (see
http://www.dsse.ecs.soton.ac.uk/) which combines research interests in
Software Engineering, Formal Methods and Programming Languages.
His own research includes executable specifications, component-based
systems and process modelling.

Stephen Crouch is a graduate in Computer Science of the University of
Southampton and received his Ph.D. in computer science in 2001. He is
a research fellow at the School of Electronics and Computer Science at
the University of Southampton in the UK. His research interests
include information propagation, enterprise systems, middleware
architectures, negotiation, process and information system modelling,
and component based software engineering.

Robert John Walters is a graduate in Mathematics with Computer
Science of the University of Southampton and received his Ph.D. in
computer science in 2003. He is a research fellow at the School of
Electronics and Computer Science at the University of Southampton
in the UK. His research interests include optimistic inconsistency
solving techniques, enterprise systems, middleware architectures,
graphical representation of formal languages, process modelling,
model-checking, and component based software engineering.

Qinglai Ni is a graduate in Computer Science from Nanjing University,
P.R. China, and passed his Ph.D. in civil engineering in 2003 at the
University of Southampton. He is currently working as a middleware/
database developer at the University of Reading in the UK. His
research interests include middleware architectures, object-oriented
data representation and serialization, robustness of web applications,
and numerical simulation of soil shear behaviours.

http://www.worcester.ox.ac.uk/fellows/vulkan
http://www.worcester.ox.ac.uk/fellows/vulkan
http://www.si.umich.edu/~presnick
http://www.ecs.soton.ac.uk/~ph/papers
http://www.dsse.ecs.soton.ac.uk/

	Effects of introducing survival behaviours into automated negotiators specified in an environmental and behavioural framework
	Introduction
	Background
	Previous work

	Reactive and proactive negotiation
	The simulator
	The car hire scenario
	The negotiation environment

	Specification of the framework
	Supervisor
	Negotiator
	Algorithm

	The experiment
	Overview
	The algorithms
	Stubborn
	Experimental

	The negotiation community
	Negotiator example sets and objectives

	Results
	Conclusion
	References

