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Abstract

This paper presents a method to deal with the reexecution of tasks in a hard real-time system subject to temporary faults. The set
of tasks follows the Liu and Layland model: they are periodic, independent and preemptible, Time is considered to be slotted. The
system is said to be k-schedulable if it is schedulable in spite of the fact that in the interval between its release and its deadline, every
task admits that k slots are devoted to uses other than its first execution. In this case, the & slots are used to reexecute tasks subject to
temporary faults. Since the value of & can be easily determined, a least upper bound on all the possible combinations of faults that
the system can tolerate while meeting the hard time-constraints, follows immediately. The method is bandwidth preserving and the
expression of the bound is a diophantic inequality relating &, the execution time and the period of each task. The method is com-

pared to methods proposed by other authors to solve the same problem and it is evaluated through extensive simulations performed

on random generated sets of tasks.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction and motivation

Real-time systems are those in which results must not
only be correct from an arithmetic-logical point of view
but also produced before a certain instant, called dead-
line. If no deadline can be missed, the system is said to
be hard as opposed to soft in which some deadlines
may be missed. When all time constraints are met, the
system is said to be schedulable.

Real-time systems, as any other human engineered
system, may be subject to functional faults. Until a
few years ago typical applications of hard real-time sys-
tems were restricted to cases in which missing a deadline
could have severe comsequences including the loss of
human lives. Later, the frontier between hard and soft
systems shifted in order to incorporate more applica-
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tions into the hard realm (e.g. video games and multime-
dia servers). However it is obvious that significant
differences persist in the consequences: a systematic mal-
functioning of a video game may result, at most, in a
commercial loss whereas a sporadic malfunctioning of
a space probe may result not only in a huge economic
loss but also in the loss of many years of efforts. The
Cassini probe to Saturn and its 30" moons, for example,
took seven years to arrive in the vicinity of the planet
and cost US$ 300 millions. In voyages of this type, tem-
porary disturbances may be caused, for instance, by pro-
tons and cosmic rays (Campbell et al., 1992). Therefore,
it is particularly important to be able to determine the
system’s fault tolerance understood as the combination
of faults that do not preclude its performance according
to real-time specifications. That is the motivation behind
this paper.

Faults may be grouped in two classes: permanent
and temporary. If they are corrected, some form of
redundancy, either spatial or temporal, is always used
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(Liberato et al., 1999). Permanent faults are long lasting
faults usually caused by hardware malfunctioning that
cannot be remedied; they are corrected by using spatial
redundancy such as spare units. Temporary faults, com-
monly short and much more frequent than permanent
ones, can also be corrected by means of spatial redun-
dancy: hardware modules are triplicated and resuits
voted. The voting circuitry is also triplicated. However,
this kind of faults is more often corrected by employing
temporal redundancy in the form of the recomputation
of the failed task (Gosh et al., 1998).

Because of their generalised use in real-time applica-
tions, single processor systems handling sets of periodic,
independent and preemptible tasks are of particular
interest. The least common multiple of the periods is
called the hyperperiod. Since the execution time and
the period of each task are known, these systems are
deterministic and it is possible to calculate the time nec-
essary for the normal processing of all the tasks, which
will be the same in each hyperperiod. The remaining
time, called slack can be devoted to other chores, like,
for example, recovering from a fault. Therefore, every
method designed to make a system fault tolerant by tem-
poral redundancy consists essentially in making the best
use of the available slack.

In this paper a method to deal with the reexecution of
tasks subject to temporary faults is presented. Basically
it is a tool to redistribute slack and, as such, it was pre-
viously applied to solve other problems, like, for exam-
ple, scheduling mixed sets in which hard deterministic
periodic tasks share the processor with non-hard sto-
chastic aperiodic tasks or scheduling sets of tasks com-
posed of hard mandatory and reward-based optional
subtasks (Santos et al., 2004). In this paper, the tool is
used to determine a least upper bound on the possible
combinations of tolerated faults.

The take-off point of this paper, defined as the latest
findings by previous authors, is made clear in Section 2,
In Section 3, the redistribution of slack in a system oper-
ating under the Rate Monotonic priority discipline is
analysed and the notions of k-schedulability and singu-
larity, conceptual bases of the method, are introduced.
In Section 4, the new approach is applied to the calcula-
tion of the least upper bound on the fault-tolerance of
the system; the theoretical foundation is formally
proved. In Section 5, extensive simulations and their re-
sults to test the performance of the method are pre-
sented. Finally, in Section 6, conclusions are drawn.

2. Related work: the take-off point

In what follows the related work to be considered
cover methods proposed by other authors to recover
faults using time redundancy. The take-off point of this
paper consists in the latest findings by those authors.

Pandya and Malek (1998), for example analysed the
tolerance to a single fault of a real-time Rate Monotonic
scheduled set of tasks. When the fault occurs, all unfin-
ished tasks are executed. They also proved that the
recovery is always possible if the total utilization factor
is less than or equal to 0.5, a very stringent condition.

Burns et al. (1996) presented an exact schedulability
test for fault tolerant sets of real-time tasks under spec-
ified failure hypothesis. The test gives guarantees even
for sets with a total utilization factor higher than 0.5.
The method, however, does not provide a general bound
valid for all cases, and each combination of tolerated
faults requires a separate schedulability analysis.

Gosh et al. (1998) derived upper bounds for the utili-
zation factor of fault tolerant real-time sets of tasks,
Rate Monotonic scheduled, for different faults. The
bounds are sufficient although not necessary and are in
general lower than those obtained with the method pro-
posed in this paper.

Servers, originally proposed to improve the response
time of aperiodic tasks sharing the processor with the
real-time set (Sprunt et al., 1989; Strosnider et al.,
1995), can also be used for recovering failed tasks. How-
ever, they provide bounds with lower utilization factors
than those provided by the methods presented by Gosh
et al. (1998)..

Ramos-Thuel and Strosnider (1995) extended the
analysis presented in (Lehozcky et al., 1989) to provide
fault tolerance. Basically this is done by adding the
recovery load to the normal load as specified in the set
of real-time tasks. The schedulability test to this aug-
mented set is then applied. Again, each combination
of faults requires a separate schedulability analysis and
no general bound is given.

The method herein proposed gives a worst-case
bound on all the possible combination of faults toler-
ated by the system while meeting the time constraints,
The bound is higher than those provided by other meth-
ods. Slack is redistributed by k—scheduling the real-time
set. Combinations that include multiple recoveries for
critical or very critical tasks can be easily explored.

3. Rate monotonic schedulability and the redistribution of
slack

When two or more periodic tasks compete for the use
of the processor, some rules must be applied to atlocate
its use. This set of rules is called priority discipline. In
a static fixed priority discipline all tasks are assigned
a priority once for all. If tasks are ordered by decreas-
ing rates or, what is the same, by increasing periods,
the discipline is called Rate Monotonic, notated RM.
The task with the shortest period has the highest prior-
ity. Some additional rule must also be provided to break
ties.
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Liu and Layland (1973) proved that Rate Monotonic
is optimal among the Fixed Priority disciplines. It is sup-
ported by the US Department of Defence and conse-
quently adopted, among others, by IBM, Honeywell,
Boeing, General Electric, General Dynamics, Magn-
avox, Mitre, NASA, Naval Air Warfare Center, Para-
max and McDonnell Douglas (Obenza, 1993). No
doubt it is a de facto standard, at least in the US, and
hence the importance of its use in research papers whose
results may be immediately applied in technical
developments.

Several methods have been proposed for testing the
RM schedulability of real-time systems (Liu and Lay-
land, 1973; Joseph and Pandya, 1986; Lehozcky et al.,
1989). All have in common the fact that the ordering
relation to define priorities is based on increasing peri-
ods, with some additional rules to break ties. In the
Empty Slots method (Santos and Orozco, 1993), a dis-
cretization of (Joseph and Pandya, 1986), time is consid-
ered to be slotted and the duration of one slot is taken as
the unit of time. Slots are notated ¢ and numbered
1, 2, ... The expressions at the beginning of slot t and in-
stant ¢t mean the same. Tasks are preemptible at the
beginning of slots. As proved in (Liu and Layland,
1973), the worst case of load occurs when all tasks are
released simultaneously at ¢ = 1.

The sets of tasks to be processed follow the Liu and
Layland model: they are periodic, independent and pre-
emptible. A set S(r) of n tasks, ordered by decreasing
rates, is completely specified as S(n) = {(Cy, T1,D1),
(Cy, T5,Dy), ..., (C,, T,,D,)}, where C;, T, and D;, de-
note the worst case execution time, the period or the
minimum interarrival time and the deadline of task #, de-
noted 7, respectively. It should be noted that 77 and T,
denote the minimum and the maximum periods, respec-
tively. For the sake of simplicity in the analises that fol-
low it is assumed that tasks are released at the beginning
of slots, that execution times, periods and deadlines are
multiples of the slot time and that deadlines are equal to
periods. These restrictions can be easily relaxed.

Santos and Orozco (1993) formally proved that S(#n)
is RM-schedulable iff

i-1
Vie(l,2,...n) T, = 1eastt|t=C,-+ZC,,[~7—,t--l
h=1 4

(1)

where [ ] denotes the monadic ceiling operator, that is
the smallest integer equal to or larger than ¢/T},. The con-
dition is intuitively clear: 7; can be added to the system of
(i — 1) tasks keeping the expanded system schedulable if
and only if before its deadline there are enough empty
slots to execute it and to give way to all the instantiations
of tasks of higher priority. The last term in the right hand
member is called the work function, denoted W,;_ (). It
should be noted that in order to test the schedulability

of the system, it suffices to test it in the interval [1, T,,] be-
cause it is the most congested after the simultaneous re-
lease of all tasks at ¢ = 1. The Least Common Multiple of
the periods, the hyperperiod, shall be notated M. If
M = T,, the initial conditions are repeated every T, slots.
If M > T,, the load decreases in [T, + 1, M], but in both
cases [1, T,] is the critical interval.

The expression M — W, (M) gives the number of
empty slots in the hyperperiod. Slots go empty only

“when there are not tasks with pending execution. Empty

slots appearing in this way are called background slots.
Eventually some background slots can be advanced in
time, producing a redistribution of slack without jeopar-
dizing the execution of the real-time set.

Example. Let S(5) be the system specified in Table 1.

In Fig. 1, the evolution of the system is depicted. The
priority of each task decreases with increasing periods.

The schedulability test is recursive. It starts with ;.
Since there are not tasks of higher priority, the first con-
dition is ‘
Ty 2 leastt|t=C, =1

Since 71 =6 = 1, the subsystem {,} is schedulable.
fori=2 T, >leastt|t=Cy+ [t/6] =2+ [t/6]

The first slot meeting the condition is ¢ = 3. Siﬁce
T> =10 = 3, the subsystem {11,153} is schedulable, etc.
Since
Ws(30) = [30/6] + 2[30/10] + [30/15] + 2[30/15]
+130/151 =19

M — Ws30)=11 is the number of empty back-
ground slots in the hyperperiod. As can be seen in the
figure, they are the slots 9, 10, 14, 15, 23, 24 and 26—
30. Also in the figure it is shown that the interval [1,8]
is saturated, no background empty slots appear in it
and therefore no recovery could be made in a conven-
tionally RM scheduled system.

A hard real-time’ system S(r) is said to be k-RM
schedulable if it is RM schedulable in spite of the fact
that in the interval between its release and its deadline,
each task admits that k slots are devoted to uses other
than the execution of the original set. Santos et al.
(2004) proved that a system S(n) is k-RM schedulable iff

fori=1

Vie(1,2,...n) T;> leastt|t=Ci+k+ Wy_y)(t)
(2)

Table 1

Specification of the system

i Ci T,

1 1 6

2 2 10

3 1 15

4 2 15

5 | 15
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Fig. 1. Evolution of the system. e denotes an empty slot The tie between the last three tasks is broken by ordering them by name (13, 74 and 1s).

It must be noted that k is the minimum value in the
set {k;} where k; is defined as

ki=maxk|T; > leastt|t=C;+k+ Wyy)(2)

The complexity of the test for the k-schedulability is
the same as that for the RM-schedulability that in (San-
tos and Orozco, 1993) has been proved to be O(n*T),),
where T, denotes the maximum period in the system.

Example. By application of the previous definitions, in
the system of the example above, k1 =5, k, =8, k3 =7,
k4 =135 and ks = 4. Therefore, k = 4.

A singularity, s, is a slot in which all the real-time
tasks released in [1, (s — 1)] have been executed. It must
be pointed out that s — 1 can be either an empty slot or a
slot in which the last pending real-time task completes
its execution. s is a singularity even if at ¢ = s, real-time
tasks are released. ‘

Santos et al. (2004) proved that if a hard real-time
system S(n) is k-RM schedulable, & slots of an interval
[s,(s + & — 1)] can be used to execute tasks ¢ S(n). In
that case, the tool was tuned to optimize the execution
of aperiodic non-real-time tasks by advancing their exe-
cution as much as possible in order to reduce the aver-
age delay. -

When studying fault tolerance, recomputed tasks can
also be conceptually considered to belong to a set differ-
ent from the original one and therefore ¢ S(n). They can
be executed in the k slots available from a singularity
but not necessarily immediately after it. In fact, what
is expressed in (2) is that they can be used at any time
between the release and the deadline of the task. The
method is therefore bandwidth preserving in the sense
that slots not used immediately after the singularity
are not lost but can be used later.

4. The new approach
4.1. Theoretical foundation
As explained above, the expression M — W, (M) gives

the number of empty slots, commonly designated slack,
in the hyperperiod. The total slack depends entirely on

the values of M and W,(M) and it is the only time avail-
able to repeat the processing of failed tasks in all meth-
ods based on the use of time redundancy. Although no
scheduling method can increase it, it can be redistributed
to be used where it serves best with the proviso that the
time-constraints of the original system are met. The effi-
ciency of each method depends, essentially, on how
much of the slack is used and when it is used.

Since a least upper bound, LUB, is sought, worst case
conditions must be determined. The worst case assump-
tions are: ‘

(a) In the interval [1,7,], there is only one singular-
ity, the one taking place in the slof immediately
before the worst case of load. ,

(b) The failure is detected at the end of the failed task’s
execution.

The first assumption means that in [1,7,] no other
singularity appears and therefore only k slots are avail-
able for recovering failed tasks in the interval. The sec-
ond assumption means that the failed task has
consumed all the slots available for its normal execution
and none of them can be used for recovery.

The recovery execution takes place immediately after
the failed one subject to the availability of reshuffled
slack. Faults can be detected either explicitly (through
a pattern recognition in which a signature is associated
to a particular fault) or implicitly (by some indirect indi-
cator caused by the fault). Any further discussion is be-
yond the scope of this paper but obviously the detection
process itself must be highly dependable (Maxion and
Tan, 2002).

In what follows the symbol | | denotes the monadic
floor operator, that is the biggest integer equal to or
smaller than the quotient within the symbol. The pro-
posed method will now be formalised:

Lemma 1. |k/[T,/T;]| = R; represents the number of
slots available to recover t; in each of its instantiations
in the interval {1,T].

Proof. The number of /s instantiations in [1,7,] is
[T,/T;]. If the total number of slots available for
recovery. in- the interval is k, the expression follows
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immediately. The floor is used because no fractional
slots can be used at any period. [

- Example. In the example of the previous section, k = 4,
Ty =6 and T,= Ts=15. The number of t,’s insantia-
tions is [7s/Ty] =3 The number of slots available for
recovering failed executions of 7; in each of its instanti-
ations is therefore R;=|4/3] =1. The quotient is
rounded down because slots cannot be fractioned.

Lemma 2. If R; > C,, 1; may fail once in every instanti-
ation and be recovered, although only C; slots per instan-
tiation will be needed.

Proof. R;, the number of slots available for recovery in
each instantiation of 7, is larger than or equal to C;, the
time needed to execute it. Therefore the execution of the
task may fail at least once per instantiation and still be
recovered. [

Example. In the previous example, R{ =1 and C; = 1.
Therefore the execution of r; may fail once in each of
its instantiations and still be recovered because there is
enough available time to do it.

Lemma 3. If R, < C, the recovery can be made in only

pi = [T./Ti]/|Ci/R:]]

instantiations out of the [T,/T;| instantiations of the
period, subject to the condition R, p; > C;. The condition
ensures that at least one recovery can be made.

Proof. R; < C;means that in each instantiation, the time
available for recovery is smaller than the time needed to
reexecute the task. Therefore, the task cannot be recov-
ered in every instance but only in p; of them, subject to
the condition that the number of available slots is
enough to execute at least one recovery, O

If R; < C,;, the recovery execution time used in the cal-
culations will be R;, otherwise it will be C;. Therefore, if
C} denotes the recovery execution time used in the calcu-
lations, C; = min[R;, C}].

Theorem 1. If q; denotes the number of instantiations in
[1,T,] in which t; may fail once and be recomputed, the
expression

ZiClg; <k (3)
subject to the condition 0 < g; < min[p,,[T/T;|1, indi-
cates the combination of faults that the system can tolerate.
Proof. Immediate from the previous lemmas. O

The above is the fundamental expression of the
method. It is a diophantic inequality but it also can be
seen as an n-dimensional surface which is a least

upper-bound on the combinations of faults tolerated
by the system. If in spite of increasing the maximum ¢
corresponding to a given task, the inequality still holds,
solutions with multiple faults of some tasks in all or
some instantiations can be explored.

Gosh et al. (1998) give the conditions to ensure
recovery:

"(1) In order to recover a task t;, failed at its instantia-

tionj(j=1,2,...)at least C;slots must be available
in the interval [T}, (j + 1)T;).

(2) The recovery of a failed task must be performed
before its deadline.

(3) The recovery of a task must not cause any other
task to miss its deadline.

The fundamental expression of the preposed method
(3) goes beyond the first condition because it makes pos-
sible the determination of the LUB on all the combina-
tions of faults that the system can tolerate. The basic
k-schedulability inequality (2) allows the calculation of
k, a fundamental parameter in determining the upper
bound. If (2) holds, the second and third conditions
above are met.

Example. In the next two examples, the same set of
tasks of Section 3 is used.

Calculated k;, C and p; are given in the fourth to
sixth columns in Table 2. The possible values of ¢, are
presented in the last column. k =min{k;} = 4. Conse-
quently, the system can tolerate failures in any combina-
tion satisfying

g1 +29, +q3+29,+q5 < 4

Obviously, not all tasks may fail in all their instanti-
ations in (1, T},]. Some tolerated combination of faults in
[1,15], are given in the following examples.

Example. If ¢, =3,4,=0,¢93=1,¢94=0, g5 =0, 7, and
73 may fail in all their instantiations in the interval.
Other combinations of tasks that may fail in all their
instantiations in the interval are t; and 1s; 73, 74 and ts.

Example. If g1 =1,¢2=1,¢93=1,494=0, g5 =0, 7, and
T, may fail in one instantiation each and 73 in its only
instantiation in the interval, etc.

Table 2
Number of instantiations in which each task may fail once and be
recomputed

i G Ty k; C Pi 4i

1 1 6 5 I 3 0-3
2 2 10 6 2 2 0-2
3 1 15 7 1 1 0-1
4 2 15 5 2 1 0-1
5 1 15 4 1 1 0-1




52 R.M. Santos-et al. | The Journal of Systems and Software 78 (2005 47-55

: Y Y

2 4
3
4

5
Exec. Tasks | AAAA M AHED

~

AL

SP31334 QL 14 J4)e 221 f585])ele |e

Slots ezl Te [sTs U0 s Uolwol il zfis]is

N N
[ rant | Pranz| [raas ]

1shis{17his[of20 21 22] 23F 24125 26 {271 28120 [0

Fig. 2. The evolution of the system under some fault conditions.

In the first half of Fig. 2, the last case is shown. As
can be seen, 7 fails in its first instantiation (at t=1)
and it is recovered at ¢ = 2; , also fails in its first instan-
tiation (at ¢ = 3, 4) and it is recovered at ¢ = 5, 6. 15 fails
in its first instantiation (at ¢ = 8) and it is recovered at
t=9. The four advanced slack slots corresponding to
the least upper bound have then been used.

It should be noted that if no fault occurs, four empty
background slots appear at t=09, 10, 14 and 15, as
shown in Fig. 1. What the method does is to advance
the four slots and make them available for recoveries ,
at t=1, a singularity because the previous slot is an
empty one. Since the use of a fifth slot would entail that
some task misses its deadline, four slots is the maximum
slack usable for recoveries in [1,15]. In this example,
therefore, the method optimises their number and their
position and gives the best guarantee as a least upper
bound in the interval.

Example. Let S(3) be the set of tasks specified in Table
3.

Because p; =0, t; can never be recovered. Because
R, < Gy, pp=1 and R,[T3/T,] = C,, 1, can be recov-
ered in one out of its two instantiations in [1, 15].

Since [1,7,] is the most congested interval in the
hyperperiod, when T, # M, the method guarantees at
least the same fault-tolerance in the intervals [(jx
T,+1), j+DT,Jupto G+ DT, =M{=1,2,..). In
the example of Fig. 2, for instance, at # = 16 another sin-
gularity takes place because the last hard pending task is
executed at r = 15. Consequently, another four slots are
again available for recovery purposes. They could be
used again to recover failed executions of 1(, 7, and 1,
or in alternative schemes, for instance to recover all

Table 3

Specification of the system and number of recomputable instantiations
i C T k Ri Di q;

1 4 8 4 1 0 0

2 2 8 2 1 1 =

3 1 16 3 2 1 0-1

failed second instantiations of t3, 74 and 5, as shown
in the second half of the figure.

In some cases, tasks may be very critical and require
multiple recoveries. For instance, if interferences with
the real-time system of an orbiting satellite are long en-
ough, they may affect not only the normal instantiation
but also subsequent recoveries. In that case, allowances
should be made for the tolerance of several faults after
the same instantiation.

Example. In the example above, by setting g; = 3, the
expression indicates that, within [1,15], the system
tolerates three failed executions of 13 with recovery at
the fourth one. The same applies in [16, 30].

It should also be noted that failures in [1, 7,,] may oc-
cur after one or more empty slots have appeared natu-
rally as background slots. Since an empty slot is also a -
singularity, k slots are again available for recoveries
after it and therefore some recoveries may take place
after t=T,,.

Example. In the previous example, 73, 7, and 7, may fail
in that order at r =4, 12 and 16, respectively, after an
empty background slot appeared at ¢ = 10. 15 is recov-
ered at t =5, 7, at =13 and 14, and 1, at ¢ = 16 (after
t=T,=15).

The LUB is pessimistic. k£ denotes only the number of
redistributed empty-slots, available for recovering failed
tasks in the critical period [1,T,]. The fault-tolerance,
however, can increase because of two reasons:

(1) The expression T, — W, (T,) gives the number of
empty slots in [1,7,]. It is possible that
k <T,— W,T,) and, in that case, the empty slots
not redistributed in the critical period but appearing
merely as background empty slots could also be
used for recovering tasks.

(2) At the instants jM + 1, j=1,2, ..., the worst case
initial state of the hard real-time set of tasks is
repeated, followed by a critical interval
UM+ 1,jM +T,]. When simulations are performed
with random fault generations, the faults may take
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place outside the critical intervals, with a lighter
load, and consequently with more empty slots avail-
able for recovering tasks.

Example. In the example of Fig. 2, in spite of recovering
one single-failed second instantiation of 3, 14 and =5, the
non-critical interval [16,30] leaves three unused back-
ground empty slots at ¢ =28, 29 and 30. As can be seen
in Fig. 3, the three tasks may actually fail twice in the
interval and still be recovered. The LUB was pessimistic
because, after the singularity s = 15, it counted only the
redistributed slack, four slots, instead of the seven
actually available when the background slots are
counted in,

4.2. Comparison with other time-redundancy methods

According to the upper bound calculated with
the method proposed by Gosh et al. (1998), the system
tolerates only successive single faults in 73 or ‘54 or Ts,
separated by at least 30 slots.

By applying the empty slots method in a manner sim-
ilar to that used by Burns et al. (1996) or by Ramos-
Thuel and Strosnider (1995), exact calculations could
be done using increased execution times (due to recover-
ies) and less pessimistic results would be obtained in cer-
tain cases. In order to recover a task that failed once in
all its instantiations, its execution time should be dupli-
cated. For instance, to test the tolerance of 1, to that
type of faults, the expression (1) should be calculated
with C; =4. In general, to test the tolerance to faults
in one task or in a combination of tasks, the expression
(1) must be recalculated with the corresponding execu-
tion times augmented. On the contrary, to the best of
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Fig. 3. The evolution of the system with some double faults in [16, 30].

the authors’ knowledge, the method, as previously pre-
sented, is the only one that in one single expression gives
a least upper bound on all the possible combinations of
faults tolerated by the system.

5. Performance evaluation
5.1. Simulations

In what follows, the evaluation process is described to
the extent that its correctness can be validated and the
results replicated.

The metric used to asses the quality of service, QoS,
provided by the method is the success ratio, SR, defined
as the average ratio between the number of recovered
tasks and the total number of faulty tasks. Evidently,
SR can be seen as a figure of merit: a value of 100
means, of course, that all faulty tasks were recovered.

The two main variables affecting the SR are the Uti-
lization Factor, UF, and the Mean Time Between Fail-
ures, MTBF. Thus they were chosen as independent
variables. In order to determine the performance of
the method, systematic simulations were conducted on
about 10,000 randomly generated sets of tasks. Each
set had 10 tasks; their periods had a uniform distribu-
tion; the sample space was [10, 20, ..., 100]. Execution
times were randomly generated in such a way that the
system utilization factor had a uniform distribution over
the sample space [0.30,0.31,0.32, ..., 0.90). Only RM
schedulable systems were accepted. For each UF and
each MTBF, about 165 sets were tested. Each of them
was run for approximately 100,000 slots.

For the same set, faults were generated following an
exponential distribution, commonly used in this kind
of evaluations (Ramos-Thuel and Strosnider, 1995).

5.2. Results

The results obtained are shown in Fig. 4. A bidimen-
sional parametric representation was chosen because it
was found to be the clearest. SR is represented vs. UF
(in the range 0.30-0.90 in steps of 0.01) for four values
of MTBF used as parameters. Following Gosh et al.
(1998) these were (measured in slots): (a) the average per-
iod, 50; (b) the maximum period, 100; (c) five times the
maximum period, 500; (d) ten times the maximum period,
1000. For an MTBF = 50, for example, about 2000 faults
were randomly generated for each set in each run.

5.3. Analysis

The Success Ratio starts diverging significantly from
100% only for utilization factors over 0.60 in all cases.
This could be expected since low UFs mean that many
empty slots are available (for UFs under 0.50, there
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Fig. 4. Success ratio vs. utilization factor for different MTBFs (from
top down, 50, 100, 500 and 1000 slots).

are more empty than busy slots). Because there are so
many, empty slots appear early in the process and are
immediately available for recoveries. As the UFs in-
crease over 0.60, fewer empty slots are available and
recoveries are more difficult.

As can be seen, the lowest SR is obtained for
MTBF = 50 and UF = 0.9, rather stringent conditions
since, firstly, an average of one failure takes place in
each average period and, secondly, the slack amounts
to only 10% of the whole time. However, the SR is
approximately 78%, meaning that only 22% of the fail-
ures are not recovered. It is reasonable to assume that
the advancement of the slack making it available for
recoveries since the very beginning of the processing
and its bandwidth conservation property play an impor-
tant role in that result.

For the same UF and an MTBF = 1000, the lowest
frequency of simulated failures, the SR grows up to
86% (only 14% of the failed tasks are not recovered).
As can be seen, although for a given UF the total avail-
able slack is always the same, as the frequency of faults
decreases an improvement in performance takes place.
This can be explained by the fact that some failed tasks
use empty slots that in the case of more frequent faults
are taken up for the recovery of previous immediate
failed tasks. Again, it seems reasonable that the slack
reshuffling and the bandwidth conservation are contrib-
uting causes for that result.

6. Conclusions

The method presented here is based on a redistribu-
tion of slack time trying to put it where its use can be

more beneficial. The method rests on the theoretical
notions of k-schedulability and singularity. It produces
a least upper bound contained in an n-dimensional
surface, n being the number of tasks in the real-time
system. It is shown that the conditions to ensure recov-
ery of any combination of faults below the surface
are met. To the best of the authors’ knowledge, it is
the only method that with only one single expression
allows the exploration of all the possible combina-
tions of single or repetitive faults that the system toler-
ates in the interval between the beginning of the
execution and the maximum tasks’ period. The worst
case of load, simultaneous generation of all tasks at
the initial instant, is assumed. Because that interval is
the most critical, the bound is pessimistic relative to
faults tolerated over larger intervals, like for example
the hyperperiod.

Simulations were carried out for exponentially dis-
tributed stochastic faults with four Mean Time Between
Failures (the average tasks’ period, the maximum period
and five and ten times the maximum). Success ratios (the
ratio between recovered failures and total number of
failures) are represented vs. the system’s utilization
factor using the MTBFs as parameters.

The curves start diverging significantly from 100%
only for utilization factors over 0.6 in all cases. For an
UF = 0.9, the success ratio is 78% in the case of the
more frequent failures and it increases up to 86% for
the highest value of the MTBF. It seems reasonable to
assume that the advancement of the slack, making it
available for recoveries since the very beginning of the
processing, and its bandwidth conservation property
play an important role in that result.
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