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Abstract

When testing multimedia software applications, we need to overcome important issues such
as the forbidding size of the input domains, great difficulties in repeating non-deterministic
test outcomes, and the test oracle problem. A statistical testing methodology is proposed.
It applies pattern classification techniques enhanced with the notion of test dimensions.
Test dimensions are orthogonal properties of associated test cases. Temporal properties
are being studied in the experimentation in this paper. For each test dimension,a pattern
classifier is trained on the normal and abnormal behaviors. A type of failure is said to be
classified if it is recognized by the classifier. Test cases can then be analyzed by the failure
pattern recognizers. Experiments show that some test dimensions are more effective than
others in failure identification and classification.
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1 Introduction

Multimedia software applications are software applications “that support the
integrated processing of several media types with at least one time-dependent
medium” (Blakowski and Steinmetz, 1996). They are useful in many important
areas such as business and education. For instance, supported by an e-learning
environment, students can learn at their own pace. Nevertheless, if various animated
instructions and corresponding acoustic narrative comments are not properly
organized, learners may be trained incorrectly and the training may be counter-
productive. Hence, it is important to ensure the quality of such software. As software
testing is recognized as the most viable and the most commonly used approach, we
shall restrict our attention to software testing in this paper. Software testing is non-
trivial for multimedia software applications. The major difficulties, among others,
are as follows:

(i) The size of its input domain may be forbiddingly huge. There is an increasing
number of software applications, such as RealPlayer (Bulterman, 2004), that
support open standards, such as SMIL (1998; 2005), as parts of their input
data profiles. The size of each input data profile is limited only by the local
resources available. Also, each placeholder of a media object in an input data
profile can be mapped to a number of media object instances with different
behaviors and supportive technologies. Furthermore, there are many time-
points even within a small time interval. All of these add up to explode the
size of the input domain.

(ii) It is usually difficult to repeat test cases of such applications to produce
identical outcomes. Largely speaking, fuzziness in multimedia software
applications is caused by uncertainties or uncontrollablefactors in their
environments. They are known as common cause variations (Russell et al.,
2000). On the other hand, because of reasons such as the huge setup cost
of high-precision equipment, we cannot expect all environmental settings to
be recorded precisely and reproduced exactly for the testing of multimedia
applications. In most cases, testers can only turn a blind eye to such non-
deterministic time-dependent fluctuations.

(iii) Because of the difficulties in recording and reproducing environmental settings
during executions of a test case, testers may only have a blurred picture of a
particular test case. It poses difficulties in verifying test outcomes. In general,
this kind of problem is referred to as thetest oracle problem(Chen et al.,
2003).

A testing methodology is proposed and described in this paper. It applies pattern
classification techniques and takes test dimensions such astemporal relationships
into account as the two major tools to alleviate the problemsin testing XML-based
multimedia software applications. Its contributions include:

(a) A Step Toward Effective Failure Pattern Recognition: Cunningham and Mac-
Kinnon (1998) categorize visual defect metrology into three levels. We shall
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adapt their categorization, which was originally used for the recognition of defects
in semiconductors, to the recognition of software failuresin the following way:

The basic level ispoint. It ignores both failure clustering and special patterns
of failures. This is similar to the conventional approaches(Cheung et al., 2004;
Lu, 1996) to be described in Section 2.2. They use standard statistical rules to
classify failures. The next level iscluster. It considers failure clustering, but not
special patterns of failures. General-purpose pattern classifiers such as those to
be described in Section 2.3 are classified into this category. The ultimate level
is pattern. Chen and Liu (2000) suggested that it is not a trivial task to classify
defect spatial patterns into specific patterns.

In general, the pattern level is more effective than the cluster level, which, in
turn, is more effective than the point level. Moreover, a failure pattern signature
may appear in situations that satisfy particular properties, but not others. Our
present work captures properties astest dimensions, and chooses temporal
properties as the first kind of dimension to study. It is a necessary step toward the
formulation of effective special-purpose pattern recognition algorithms to detect
failure patterns for multimedia software applications.

(b) Pattern Classifiers as Statistical Test Oracles: A conventional test oracle
(Beizer, 1990) for a software application is used to determine whether a test
result is correct. On the other hand, a statistical test oracle, such as those described
in Hoffman (1999), may occasionally announce a false result. It is, nevertheless,
an alternative if a conventional test oracle is not available or too costly to be used.
Since statistical test oracle is not totally reliable, a keyresearch challenge is to
improve its accuracy. We propose to train pattern classifiers to serve as statistical
test oracles. Given suitable training data sets, the pattern recognition approach is
better than the random approach in the accuracy for identifying and classifying
failures.

We would like to add that our methodology deals only with selected test
dimensions. When a test case with anunknowntype of pattern is given to a
pattern classifier (that is, when there is no “familiar” dataavailable for training),
it is not known whether we expect it to be a successful test case or a failure-
causing input. As a result, we cannot tell whether any identified failure is
legitimate. This is an open and classic oracle problem in software testing and
is beyond the scope of the present paper.

(c) Testing by Test Dimensions to Improve Classification Accuracy: To organize
test cases into groups (that is, test dimensions), our method uses the fundamental
set of generic properties to distinguish temporal relationships in the experiment-
ation. In general, a test case may have multiple test dimensions. Our results,
presented in this paper, outperform heuristic identification of failures followed by
random classification to a failure class. In terms of effectiveness, it is comparable
to the results when all test dimensions are learned by a classifier at the same time.
It shows that some test dimensions are more effective in classifying failures.

The rest of the paper is organized as follows: Section 2 provides readers with
background information related to our work. Section 3 proposes a methodology for
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distinguishing normal and failure behaviors, and classifying the latter. A case study
of the methodology and its results are described in Sections4 and 5, respectively.
Finally, Section 6 concludes the paper.

2 Background Information

2.1 Temporal Relationships

Temporal relationships are important attributes in multimedia software applications
(Blakowski and Steinmetz, 1996; Cheung et al., 2004). Allen (1983) proposed
seven types of temporal relationships between two media objects. Cheung et al.
(2004) proposed a more fundamental set ofgeneric temporal relationshipsthat can
simulate the relations in Allen (1983). In this paper, we shall restrict our scope to
the three generic temporal relationships proposed in Cheunget al. (2004). Figure 1
shows a diagrammatic representation of the three generic temporal relationships,
which include:

A before B: Media objectA terminating before media objectB begins;
A starts after B: Media objectA starting after media objectB has begun; and
A ends ahead of B: Media objectB terminating before media objectA has ended.

There are other more formal ways to express temporal relations, such as temporal
logic, and communicating finite state machines. For example, Little and Ghafoor
(1993) have proposed a timed Petri-net model to describe thesynchronizations in
multimedia data in an application. They focus, however, on the storage and retrieval
of media objects in databases.

2.2 Testing Multimedia Software Applications

A conventional testing technique for multimedia software applications is to set
an acceptable range of values. Lu et al. (1996) recommended to use 80 ms for
audio and video synchronizations. It is subjective to set a suitable zone, however.
Cheung et al. (2004) proposed to use statistical approaches to evaluate relevant
quantities such as the difference between the start times oftwo media objects,
and expressed the results in terms of confidence levels. Both Cheung et al. (2004)
and Lu et al. (1996) arepoint-level failure recognition techniques. Campos et al.
(1999) performed formal proving of temporal properties. Based on insights from

A before B A starts_after B A ends_ahead_of B

A B

A

B A

B

Fig. 1. The three major temporal relationships
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the modeling, they reverted to expert judgment mechanisms to improve on the
design of a video server component. Zhang and Cheung (2002) used Petri nets to
specify temporal relationships and tested multimedia programs against them. There
has also been research to generate test cases for conformance and interoperability
testing (Hao et al., 2004).

Our work does not depend on any program structures or specifications, and also
makes no assumption on other components in the program environment. Thus, the
research efforts by the above authors are complimentary to our proposed technique.

2.3 Pattern Classification Techniques

In this section, three representative and popular techniques in pattern classification
(Duda et al., 2000) will be described. They serve as the foundation of our present
work.

k-Nearest Neighbor (KNN):k-nearest neighboris a non-parametric classification
technique, which does not make any assumption about the underlying distribution

of the data (Duda et al., 2000). Givenn training data sets, letxi = (a(1)
i , a(2)

i , . . . ,

a(m)
i ) represent the values of the attributes of theith data set, wherei = 1, 2, . . . , n.

A query with respect to a test casex = (a(1)
, a(2)

, . . . , a(m)) can be input to the
classifier, which will find a setS′ = {x′1, x′2, . . . , x′k} of k training data from the
training setS= {x1, x2, . . . , xn} such that maxx′

i∈S′ d(x′i, x)≤minxi∈S\S′ d(xi, x),
whered() is the distance function.

In our experiments, the KNN classifier is implemented in C++ byone of the authors
(Cheng) according to the above description. It uses standardEuclidean distance as
the distance function. We have chosenk to be 3 after a careful feasibility trial.

Bayesian Networks:A Bayesian network (Duda et al., 2000) for a set of variables
U = {u1, u2, . . . , un} is a tuple(G, Θ). G = (V, E) is a directed acyclic graph,
where (i) there is a one-to-one-correspondence between theelements inV and those
in U , and (ii) E (⊆ V ×V) is a set of directed edges.Θ is a set of conditional
probability distributions such that eachΘi in Θ defines the conditional probability
of node ui given its parents inG. A Bayesian networkB represents a joint
distribution over U in G as follows: probabilityB(u1, u2, . . . , un) =

∏n
i=1 probability(ui |πui , Θi ), whereπui is the set of parents of nodevi in V. After

a Bayesian network has learned its set of conditional probabilities Θ based on the
inter-relationships among given attributes in the training data setU , it can be used
to perform pattern classification for new data. In our experiments, Belief Network
PowerPredictor (2001) is used.

Neural Networks: Neural networks(Mitchell, 1997) are designed to model the
human brain. Aperceptronsums up a number of weighted inputs(xi)i =1,2, ...,n to
give net = Σn

i=0 wixi , and generates an outputy via a transfer function. Initially,
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the network chooses a set of random weights for each node. During the training
phase, inputs are fed into the network and the actual outputsare compared with
the expected results to estimate the errors. The network then adjusts the weights
according to the feedback from the estimated errors. In our experiment,
NeuroSolutions (2004) is used.

2.4 Detection of Failures without a Precise Specification

Techniques for detecting software failures without a precise specification fall into
two categories: analytical and statistical. Some examplesof the former type include
program checkers (Blum and Kannan, 1995), and metamorphic testing (Chen et al.,
2003).

In this paper, we are more interested in statistical testingand, hence, we shall
outline a couple of statistical techniques. Podgurski et al. (2003) applied data
clustering analysis to recognize failure behaviors exceptidentify failures. Their
subject is a deterministic program. Similarly, Bowring et al. (2004) represented the
execution history of each test case of a deterministic program by means of a Markov
model. They also used a clustering technique to merge classes into clusters of
classes to formulate their pattern classifiers. Both arecluster-level failure
recognition techniques.

We proposed in Cheng et al. (2004) to let classifiers learn thepatternsfrom various
categories of normal and faulty multimedia software applications. In this extended
version, besides reporting the original findings, we further present the concept
of test dimensions, with a long-term objective of enhancingthe methodology to
achievepattern-level failure recognition.

3 The Testing Methodology

In the present and the next sections, we introduce our testing methodology and then
describe an experimental study on the methodology. The major steps of the testing
methodology are as follows:

(1) Determine a setΘ of application attributes for pattern classification such that
Θ includes the implementations of the three generic temporalrelations.

(2) Define the criterion of each test dimension and ensure that the test dimensions
collectively cover all generic temporal relations.

(3) Based on the temporal relations on media objects defined inthe SMIL-based
input data profile in each test case, assign every training test case to at least one
test dimension according to the criteria. Hence, form a datasetΦ for each test
dimension.

(4) Prepare the classesΓ for pattern classification. Each class inΓ is expected to
represent a normal case or a kind of failure, but not both.
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(5) Based on the attributes setΘ, for each data setΦ, train a pattern classifier to
distinguish classes inΓ.

(6) Generate a test data set.
(7) Classify test data set so that each test case is labeled with a class inΓ.
(8) Report the class of any test case if the class represents a kind of failure.
(9) Apply pattern-level failure recognizers to find the patterns from a class of

failure test cases.

The purpose of Step (1) is to find several appropriate attributes for pattern
classification. In Experiment 2, we describe our experiencein dealing with attributes
in multimedia software applications. Training data are further organized so that
they are orthogonal in temporal relations. We envisage thata detectable temporal
behavioral failure will be in its most detectable form if we can tune the reference
axes into orthogonal forms that cover all the temporal relations. The set of the three
generic temporal relations is one of the possible choices. Also, although we have
chosen three data sets in Experiments 1 and 2, the value “3” isnot absolute. Testers
can choose their own numbers of data sets. Step (9) is a longer-term objective
that is not covered in this paper. The rest follows a standardpattern classification
procedure. We refer readers to (Duda et al., 2000) for more details.

4 The Case Study

In this section, the methodology is investigated by an experimental case study.
Three sets of experiments are presented in this paper.

4.1 The Subject X-Smiles and its Testing Environment

As multimedia software applications can be standalone or distributed, we choose
X-Smiles(2002) version 0.71, an open-source Java-based XML-browser, as the
subject of the case study. In this way, although the case study is conducted in
offline mode5 , it provides opportunities for extending the work to the testing of
distributed multimedia applications.

The Java-based XML-browser, the subject of our study, consists of 55 117 lines
of code, 1 010 classes, 168 interfaces, and 5 022 methods6 . Furthermore, there are
many possible behaviors that a software system may exhibit correctly or incorrectly.
To reduce the scope of the initial study, we would like to pickthe java classes
that are most likely to influence temporal constraints. The classesScheduler.java,
BrowserLogic.java, and ElementBasicTimeImpl.java have been selected after a
careful evaluation. They contain 152, 198, and 1 032 lines ofcode, respectively.
The sizes of these fragments of code are comparable to the well-known Siemens

5 In the sense that it is treated as a standalone program running on a machine.
6 The statistics are collected by the tool LOCC release 4.3.7 available at
http://csdl.ics.hawaii.edu/Tools/LOCC.
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Experiment Training Phase Testing Phase

1 MachineA MachineA

2 N/A MachineA

3 MachineA MachineB

Machine A: Pentium Celeron 500MHz processor, 256 MB of memory, Creative SB Live! Wave Device, and
Microsoft Windows 2003 Enterprise Edition.

Machine B: Pentium Celeron 550MHz processor, 512 MB of memory, Creative SB Live! Wave Device, and
Microsoft Windows 2003 Enterprise Edition.

Table 1
Machine configurations in experiments

Test Suite, a collection of subject programs used in software testing researches in
the past 14 years. Both (a) Java Development Kit 1.3 and (b) Java Media Frame-
work 2.1.1 are installed. Table 1 shows the configurations ofthe machines used for
all the experiments in the case study.

4.2 Test Cases and Test Dimensions for X-Smiles

Each test case to be executed by theX-Smilessystem consists of three components:
a SMIL-based (SMIL, 1998) input data profile, a slide show, and an audio narration.
The slide show is an animated GIF with a size of 640× 480 pixels, and the audio
narration is in WAV format with a sampling rate of 44.1 kHz. A sample illustrating
a parallel execution of two media objects is shown in Figure 2. It specifies that the
animation “description” starts its presentation 1 second after the end of the audio
object “media1”.

The test dimensions for the case study are as follows:

TD 1 (Simultaneous): Slide showstarts after audio narration by 0 delay and
slide showends ahead of audio narration also by 0 delay;

TD 2 (One During Another): Audio narrationstarts after slide show and audio
narrationends ahead of slide show, and the delays in either “starts after” or
“ends ahead of” cannot be both 0 at the same time; and

TD 3 (One Before Another): Slide showbeforeaudio narration.

4.3 Attributes for the Failure Classification Experiments

In a training phase, data will be collected from a reference system, and from
different classes of faulty systems. We have verified the data manually before using
them for training. For each system, attribute values are collected in 20 repeated
runs per input. The output of each repeated run is consideredas a distinct sample
data point for pattern classifiers so that the latter can learn thefuzzinessin behaviors
when testing theX-Smilessystem. Five raw attributes are collected for every training
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<?xml version="1.0" encoding="ISO-8859-1"?>
<smil>
<head>
<layout>

<root-layout id="testing" height="600" width="200"
background-color="#ffffff" />

<region id="region1" height="250" width="250" top="50" left="50" />
<region id="region2" height="250" width="250" top="50" left="300" />
</layout>
</head>

<body>
<par id="par1" begin="0.0s" dur="20.0s">

<audio id="media1" region="region1" src="sound.wav"
begin="1.0s" dur="5.0s" />

<img id="description" region="region2" src="description.gif"
begin="media1.end+1s" dur="5.0s" />

</par>
</body>
</smil>

Fig. 2. Sample SMIL-based input data profile

sample data and test case for pattern classification. They are selected from 24
candidate “shopping list” (Meyer, 1997) attributes. In theformulation of the
shopping list, we have exercised measures to refer to published work in multimedia
system benchmarking and picked the relevant attributes accordingly.

ForTD1 andTD2, the selected attributes include the duration of the slideshow, the
duration of the audio narration, the difference in start times between the slide show
and its audio narration, and the difference in end times between the slide show
and its audio narration. ForTD3, the attributes include the duration of the slide
show, the duration of the audio narration, the start time of the slide show, and the
difference between the end time of the slide show and the start time of the audio
narration. The maximum memory utilization of the system is also recorded in all
cases.

4.4 Systems to Generate Behaviors for Pattern Classifications

In this section, we describe the systems that represent normal behaviors and known
types of error7 . We use more than one kind of error so that our investigationswill
not be biased toward errors of a particular kind. All types oferror are, intuitively,
related to temporal properties. However, we have exercisedmeasures to ensure that
the relationships among types of error are unknown to both test case selection and

7 For unknown types of error, we refer readers back to the discussions of pattern classifiers
as statistical test oracles in Section 1 for more details.
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formulation of test dimensions. In fact, it remains an open problem to find the actual
relationships among these types of error.

The performances of the reference system used for the training include both the
situations when the CPU is almost idle and when it is extremelybusy. To simulate
a low CPU utilization situation, all other utilities and applications are turned off.
To simulate a high CPU utilization situation, a CPU-hungry utility is kept running
to ensure that the system is heavily loaded. Three differenttypes of error have been
seeded into the reference system. Together with the reference system, there are four
kinds of system in total:

Class 0: This is the reference system. The outcomes of the training test cases are
checked manually.

Class 1: A priority error is simulated. It reduces the priority of execution threads. It
simulates an inappropriate priority configuration in multimedia software
applications. Errors are seeded in the fileScheduler.java.

Class 2: A pagination error is simulated. It causesX-Smilesto consume a large
amount of system memory and, hence, the system will have excessive pagination.
Errors are seeded in the fileBrowserLogic.java such that it calls anotherjava class
MemoryConsumer to simulate the desired failures.

Class 3: A start time error is simulated. It delays the start time of one given media
object by a fixed parameter (relative to the SMIL-based inputdata profile). Errors
are seeded in the fileElementBasicTimeImpl.java.

4.5 Experiment 1: Effects of Testing by Test Dimensions

The main objective of this experiment is to find out whether a specific test dimension
can classify a failure as effectively as the situation when all test dimensions are
used. Intuitively, in the absence of full information, the failure classification rate of
the former should be lower than the latter. The question is, to what extent. Part of
this experiment was reported in the preliminary version (Cheng et al., 2004) of the
present paper.

Experiment 1 is divided into three parts: a main experiment E1 and two reference
experiments R1A and R1B.

Experiment E1 (Testing by Test Dimensions): 480 data have been used for
training and 1 760 data for testing. For the training phase, 20 repeated
experiments have been carried out for each combination of high-low CPU
utilizations, the 3 sets of SMIL specifications (that is, test dimensions), and the
4 types of systems. We have re-run the same experiments 20 times to allow for
common cause variations. The same training set is used in allthe classification
techniques to ensure a fair comparison. In the testing phase, we have grouped
multiple runs of the same experiment as a data suite.

We also conduct two reference experiments for the purpose ofcomparison.
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Reference Experiment R1A (Conventional Pattern Classification): The first
control experiment shows the situation where all the data for every test dimension
are grouped together homogeneously and, hence, representsa conventional
pattern classification approach. We group all the training test cases into one data
set, and all the testing test cases into another data set. Foreach pattern classifier,
we apply the entire training data set in the training phase, and let the classifiers
process the entire testing data set.

Reference Experiment R1B (Conventional Approach to Test Multimedia
Systems): The second control experiment shows the situation where
conventional techniques are used (see Section 2.2). We use the suggestions of
Lu et al. (1996) to determine whether a failure is identified in a test outcome. We
note that this is not a pattern classification experiment.

4.6 Experiment 2: Natural Variations of Data Attributes

One of the major assumptions of our method is that uncertainty variations in
behaviors constitute part of the output of a test case. They are generally found to
be difficult to model and study analytically. Hence, this paper opts for a statistical
approach. Thus, a case study will be irrelevant to our methodif there happens to be
very few behavioral uncertainties.

Experiment 2 consists only of one part: a main experiment E2.

Experiment E2 (Fuzziness of Attributes for Multimedia Software
Applications): It is designed to examine the behavioral uncertainties of X-
Smiles. It repeatedly applies a SMIL test case (see Section 4.2) consisting of
two media objects to systemClass0 (see Section 4.4) for 240 times in a low
CPU utilization environment. The same experiment is repeated in a high CPU
utilization environment. Hence, 480 sets of attributes arecollected to produce
the results in Section 4.6. The SMIL file defines that the two objects (denoted as
Object 1 and Object 2 in this paper) are in the same concurrentexecution block.
The two objects are specified to start and end simultaneously. The duration of
each media object is 30 seconds. Four attributes which are tightly coupled to
generic temporal relations (see Section 4.3) are collectedfor the experiments.

4.7 Experiment 3: Effects of Classifications Based on Almost-Identical Hardware
Configurations

The testing of the same software may, in practice, be conducted on more than
one machine. Since a typical multimedia software application may exhibit non-
deterministic behaviors, a strategy to reduce fluctuationsacross different hardware
configurations is to use a number of almost-identical8 machines, such as using
500 units of Dell PrecisionTM 670 to conduct testing at the same time. Moreover,

8 There are intrinsic variations in hardware operations. Hence, each machine is unique
from this perspective.
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Classification Method TD 1 TD 2 TD 3 Mean

Bayesian Networks 71.4% 75.0% 96.4% 81.0%

k-Nearest Neighbor 78.6% 84.4% 92.9% 85.3%

Neural Networks 75.0% 78.1% 92.8% 82.0%

Mean 75.0% 79.2% 94.0% 82.7%
Table 2
Successful test results of Experiment E1 under high CPU utilization, by test dimensions
with data normalization

testing is conducted in many rounds in a typical iterative approach to software
development. Machines available for an earlier round may not be available for a
subsequent round. It would be a pity if a tester could not use aprevious test suite to
regress the software. A main objective of this experiment isto start the initial work
to investigate whether failure identification and classification across machines can
be effective.

Experiment 3 is divided into two parts: a reference experiment R3 and a main
experiment E3.

Reference Experiment R3 (Effects of Classifications on the Same Machine):
Since this experiment is basically repeating that presented in Cheng et al. (2004),
we have reduced the scale to only three SMIL files in each round9 . It uses
a SMIL file from each ofTD1, TD2, andTD3 as inputs to the systemsClass0,
Class1,Class2, andClass3 to produce the five attributes for classification under a
low CPU utilization environment. For each test input, we collect the
corresponding output attribute values 20 times for both thetraining and testing
phases. The same experiment is repeated in a high CPU utilization environment.

Experiment E3 (Effects of Classifications on an Almost-Identical Machine):
It repeats Experiment R3, but uses analmost-identicalmachine in its testing
phase. Details of the machines can be found in Table 1.

5 Results of the Case Study

5.1 Results of Experiment 1: Effects of Testing by Test Dimensions

Tables 2 and 3 summarize the results of Experiment E1 under high and low CPU
utilizations, respectively, with data normalization. They show the percentages of
test cases that are correctly classified under each test dimension.

9 Nevertheless, it still fits the aim of the experimental study. This is because if the results of
behavioral classification in Experiments R3 and E3 were unsatisfactory for identical inputs,
it would be pointless to conduct follow-up experiments on a larger scale.
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Classification Method TD 1 TD 2 TD 3 Mean

Bayesian Networks 64.3% 75.0% 60.7% 66.7%

k-Nearest Neighbor 64.3% 75.0% 64.3% 67.9%

Neural Networks 71.4% 62.5% 60.7% 64.9%

Mean 66.7% 70.8% 61.9% 66.5%
Table 3
Successful test results of Experiment E1 under low CPU utilization, by testdimensions
with data normalization

(a) In general, the mean results of the three classification techniques exhibit more
or less the same percentage of accuracy in failure identification. We find that
it is more likely to identify failures under high CPU utilization than under low
utilization.

To confirm the results, we have re-developed test sets conforming to SMIL
2.0 standards (2005), and using Allen’s set of temporal relations (Allen, 1983)
separately. Then, we re-run the part of Experiment E1 which is under low CPU
utilization. The results agree with the results in Table 3 with only marginal
differences. There are other rooms of improvements to improve classification
rates, which have been discussed in the preliminary versionof this paper (Cheng
et al., 2004) and are not repeated here.

(b) However, the mean results of the three test dimensions showsignificant
deviations. In particular,TD3 under high CPU utilization outperforms the
average in all cases, and is remarkably better than its counterpart under low
CPU utilization. Furthermore,TD1 requires 0 second delay in eitherstart after
or ends ahead of relation in a test case. It is more stringent than the
requirements ofTD2 andTD3. Intuitively, any failure of a more stringent
requirement should be easier to reveal. On the contrary, theexperimental results
of the test dimensionTD1 are generally poorer than the others. In other words,
intuitively intricate test cases may not show advantages indetecting failures

(c) The mean results of Experiments R1A (which does not use the concept of test
dimensions in classifying failures) and R1B (which uses an adhoc method to
identify failures) are 69.9% and 54.7%, respectively, under low CPU utilization.
Compared with Table 3, they show that the test dimension method only
marginally reduces the resolution of failure classification (69.9%− 66.5% =
3.4%), but significantly outperforms the ad hoc failure identification approach
(66.5%− 54.7% = 11.8%).

5.2 Results of Experiment 2: Natural Variations of Data Attributes

Figure 3 shows the variations of the data attributes. The left column shows the set
of attributes, including the time difference in “Object 2starts afterObject 1” (L1),
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Fig. 3. Natural variations of attributes in the case study

the time difference in “Object 2ends ahead of Object 1” (L2), the presentation
duration of Object 1 (L3), and the presentation duration of Object 2 (L4), when the
experiment is conducted in a low CPU utilization environment. The right column
shows the same set of attributes ((H1) to (H4)) in a high CPU utilization
environment. We also observe the following trends from Figure 3:

(a) Not everyobvious candidateof time-dependent attributes demonstrates a wider
spread of variations under high CPU utilization than under low CPU utilization.
The variations of presentation durations in cases (L3) and (L4) are larger than
those in cases (H3) and (H4). This observation is interesting and worth further
investigation. Furthermore, the temporal relationsstarts after and
ends ahead of ((L1) versus (H1) and (L2) versus (H2)) follow our intuition
that wider spreads in variations of values are recorded under a tighter resource
environment. Choosingstarts afterandends ahead of temporal relationships
for further study may enable researchers to have a more theoretical understand-
ing of the so-calledcommon cause variations.

(b) All the diagrams look like unipolar distributions. In particular, cases (H1) and
(H2) look like Gaussian and Poisson distributions, respectively. They agree
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Classification Method TD 1 TD 2 TD 3 Mean

Bayesian Networks 100.0% 75.0% 100.0% 91.7%

k-Nearest Neighbor 100.0% 75.0% 100.0% 91.7%

Neural Networks 100.0% 87.5% 100.0% 95.8%
Table 4
Successful test results of Experiment R3 under high CPU utilization, by classes of test
dimensions

Classification Method TD 1 TD 2 TD 3 Mean

Bayesian Networks 62.5% 75.0% 100.0% 79.2%

k-Nearest Neighbor 75.0% 100.0% 100.0% 91.7%

Neural Networks 56.3% 87.5% 100.0% 81.3%
Table 5
Successful test results of Experiment E3 under high CPU utilization, by classes of test
dimensions

Classification Method TD 1 TD 2 TD 3 Mean of E3 Mean of R3

Bayesian Networks 68.8% 87.5% 68.8% 75.0% 70.8%

k-Nearest Neighbor 62.5% 81.3% 75.0% 72.9% 70.8%

Neural Networks 56.3% 75.0% 68.8% 66.7% 66.7%

Table 6
Successful test results of Experiments E3 and R3 under low CPU utilization,by classes of
test dimensions

with Cheung et al. (2004) that some common cause variations can be described
using statistical distribution models. It also helps to explain why Experiment
R1B using thepoint-level failure recognition approach can identify failuresin
more than a half of all cases.

5.3 Results of Experiment 3: Effects on Classifications Basedon Almost-Identical
Hardware Configurations

We make the following three observations on Experiment E3:

(a) The test dimensionTD1 in Tables 4 and 5 show a drop of about 35% in
classification rates. Thus, a test dimension that has a very good failure detection
capability on one machine may not be assumed to be effective in classifying test
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cases from other machines.
(b) Comparing the changes in the mean results between Experiments R3 and E3

under low CPU utilization in Table 6 (69.4% versus 71.5%), andbetween
Tables 4 and 5 (93.1% versus 79.2%), the low CPU utilization situation provides
a less dynamic change in success rates of classifications. Itmeans that if the
goal of a failure classification is to compare the failure rates with different tests
of the same application onalmost-identicalmachines, it would be better to
conduct the testing of multimedia software applications ina low CPU utilization
environment, because different hardware and software environmental
configurations may render the CPU utilization into unforeseeable situations
during tests. On the other hand, if the objective of a test is to find failures for
software debugging, one can conduct testing in a high CPU utilization situation.
Experiment E3 shows a loss of about 10% in classification capability.

(c) Experiment E3 preliminarily shows that it is feasible totest a multimedia
software application on different hardware and software environments. More
work is required to make this observation more conclusive. We are conducting
additional experiments using more kinds of test case, different machine
configurations, and under different kinds of CPU loading.

6 Conclusion

We have studied the difficulties in testing multimedia software applications, which
include (i) the forbidding sizes of the input domains, (ii) non-reproducible outcomes
of a test case in some situations, and (iii) the test oracle problem. A testing
methodology is proposed in this paper to alleviate the problems. Although only
SMIL-based multimedia software applications are examinedin this paper, our
methodology can be applied to other kinds of applications with input data profiles.

We have kicked off the work that moves fromcluster-level failure recognition
techniques towardpattern-level for testing multimedia software applications. We
start with the concept of test dimensions. We choose temporal properties as the
first kind of dimensions to study, as temporal behaviors are an important feature of
multimedia applications.

In this paper, three generic temporal relations are used to organize a test set into
different orthogonal test dimensions. They are presented as data sets in both the
training and testing phases of pattern classification in thecase study. We believe
that an appropriate set of orthogonal measures would allow ahigher resolution of
failures in testing multimedia software applications.

Our main experimental results include the following: (a) Pattern classifications with
the concept of test dimensions outperform others without this notion. (b) Failures of
stringent test cases are less effectively classified. (c) Success in the classification of
a test dimension at one machine may not be transferable to another almost-identical
machine.
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To further study generic kinds of failure in multimedia software applications, we
are conducting experiments, in a larger scale, on the use of mutation analysis for
the classification of failures. There are already quite a lotof promising initial
results. The present work is a necessary step for the settingup of a benchmark
for comparisons with more complex techniques.

As future work, we shall extend the testing methodology to ease the difficulty in
finding classes for pattern classification, to systematize the organization of
orthogonal data sets, to improve the resolutions of failures identification, to exploit
supports for fault location, and to support iterative approaches of software
development and testing. While we have obtained promising initial results in some
of these issues, we shall conduct more experiments and report them in the near
future.
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