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Abstract

When testing multimedia software applications, we need to overcome importars $ssie
as the forbidding size of the input domains, great difficulties in repeatingdeterministic

test outcomes, and the test oracle problem. A statistical testing methodologpased.

It applies pattern classification techniques enhanced with the notion ofiteshsions.

Test dimensions are orthogonal properties of associated test casegoral properties
are being studied in the experimentation in this paper. For each test dimeagiatiern

classifier is trained on the normal and abnormal behaviors. A type ofdasusaid to be
classified if it is recognized by the classifier. Test cases can then haeeaedy the failure
pattern recognizers. Experiments show that some test dimensions are feotgeethan

others in failure identification and classification.

Key words: Software testing, test dimensions, multimedia application testing, failure
identification, failure classification.

1 (© 2005 Elsevier Science. This material is presented to ensure timely dissemiofation
scholarly and technical work. Personal use of this material is permitteui/right and all
rights therein are retained by authors or by other copyright holderpefdions copying this
information are expected to adhere to the terms and constraints invokedtba@hor’s
copyright. In most cases, these works may not be reposted withoutphieitggermission
of the copyright holder. Permission to reprint/republish this material foewriding or
promotional purposes or for creating new collective works for resaledistribution to
servers or lists, or to reuse any copyrighted component of this work @r atbrks must be
obtained from Elsevier Science.

2 A preliminary version of this paper was presented at the 4th Internatiardb@nce on
Quality Software (QSIC 2004).

3 This research is supported in part by grants of the Research GrantsiCof Hong
Kong and The University of Hong Kong.

4 All correspondence should be address to Dr. T. H. Tse, Departrh€oinoputer Science,
The University of Hong Kong, Pokfulam, Hong Kong. Emailtse@cs.hku.hk .

Preprint submitted to Elsevier Science 30 May 2005


Administrator
  HKU CS Tech Report TR-2005-04


1 Introduction

Multimedia software applications are software appliaadidthat support the
integrated processing of several media types with at leasttome-dependent
medium” (Blakowski and Steinmetz, 1996). They are useful emynimportant

areas such as business and education. For instance, gpgrian e-learning
environment, students can learn at their own pace. Nevegh@f various animated
instructions and corresponding acoustic narrative contsnane not properly
organized, learners may be trained incorrectly and thaitrgimay be counter-
productive. Hence, itis important to ensure the qualityugissoftware. As software
testing is recognized as the most viable and the most conynigeldd approach, we
shall restrict our attention to software testing in thisgra@oftware testing is non-
trivial for multimedia software applications. The majoffdulties, among others,
are as follows:

(i) The size of its input domain may be forbiddingly huge. fiéhis an increasing
number of software applications, such as RealPlayer (Buéteyi2004), that
support open standards, such as SMIL (1998; 2005), as fatfteio input
data profiles. The size of each input data profile is limitely dny the local
resources available. Also, each placeholder of a mediabipj@n input data
profile can be mapped to a number of media object instancésdiferent
behaviors and supportive technologies. Furthermoregthes many time-
points even within a small time interval. All of these add opekplode the
size of the input domain.

(i) It is usually difficult to repeat test cases of such apations to produce
identical outcomes. Largely speaking, fuzziness in mutm software
applications is caused by uncertainties or uncontrolldbtgors in their
environments. They are known as common cause variations¢Rue al.,
2000). On the other hand, because of reasons such as the dtugecsst
of high-precision equipment, we cannot expect all envirental settings to
be recorded precisely and reproduced exactly for the tgstirmultimedia
applications. In most cases, testers can only turn a bliedteysuch non-
deterministic time-dependent fluctuations.

(i) Because of the difficulties in recording and reprodgcamvironmental settings
during executions of a test case, testers may only have eetlpicture of a
particular test case. It poses difficulties in verifyingtt@stcomes. In general,
this kind of problem is referred to as tlest oracle problen{Chen et al.,
2003).

A testing methodology is proposed and described in this pédipapplies pattern
classification techniques and takes test dimensions sutgmgmral relationships
into account as the two major tools to alleviate the problentesting XML-based
multimedia software applications. Its contributions uut:

(a) A Step Toward Effective Failure Pattern Recognition: Cunningham and Mac-
Kinnon (1998) categorize visual defect metrology into éhtevels. We shall



(b)

(€)

adapt their categorization, which was originally used li@rtecognition of defects
in semiconductors, to the recognition of software failurethe following way:

The basic level ipoint It ignores both failure clustering and special patterns
of failures. This is similar to the conventional approacfeseung et al., 2004;
Lu, 1996) to be described in Section 2.2. They use standatststal rules to
classify failures. The next level duster It considers failure clustering, but not
special patterns of failures. General-purpose pattessitiars such as those to
be described in Section 2.3 are classified into this catedJdmg ultimate level
is pattern Chen and Liu (2000) suggested that it is not a trivial taskassify
defect spatial patterns into specific patterns.

In general, the pattern level is more effective than thetelugvel, which, in
turn, is more effective than the point level. Moreover, duf@ pattern signature
may appear in situations that satisfy particular propgrteit not others. Our
present work captures properties &st dimensionsand chooses temporal
properties as the first kind of dimension to study. It is a seagy step toward the
formulation of effective special-purpose pattern rectignialgorithms to detect
failure patterns for multimedia software applications.

Pattern Classifiers as Statistical Test Oracles: A conventional test oracle
(Beizer, 1990) for a software application is used to deteemvimether a test
resultis correct. On the other hand, a statistical test®raach as those described
in Hoffman (1999), may occasionally announce a false rekudt, nevertheless,
an alternative if a conventional test oracle is not avadailtoo costly to be used.
Since statistical test oracle is not totally reliable, a kesearch challenge is to
improve its accuracy. We propose to train pattern classifeserve as statistical
test oracles. Given suitable training data sets, the paté&ognition approach is
better than the random approach in the accuracy for idemgjfgnd classifying
failures.

We would like to add that our methodology deals only with stld test
dimensions. When a test case with amknowntype of pattern is given to a
pattern classifier (that is, when there is no “familiar” datailable for training),
it is not known whether we expect it to be a successful tes cas failure-
causing input. As a result, we cannot tell whether any idiedtifailure is
legitimate. This is an open and classic oracle problem itwso€ testing and
is beyond the scope of the present paper.

Testing by Test Dimensions to Improve Classification Aagracy: To organize
test cases into groups (that is, test dimensions), our rdetbes the fundamental
set of generic properties to distinguish temporal relatgps in the experiment-
ation. In general, a test case may have multiple test dimmeasiOur results,
presented in this paper, outperform heuristic identifacatf failures followed by
random classification to a failure class. In terms of effextess, itis comparable
to the results when all test dimensions are learned by afotaisd the same time.
It shows that some test dimensions are more effective irsifyasg failures.

The rest of the paper is organized as follows: Section 2 pesvireaders with
background information related to our work. Section 3 psgsoa methodology for



distinguishing normal and failure behaviors, and clagsifyhe latter. A case study
of the methodology and its results are described in Sectlansd 5, respectively.
Finally, Section 6 concludes the paper.

2 Background Information
2.1 Temporal Relationships

Temporal relationships are important attributes in mudtiiia software applications
(Blakowski and Steinmetz, 1996; Cheung et al., 2004). Alleé?88) proposed
seven types of temporal relationships between two mediectdhjCheung et al.
(2004) proposed a more fundamental segerfieric temporal relationshighat can
simulate the relations in Allen (1983). In this paper, wellstestrict our scope to
the three generic temporal relationships proposed in Chetialg (2004). Figure 1
shows a diagrammatic representation of the three genenpdel relationships,
which include:

A before B: Media objectA terminating before media objeBtbegins;
A starts_after B: Media objectA starting after media obje& has begun; and
A ends_ahead_of B: Media objectB terminating before media objesthas ended.

There are other more formal ways to express temporal ratguch as temporal
logic, and communicating finite state machines. For exaniptde and Ghafoor
(1993) have proposed a timed Petri-net model to describsythehronizations in
multimedia data in an application. They focus, howeverherstorage and retrieval
of media objects in databases.

2.2 Testing Multimedia Software Applications

A conventional testing technique for multimedia softwapplecations is to set
an acceptable range of values. Lu et al. (1996) recommeraleda 80 ms for
audio and video synchronizations. It is subjective to satitalle zone, however.
Cheung et al. (2004) proposed to use statistical approachegatuate relevant
guantities such as the difference between the start timés/@fmedia objects,
and expressed the results in terms of confidence levels. Bahr@ghet al. (2004)
and Lu et al. (1996) arpoint-level failure recognition techniques. Campos et al.
(1999) performed formal proving of temporal properties. &hen insights from
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A before B A starts_after B Aends_ahead of B

Fig. 1. The three major temporal relationships



the modeling, they reverted to expert judgment mechanismmprove on the
design of a video server component. Zhang and Cheung (2068)Restri nets to
specify temporal relationships and tested multimedia@og against them. There
has also been research to generate test cases for conferarahanteroperability
testing (Hao et al., 2004).

Our work does not depend on any program structures or spE®fs, and also
makes no assumption on other components in the progranmoenvant. Thus, the
research efforts by the above authors are complimentamyrtproposed technique.

2.3 Pattern Classification Techniques

In this section, three representative and popular teclesiqupattern classification
(Duda et al., 2000) will be described. They serve as the fatiod of our present
work.

k-Nearest Neighbor (KNN): k-nearest neighbais a non-parametric classification
technique, which does not make any assumption about thelyimgdedistribution

of the data (Duda et al., 2000). Givertraining data sets, let = (ai(l), ai(z), e

ai(m)) represent the values of the attributes ofithedata set, where=1, 2, ..., n.

A query with respect to a test case= (al, a@, ..., a™) can be input to the
classifier, which will find a se8 = {x}, x5, ..., x;} of k training data from the
training seS= {Xy, Xz, ..., Xy} such that may g d(x{, X) <miny. s\ g d(Xi, X),

whered() is the distance function.

In our experiments, the KNN classifier is implemented in C+-bbg of the authors
(Cheng) according to the above description. It uses starfiactidean distance as
the distance function. We have chodeto be 3 after a careful feasibility trial.

Bayesian Networks:A Bayesian network (Duda et al., 2000) for a set of variables
U={ug, up, ..., U} is atuple(G, ©). G=(V, E) is a directed acyclic graph,
where (i) there is a one-to-one-correspondence betweetdheents i and those
in U, and (i) E (CV xV) is a set of directed edge® is a set of conditional
probability distributions such that eaéh in © defines the conditional probability
of node u; given its parents inG. A Bayesian networkB represents a joint
distribution over U in G as follows: probabilitys(us, Uz, ..., up) =
i1 probability(ui [Ty, ©;), whererty, is the set of parents of nodein V. After

a Bayesian network has learned its set of conditional priibabi®© based on the
inter-relationships among given attributes in the tragnilata seU, it can be used
to perform pattern classification for new data. In our expents, Belief Network
PowerPredictor (2001) is used.

Neural Networks: Neural networkgMitchell, 1997) are designed to model the
human brain. Aperceptronsums up a number of weighted inp#$)i—1.2 ... n to
give net= 3> , wix;, and generates an outpyivia a transfer function. Initially,



the network chooses a set of random weights for each nodéngptire training
phase, inputs are fed into the network and the actual ougreteompared with
the expected results to estimate the errors. The networkabgists the weights
according to the feedback from the estimated errors. In oyemrment,
NeuroSolutions (2004) is used.

2.4 Detection of Failures without a Precise Specification

Techniques for detecting software failures without a medpecification fall into
two categories: analytical and statistical. Some exangildee former type include
program checkers (Blum and Kannan, 1995), and metamorgtinggChen et al.,
2003).

In this paper, we are more interested in statistical teséind, hence, we shall
outline a couple of statistical techniques. Podgurski et(2003) applied data
clustering analysis to recognize failure behaviors exdepntify failures. Their
subject is a deterministic program. Similarly, Bowring et(2D04) represented the
execution history of each test case of a deterministic prodry means of a Markov
model. They also used a clustering technique to merge classe clusters of
classes to formulate their pattern classifiers. Both elgsterlevel failure
recognition techniques.

We proposed in Cheng et al. (2004) to let classifiers learpditiernsfrom various
categories of normal and faulty multimedia software agpians. In this extended
version, besides reporting the original findings, we furtheesent the concept
of test dimensions, with a long-term objective of enhandimg methodology to
achievepatternlevel failure recognition.

3 The Testing Methodology

In the present and the next sections, we introduce our testethodology and then
describe an experimental study on the methodology. Thermrstgps of the testing
methodology are as follows:

(1) Determine a se® of application attributes for pattern classification suctt
@ includes the implementations of the three generic tempetations.

(2) Define the criterion of each test dimension and ensutdlleaest dimensions
collectively cover all generic temporal relations.

(3) Based on the temporal relations on media objects defindteisMIL-based
input data profile in each test case, assign every trainsig#se to at least one
test dimension according to the criteria. Hence, form a get® for each test
dimension.

(4) Prepare the classé€sfor pattern classification. Each classlins expected to
represent a normal case or a kind of failure, but not both.



(5) Based on the attributes 98t for each data seb, train a pattern classifier to
distinguish classes in.

(6) Generate a test data set.

(7) Classify test data set so that each test case is labelbdwlass irf.

(8) Report the class of any test case if the class represeinid affailure.

(9) Apply patternlevel failure recognizers to find the patterns from a claks o
failure test cases.

The purpose of Step (1) is to find several appropriate ategdor pattern
classification. In Experiment 2, we describe our experiémdealing with attributes
in multimedia software applications. Training data aregHer organized so that
they are orthogonal in temporal relations. We envisagedhddtectable temporal
behavioral failure will be in its most detectable form if wanctune the reference
axes into orthogonal forms that cover all the temporal i@t The set of the three
generic temporal relations is one of the possible choicéso,Although we have
chosen three data sets in Experiments 1 and 2, the value 8t @bsolute. Testers
can choose their own numbers of data sets. Step (9) is a kagerobjective
that is not covered in this paper. The rest follows a stan@attern classification
procedure. We refer readers to (Duda et al., 2000) for maelge

4 The Case Study

In this section, the methodology is investigated by an arpamtal case study.
Three sets of experiments are presented in this paper.

4.1 The Subject X-Smiles and its Testing Environment

As multimedia software applications can be standalone giribluted, we choose
X-Smiles(2002) version 0.71, an open-source Java-based XML-bmwasethe
subject of the case study. In this way, although the caseystudonducted in
offline mode®, it provides opportunities for extending the work to thetites of
distributed multimedia applications.

The Java-based XML-browser, the subject of our study, sts&if 55117 lines
of code, 1010 classes, 168 interfaces, and 5022 methd@srthermore, there are
many possible behaviors that a software system may exloitsgectly or incorrectly.
To reduce the scope of the initial study, we would like to pibk java classes
that are most likely to influence temporal constraints. TlagsesScheduler.java,
BrowserlLogic.java, and ElementBasicTimelmpl.java have been selected after a
careful evaluation. They contain 152, 198, and 1032 linesoale, respectively.
The sizes of these fragments of code are comparable to th&nain Siemens

5 In the sense that it is treated as a standalone program running on a machine
6 The statistics are collected by the tool LOCC release 4.3.7 available at
http://csdl.ics.hawaii.edu/Tools/LOCC.



Experiment | Training Phase | Testing Phase

1 MachineA MachineA
2 N/A MachineA
3 MachineA MachineB

Machine A: Pentium Celeron 500MHz processor, 256 MB of memory, Creat®é.i8e! Wave Device, and
Microsoft Windows 2003 Enterprise Edition.

Machine B: Pentium Celeron 550MHz processor, 512 MB of memory, Creat®é i8e! Wave Device, and
Microsoft Windows 2003 Enterprise Edition.

Table 1
Machine configurations in experiments

Test Suite, a collection of subject programs used in so#vesting researches in
the past 14 years. Both (a) Java Development Kit 1.3 and (la) Neadia Frame-
work 2.1.1 are installed. Table 1 shows the configuratiorie@Mmachines used for
all the experiments in the case study.

4.2 Test Cases and Test Dimensions for X-Smiles

Each test case to be executed byXh8milesystem consists of three components:
a SMIL-based (SMIL, 1998) input data profile, a slide shovd an audio narration.
The slide show is an animated GIF with a size of 64@80 pixels, and the audio
narration is in WAV format with a sampling rate of 44.1 kHz. &nsple illustrating

a parallel execution of two media objects is shown in Figurk oecifies that the
animation ‘descriptiori starts its presentation 1 second after the end of the audio
object ‘medidl”.

The test dimensions for the case study are as follows:

TD1 (Simultaneous): Slide showstarts after audio narration by O delay and
slide showends ahead of audio narration also by 0 delay;

TD 2 (One During Another): Audio narrationstarts after slide show and audio
narrationends ahead of slide show, and the delays in eithestérts after’ or
“ends ahead of” cannot be both 0 at the same time; and

TD 3 (One Before Another): Slide showbeforeaudio narration.

4.3 Attributes for the Failure Classification Experiments

In a training phase, data will be collected from a referengstesn, and from
different classes of faulty systems. We have verified the detnually before using
them for training. For each system, attribute values artecteld in 20 repeated
runs per input. The output of each repeated run is consideseddistinct sample
data point for pattern classifiers so that the latter camltreafuzzinese behaviors
when testing thX-Smilesystem. Five raw attributes are collected for every trgnin



<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<sni| >
<head>
<l ayout >
<root-layout id="testing" height="600" w dth="200"
background-col or="#ffffff" />
<region id="regionl" height="250" w dth="250" top="50" |eft="50" />
<region id="region2" height="250" width="250" top="50" |eft="300" />
</l ayout >
</ head>
<body>
<par id="parl" begin="0.0s" dur="20.0s">
<audi o id="nmedial" region="regionl" src="sound. wav"
begi n="1.0s" dur="5.0s" />
<ing id="description" region="region2" src="description.gif"
begi n="nedi al. end+1s" dur="5.0s" />
</ par>
</ body>
</snmil>

Fig. 2. Sample SMIL-based input data profile

sample data and test case for pattern classification. Theweected from 24
candidate “shopping list” (Meyer, 1997) attributes. In tfeemulation of the
shopping list, we have exercised measures to refer to fnaligork in multimedia
system benchmarking and picked the relevant attributesrdicgly.

ForTD1 andTD2, the selected attributes include the duration of the Slia®v, the
duration of the audio narration, the difference in staresrbetween the slide show
and its audio narration, and the difference in end times éetwhe slide show
and its audio narration. ForD3, the attributes include the duration of the slide
show, the duration of the audio narration, the start timehefdlide show, and the
difference between the end time of the slide show and thétstae of the audio
narration. The maximum memory utilization of the systemls®aecorded in all
cases.

4.4 Systems to Generate Behaviors for Pattern Classificstion

In this section, we describe the systems that representatdehaviors and known
types of error’ . We use more than one kind of error so that our investigaticts
not be biased toward errors of a particular kind. All typegobr are, intuitively,
related to temporal properties. However, we have exererssabures to ensure that
the relationships among types of error are unknown to bathctese selection and

" For unknown types of error, we refer readers back to the discussiguattern classifiers
as statistical test oracles in Section 1 for more details.



formulation of test dimensions. In fact, it remains an opebjem to find the actual
relationships among these types of error.

The performances of the reference system used for thertgainclude both the
situations when the CPU is almost idle and when it is extrerbegy. To simulate
a low CPU utilization situation, all other utilities and ajggaitions are turned off.
To simulate a high CPU utilization situation, a CPU-hungrjitytis kept running
to ensure that the system is heavily loaded. Three diffeéypets of error have been
seeded into the reference system. Together with the referstem, there are four
kinds of system in total:

ClassO: This is the reference system. The outcomes of the trainistoceeses are
checked manually.

Class1: A priority error is simulated. It reduces the priority of exgion threads. It
simulates an inappropriate priority configuration in nmukidia software
applications. Errors are seeded in the Stteduler.java.

Class2: A pagination error is simulated. It causEsSmilesto consume a large
amount of system memory and, hence, the system will havessixegpagination.
Errors are seeded in the fiBeowserLogic.java such that it calls anothgava class
MemoryConsumer to simulate the desired failures.

Class3: A start time error is simulated. It delays the start time of given media
object by a fixed parameter (relative to the SMIL-based injatz profile). Errors
are seeded in the filElementBasicTimelmpl.java.

4.5 Experiment 1: Effects of Testing by Test Dimensions

The main objective of this experiment is to find out whethgrecHic test dimension
can classify a failure as effectively as the situation whitneat dimensions are
used. Intuitively, in the absence of full information, tlaédire classification rate of
the former should be lower than the latter. The questioroisyttat extent. Part of
this experiment was reported in the preliminary version (@het al., 2004) of the
present paper.

Experiment 1 is divided into three parts: a main experimehnakd two reference
experiments R1A and R1B.

Experiment E1 (Testing by Test Dimensions): 480 data have been used for
training and 1760 data for testing. For the training phade, r@peated
experiments have been carried out for each combination gii-low CPU
utilizations, the 3 sets of SMIL specifications (that ist @isnensions), and the
4 types of systems. We have re-run the same experiments 26 torallow for
common cause variations. The same training set is used theatllassification
techniques to ensure a fair comparison. In the testing pheséave grouped
multiple runs of the same experiment as a data suite.

We also conduct two reference experiments for the purposeraparison.

10



Reference Experiment R1A (Conventional Pattern Classification): The first
control experiment shows the situation where all the datavery test dimension
are grouped together homogeneously and, hence, represecasventional
pattern classification approach. We group all the traingsg tases into one data
set, and all the testing test cases into another data setaEbrpattern classifier,
we apply the entire training data set in the training phasd,let the classifiers
process the entire testing data set.

Reference Experiment R1B(Conventional Approach to Test Multimedia
Systems): The second control experiment shows the situation where
conventional techniques are used (see Section 2.2). Wehassuggestions of
Lu et al. (1996) to determine whether a failure is identified test outcome. We
note that this is not a pattern classification experiment.

4.6 Experiment 2: Natural Variations of Data Attributes

One of the major assumptions of our method is that unceytaiatiations in
behaviors constitute part of the output of a test case. Thegenerally found to
be difficult to model and study analytically. Hence, this @appts for a statistical
approach. Thus, a case study will be irrelevant to our meiitbere happens to be
very few behavioral uncertainties.

Experiment 2 consists only of one part: a main experiment E2.

Experiment E2 (Fuzziness of Attributes for Multimedia Software
Applications): It is designed to examine the behavioral uncertainties of X-
Smiles. It repeatedly applies a SMIL test case (see Sect@®ncédnsisting of
two media objects to systed@las®) (see Section 4.4) for 240 times in a low
CPU utilization environment. The same experiment is repkatea high CPU
utilization environment. Hence, 480 sets of attributesa#ected to produce
the results in Section 4.6. The SMIL file defines that the twecats (denoted as
Object 1 and Object 2 in this paper) are in the same concuesetution block.
The two objects are specified to start and end simultaneotisly duration of
each media object is 30 seconds. Four attributes which ginéyticoupled to
generic temporal relations (see Section 4.3) are colldotethe experiments.

4.7 Experiment 3: Effects of Classifications Based on Alrtuzsitical Hardware
Configurations

The testing of the same software may, in practice, be cordush more than
one machine. Since a typical multimedia software appbcatnay exhibit non-
deterministic behaviors, a strategy to reduce fluctuatammess different hardware
configurations is to use a number of almost-identfcahachines, such as using
500 units of Dell Precisiol! 670 to conduct testing at the same time. Moreover,

8 There are intrinsic variations in hardware operations. Hence, eachimaaishunique
from this perspective.

11



Classification Method || TD 1 TD2 TD3 Mean

Bayesian Networks 71.4% | 75.0% | 96.4% || 81.0%

k-Nearest Neighbor 78.6% | 84.4% | 92.9% | 85.3%

Neural Networks 75.0% | 78.1% | 92.8% || 82.0%

Mean 75.0% | 79.2% | 94.0% || 82.7%

Table 2
Successful test results of Experiment E1 under high CPU utilization, byli@&nsions
with data normalization

testing is conducted in many rounds in a typical iterativerapch to software
development. Machines available for an earlier round maybeoavailable for a
subsequent round. It would be a pity if a tester could not ysewaous test suite to
regress the software. A main objective of this experimetd &art the initial work
to investigate whether failure identification and clasatien across machines can
be effective.

Experiment 3 is divided into two parts: a reference expeninfe3 and a main
experiment E3.

Reference Experiment R3 (Effects of Classifications on the Same Machine):
Since this experiment is basically repeating that present€heng et al. (2004),
we have reduced the scale to only three SMIL files in each ruritl uses
a SMIL file from each ofTD1, TD2, andTD3 as inputs to the systen®das®,
Clasdl, Clas®, andClass3 to produce the five attributes for classification under a
low CPU utilization environment. For each test input, we edil the
corresponding output attribute values 20 times for bothtth@ing and testing
phases. The same experiment is repeated in a high CPU utifizztvironment.

Experiment E3 (Effects of Classifications on an Almost-ldentical Machine):
It repeats Experiment R3, but uses @most-identicalmachine in its testing
phase. Details of the machines can be found in Table 1.

5 Results of the Case Study
5.1 Results of Experiment 1: Effects of Testing by Test Bioesa
Tables 2 and 3 summarize the results of Experiment E1 undérdmd low CPU

utilizations, respectively, with data normalization. Yh&how the percentages of
test cases that are correctly classified under each teshsiome

9 Nevertheless, it still fits the aim of the experimental study. This is becauseréslts of
behavioral classification in Experiments R3 and E3 were unsatisfactogefatical inputs,
it would be pointless to conduct follow-up experiments on a larger scale.

12



Classification Method || TD 1 TD2 TD3 Mean

Bayesian Networks 64.3% | 75.0% | 60.7% || 66.7%

k-Nearest Neighbor 64.3% | 75.0% | 64.3% | 67.9%

Neural Networks 71.4%| 62.5% | 60.7% || 64.9%

Mean 66.7% | 70.8% | 61.9% || 66.5%

Table 3
Successful test results of Experiment E1 under low CPU utilization, bydiestnsions
with data normalization

(@)

(b)

(©)

In general, the mean results of the three classificatidmigaes exhibit more
or less the same percentage of accuracy in failure iderntdicawe find that
it is more likely to identify failures under high CPU utilizah than under low
utilization.

To confirm the results, we have re-developed test sets aoirigrto SMIL
2.0 standards (2005), and using Allen’s set of temporatiozla (Allen, 1983)
separately. Then, we re-run the part of Experiment E1 wiscinder low CPU
utilization. The results agree with the results in Table 8wvanly marginal
differences. There are other rooms of improvements to ingobassification
rates, which have been discussed in the preliminary vedditms paper (Cheng
et al., 2004) and are not repeated here.

However, the mean results of the three test dimensions shigmificant
deviations. In particularTD3 under high CPU utilization outperforms the
average in all cases, and is remarkably better than its equant under low
CPU utilization. Furthermord,D1 requires 0 second delay in eittstart after

or endsaheadof relation in a test case. It is more stringent than the
requirements off D2 and T D3. Intuitively, any failure of a more stringent
requirement should be easier to reveal. On the contrargxperimental results
of the test dimensiof D1 are generally poorer than the others. In other words,
intuitively intricate test cases may not show advantageketacting failures

The mean results of Experiments R1A (which does not use theeq of test
dimensions in classifying failures) and R1B (which uses ah@dmethod to
identify failures) are 69.9% and 54.7%, respectively, utale CPU utilization.
Compared with Table 3, they show that the test dimension rdethdy
marginally reduces the resolution of failure classificat{69.9%— 66.5% =
3.4%), but significantly outperforms the ad hoc failure idfesation approach
(66.5%— 54.7% = 11.8%).

5.2 Results of Experiment 2: Natural Variations of Data Aitiites

Figure 3 shows the variations of the data attributes. Thectdtimn shows the set
of attributes, including the time difference in “Objecstarts after Object 1" (L1),
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Low CPU Utilization High CBU Utilization

(121 End time difference (2} End time difference

(L3} duration of media object 1 (H3 ) duration of media object 1

(1.4 ) duration of media object 2 (H4 }duration of media object 2

Fig. 3. Natural variations of attributes in the case study

the time difference in “Object 2nds ahead of Object 1” (L2), the presentation
duration of Object 1 (L3), and the presentation duration bje®t 2 (L4), when the
experiment is conducted in a low CPU utilization environm@ifte right column
shows the same set of attributes ((H1) to (H4)) in a high CPUzation
environment. We also observe the following trends from Fedii

(a) Not everyobvious candidatef time-dependent attributes demonstrates a wider
spread of variations under high CPU utilization than under@?U utilization.
The variations of presentation durations in cases (L3) &ajigre larger than
those in cases (H3) and (H4). This observation is intergstimd worth further
investigation. Furthermore, the temporal relatiorstarts after and
ends ahead of ((L1) versus (H1) and (L2) versus (H2)) follow our intuition
that wider spreads in variations of values are recordednentighter resource
environment. Choosingfarts afterandends ahead of temporal relationships
for further study may enable researchers to have a moredtiesrunderstand-
ing of the so-calledommon cause variations

(b) All the diagrams look like unipolar distributions. Inngiaular, cases (H1) and
(H2) look like Gaussian and Poisson distributions, respelgt They agree
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Classification Method | TD1 TD2 TD3 Mean
Bayesian Networks 100.0%| 75.0% | 100.0% | 91.7%
k-Nearest Neighbor 100.0% | 75.0% | 100.0%| 91.7%
Neural Networks 100.0%| 87.5% | 100.0% || 95.8%
Table 4
Successful test results of Experiment R3 under high CPU utilization, lsgetaof test
dimensions
Classification Method | TD 1 TD2 TD3 Mean
Bayesian Networks 62.5% | 75.0% | 100.0%/| 79.2%
k-Nearest Neighbor | 75.0% | 100.0% | 100.0% | 91.7%
Neural Networks 56.3% | 87.5% | 100.0%/| 81.3%
Table 5
Successful test results of Experiment E3 under high CPU utilization, sgetaof test
dimensions
Classification Method | TD1 | TD2 | TD3 || Mean of E3 | Mean of R3
Bayesian Networks 68.8% | 87.5% | 68.8% 75.0% 70.8%
k-Nearest Neighbor 62.5% | 81.3% | 75.0% 72.9% 70.8%
Neural Networks 56.3% | 75.0% | 68.8% 66.7% 66.7%

Table 6

Successful test results of Experiments E3 and R3 under low CPU utilizagaiasses of
test dimensions

with Cheung et al. (2004) that some common cause variationsedescribed
using statistical distribution models. It also helps tolexpwhy Experiment
R1B using thepoint-level failure recognition approach can identify failuras
more than a half of all cases.

5.3 Results of Experiment 3: Effects on Classifications Basgkimost-Identical
Hardware Configurations

We make the following three observations on Experiment E3:

(a) The test dimensioD1 in Tables 4 and 5 show a drop of about 35% in
classification rates. Thus, a test dimension that has a weny fgilure detection
capability on one machine may not be assumed to be effeatalassifying test
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cases from other machines.

(b) Comparing the changes in the mean results between ExgasnR3 and E3
under low CPU utilization in Table 6 (69.4% versus 71.5%), &etiveen
Tables 4 and 5 (93.1% versus 79.2%), the low CPU utilizatiwasbn provides
a less dynamic change in success rates of classificatiomsedhs that if the
goal of a failure classification is to compare the failuresawith different tests
of the same application oalmost-identicalmachines, it would be better to
conduct the testing of multimedia software applicatiorsliow CPU utilization
environment, because different hardware and software ramwental
configurations may render the CPU utilization into unforebée situations
during tests. On the other hand, if the objective of a test inid failures for
software debugging, one can conduct testing in a high CPiZatiibn situation.
Experiment E3 shows a loss of about 10% in classificationluéiya

(c) Experiment E3 preliminarily shows that it is feasible test a multimedia
software application on different hardware and softwarsrenments. More
work is required to make this observation more conclusive &’ conducting
additional experiments using more kinds of test case, réiffe machine
configurations, and under different kinds of CPU loading.

6 Conclusion

We have studied the difficulties in testing multimedia saftevapplications, which
include (i) the forbidding sizes of the input domains, (Dmreproducible outcomes
of a test case in some situations, and (iii) the test oractblpm. A testing
methodology is proposed in this paper to alleviate the gl Although only
SMIL-based multimedia software applications are examimethis paper, our
methodology can be applied to other kinds of applicatiorth wiput data profiles.

We have kicked off the work that moves froatusterlevel failure recognition
techniques towargatternlevel for testing multimedia software applications. We
start with the concept of test dimensions. We choose terhpooperties as the
first kind of dimensions to study, as temporal behaviors anegortant feature of
multimedia applications.

In this paper, three generic temporal relations are usedganize a test set into
different orthogonal test dimensions. They are presensediata sets in both the
training and testing phases of pattern classification inctiee study. We believe
that an appropriate set of orthogonal measures would allbiglzer resolution of

failures in testing multimedia software applications.

Our main experimental results include the following: (alf@a classifications with
the concept of test dimensions outperform others withastibtion. (b) Failures of
stringent test cases are less effectively classified. (c3&&s in the classification of
a test dimension at one machine may not be transferable tberadmost-identical
machine.
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To further study generic kinds of failure in multimedia sedre applications, we
are conducting experiments, in a larger scale, on the useautdtion analysis for
the classification of failures. There are already quite aofopromising initial
results. The present work is a necessary step for the setfingf a benchmark
for comparisons with more complex techniques.

As future work, we shall extend the testing methodology teeethe difficulty in

finding classes for pattern classification, to systematize organization of
orthogonal data sets, to improve the resolutions of fadlidlentification, to exploit
supports for fault location, and to support iterative ajptes of software
development and testing. While we have obtained promisiiglinesults in some
of these issues, we shall conduct more experiments andtrépgon in the near
future.
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