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Abstract

The resource management in distributed real-time systems becomes increasingly unpredictable with the proliferation of data-driven
applications. Therefore, it is inefficient to allocate the resources statically to handle a set of highly dynamic tasks whose resource require-
ments (e.g., execution time) are unknown a prior. In this paper, we build a distributed real-time system based on the control theory,
focusing on the computational resource management. Specifically, this work makes three important contributions. First, it allows the
designer to specify the desired temporal behavior of system adaptation, such as the speed of convergence. This is in contrast to previous
literature, specifying only steady-state metrics, e.g. the deadline miss ratio. Second, unlike QoS optimization approaches, our solution
meets performance guarantees with no accurate knowledge of task execution parameters — a key advantage in a poorly modeled envi-
ronment. Last, in contrast to ad hoc algorithms based on intuition and testing, we rigorously prove that our approach not only has excel-

lent steady state behavior, but also meets stability, overshoot, and settling time requirements.
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1. Introduction

Distributed real-time systems are widely used in highly
dynamic environments where the resource requirements
are open, fluctuating and not amenable to the traditional
worst-case real-time analysis. For example, a web farm
can be used to distribute time-sensitive contents such as
movies and video clips. They need to handle a changing
number of requests with significantly different resource
requirements that are unknown beforehand. In a stock
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market, a system needs to actively push real-time stock
updates at various interval to a group of users. The number
of users served by a server can change quickly over time.
Although these systems differ significantly in term of appli-
cations, they all operate in open environments where both
workloads and available resources are difficult to predict.
Monitoring and feedback control are needed to meet per-
formance constraints. Several difficulties are observed in
dynamic resource management in these systems. One main
difficulty lies in their data-dependent resource require-
ments, which cannot be predicted without interpreting
input data. For example, the execution time of an informa-
tion server (a web or database server) heavily depends on
the content of requests, such as the particular web page
requested. A second major challenge is that these systems
have highly uncertain arrival workloads; it is not clear
how many users will request some resource in the web. A
third challenge involves the complex interactions among
many distributed sites, often across an environment with
poor or unpredictable timing behavior. Consequently,
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developing certain types of future real-time systems will
involve techniques for modeling the unpredictability of
the environment, handling imprecise or incomplete knowl-
edge, reacting to overload and unexpected failures (i.e.,
those not expressed by design-time failure hypotheses),
and achieving the required performance levels and tempo-
ral behavior. We envision a trend in real-time computing to
provide performance guarantees without the requirement
of fine-grained task execution models, such as those
depending on the precise estimation of individual task exe-
cution times. We shall see the emergence of coarse-grained
models that describe the aggregate behavior of resource
requirements. Coarse-grained models are easier to obtain
and they need not be accurately computed. These models
are more appropriate for dynamic resource management
in the presence of uncertainties regarding load and
resources.

In this paper, we explore one such model based on dif-
ference equations. Unlike the more familiar queuing theory
models of aggregate behavior, difference equation models
do not make assumptions regarding the statistics of the
load arrival process. Independent of the load assumptions,
difference equation models are more suitable for systems
where load statistics are difficult to obtain or where the
load does not follow a distribution that is easy to handle
analytically. The latter is the case, for example, with web
traffic, which cannot be modeled by a Poisson distribution.
Our solution has a basis in the theory and practice of feed-
back control scheduling. This is in contrast to the more
common ad hoc resource management based on intuition
and testing where it is very difficult to characterize the
aggregate performance of the system and where major
overloads and/or anomalous behavior can occur since
these designs are not developed to avoid these problems.

2. The overview of DFCS architecture

Traditional real-time computing provides guarantees in
avoidance of undesirable effects such as overload and dead-
line misses. They assume worst-case resource requirements
known a priori. In contrast, in highly uncertain environ-
ments, the main concern is to design adaptation capabili-
ties that handle uncertain effects dynamically and in an
analytically predictable manner. To address this issue, we
propose a framework called Distributed Feedback Control
real-time Scheduling (DFCS). The framework is based on
feedback control that incrementally corrects system perfor-
mance to achieve its target in the absence of initial load and
resource assumptions. One main performance metric of
such a system is the quality of performance—convergence
to the desired level. In our framework, the desired conver-
gence attributes may be specified and enforced using mech-
anisms borrowed from control theory. These mechanisms
have been applied successfully for decades in physical pro-
cess control systems that are often non-linear and subject
to random external disturbances. Before establishing our
DFCS framework, we give an overview of the software sys-

tem being controlled and describe the feed-back-control
mechanism involved. Note that although we focus on com-
putational resource management here, while the general
methodology can be applied to other dynamic resource
management as well.

We assume that the resource under investigation is a
cluster of computing nodes connected via a network. Tasks
arrive at nodes in unknown patterns. Each task is served by
a periodically invoked schedulable entity (such as a thread)
with each instance having a soft deadline equal to its per-
iod. The periodicity constraint is motivated by the require-
ments of real-time applications such as process control and
streaming media. We abstract a typical dynamic system by
two sets of performance metrics. The primary set represents
metrics to be maintained at specified levels, for example,
the deadline miss ratio of a server, or the desired altitude
of an airplane. The secondary set represents negotiable met-
rics such as service quality. The objective of adaptation is
to incur minimum degradation in secondary metrics while
maintaining the primary metrics at their desired values.
To represent multiple levels of degradation in secondary
metrics, we assume that each task has several service levels
of different qualities. For example, a task can execute for
varying amounts of time with the quality of the results
improving with greater execution time. The goal of our
DFCS architecture is to maintain the primary performance
metrics around their desired values. Unlike a centralized
system, the dynamics of a distributed system manifest
themselves on two different time-scales. Fast dynamics
are observed on individual nodes, while slower dynamics
are observed on the entire system. The fast dynamics arise
from local load changes due to individual task arrivals and
terminations, while the slower dynamics arise from changes
in aggregate load distribution. Therefore, our feed-back
architecture naturally includes two sets of control loops,
local and distributed ones, each tuned to the dynamics of
the corresponding scale. Each node in the distributed sys-
tem has a local feedback control system (LFC) and possi-
bly a distributed feedback control system (DFC). The
distributed feedback controller is responsible for maintain-
ing the appropriate QoS balance between nodes. The local
feedback controller is responsible for tracking the global
QoS set point set by distributed controller and ensuring
that tasks that are admitted to this node have a minimum
miss ratio and the node remains fully utilized. It is impor-
tant to note that these two types of controllers form the
main parts of the distributed resource management in the
system, but they are not the entire system.

Now consider a few more details about the DFCS archi-
tecture as shown in Fig. 1. The distributed controller
(DFC) commands a set of local controllers (LFC) via a
QoS set point, termed as service level ratio(SLR). The local
controller (LFC) manipulates its actuators to achieve this
SLR set point. In this architecture, we let the primary per-
formance metric be the deadline miss ratio (MR). Since zero
deadline miss ratio of admitted tasks can be trivially
satisfied if the admitted task set is empty, it is especially
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Fig. 1. DFCS architecture design.

important to quantify the loss of services due to task rejec-
tion to avoid trivial solutions. For this reason, we use two
different miss ratio measurements, GMR and LMR. (1)
GMR s the global miss ratio of all submitted tasks, includ-
ing both the admitted tasks and the rejected tasks. The dis-
tributed controller (DFC) is responsible for bounding the
global miss ratio, GMR, of the system. (2) LMR is the
local miss ratio of admitted tasks in a single node. The local
controller (LFC) is responsible for controlling the LMR
miss ratio of locally admitted tasks as dictated by the dis-
tributed controller. Note that as shown in Fig. 1 each of
the local controller and the distributed controller has two
similar parts, a miss ratio controller and a utilization con-
troller. The miss ratio controller activates during overload,
while the utilization controller activates at under-utiliza-
tion when no deadline misses are observed, keeping the sys-
tem sufficiently utilized. In addition, the LFC has a service
level ratio controller (SLR) to address our secondary
metric.

In addition, admission control (Fig. 1) is based on esti-
mated CPU utilization and the global SLR set point and
decides to admit or reject tasks from the outside. If one
task is rejected, it is offloaded to another node based on
a certain routing policy. Finally, the real-time system is
the plant under control, which processes the requests from
the users. We can plug various scheduling algorithms into
this real-time system based on different resource require-
ments. Here, we use EDF in our design.

3. Design and model DFCS system

The DFC control design involves two components: a
task model and difference equations describing the dynam-
ics of the DFC in under-utilization and overload situations,
respectively. The design process proceeds as follows: First,
we specify the task model. Second, we specify the desired
system performance using both transient and steady-state
metrics. This step requires a mapping from the perfor-
mance metrics of adaptive real-time systems to the dynamic

response metrics of control systems used in control theory.
Third we establish a mathematical model of the system for
the purposes of feedback control. We take a high-level
approach where our model aggregates the overall perfor-
mance of the system in a single model. Our performance
study shows this model works well, in spite of its simplicity.
Finally, based on the performance specifications and the
system model from first and second steps, we apply the
mathematical techniques of control theory to design
the controller that gives analytic guarantees on the desired
transient and steady-state behavior at run-time. We map
the controller design to various nodes in the system,
depending on the network structure being studied.

3.1. Task model

We assume a liquid task model in which a node can
serve thousands of tasks, each with a small execution time.
It is often the case in client-server architectures such as web
servers. For each task T, there are N QoS service levels
(N = 2). Task T; running at service level ¢ (0 < g <N)
has a deadline Djq] and an execution-time Cjg] that is
unknown to the scheduler. The requested CPU utilization,
J{q) = C{ql/D{q], of the task is a monotonically increas-
ing function of the service level g, which means that a
higher QoS requires more CPU utilization. Let the average
CPU utilization needed for a task set at level 0 be U,,. With-
out loss of generality, the average CPU utilization for a
task set at level ¢ is flq) U,, where f{g) is a polynomial rep-
resenting the Taylor’s series expansion of the relation
between CPU utilization and QoS level. Here we use the
first order approximation of this relation to define the aver-
age requested CPU utilization J(gq) of a task set: J(¢) =
(Aq + 1)U, where g € [0, N). Note that level N — 1 is the
best QoS a task can be served. It should be emphasized that
the service level ¢ of a single task 7; must be an integer
value, however the service level ¢ for a task set is the aver-
age service level, which can be a non-integer, if tasks are
served at different levels in a single node. We make use of
this approximation in the rest of the paper to derive the
system model. Note that if this approximation is not
appropriate in some situations, higher order ones can be
used. However, the design process remains the same.

3.2. System specification and metrics

To evaluate the performance of a system, it is necessary
to establish its specifications and performance metrics.
Following the practice of the control community in specify-
ing and evaluating the performance of control loops, we
propose a series of canonic benchmarks that test system
adaptation capabilities. These benchmarks generate a set
of simple load profiles adapted from control theory;
namely, the step load and the ramp load. The step load rep-
resents a worst-case load variation: a workload change that
occurs in zero time. The ramp load represents a more mod-
erate variation that features a slower rate of change. By



1000 T. He et al. | The Journal of Systems and Software 80 (2007) 997-1004

experimenting with different rates of change, we can assess
how well an adaptive system converges to the desired per-
formance upon perturbations caused by changes in the
workload. We can also analyze the effects of workload
changes with different rates. If the change rate of the work
is bounded, this analysis can yield guarantees on the con-
vergence time and worst-case performance deviation. We
measure the system load in the percentage of the full system
capacity. The load corresponding to the full system capac-
ity is said to be 100%. An overload is a system load that is
higher than 100%. A load profile L(¢) is the system load as
a function of time. In practice, this load is translated into
system-specific parameters for evaluation purposes. For
example, a 500% system load can be translated to the
request rate of 8000 Mbps in a specific web server.

Consider a time window [(k — 1)W, kW], where W is
called the sampling period and k is called the sampling
instant. During this window, let M(k) be the number of
task instances that miss their deadline, let 7(k) be the total
number of task instances, and let MR (k) = M(k)/T(k) be
the miss ratio and Mg be the desired miss ratio perfor-
mance, termed as the set point in control theory. To quan-
tify the performance of adaptation, we have following
metrics:

e Overshoot M,: the maximum amount by which M(k)
exceeds its set point Mg, expressed as a percentage of
the set point Ms.

o Settling time 7§ The time it takes the miss ratio to enter
a steady state after a load change occurs.

o Steady-state error Eg It is the difference between M(k)
and its set point Mg when no disturbance happens and
after system transients have decayed. It indicates the
DFCS’s ability to regulate the controlled variable near
the set point Mg in the long term. Ideally Eg should be
Zero.

These metrics provide a basis for us to compare the
effectiveness of feedback control to other adaptive real-
time scheduling policies. In addition, these metrics can be
also used to specify the desired behavior of the adaptation
process to guide the control loop design. To enforce these
metrics, we need to establish a good aggregate model of
the system, the central topic in the next section.

3.3. Modeling the dynamics in DFCS

Before applying control theory to design a controller
from specifications of adaptive behavior, it is necessary to
model the system dynamics mathematically. Here the
dynamics in DFCS is modeling as an integrated entity with
aggregated behavior.

Let the utilization U(k) be the fraction of time the CPU
is busy in some sampling window k. Let S(k) be the service
level ratio (SLR) at the sampling window k, which can be
formulated by the following equation. In the following

equation, we assume each task has at least two service lev-
els (N = 2).

__ AvgServiceLevel
S(k) = =575

Z::ol (Number of Tasks completed at levelg)-¢
(Number of Tasks completed)-(N—1) ’ S(k) € [O’ 1]
Number of Tasks completed = 0

S(k) =0,

(1)
Now we derive the relation between utilization U(k), ser-
vice level ratio S(k) and the resulting number of miss
M(k). Note we use miss number M(k) zero as desired the
performance metrics (set point), which is equivalent to miss
ratio MR (k) zero. In each time window, CPU utilization is

proportional to the number of tasks that finish successfully.
This relationship can be modeled as

U(k) = c(k) - (T(k) — M(k)) - J (q) )

where ¢(k) is the percentage of the arrived tasks that finish
in the same sampling window. For example if ¢(k) = 1, all
tasks arrive and finish in the same period. If ¢(k) = 0.99,
1% (relatively long) tasks neither miss their deadline, nor
finish within the same period. From the perspective of con-
trol theory, worst-case conditions for convergence stability
are those when system gain is maximum. The maximum
gain condition corresponds to ¢(k) =1. In other words,
worst-case conditions occur when we assume the unfin-
ished tasks consume their execution time in the sampling
window of arrival. It is a reasonable assumption in a liquid
task model where the task execution time is much smaller
than the sampling window. Therefore, Eq. (2) can be sim-
plified as

Uk) = (T(k) — M(k)) - J(q) 3)
From definitions of J(g) in Section 3.1 and Eq. (1), we have
J(q) = (1+4-S(k)-(N-1))-U, (4)

Combining Egs. (3) and (4), we get the relation desired
Uk) = (T(k) —M(k)) - (1+4-S(k)-(N=1))-Up  (5)

Two important subcases arise in modeling the system:
namely, overload and under-utilization. They are modeled
separately in the two subsequent subsections, respectively.

3.4. Modeling dynamics when overload

In the overload situation, tasks begin to miss their dead-
lines, there are two approaches to tackle the situation:
admission control and service level ratio (SLR) adjustment.
Admission control reduces a node’s local miss ratio by
rejecting incoming requests. SLR adjustment tries to
accommodate more tasks by degrading the service levels
of individual tasks. Since DFCS treats task equally, it
degrades tasks with the highest service level first, until the
average task service level ratio reaches the desired SLR.
In the DFCS design, we deem task rejection the same as
missing the task’s deadline. Hence, we adopt SLR adjust-
ment whenever possible. Here we get a difference equation
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that describes how SLR adjustment affects the number of
misses when the system is overloaded (M(k) >0 ). Since
we assume the EDF scheduling, when deadline misses
occur it must be that the CPU utilization U(k) is 100%.
We differentiate Eq. (5), setting U(k) = 1, we get the linear-
ized small signal model of the system in overload
situations:

AM (k) = Gy, - AS(k) + AT (k) (6)
where
Gu=AN-1)/(U,(1+4(N-1)S(k—1))(1+A4(N —1)S(k)))

3.5. Modeling dynamics when under-utilization

The derivation in under-utilization situation is similar to
Section 3.4. When DFC is underutilized under the EDF
scheduling, the number of tasks missed deadlines M(k) is
obviously zero. Since the primary metric is satisfied, we
focus on the SLR, the secondary metric presenting the
QoS of admitted tasks. In this situation, we switch to utili-
zation measurements. We can increase the SLR of the task
set when the utilization is low to improve our service to the
user. Here we obtain a difference equation that describes
how SLR adjustment affects the CPU utilization when
the system is underutilized (U(k)< 100%). After we set
M(k) =0 and differentiate the Eq. (5), we get

AU (k) = Gy - AS(k) + G, - AT (k) (7)
where

Gy=T(k-1)A4AN - 1)U,

and G, = (1 + AS(k— 1)(N — 1)U,

3.6. Design the distributed controller

With the DFCS dynamics models defined by Egs. (6)
and (7), we can now design the distributed feedback control
loop. In this section, we first define the performance speci-
fications to achieve, then we apply a control design method
called Root Locus to tune the distributed controller. Due
to space limitations, we do not review local controller
design here, which has been intensely studied in our previ-
ous work (Lu et al., 2000, 2004).

3.6.1. Design of the control loop

In the distributed case, each node in the DFCS provides
the same SLR to the user. This property is often preferred
in many distributed applications. For example, in a web
server farm, the SLR of each HTTP request should be inde-
pendent of where this request is served in the farm. So the
major goal of the distributed controller is to calculate the
SLR set point for the system. Since the system dynamics
can be modeled with two difference Eqs. (6) and (7). The
former describes the relation between the changes of the
service level ratio and the changes of miss number when

My(&)/(Z-1) @ E | 5 (‘ e M(z)
M=, I\ >
: h
\-f N

Fig. 2. Deadline miss M(k) feedback control loop.
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Fig. 3. CPU utilization U(k) feedback control loop.

the whole system is overloaded; the latter models the rela-
tion between the changes of the service level ratio and the
changes of CPU utilization when the system is underuti-
lized. Based on this knowledge, we design the distributed
feedback control loop. Because the external workload is
not under our control, we deem AT(k) as the external dis-
turbance.” Let G be the gain from AS(z) to AU(z) when
the system is underutilized and G,, be the gain from
AS(z) to AU(z) when system is overloaded. We get

M) =Mk —1)+AM(k) = M(k— 1) + GyAS(k),
when M(k—1) >0

Uk)=Ulk—1)+AUk) =U(k—1) + GyAS(k),
when U(k — 1) < 1

(8)

where G, and Gy are defined in Eqgs. (6) and (7), respec-
tively. We can now draw the block diagrams of the feed-
back control system as shown in Figs. 2 and 3. When the
system is overloaded, the distributed miss feedback control
loop (Fig. 2)is activated. The components inside the dotted
rectangle describe the dynamics of the controlled process
with input AS(z) and output M(k), where C,,(z) is the miss
controller to be designed and Mg is the miss set point. We
can easily obtain the miss ratio MR (k) by dividing M(k) by
the total number of tasks. Note that while the controlled
system gain does change by a multiplicative factor if the
output metric used is miss ratio MR(k) instead, the overall
loop gain remains the same. This is because the designed
controller gain in this case is multiplied by the inverse of
that factor. With the above observation in mind, the dis-
cussion below applies to both miss ratio MR(k) and miss
number M(k) control. When the system is underutilized,
we use the distributed utilization feedback control loop
shown in Fig. 3. Cy(z) is the CPU utilization controller
to be designed and Us is the CPU utilization set point.

5 It is possible to include external workload dynamics in the model by
modeling the admission control process, however we found this is
necessary only when the workload changes significantly over a very short
period of time, which is not the case for most distributed system.
Extension on this aspect is left as future work.
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In z-transform notation we have

M(z) = HM(Z)ZA{_SZI’
where Hy,(z) = 1— ZCIM_|(_Z)CT4A/EZ)GM 9)
USZ
U(z) = Huz) =7
Cy(z)Gu

where Hy(z) = 21+ Co)Gy
Here the gains G,; and Gy are assumed to be set at some
fixed values for nominal control design and analysis. Be-
cause our system intrinsically has an integral part, it is en-
ough to use only a proportional controller to design Cy,(z)
and C(z) to guarantee the stability and zero steady state
error. The general forms of the digital proportional con-
troller in the time domain and z-domain are:
AS(k) = K,E(k) (time domain)and C(z) = K,, (z-domain).
Here we denote K,, as the proportional term for the miss
controller and Ky for the utilization controller. These val-
ues are substituted in Eq. 9. Setting Cfz) = K3, and
Cy(z) = Ky we get

_ MSZ _ KMGMZ
M(Z) = HM(Z):, where HM(Z) = (1 +KMGM)Z 1
USZ KuGUz
U(z) = here H =
() =Ho(z) =7, where Hu(2) = g = 57

(10)

3.6.2. Stability

According to control theory, system performance is
determined by the poles of the closed loop transfer func-
tion. From Eq. 10, we get 1/(1 + K;,G),) as the pole for
Hy(z) and 1/(1 + KyGy) as the pole for H(z). Since these
poles are inside the unit cycle, according to the control the-
ory, the stability is ensured in the DFCS system.

3.6.3. Steady state error
Based on the Final-Value Theorem, the steady state val-
ues of and are

limy . M (k) = lim,_, (z — 1)M(z)
KM GMZ MSZ } _ MS

= l1mf1{(z_ ) (14+KyGy)z—1 z-1
limy . U(k) =lim,_;(z — 1)U(2)

= limﬁl{(z— 1)

KUGUZ ) USZ U
(1+KyGpz—1 z—1f 73
(11)
This result theoretically proves that the DFCS system can
bring the miss number M(k) and CPU utilization U(k) to
their set point(Ms and Us)in steady state with zero error.
It can also be verified that for a constant external distur-
bance AT(k) = AT, this asymptotic property still holds.

3.6.4. Settling time
Settling time can be determined by the poles inside the
unit cycle. The closer the pole is to the origin, the shorter

the settling time. To deal with a worst case situation, we
let K;;Gyy=1 and KyGy=1, the poles of Hy/(z) and
H,/(z) are 0.5. According to control theory, the settling
time is determined by the distance of the pole from the ori-
gin of the root locus plot. With a radius of 0.5, the theoret-
ical settling time is about eight sampling periods. In the
experiment, based on the model, the calculated controller
settings are 0.82 and 1.22 for the miss and utilization con-
trollers, respectively.

3.7. Network structures

For an effective distributed solution, we must consider
the interaction among local controllers and the interaction
between the global controller and local controllers. Two
aspects of the network to consider are the physical and log-
ical network structure. The physical network structure
could be a fully connected Ethernet, token ring, etc. For
the purpose of this work, we are assuming that the physical
structure of the network is either a hierarchy based point to
point network, or a grid based point to point network run-
ning a Gigabit Ethernet.

The logical network structure defines information flow
and route connectivity for the system. We propose two log-
ical network structures: hierarchical and neighborhood, and
design distributed real-time scheduling algorithm based on
network structure.

3.7.1. Hierarchical structure

Hierarchical distributed feedback control system
(H-DFCS) is based on the concept of information sharing
in a hierarchical system. It allows a large distributed system
to be broken down into a multi-level hierarchical system, as
illustrated in Fig. 4. By doing this, only the information
that is required to coordinate subsystems needs to be
exchanged at higher levels to coordinate the entire system.
In the H-DFCS system, any node that has sub-nodes can
be considered a coordinator. In the H-DFCS system, each
node has a local feedback controller (LFC). The minimal
requirement of this local controller is that it should be able
to modify the service level set point of the node and report
the local miss ratio (LMR) to other controllers (nodes).

The full scheduling algorithm for this system operates
every sampling period in the following manner. Each node
contains the LFC control system, with the exception of the
top node in the hierarchy. This node contains the LFC

Fig. 4. Hierarchical structure.
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control system as well as the DFC control system. The top
node receives the MR and CPU utilization averaged for the
entire system and use this as inputs to its distributed con-
troller to determine the new service level set point for the
entire system. Such an operation allows the parent node
to make decisions based on information from its children.
The advantage is that the information from the children
represents the subnet below that child, as the LMR values
are weighted based on the number of nodes that the value
represents.

Load balancing is achieved by migrating tasks between
nodes through the network. Each node determines the
route by comparing the MR values from the its children,
parent and siblings. The MR values are weighted, to
describe the number of nodes that they represent. This
information is then used to assign a percentage to each
entry in the route table, specifying the ratio of the off-
loaded tasks to be sent along each route. In the hierarchical
case that implements a binary tree, each node has up to
four possible routes. For example, as shown in Fig. 5,
Node 13 has two routes to its two children, one to its par-
ent, and one to its sibling. Routes are unidirectional, and
are assigned only if the miss ratio of the other node in ques-
tion is lower than that of the current node.

PI919-

Fig. 7. Available routes in N-DFCS.

3.7.2. Neighborhood structure

Neighborhood feedback control scheduling is based on
the concept of information sharing in a neighborhood type
system as shown in Fig. 6. This means that a node shares its
state information with its direct neighbors in the network
and receives state information from these same neighbors.

Different from H-DFCS which has only one distributed
controller at the root, in neighborhood feedback control
scheduling (N-DFCS) shown in Fig. 6, every node contains
both a local and distributed controller to control the state
of the node as well as the state of its neighbor nodes. N-
DFCS works within individual sub-nets instead of the
whole distributed system. This design allows state informa-
tion shared in a more decentralized manner. As a concrete
example, Fig. 7 shows the neighbors of two nodes (nodes 4
and 5) in a mesh structure (neighbors(4) =1, 3, 5, 7 and
neighbors(5) =2, 4, 6, 8).

3.7.3. Comparison

Due to the difference in the network structure, H-DFCS
and N-DFCS have different characteristics in terms of the
delay and load balance.

e H-DFCS: Since H-DFCS needs to wait for the messages
to be passed all the way up the hierarchy prior to mak-
ing decisions and returning the set point, the duration of
its operation depends on the number of levels in the
hierarchy. For example, as shown in Fig. 8, it takes
seven time slots for a level-1 node finishes in a three-level
hierarchy. This indicates that H-DFCS might not be
quite suitable for some large scale systems. On the other
hand, H-DFCS can make the SLR decision based on
global information, leading to a quicker load balance.

e N-DFCS: N-DFCS allows a node to make a decision
based on information from it nearest neighbors. The
advantage here, is that state information is shared in a
more decentralized manner. This helps in speeding up
the computation time—as evident by comparing Figs.
8 and 9, but could result in a slower load balancing pro-
cess. In comparison, the N-DFCS always works in a
fixed time, regardless the number of nodes in the system.

e
Level3 | 1 [2[8f ~rhes
Level2 | 1 | 2 3
Level1 [1] 2 3|
Time o

Fig. 8. H-DFCS in the three-phase operation.

Node il T12[3) — prece

Nodej| 1 [2 |3~ number

Node k| 1 [2]3 %
Time '

Fig. 9. N-DFCS in the three-phase operation.
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4. Performance evaluation

To evaluate the performance of DFCS, we compare N-
DFCS and H-DFCS with two other well-known scheduling
algorithms, QoS negotiation (Adbelzaher et al., 2000) and
dynamic QoS Man-agement (DQM) (Brandt et al., 1998).
Without a theoretical basis, QoS and DQM can be ineffi-
cient and difficult to tune. The results show that the feed-
back-control based approach is very effective. Due to
space constraints, we are not able to show experimental
results here. Please refer to Stankovic et al. (2001) for com-
plete evaluation results.

5. Related work

Our DFCS architecture differs in two respects from early
adaptive approaches. First, the performance of the adaptive
system is modeled in a coarse-grained manner that repre-
sents the relation between aggregate QoS and aggregate
resource consumption. This is different from fine-grained
models, where the knowledge of individual task execution
times is required as in Brandt et al. (1998). Second, feedback
control is used as a primary mechanism to adjust resource
allocation in the absence of a priori knowledge of resource
supply and demand. This is in contrast to early optimiza-
tion-based QoS adaptation techniques that have assumed
accurate models of application resource requirements.
Examples of the new approach include (Brandt et al.,
1998; Haritsa et al., 1991). In Haritsa et al. (1991), a trans-
action scheduler called AED monitors the system deadline
miss ratio and adjusts task priorities to improve the perfor-
mance of EDF in overload. The DQM algorithm (Brandt
et al., 1998) features a feedback mechanism that changes
task QoS levels according to the sampled CPU utilization
or deadline misses. However, these algorithms are based
on heuristics rather than a solid theoretical foundation.

Recently feedback control theory has been widely used as
the underlying analytical foundation for building adaptive
resource management systems. For example control theory
has been applied to control throughput and delay (Keshav,
1993) and to control congestion (Wen and Arcak, 2002) at
the network layer of the Internet. In addition, control-theo-
retic approaches have been adopted in a number of software
systems such as realtime embedded systems (Abeni et al.,
2002; Cervin et al., 2002), database servers (Parekh et al.,
2004), network storage systems (Karlsson et al., 2004) and
web caching (Lu et al., 2004). A survey on feedback perfor-
mance control in software services is presented in Abdelza-
her et al. (2003). Recent work on applying control-theoretic
techniques in Real-Time systems is directly related to this
work. In Lu et al. (1999), Lu et al. (2000), feedback control
real-time scheduling algorithms are developed to achieve
deadline miss ratio guarantees in uniprocessor systems. Sev-
eral recent paper also present feedback control algorithms
(DEUCON (Wang et al., 2005)) and middleware (FC-
ORB (Wang et al., 2005)) for enforcing desired utilizations
of multiple processors in a distributed systems. There are

several important differences between our work and those
projects. First, those solutions control the resources by
adapting the rates of end-to-end tasks. In contrast, our algo-
rithms handle independent tasks via a combination of local
QoS level adaptation and task (re)allocation.

6. Conclusions

To support data-driven applications with unpredictable
and changing resource requirements, we develop here an
effective computational resource management system,
called DFCS, based on the feedback control. Different
form other ad hoc approaches, DFCS has a basis in the
theory. We have rigorously proven that our approach not
only has excellent steady state behavior, but also meets sta-
bility, overshoot, and settling time requirements. We have
demonstrated that DFCS is a better option for distributed
resource management, than QoS (Adbelzaher et al., 2000)
and DQM (Brandt et al., 1998).
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