A Case Study in Re-engineering to
Enforce Architectural
Control Flow and Data Sharing *

Marwan Abi-Antoun?, Jonathan Aldrich® and Wesley Coelho®

aInstitute for Software Research Intl (ISRI), Carnegie Mellon University,
Pittsburgh, PA 15213

b Department of Computer Science, University of British Columbia, Vancouver,
B.C. V6T 17}

Abstract

Without rigorous software development and maintenance, software tends to lose
its original architectural structure and become difficult to understand and modify.
ArchJava, a recently proposed programming language which embeds a component-
and-connector architectural specification within Java implementation code, offers
the promise of preventing the loss of architectural structure. AliasJava, which can
be used in conjunction with ArchJava, is an annotation system that extends Java to
express how data is confined within, passed among, or shared between components
and objects in a software system.

We describe a case study in which we incrementally re-engineer an existing Java
implementation to obtain an implementation which enforces the architectural con-
trol flow and data sharing. Building on results from similar case studies, we chose an
application consisting of over 16,000 source lines of Java code and over 90 classes.
We describe our process, the detailed steps involved (some of which can be auto-
mated), as well as some lessons learned and perceived limitations with the languages,
techniques and tools we used.

Key words: AliasJava, ArchJava, Ownership domains, re-engineering

* This is a revised and expanded version of the following paper: Abi-Antoun, M. and
Coelho, W. 2005. A Case Study in Incremental Architecture-Based Re-engineering
of a Legacy Application. In Proceedings of the 5th Working IEEE /IFIP Conference
on Software Architecture (WICSA), Pittsburgh, Pennsylvania, pp. 159-168.

Preprint submitted to Elsevier Science 14 November 2006

1 Introduction

The architecture of a software system is commonly described in documentation
artifacts produced and maintained independently from source code implemen-
tations. Studies have shown that developers rarely consult external documen-
tation [43] before making code changes. Over time, the implemented system’s
design drifts from its original architecture. Eventually, the architectural spec-
ification becomes too inaccurate to be used, leading to further degradation of
the system structure.

Missing or un-enforced architectural information is a key factor which con-
tributes to architectural problemsm [36], including architectural drift, i.e., “a
lack of coherence and clarity of form which may lead to architectural violation
and increased inadaptability of the architecture” [58] and architectural ero-
sion, i.e., “violations in the architecture that lead to increased system problems

and brittleness” [58].

Re-engineering, i.e., “the examination and alteration of a software system to
reconstitute it in a new form and the subsequent implementation of the new
form” [16], is one way to correct architectural drift and erosion. Re-engineering
a system can extend its lifetime and delay the introduction of a new system
built from scratch resulting in cost savings.

In this paper, we describe a case study in-the-small of a new kind of re-
engineering to improve and to assure system structure. The assurance guar-
antee is provided by ArchJava and AliasJava, two programming language ex-
tensions that can enforce architectural control flow and data sharing at the
implementation level. ArchJava, a recently proposed programming language,
embeds a component-and-connector runtime architectural specification within
Java implementation code. AliasJava, which can be used in conjunction with
ArchJava, is an annotation system that extends Java to express how data is
confined within, passed among, or shared between components and objects in
a software system. Using the re-engineering paradigm of abstraction, transfor-
mation and re-implementation [35], we extract the architectural intent in the
form of a target architecture and reconstitute the implementation in a new
form which makes explicit the control flow and data sharing architecture in
code in the belief this will limit future architectural drift and erosion.

This paper makes several contributions. We refine some of the principles and
build on results from similar case studies [3-5] using a subject system that
exhibits the following characteristics: a) it was developed and maintained by
several different programmers over the course of several years unlike previ-
ous case studies where the subject system was developed and maintained
by a single developer (e.g., the Aphyds and Taprats systems in [4]); b) it

is a realistic code base developed and maintained by novice programmers un-
like previous subject systems (e.g., the Taprats system in [4]) intended for
an object-oriented design competition; c) it is larger in source lines of code
than the similar case studies that have been previously attempted; and d) un-
like previous case studies which have reasoned about communication through
control flow (e.g., [3,4]) or data sharing (e.g., [5,33]), we reason about both
in the same implementation. To the best of our knowledge, it is the largest
case study to date that evaluated an ownership type system on a real object-
oriented implementation (another one is described in [33]). Finally, as noted
in [66], re-engineering expertise is lacking; we hope that by documenting the
difficulties likely to be encountered and the lessons we learned, we can provide
insight into how this activity can be better supported by future languages,
techniques and tools.

The paper is organized as follows. Section 2 introduces the subject system.
Section 3 discusses the goals of the case study. Section 4 discusses the re-
engineering activity in detail and attempts to generalize from our experience,
concluding with a discussion of the effort involved and some limitations of
this case study. Section 5 discusses some related work. Finally, Section 6 dis-
cusses some lessons learned as well as some perceived limitations of the tools,
techniques and languages we used.

2 The Case Study Application

The subject system in our case study, HillClimber, is part of Clspace [18], a
collection of Java applications that graphically demonstrate artificial intelli-
gence algorithms. Clspace applications are used as educational tools in under-
graduate artificial intelligence courses at several universities and are created
and maintained by undergraduate student interns during summer terms at the
University of British Columbia (UBC). For several years, new students have
contributed to the applications using only the source code as documentation
of the systems’ design. Predictably, some developers made modifications that
were not consistent with the original architecture of the system. These ap-
plications provide an example of how the loss of architectural information
progressively leads to the degradation of program structure.

The case study subject system, HillClimber, demonstrates stochastic local
search algorithms for constraint satisfaction problems. Though HillClimber
is relatively small, it contains complex design issues representative of object-
oriented applications. In the original design of HillClimber, the application
window uses a canvas to display nodes and edges of a graph in order to demon-
strate the algorithms provided by the engine.

HillNade
/ ‘ ‘
k.

HillGraph

Hillwindow

HillCanvas

-

b HilEdge

HillEngine

Fig. 1. Module view generated by the LDM tool [44] showing the dependencies
between the main classes in the HillClimber application. The boxes correspond to
Java classes. The LDM tool uses a standard notion of dependency: class A depends
on class B if there are explicit references in A to syntactic elements of B and is
shown as an arrow from A to B.

This simple structural intent was not documented but existed implicitly in the
source code. Over time, this intent was damaged by modifications performed
by developers who were unaware of it and therefore unable to preserve it.
Figure 1 illustrates the structure after several years of modification by new
developers: it shows how communication between components now follows
arbitrary paths with little structure. This results in source code that is more
difficult to understand and modify, less reusable, more complex and more error
prone, all characteristics of architectural drift and erosion [36].

3 Architecture-Based Re-Engineering

Documenting the software architecture is not enough if important architec-
tural information is lost when moving from design to implementation and
later on during evolution. There are several factors that contribute to dispari-
ties between architectural specification and the actual implementation. During
software development and evolution, developers often do not consult external
architecture documentation, even if it exists and is reasonably up-to-date. New
developers may also make changes that violate the architecture because they
are unaware of the underlying architectural intent.

3.1 Enforcing Architectural Structure in Code

Programming languages that can describe architecture at the implementation
level offer a promising solution to these problems. Specifying the architecture
in source code has several advantages: first, there is no need to maintain a sepa-
rate artifact. Second, developers will be more aware of the architecture because
it is explicitly documented within the source and not in external documents.
Third, the runtime architecture is enforced statically using a type system that
enforces the communication integrity property [47,53], which means that two
components in the implementation may communicate at runtime only if they
are connected in the architecture. Finally, the soundness of the type system
guarantees that violations of the architecture do not exist.

Enforcing communication integrity is challenging in programming languages
that support references, objects and first-class functions. Previous systems
have made serious compromises in order to enforce communication integrity.
Some eliminate implicit communication mechanisms entirely [15,70], an ap-
proach which works well for static systems such as embedded control circuits,
but which is inapplicable to more dynamic systems and is unlikely to be ac-
cepted by practitioners used to the flexibility of object-oriented languages
like Java. Others postpone conformance checks until runtime [49] when archi-
tectural violations may cause user-visible faults. Finally, some support only
simple architectural models [42,55] such as module views, giving up many of
the benefits of architectural analysis.

ArchJava. ArchJava [3] is a recently proposed implementation language that
embeds a Component-and-Connector (C&C) architectural specification within
Java implementation code. ArchJava extends the Java language with compo-
nent classes which describe component types that are part of an architecture,
component instances, connections which allow components to communicate,
ports which are the endpoints of connections, as well as other standard features
of architecture description languages such as required and provided methods
on ports. The ArchJava type system statically enforces communication in-
tegrity, i.e., that communication among components is consistent with the
explicit architecture. Without additional annotations, ArchJava only enforces
the control flow architecture, i.e., communication through method calls. Fur-
thermore, the aliasing and ownership annotations of AliasJava, a language
described later, can be added to an ArchJava program to enforce in addition
data sharing constraints, thus enforcing full communication integrity.

We now discuss how ArchJava compares to existing approaches.

Architecture Description Languages. A number of architecture descrip-
tion languages (ADLs) have been defined to describe, model, check and im-

plement software architectures [51]. The C2 system provides a framework for
implementing software architectures but does not automatically ensure that
the code instantiating the framework respects architectural constraints [50].
The SADL system [53] formalizes architectures in terms of theories, provid-
ing a framework for proving that communication integrity is maintained when
refining an abstract architecture into a concrete one, however it does not pro-
vide automated support for enforcing communication integrity. The Rapide
system includes a tool that dynamically monitors the execution of a program,
checking for communication integrity violations [49]. The Rapide papers also
suggest that integrity could be enforced statically if system implementers fol-
low style guidelines, such as never sharing mutable data between components
[47]. However, guidelines which include forbidding shared data prohibit many
useful programs and are not enforced automatically.

Module Systems. Module systems and module interconnection languages
(MILs) support system composition from separate modules [60]. ArchJava
differs from module systems in that the former make data and control flow
explicit through architectural connections, while the latter use import/export
connections primarily to make names and types defined in one module visi-
ble to client modules [51]. Advanced module systems have rich facilities for
defining, manipulating and controlling access to types. These facilities sup-
port encapsulation, for example by restricting the definition of a type or a
function name to within a single module. However, module systems do not
provide mechanisms for controlling shared objects or functions, and thus do
not enforce architectural conformance.

Enforcing Design. Lam and Rinard’s [42] system is similar to ArchJava since
it also involves a type system for describing and enforcing design; however,
their designs describe communication between subsystems (corresponding to
ArchJava’s components) that is mediated through shared objects that are la-
belled with tokens. Lam and Rinard’s system does not model architectural
hierarchy, and the set of subsystems and tokens is statically fixed rather than
dynamically determined as in ArchJava; furthermore, their system does not
describe data sharing as precisely. Similarly, the Reflexion Models system [55]
supports design structure using an analysis in order to find inconsistencies be-
tween an architectural model and source code. The Reflexion Models analysis
based on call graph construction is more lightweight than ArchJava’s type sys-
tem but does not support hierarchical, instance-based runtime architectures
or precise data sharing constraints.

CASE Tools. Several Computer-Aided Software Engineering (CASE) tools
support the SDL language [70] which allows developers to describe architec-
tural structure within the implementation of an embedded system. The lan-
guage enforces architectural conformance but only by prohibiting shared ref-
erences between components. The SPARK system takes a similar approach,

supporting a subset of Ada without references in order to rigorously guaran-
tee information flow properties [15]. The prohibition of references is reasonable
and even desirable for the telecommunications and other embedded systems
for which SDL and SPARK were designed but is inappropriate for the dy-
namic object-oriented applications that ArchJava can handle. Unlike these
CASE tools, ArchJava can enforce architectural conformance in the presence
of shared objects and references.

3.2 Re-engineering

Re-engineering is rebuilding a software system or component to suit some new
purpose.

New Purpose. In our case study, we reconstitute the subject system in a new
form, one that encodes architectural design information in the source code us-
ing the language features of ArchJava and AliasJava. We are in fact switching
to another language (although one that is close to Java) and the explicit new
purpose is better maintainability by precisely and explicitly expressing and
enforcing the control flow and the data sharing architecture of the system.

The goal is to see the effect of reengineering with a new language as a target,
and with design information explicitly encoded in the source text. The sound-
ness of the ArchJava and AliasJava type systems together with an effective
change management policy can enforce the architecture and prevent the loss of
architectural structure in the re-engineered program more easily than had the
program been left as a regular Java program. The communication integrity
property requires explicitly declaring any new control flow or data sharing
communication as they are added to the implementation. Code reviews or in-
spections assisted with tool support (e.g., [2]) could check that the changes
are allowed with respect to the system’s specified runtime architecture.

Architecture-based re-engineering. Using the re-engineering paradigm of
abstraction, transformation (or reasoning about changes at a higher abstrac-
tion level) and re-implementation [35], we extract the architectural intent in
the form of a target architecture and reconstitute the implementation in a
form that we believe will limit future architectural drift. Using architectural
information as the higher-level information to reason about the existing code
as well as the target code qualifies the activity as re-engineering. In addition,
the abstraction and modification steps help avoid ending up with the same
eroded architecture that’s well enforced.

There are multiple architectural views of a given system [20]. For example, a
module view showing the static source code organization is useful for allocat-
ing tasks to developers but does not directly bear on the runtime behavior of

the system. On the other hand, a runtime architectural view described using
an Architecture Description Language (ADL) [51] can be useful for predict-
ing the system’s behavior and other quality attributes such as performance
and reliability. A runtime architectural view shows a system in terms of its
components (e.g., Client, Server, Database), connectors (e.g., Database Write
connector) and their interactions. Runtime views help with understanding the
computational model for the system, i.e., how data and control flow through
the running system, the protocols through which components interact and
runtime dependencies between otherwise independent components. For the
subject system, the quality we are concerned with improving is the architec-
tural runtime structure.

Since architecture is determined during design of a system, one might expect
that this is the ideal time or even the only possible time to encode these high-
level design decisions. However, backward compatible programming languages
that enforce architectural structure can be used on an existing implementation
in order to recover, formalize, and enforce the architecture. Backwards com-
patibility between the destination (ArchJava) and the source implementation
language (Java) in this case allows an incremental re-engineering approach
by transforming the system in small increments and always have a running
version, as in taking “chicken little steps” [13] to avoid the complexity and
the risks of big bang re-engineering. Furthermore, ArchJava only enforces the
constraints that are explicitly specified: a Java program is a legal ArchJava
program, without the benefit of having the ArchJava type system enforce any
communication integrity. So, judiciously used, ArchJava can help make a pro-
gram easier to understand by making its architecture explicit.

3.3 ArchJava

We now illustrate ArchJava with an example. Figure 2 shows the architecture
of a simple graphics pipeline. The generate component stores the current
scene and generates shapes to be displayed. These shapes are passed on to the
transform component which stores the current transformation, applies it to
each shape in turn and then passes them on to the rasterize component to
be displayed. ArchJava can enforce an architectural invariant of the pipeline
architectural style [41] that the components are arranged in a linear sequence
with each component getting information from its predecessor and sending it
on to its successor.

Components. Component types are defined in ArchJava using component
classes. A component instance of a component type in ArchJava is a special
kind of object instantiated using the new keyword that unlike an ordinary Java
object, has its communication patterns declared explicitly in code. Figure 3

GraphicsPipeline
out in| out in

generate [D—] transform |[D—] rasterize

Fig. 2. The GraphicsPipeline is a pipeline made up of three subcomponents: the
generate, the transform and the rasterize subcomponents.

shows the code that defines the GraphicsPipeline and Transform compo-
nent classes. We assume that Generate and Rasterize are component classes
defined elsewhere, and Trans3D and Shape are ordinary Java classes that
are not architecturally relevant. The GraphicsPipeline class contains three
fields, one for each component in the pipeline.

Ports. Components communicate through explicitly declared ports. A port
is a communication endpoint declared by a component. For example, the
Transform component class declares an in port that receives incoming shapes
and an out port that passes transformed shapes on to the next component.
Each port declares a set of required and provided methods. A provided method
is implemented by a component and is available to be called by other com-
ponents connected to the component through one of its ports. Conversely,
each required method is provided by some other component connected to a
port. For example, the draw method’s implementation transforms its shape
argument and then calls the required method draw on the out port. As the
example shows, a component can invoke one of its required methods by sending
a message to the port that defines the required method.

Connections. In ArchJava, developers declare the connection patterns that
are permitted in the architecture at runtime. The declaration connect pattern
Generate.out, Transform.in permits the graphics pipeline component to
make connections between the out port of its generate subcomponents! and
the in port of its transform subcomponents. The connect patterns declared
in GraphicsPipeline constrain its subcomponents to communicate in a lin-
ear sequence, fulfilling the constraint of the pipeline architectural style. Once
connect patterns have been declared, concrete connections (using the connect
keyword) can be made between components. For example, the constructor for
GraphicsPipeline connects the out port of the transform component in-
stance to the in port of the rasterize component instance. This connection
binds the required method draw in the out port of transform to a provided
method with the same name and signature in the in port of rasterize (not
shown). Thus, when transform invokes draw on its out port, the correspond-
ing implementation in rasterize will be invoked.

I Note: the term subcomponent indicates composition, whereas the term compo-
nent subclass would indicate inheritance.

public component class GraphicsPipeline {
protected /* owned */ Generate generate = ... ;
protected /* owned */ Transform transform = ... ;
protected /* owned */ Rasterize rasterize = ... ;

connect pattern Generate.out, Transform.in;
connect pattern Transform.out, Rasterize.in;

public GraphicsPipeline() {
connect (generate.out, transform.in);
connect (transform.out, rasterize.in);
b
+
public component class Transform {
protected /* owned */ Trans3D currentTransform;

public port in {
provides void draw(/* unique */ Shape s);
}
public port out {
requires void draw(/* unique */ Shape s);
}
void draw(/#* unique */ Shape s) {
currentTransform.apply(s) ;
out.draw(s);
}
}

Fig. 3. ArchJava for the GraphicsPipeline and Transform component classes. We
assume that Generate and Rasterize are component classes defined elsewhere, and
Trans3D and Shape are ordinary Java classes that are not architecturally relevant.
The GraphicsPipeline class contains three fields, one for each component in the
pipeline. AliasJava annotations which will be added later are shown as comments,
e.g., /* owned */ or /* unique */.

3.4 AliasJava

One of the major challenges in enforcing software architecture is the sharing
of data between components in an architecture. This sharing is not explicit in
object-oriented languages but instead is implicit in the structure of references
created at runtime. ArchJava uses the AliasJava system [5,6] to make this
sharing structure explicit, thereby allowing architects to constrain communi-
cation through shared data and ensuring that the implementation conforms
to those sharing patterns.

10

AliasJava is an annotation system that extends Java to express how data is
confined within, passed among, or shared between components and objects in a
software system. Developers can express controlled aliasing through ownership
domains and the lack of aliasing through uniqueness using annotations on
reference types. These annotations can be used jointly with or separately from
the ArchJava features discussed earlier.

Ownership Domains. AliasJava controls aliasing relationships in object-
oriented programs by dividing objects into conceptual groups called owner-
ship domains and allowing architects to specify high-level policies that govern
references between ownership domains. AliasJava supports abstract reasoning
about data sharing by assigning each object in the system to a single owner-
ship domain. There is a top-level ownership domain denoted by the keyword
shared. In addition, each object can declare one or more domains to hold its
internal objects, thus supporting hierarchical specifications. Figure 4 uses a
Sequence abstract data type to illustrate the ownership model used in Alias-
Java. The Sequence object is part of a top-level owner ownership domain.
Within a Sequence object, the iters ownership domain is used to hold itera-
tor objects that clients use to traverse the sequence, and the owned ownership
domain is used to hold the Cons elements in the linked list that is used to
represent the sequence.

Domain Permissions. Objects within a single ownership domain can refer
to one another but references can only cross domain boundaries if the pro-
grammer specifies an architectural link between the two domains when they
are created. Each object can declare a policy describing the permitted aliasing
among objects in its internal domains and between its internal domains and
external domains. AliasJava supports two kinds of policy specifications:

e A link from one domain to another, denoted with a dashed arrow in Figure
4, allows objects in the first domain to access objects in the second domain;

e A domain can be declared public. Permission to access an object automat-
ically implies permission to access its public domains.

Figure 5 shows how the Sequence Java code can be annotated with aliasing
information to model the constraints expressed in Figure 4. The first two lines
of code within the Sequence class declare the owned domain, the iters do-
maina, and a link from the iters domain to its owned domain, allowing the
iterators to refer to objects in the linked list. The iters domain is public,
allowing clients to access the iterators, but the owned domain is private so
clients must access the elements of Sequence through its iterator interface
rather than traversing the linked list directly. In addition to the explicit pol-
icy specifications mentioned above, AliasJava includes the following implicit
policy specifications:

11

~
- —R——-—
- Seguence

_ r
client 1 ‘I
ohjects | I

LU

Fig. 4. A conceptual view of the ownership and aliasing model in AliasJava. The
rounded, dashed rectangles represent ownership domains, with a gray fill for private
domains and no fill for public domains. Solid rectangles represent objects. The
top-level shared domain contains the highest-level objects in the program. Each
object may define one or more domains that in turn contain other objects. Dashed
arrows represent link permissions between domains.

class Sequence<Towner> assumes owner -> Towner {
domain owned;
public domain iters;
link owned -> Towner;
link iters -> Towner, iters —-> owned;
owned Cons<Towner> head;
void add(Towner Object o) { head = new Cons<Towner>(o,head); }
iters Iterator<Towner> getIter() {
return new Sequencelterator<Towner, owned>(head); }
}
class Cons<Towner> assumes owner —> Towner {
Cons(Towner Object obj, owner Cons<Towner> next)
{ this.obj=obj; this.next=next; }
Towner Object obj;
owner Cons<Towner> next;

}

Fig. 5. AliasJava code for the Sequence abstract data type. Sequence holds a linked
list as its internal representation in the private owned domain. A public iters do-
main holds its iterators. Link declarations specify that iterator objects in the iters
domain have permission to access objects in the owned domain; outside objects can-
not directly access Cons elements. Both domains can access the domain parameter
Towner.

(1) An object has permission to access other objects in the same domain;
(2) An object has permission to access objects in the domains that it declares.

The first rule allows the different Cons elements in the linked list to access
each other, while the second rule allows the sequence to access its iterators
and linked list. Any reference not explicitly permitted by one of these rules is

12

prohibited according to the principle of least privilege. It is crucial that there is
no transitive access rule: for example, even though clients can refer to iterators
and iterators can refer to the linked list, clients cannot access the linked list
directly because the sequence has not given them permission to access the
owned domain. Thus, the policy specifications allow developers to specify that
some objects are an internal part of an abstract data type’s representation,
and the compiler enforces the policy, ensuring that this representation is not
exposed.

Domain Parameters. Components can share objects with connected com-
ponents by binding domain parameters to actual ownership domains, allowing
both components to access the objects in these domains. Thus ownership
domain parameters generalize the concept of shared variable connectors in-
troduced in SADL [53] to allow richer forms of object-oriented interaction
between components.

In Figure 5, the Sequence class is parameterized by the domain parameter
Towner using syntax similar to Java version 1.5 for generics. The head field is
of type owned Cons<Towner>, denoting a Cons linked list element that resides
in the owned domain and holds an object that resides in the Towner domain.
The add member function constructs a new Cons element for the object passed
as argument and adds it to the head of the list. Skipping ahead to the definition
of the Cons element class, we see that it is also parameterized by the domain
parameter Towner. The class contains a field obj holding an element in the
list, along with a next field referring to the next Cons element (or null, if this is
the end of the list). The next field has type owner Cons<Towner>, indicating
that the next element in the list has the same owning domain as the current
element (i.e., all the elements are part of the Sequence’s owned domain).

Domain Hierarchy. The set of named ownership domains each object de-
clares are nested within the domain that owns the object, so ownership defines
a forest of trees where each parent owns its children and the roots of the tree
are unique. Unique objects may be assigned to an ownership domain, attach-
ing one ownership tree as a subtree of another. All connected components
must be part of an ownership domain declared by the component making
the connection. Figure 3 shows the additional ownership and aliasing annota-
tions as comments on the previous GraphicsPipeline ArchJava example. In the
GraphicsPipeline component class, the fields types are annotated with the
implicit ownership domain owned, meaning that generate, transform, and
rasterize are subcomponents of the GraphicsPipeline component instance
that owns them.

Unique Data. While ownership is useful for representing persistent aliasing

relationships, it cannot capture the common scenario of an object that is
passed between objects without creating persistent aliases. Objects to which

13

there is only one reference, including newly created objects, are annotated
unique in AliasJava. Unique objects can be passed from one ownership domain
to another as long as the reference to the object in the old ownership domain
is destroyed when the new reference is created.

The pipeline architectural style [41] prohibits data sharing between compo-
nents. To enforce this architectural invariant in the GraphicsPipeline ex-
ample, using AliasJava, the Shape objects are annotated as unique to ensure
that shapes are handed off from one component to another, i.e., that no com-
ponent may retain a reference to a shape object after it passes it on to the
next component. This invariant allows the developers of each component to
assume they have exclusive access to the shape they are manipulating.

Lent Data. AliasJava allows one ownership domain to temporarily lend an
object to another ownership domain with the constraint that the second own-
ership domain will not create any persistent references to the object. For
example, annotating a method parameter as lent indicates that it is a tem-
porary alias. A unique object can be passed to a method as a lent argument
even without destroying the original unique reference. The method can pass
on the object as a lent argument to other methods but cannot return it or
store it in a field. Using lent, an owned object can also be temporarily passed
to an external method for the duration of a method call, without any risk that
the outside component might keep a reference to that object. Thus, the lent
annotation preserves all of the reasoning about the unique object, but adds
practical expressiveness to AliasJava.

Shared Data. Objects marked with the shared annotation may be aliased
globally. Unfortunately, little reasoning can be done about shared references,
except that they may not alias non-shared references. However, shared ref-
erences are essential for interoperating with existing runtime libraries, legacy
code and static fields, all of which may refer to aliases that are not confined
to the scope of any object instance.

In the next section, we show how we used the constructs of ArchJava and
AliasJava to precisely specify and enforce the control flow and data sharing
architecture of the HillClimber subject system.

4 The HillClimber Case Study

In the case study, we re-engineered the system using the following activities:

(1) Identifying the source architecture;
(2) Identifying a target architecture;

14

(3) Analyzing the original program in Java to look for known problem areas;

) Restructuring the original program in Java;

(5) Re-engineering the original program to ArchJava to express the architec-
tural control flow;

(6) Periodically checking against the target architecture;

(7) Annotating the program with aliasing and ownership to express the ar-
chitectural data sharing using AliasJava.

Although we list an overall sequence of activities, the re-engineering process
was iterative. For instance, after we started re-engineering the code (Step
5), we realized that we had not been aggressive enough in re-structuring the
original program (Step 4), so we had to go back and make additional changes.
In addition, many program changes may be required to reach the desired target
architecture or the target architecture itself may need to be changed (Step 2).
Expressing the software architecture in ArchJava and AliasJava highlighted
several refactoring opportunities (Step 4 and Step 5) by making the control
flow and the data sharing between components explicit. We next describe each
activity in turn, and for each step, we point out any tools that were used to
facilitate the re-engineering process.

4.1 Identifying the Source Architecture

The first step in re-engineering HillClimber was to determine its current ar-
chitecture and use this as a basis for developing a target architecture to be
explicitly specified and enforced using ArchJava. Although HillClimber has
been maintained by several developers over several years, there were no arti-
facts other than source code that document its design. Furthermore, source
code comments were sparse and sometimes out of date. It was therefore nec-
essary to recover the source architecture by analyzing the source code.

The HillClimber application is one of several Clspace applications that share a
common graphFramework package that includes abstract implementations of
key classes. Classes that are shared among several Clspace applications include
the GraphCanvas, Graph, Node and Edge classes (See Figure 6). In HillClimber,
these are subclassed respectively as HillCanvas, HillGraph, HillNode and
HillEdge. In the HillClimber application, another two classes, HillWindow
and HillEngine, are tightly coupled with the key graphFramework classes.
These classes implement the core functionality of the HillClimber application
and exhibit complex communication patterns. The HillClimber application is
of sufficiently manageable size that the source architecture could be recovered
by manual inspection: given the key classes, the relationships between them
can be discovered by recording communication between components, such as
method calls. Figure 1 was generated by the LDM tool [44] that analyzes de-

15

| M graphFramework:Edge | | B graphFramework:Node | | B graphFramework:Graph | | B graphFramework:GraphCanvas

- curriode
1 age i 1 ode i 1 raph i 1 anvas
@ HillEd D HillNod | M HillGrapl M Hilc
0.1

0.1 | % node - tillsraph | 0.1 0.

D Hinl pe -hiNCow "6 Hillwindow

0.1

- hillCarvas

@ Search I 01 g ¥engine
[P =l SR D HillEngine
| | |
| ® GreRRSearch | | © RandSearch | | @ SimpleSearch | | ©® SimAnnealSearch | | ©® SimRanSearch |
|
| ® GreedySearch | | MCHSearch | | ® RdWkSearch |

Fig. 6. UML class diagram retrieved from the original Java implementation using
the EclipseUML tool [Omo05], illustrating the inheritance between the classes in
the graphFramework package and the HillClimber-specific classes.

pendencies between classes [62]. Figure 1 shows the key components and the
arrows indicate the discovered presence of communication between them; one
can see that most components were communicating with most other compo-
nents.

4.2 Identifying the Target Architecture

Developing the target architecture involves the following steps: (a) Identifying
the architectural styles in use, if any; (b) Identifying the top-level components
in the source architecture and reusing those components in the first iteration
of the target architecture; (c) Identifying which elements of the architecture
are static and which elements are dynamic; and (d) Determining the desired
communication pattern between the identified top-level components.

For a graphical application such as HillClimber, we could have made the com-
munication patterns between components more loosely coupled and conform
to the implicit invocation architectural style [41]. However, to avoid a signifi-
cant departure from the source architecture and the resulting code rework, we
chose roughly the same top-level components as in the source architecture.

As was done in similar case studies [3,4], it is often ideal to have the original
developers draw the idealized architecture. In this case study, the third co-
author was a former developer and maintainer on the Clspace project, so he
posited the target architecture based on his previous knowledge of the archi-
tecture of the underlying framework. It will become apparent later when we
compare the target architecture to the actual architecture, that the target ar-

16

chitecture left out many legitimate communication between components. This
supports the hypothesis that developers have a conceptual model of their ar-
chitecture that is mostly accurate, but that this model may be a simplification
of reality [3].

Unlike the original architecture, we desired in the target architecture a sim-
plified, minimal communication pattern with loosely coupled components to
improve component reusability and ease future maintenance of the system. We
removed unneeded communication paths. For example, the engine component
drives changes to the graph and it is not necessary for it to communicate di-
rectly with the canvas, whose function is to display the state of the graph
component. Similarly, the window component that implements the user inter-
face does not need to communicate directly with the graph.

We documented the target architecture using the Acme Architecture Descrip-
tion Language [31] and its available tool support, AcmeStudio [64]. Figure 7
shows the the top-level components in the desired target architecture. Un-
like Figure 1 which shows the static organization of the source code in terms
of classes, Figure 7 shows the runtime structure of the system in terms of
component instances.

In ArchJava, each component instance corresponds to an instance of a sin-
gle component class: window, canvas, engine and graph are instances of
HillWindow, HillCanvas, HillEngine and HillGraph respectively. Further-
more, components window, canvas, engine and graph are singleton static
instances. In the desired target architecture, port types are used to encode
the directionality of the communication: e.g., a connection from a port of type
use on component window to a port of type provide on component engine
means that engine provides a service to window, or alteratively window re-
quires a service from engine, i.e., control flows from window to engine.

4.8 Analyzing the Original Program

The goal of this step is to consider the structural properties of the original pro-
gram that require refactoring in preparation for re-engineering. For example,
some object-oriented implementations are difficult to re-engineer to ArchJava,
because many object-oriented patterns involve passing object references and
ArchJava restricts passing component references in order to enforce the com-
munication integrity property.

Top-level Elements. The previously identified top-level elements are those
that will become component classes. At this point, it is important to con-
sider whether the top-level elements being turned into component classes are
conceptually part of the architecture rather than just data structures. Using

17

window canvas graph

engine

Legend;
Components | Connectors Ports
O use
TietModeT <> CallReturnConn
> orovide

Fig. 7. C&C View showing the desired target runtime architecture. The assigned
port types encode the control flow. Components node and edge are not shown.

component classes as data structures is bound to be awkward because com-
ponent classes are not really intended to fill that role: data structures demand
flexibility and ArchJava’s component classes impose more rigid constraints
such as they cannot be passed as references or stored in arrays.

In HillClimber, we initially decided to turn the following Java classes into
ArchJava component classes: Hi11Window, HillCanvas, Hil1Engine and HillGraph.
We considered HillNode and HillEdge as data structures; similarly, we left
many classes (e.g., Set, IntList) as ordinary Java classes because they are

not part of the architecture.

Object Sharing. We studied the sharing of objects. As discussed in [4], Arch-
Java does not allow a component to be shared by two container components.
Thus, structures that are shared between components should be left as or-
dinary objects, unless the sharing can be easily replaced with method calls
through the container component’s port.

In HillClimber, there were many objects that were shared between various
component instances, so their classes were left as ordinary classes. In particu-
lar, Hil1Node and HillEdge objects are instantiated by the HillCanvas ob-
ject if they are created interactively by the user or by the HillGraph object if
the graph is loaded from a persistent representation. Similarly, objects of class
Constraint which implements all the functionality related to constraints, are
shared between objects of type HillCanvas, Hil1Edge and a variety of other

18

dialogs, so they were left as ordinary classes.

Initialization Order. It is important to discover the order in which the top-
level elements are initialized. This information is needed when constructing the
static architectural instances and their static connections: e.g., in HillClimber,
HillCanvas had to be initialized before Hil1Graph.

Communication Patterns. At this point, one should get a rough idea of
the extent to which the original code violates communication integrity rules.
For instance, if there are many cases of passing around component objects or
interfaces, this is an indication that significant work may be needed to con-
vert the design to one that can be implemented in terms of ports and connec-
tions. In HillClimber, this was indeed the case: references of type HillWindow,
HillCanvas, HillEngine, and HillGraph were being passed as constructor
arguments or as method arguments.

When examining communication patterns, we identified navigation code [22],
i.e., code that traverses a series of object links before calling a method on
the final object, a well known symptom of misplaced behavior that violates
the Law of Demeter and leads to unnecessary dependencies between classes
[45]. We used simple pattern matching to identify some navigation code as
explained in [22]. More advanced techniques such as approaches based on
aspects [46] have also been proposed.

In HillClimber, we found many occurrences of navigation code in the com-
ponent classes, e.g., class HillWindow included code such as the following:
getCanvas () .getGraph() .setLineWidth(...).

Encapsulation. We looked for fields that are not encapsulated. In a modern
integrated development environment, fields shown in a tree hierarchy are color-
coded based on visibility, making them easy to identify. In HillClimber, as can
be seen in Figure 8, there were many un-encapsulated fields.

Inheritance. Having identified the component classes, we verified that an
ordinary class would not have a superclass that is a component class. ArchJava
allows component classes to extend ordinary classes, so that legacy libraries
could invoke the inherited methods of components through references to the
appropriate superclass.

Initially, we wanted to keep all the classes in the graphFramework as ordinary
classes. However, after we converted the subclasses to component classes, we
noticed that the inherited methods of some of these components were being
invoked arbitrarily through their inherited interfaces, threatening communi-
cation integrity. In particular, we discovered that the subclasses HillGraph
and HillCanvas were communicating through their respective base classes
GraphCanvas and Graph: several methods in the Graph classes called a getCanvas ()

19

method which returned a reference to the canvas object. We refactored the
program to have an explicit canvas port on the base Graph class, while remain-
ing an ordinary class. The canvas port was also accessible in the HillGraph
class as an inherited port.

Using the inheritance feature in ArchJava requires additional considerations:

ArchJava’s sound type system rules prevents a subtype from requiring more

methods than its super-type; otherwise, component substitutability would

break. In HillClimber, we had to add several required methods to the graphPort
port in the GraphCanvas class although these methods were only needed in

its subcomponent class HillCanvas.

Singleton Objects. We studied how the classes that are to become compo-
nent classes are being instantiated. For some components, it may be preferable
to make them singleton instances and use static connections because ArchJava
offers a more straightforward way to implement singleton components. In Hill-
Climber, Hi11Window, Hil1Engine, HillCanvas, and HillGraph are singleton
instances.

Object Re-initialization. We examined methods that perform re-initialization
of objects to study if they release and reallocate new objects or if they reuse
existing objects by resetting their state. We wanted to let the core components
in the HillClimber system form a static architecture with component instances
that persisted for the entire execution of the program. Our rationale was that
this architecture would be simpler to reason about than a completely dynamic
architecture since architectural connections would be set up at startup time.
We modified the program to re-initialize the same HillGraph instance instead
of reallocating a new instance each time a graph was loaded.

4.4 Restructuring the Original Program

The goal of this step is to restructure or refactor the original program in Java
before re-engineering the program into ArchJava.

Converting a program to ArchJava may involve significant restructuring if the
implementation does not match the target architecture well. Restructuring
will be inevitable because many object-oriented patterns rely on passing ref-
erences and ArchJava restricts that to enforce communication integrity. We
attempted to proactively restructure all the potential trouble areas in the orig-
inal program. However, it was hard to determine when to stop; since additional
refactoring was likely to happen during the actual conversion to ArchJava, we
delayed many of the difficult refactorings until they were necessary. In addi-
tion, restructuring the original program helped familiarize us with the code
base, as in the “refactor to understand” re-engineering best practice [22].

20

We made heavy use of the built-in support for refactoring in the Eclipse de-
velopment environment [23] to avoid introducing defects during this stage. In
addition, a recommended best practice is to have an extensive set of unit tests
[25] and run the unit tests after each refactoring. Since HillClimber is pri-
marily a GUI application, we performed functional tests after each non-trivial
refactoring. Some of the important refactorings are discussed next.

Renaming. When enforcing architectural structure in code and recovering
architectural structure from code, program identifiers become important since
the ArchJava implementation will also serve as architectural specification.
Objects corresponding to component instances were assigned meaningful vari-
able names to more clearly convey the architectural intent, e.g., we used
edgeDialog instead of dlg.

Other practical considerations included checking that none of the identifiers
used in HillClimber conflicted with new keywords introduced by the ArchJava
language extension (such as connect, port, etc.). Similarly, since ArchJava
requires the Java programming language version 1.5, we had to check that
the code would compile with Java 1.5. Refactoring tools can greatly assist in
renaming by performing capture-avoiding substitutions.

Encapsulation. All fields on classes that are intended to become component
classes should be encapsulated and be accessible only through accessor and
modifier methods, i.e., no fields should be public, static, transient, or volatile.
ArchJava will consider as illegal any non private and non protected compo-
nent fields in order to enforce communication integrity. In HillClimber, we en-
capsulated fields in all classes, including superclasses in the graphFramework
package. Even if a class is not directly intended to become a component class,
one of its subclasses can be turned into a component class.

Unnecessary Code Eliminating unnecessary code is useful at this point. For
instance, we eliminated fields of reference type that were never assigned to or
read from locally, as well as local variables of reference type that were not
in use. When annotating the program with AliasJava, every reference type
will need to be annotated, assuming the default is not suitable. Annotating
unused fields and variables will cause unnecessary extra work. Fortunately, the
Eclipse Java compiler [28] has many options related to detecting unnecessary
code. For instance, in HillClimber, Hi11Engine had declared a field of type
OptionsDialog that was not in use. We also found several local variables
mainly of type String that were not in use. Of course, we did not eliminate
unused code such as unused method parameters that might have been there
in order to make the system more flexible or extensible.

Arguments of Type Component Class. In most cases, ArchJava does
not allow constructor or method arguments to have the type of component

21

public class HillEngine {
public HillCanvas canvas;
private HillGraph graph;
public int dt = 100; // delay time

public HillEngine(HillGraph graph, HillCanvas canvas) {
this.graph = graph;
this.canvas = canvas;
// Default heuristics
stepCount = 0;
searchAlgs = new Search[8];
searchAlgs[0] = new RandSearch(this);

}
public void step() {

if (!canvas.inline) {
((HillWindow)canvas.parent) .setButtonsSolved (true) ;

b

Fig. 8. Original Java implementation of the HillEngine class. Note the un-encapsu-
lated fields and the code navigation in the implementation of the step method.

classes. A common object-oriented pattern involves passing of the communi-
cating objects as argument to a non-default constructor to ensure that the
references are set correctly. We found it useful to temporarily replace this pat-
tern with explicit calls to setters and getters; once the program is converted
to ArchJava, the setters will be converted into ArchJava connect statements,
as getters and setters taking component types will be illegal. See Figure 9 for
how the HillEngine constructor was refactored.

Initialization Code. Object-oriented programmers often perform all the ini-
tialization aggressively in a given class’s constructor. However, initialization
code in the constructor should not call any port methods since those ports
would still be unconnected in the constructor. The ArchJava compiler stati-
cally warns about possibly unconnected ports in a constructor.

This seems to be a common pattern in component programming. For in-
stance, in Microsoft’s ATL library for COM component programming [7], a
FinalConstruct () method is provided, where the rest of the initialization can
be completed, such as aggregating other objects and the library guarantees
that FinalConstruct () is called after the constructor.

22

public class HillEngine {

private HillWindow window;
private int dt = 100; // delay time

public HillEngine() {
// Default heuristics
stepCount = 0;
searchAlgs = new Search[8];
RandSearch randSearch = new RandSearch();
// TODO: Convert this to connect statement
randSearch.setWindow (window) ;

}
public void setDt(int dt) { this.dt = dt;}
public int getDt() { return dt; }

// TODO: Remove this once in ArchJava

public HillWindow getWindow(){return window; }

public void setWindow(HillWindow window) {
this.window = window; }

Fig. 9. Refactored HillEngine Java class.

In HillClimber, there were many such instances. We followed the same pattern
in all cases: we kept the constructor minimal, and moved the initialization code
into a separate init () method. Object instantiation sites had to be changed
to make sure that the new init () method was called on all instantiated ob-
jects, and called only after all the static and dynamic connections had been
established. Unfortunately, we had little tool support for this type of refac-
toring so additional care had to be exercised to avoid introducing defects into
the program with this refactoring.

Constructor Calls to Overridable Methods. Constructors must not call
overridable methods: the superclass constructor runs before the subclass con-
structor, so the overriding method in the subclass will get invoked before the
subclass constructor has run. If the overriding method depends on initializa-
tion performed by the subclass constructor, then the method will not behave as
expected [9]. If these calls remain when the program is converted to ArchJava,
runtime exceptions occur if the overriding methods depend on ports having
already been connected. Currently, ArchJava does not statically warn about
calls to overridable methods? which may be accessing ports. A sophisticated

2 By default, all public or protected methods in Java are virtual.

23

linear type system to check for all disconnected ports would be required for
static checking and is not currently implemented.

We actually found one problematic instance in the HillClimber application: the
constructor of the graphFramework . Node class was calling a virtual updateSize ()
method, which was overridden inside the subclass HillNode and where it was
accessing the canvas port. Fortunately, there exists tool support to look for
these kinds of errors: for instance, running the tool EclipsePro Audit [29] on
the original Java implementation uncovered around 70 instances where the
constructor invoked a non final method. However, not all of the flagged style
violations were errors.

Navigation Code. Previous ArchJava case studies [3] explained how navi-

gation code is often a significant problem when converting to ArchJava: being

proactive and eliminating as much as possible of it will be effort well spent. In
HillClimber, for instance, we replaced ((HillWindow)canvas.parent) .setSolved(true);
by declaring a field window, making sure that the field is initialized and chang-

ing the call to window.setSolved(true).

Port Types as Interfaces. This refactoring is not essential, but we found
it helpful. For many of the HillClimber classes that were being converted
into component classes, we extracted into interfaces all the public methods
available on the class including methods inherited from the base classes. These
interfaces were useful for adding the correct required and provided method
signatures on the ports as they were being declared since ArchJava does not
currently support explicit port types.

4.5 Expressing the Architectural Control Flow

From this point onwards, we switched to the ArchJava environment and could
no longer use the Eclipse Java development environment. The first step was to
simply rename the *. java files to *.archj and recompile using the ArchJava
compiler. As long as no program identifiers are using any reserved keywords,
the ArchJava development environment will compile HillClimber without fur-
ther modification or error, but at this point, the ArchJava type system would
not be enforcing any communication integrity.

ArchJava annotations were added incrementally to convert key communication
relationships from standard method invocations to the port communication
construct as described below. See Figure 10 for the resulting ArchJava code.

e Changing an ordinary class into a component class: the change itself
was simple but often required many additional changes to pass communi-
cation integrity checks, e.g., there can no longer be any method parameter

24

having a type corresponding to a component class.

e Adding a port to a component class: we followed the following guide-
lines when adding ports to ease future program understanding.

- We defined unidirectional ports in order to clarify the directionality of the
communication, i.e., a given port exposes only provided methods or only
required methods and never both;

- We created separate ports on each component to keep the “interface”
(i.e., the set of methods provided or required) of each port as narrow as
possible;

- We named each port to correspond to that of the component instance it
is intended to require services from or provide services to;

- In the case of inherited ports, we defined all the required methods on
the port of the base component class and added any provided methods
on the derived component class. This is actually required by ArchJava’s
component substitutability rules.

e Changing a field link into a connection: in many cases, this simply
involved converting an instance variable to a port. If the port is given the
same name as the deleted instance variable, and if there are no direct calls to
public fields (this is where encapsulating all the fields pays off), method call
receivers need not be modified because the port call syntax will be identical.
For each method that is called on a given port, we declared its signature as
a required method on the new port (See Figure 10).

e Adding static connections: the newly created ports on static component
instances were connected using static connections.

e Using dynamic constructs: for dynamic component instances, we used
ArchJava’s dynamic constructs (connect patterns and expressions [3]). As
discussed previously, in many cases, we followed consistently the pattern of
instantiating a component, connecting its ports, then calling an initialization
method to complete the component’s initialization as shown in the code
snippet below:

FontDialog fd = new FontDialog((java.awt.Frame)this.parent);

connect (fd.canvas, canvas);

fd.init();

4.6 Checking Against the Target Architecture

To guide the re-engineering activity toward the target architecture, we periodi-
cally checked the implementation against the target architecture by recovering
an up-to-date architectural component-and-connector (C&C) view from the
implementation using available ArchJava tool support [2]. The recovered C&C
views contained purely structural information such as components, ports and
their connections. Architectural styles and types were manually supplied since
ArchJava does not currently represent that information. For instance, differ-

25

public component class HillEngine {
// Ports
public port /* HillCanvas */ canvas {
requires boolean isInline();
U
public port /* HillGraph */ graph {
requires int numEdges();
N
public port /* HillWindow */ window {
requires void setButtonsSolved(boolean solved);
.}
private port /* HillWindow */ p_window {
provides Applet getApplet() {
return window.getApplet(); }
.
// Glue internal port to external port
private port /* HillGraph */ p_graph {
provides int numEdges() {
return graph.numEdges();}
U
public port /* HillEngine */ engine {
provides void setDt(int dt);
provides int getDt();
N
// Child components
private final RandSearch randSearch = new RandSearch();
// Static connections
connect engine, randSearch.engine,
connect p_graph, randSearch.graph,

public HillEngine() {

// Note: Do most of initialization in init()
}
public void init() {

}
public void step() {

if (lcanvas.isInline()) {
window.setButtonsSolved (true);

Fig. 10. Re-engineered HillEngine component class in ArchJava.

26

L} canvas

graph

Legend;
Components | Connectors Poris
o use
TierMode G ZallReturnConn |
p Provide

Fig. 11. The re-engineered HillClimber as-built runtime architecture.

ent port types were manually assigned based on whether a port exposed only
provided methods, exposed only required methods or exposed both provided
and required methods (See Figure 11).

The C&C views were useful for quickly assessing the current state of the
implementation and determining how far it was from the desired target archi-
tecture. These snapshots helped produce a cleaner design since exposing the
control flow information highlighted spaghetti style connections. Finally, the
extracted C&C views helped with some of the code changes by enabling us to
quickly identify the ports which were not connected.

Toward the end of the case study, we discovered that the original target archi-
tecture was too optimistic, and that there were good reasons for the additional
runtime dependencies. For instance, the observed runtime dependency in Fig-
ure 11 between component engine and component canvas was the union of
what the given component engine, as well as any of it subcomponents, re-
quired. Since one of engine’s subcomponents required access to functionality
from the canvas, that automatically forced the engine component to require
functionality from the canvas component.

27

4.7 Expressing the Architectural Data Sharing

Thus far, ArchJava provides a partial communication integrity guarantee [3],
enforcing the control flow architecture, i.e., communication through method
invocation. The goal of this step is to add alias and ownership annotations to
the program to provide a more complete assurance of communication integrity,
and include communication through shared data.

Overall strategy. Annotating a program with AliasJava is also an iterative
process, with the following overall sequence of steps:

(1) Determine the non-default ownership domains, i.e., domains other than
shared and owned;

(2) Map each architecturally relevant object, i.e., each instance of a compo-
nent class, to the appropriate ownership domain;

(3) Map the ownership domains and the links between them to domain dec-
larations in the program, and to annotations on the architectural object
instances: this requires propagating the appropriate domain parameters;

(4) Annotate any remaining objects with the most precise appropriate do-
main to pass the shared data communication integrity checks: in many
cases, the lent defaults on method parameters and on local variable dec-
larations are appropriate; for many non-architecturally relevant objects,
one of the default domains is often appropriate (e.g., owned or shared);
otherwise, one of the domain parameters is used;

(5) In the process of annotating object references, study the need to use more
specific domain parameters. If a domain parameter does not really seem
appropriate for the specific class, such as when a class mainly involved
with business logic needs to access a domain parameter for user interface
objects, identify the corresponding code as needing refactoring.

Ownership Domains. For HillClimber, we wanted to roughly separate the
runtime component instances of the application into a tiered architecture cor-
responding to the Model View Controller (MVC) pattern [38]. We created a
data domain corresponding to the model tier, a logic domain correspond-
ing to the logic tier, and a user domain corresponding the user interface tier
with the graphical user interface components. We wanted to place objects
of type HillGraph, HillNode, and HillEdge in the same ownership domain
data. This also required putting objects of their respective base classes Graph,
Node, and Edge in the same domain data. With these ownership domain an-
notations, we wanted to make sure that the graph and its associated nodes
and edges were only modified by other components in the same data domain
and its owner, which is important for preserving the integrity of the graph
structure. We also wanted to put the algorithmic objects in their own do-
main, so we put objects of type HillEngine in the logic ownership domain.

28

See Figure 13 for the corresponding domain declarations in the top-level Hill
component.

Domain Parameters. To satisfy the rules of the AliasJava language, we
propagated the top-level domains as domain parameters to the related classes,
including their base classes, as needed. See Figure 12 for the usage of the ui,
logic and data domain parameters in the HillEngine component class.

Default Domains. In HillClimber, we marked all instances of java.lang.String
with the global shared domain. For many of the user interface widgets, we
marked the corresponding objects as owned. In a few cases where we consid-
ered aliasing to be innocuous and to avoid the need to explicitly pass the ui
domain parameter, we marked the corresponding objects as shared.

Annotations as Metrics. Many re-engineering approaches encourage the
use of metrics to measure the quality of the rework [65]. Adding the aliasing
annotations to the re-engineered program expressed in ArchJava highlighted
additional refactoring opportunities that cannot be easily noticed by looking
at the control flow communication. While adding the aliasing annotations to
the re-engineered program, we used the list of domain parameters added to a
given class as a measure of the quality of the design. If unexpected domain
parameters appeared, they often revealed unwanted data sharing relationships
which led us to refactor the program, thereby possibly affecting the control
flow communication as well.

For instance, during an early iteration, after we parameterized the GraphCanvas
component class by the ui and the data domains, we found ourselves passing
the ui domain parameter to the Graph class, the base class for Hi11Graph. We
were surprised that the Graph base component class needed the ui domain
since we were expecting to only pass it the data domain parameter. It turned
out that Graph had a reference to GraphCanvas, so Graph only needed the
ui domain parameter to properly annotate its GraphCanvas reference. This
revealed that the subclasses HillGraph and HillCanvas were communicating
through their respective base classes Graph and GraphCanvas as shown in the
code snippet in Figure 14. We ended up eliminating the canvas reference to
the GraphCanvas from the Graph base component class, and replacing it with
an explicit canvas port, which is inherited by the Hi11Graph class. This was
not hard to do since all the methods needing the canvas reference were simple
wrapper methods.

Similarly, we were surprised to have to pass the data domain parameter to
a simple dialog class FontDialog, because the dialog had a reference de-
clared with its most specific type GraphCanvas. In some cases, it would have
been possible to generalize the type of the reference, and make it of type
java.awt.Frame. In this case, since FontDialog needed to access some of the

29

public component class HillEngine<ui, logic, data> {
private ui PlotFrame<ui,logic> pFrame;
// Array of search algorithms
private logic Search<logic,data>[logic] searchAlgs=new Search<logic,data>[8];
private logic AutoSolve autoSolve;
private logic BatchRun batchRun;
private final ui TraceDialog<data> traceDialog = new TraceDialog<data>();
private logic Vector<logic> batchSteps;
private final logic RandSearch<logic,data> randSearch =
new RandSearch<logic,data>();
// Connect patterns
connect pattern engine, PlotFrame.engine;
connect pattern engine, AutoSolve.engine;
connect pattern engine, BatchRun.engine;

// Connect expressions
connect engine, randSearch.engine, ...;

// Ports
public port /* HillCanvas */ canvas
{
requires boolean isInline();
requires void repaint();

}
public port /* HillGraph */ graph
{
requires data Enumeration<data> getNodes();
requires int numNodes();
}
public port /* HillWindow */ window
{
requires shared Applet getApplet();
requires shared Point getLocation();
}
public HillEngine() {
}

public void init() {
traceDialog.init();

}

Fig. 12. HillEngine component class in ArchJava with AliasJava annotations.

30

public component class Hill {
domain data;
domain userTier;
domain logicTier;

private
private
private
private
connect
connect

connect
connect

final userTier HillWindow<userTier,logicTier,data> window =
new HillWindow<userTier, logicTier,data>(null);
final userTier HillCanvas<userTier,data> canvas =
new HillCanvas<userTier, data>(window, false);
final data HillGraph<logicTier,data> graph =
new HillGraph<logicTier,data>();
final logicTier HillEngine<userTier,logicTier,data> engine =
new HillEngine<userTier, logicTier, data>();

canvas.graphPort, graph.graphPort, engine.graph, window.graph;
canvas.canvas, graph.canvas, engine.canvas, window.canvas;
engine.engine, canvas.engine, window.engine;

canvas.window, window.window, engine.window;

public Hill()

{

canvas.init();
graph.init();

window.init();
engine.init();

}

public static void main(String[] args)

{
Hill
+
X

system = new Hill();

Fig. 13. The top-level component class in ArchJava with AliasJava annotations.

functionality of the GraphCanvas (which was parameterized with domains ui
and data), we would have had to create an interface which was specific to
GraphCanvas but which didn’t require the domain parameters. However, in
the general case, it may not be possible to avoid passing the domain param-
eters around between closely related classes. For FontDialog, we ended up
replacing the reference with a canvas port.

Annotation Statistics. We built a simple program analysis to obtain sta-
tistical information on the AliasJava annotations in use. Clearly, having a
majority of the objects in the program marked as shared would have reduced
the value of an annotation system. Overall, the field annotations were broken
down as follows: 45% as owned, 34% as shared, 10% as data, 6% as logic,

31

Before:
public class Graph<data> ...
// canvas containing this graph
private shared GraphCanvas<data> canvas;

public shared GraphCanvas<data> getCanvas() {
return canvas,
}
public boolean isInSolveMode() {
return getCanvas().getMode() == GraphConsts.SOLVE;
}

After:
public component class HillGraph<logic, data> extends Graph<data> {

public port canvas // This replaces getCanvas() from the base class

{

requires boolean isSolveMode() ;

}

Fig. 14. Earlier version of the Graph class exhibiting communication with the
GraphCanvas class. The reference to GraphCanvas was eliminated from the base
class, and replaced with a port canvas in the HillGraph sub-class.

4% as ui and 1% as other annotations. Variable and method parameter dec-
larations were broken down as follows: 69% as lent, 14 % as shared, 16%
as data and 1% as other annotations. In AliasJava, the default annotation
for object fields is owned, and the default annotation for local variables and
method parameters is lent, so if these values are appropriate, no annotation
is necessary. Finally, as we mentioned earlier, we could have reduced further
the number of shared annotations by explicitly passing an explicit ui domain
parameter.

Data Sharing Visualization. Typical ADL C&C views are control flow cen-
tric, so we made a stylized use of C&C views to show data sharing using ports
for ownership domains and shared data connectors for shared data communi-
cation, shown in Figure 15. Furthermore, current ADLs do not easily support
multiple projections [20] of the same view: we required a control flow projec-
tion and a data sharing projection of the same C&C View but we ended up
with two separate C&C views which have to be maintained independently and
thus are bound to diverge.

32

LI|

LOGIC
DATA
—Legend:
Components | Connectors Ports
- B conmector Part

Fig. 15. A visualization of the runtime data sharing architecture of the re-engineered
HillClimber application using a C&C view. Each component has one port to indicate
that it shares data with other components. A shared data connector is defined for
each ownership domain, i.e., the DATA, LOGIC, and UI connectors shown. Two
components that are connected to a shared data connector communicate through
shared data.

4.8 Summary

In summary, we used ArchJava and AliasJava to re-engineer a system of non-
trivial size to enforce full communication integrity. Making both the control
flow and the data sharing explicit in the implementation enabled us to reason
about the implementation and we believe this will limit future architectural
drift and erosion.

The soundness of the ArchJava and AliasJava type systems together with an

33

effective change management policy can facilitate enforcing the architecture
to prevent the loss of architectural structure in the re-engineered program,
more easily than in the original Java program. The communication integrity
property requires explicitly declaring any new runtime connections as they
are added to the implementation. For instance, if a developer is adding ad-
ditional control flow to the program, she will need to create a new port, add
a new required or provided method to an existing port, add a new connect
pattern, or add a new connect statement. Similarly, if a developer is chang-
ing the data sharing architecture, he will need to declare additional domain
parameters and pass additional domain arguments to object allocation sites.
Code reviews or inspections could look for such changes prior to check-in to
see if the additional communication patterns are allowed with respect to the
system’s runtime architecture. Ideally, one would have tool support to com-
pare the changed architecture to the system’s desired architecture [2] and only
allow certain changes. In the original Java program, changing the runtime ar-
chitecture may be as simple as passing a reference to an object which makes
it harder to determine which code modifications are changing the system’s
runtime architecture.

4.9 Effort Estimates

With the current level of tool support, re-engineering a large program to use
ArchJava and AliasJava may require significant effort. A careful log of the
number of hours involved in the various steps was not kept since the case
study was conducted in different phases. There was also a large number of
interruptions to fix various problems encountered in the tools, and significant
time spent on tool setup and learning. When adding the AliasJava annotations,
we did not separately track the time spent annotating the parts of the Java
Standard Library that were in use as we should have, since this is a one
time investment that can be amortized over several re-engineered systems.
The entire case study, i.e. the steps described above including restructuring,
re-engineering to ArchJava and annotating with AliasJava could probably be
performed in less than 40 hours excluding the time spent to learn ArchJava
and AliasJava and assuming a fully annotated Java Standard Library.

Expressing the control flow architecture in ArchJava required significant source
code restructuring to make the code conform to the intended architecture.
However, adding the AliasJava annotations required changing many more lines
of code than expressing the control flow architecture did. The metrics for the
changed lines of code were computed using the GNU diff [48] and the GNU
diffstat utilities. All numbers reported by diffstat are measured in lines of code
and ignore all blanks. As a reminder, the original Java program consisted of
16,000 lines of code and 92 classes contained in 82 files.

34

Restructuring the Java program. Re-structuring the program in Java did
touch quite a few files. In total, there were 61 files changed. In those files, there
were 201 line insertions, 504 line deletions and 1,702 line modifications. In
summary, the changes affected 15% of the total lines of code. In this case, most
of the code changes were performed automatically by the Eclipse refactoring
tool support.

Re-engineering to ArchJava. Re-engineering the restructured Java pro-
gram to ArchJava to express the control flow architecture affected 43 files:
there were 678 line insertions, 243 line deletions and 1,503 line modifications,
affecting about 15% of the lines of code in the program. In this case, most of
the changes to the code were performed manually. The changes are predom-
inantly additions and modifications of lines of code; some of the deletions in
this step simply undo some of the temporary additions during the restructur-
ing step such as the intermediate accessors and modifiers discussed in Section
4.4. There are many different architectural views of a Java program that could
be expressed using ArchJava, and the choice of which one to use relies criti-
cally on human architectural knowledge and judgment. Thus we do not believe
that this transformation can be done completely automatically. However, tools
have been developed to ease the development of custom refactoring transfor-
mations, e.g., TXL [21], and could be useful in capturing some of the Java to
ArchJava restructuring operations once the architectural structure has been
decided.

Adding AliasJava annotations. As predicted, adding the AliasJava anno-
tations to the re-engineered ArchJava program to express the data sharing
architecture affected a large number of files. There were 84 files changed, 29
line insertions, 12 line deletions and 3,475 line modifications (excluding anno-
tations to the Java standard library). In this case, most of the changes to the
code were performed manually, since ownership annotation inference remains
an open research problem (discussed later).

By far, most of the differences are changes to existing lines of code: in fact,
over 20% of the lines of code of the re-engineered ArchJava program had
to be modified. The observed additions and insertions are mostly inciden-
tal since we had to make some minor changes to the code because we were
using an older annotated version of Java Standard Library which had been
partially annotated in previous case studies. For instance, we replaced uses
of StringBuilder with regular string concatenation. Also, in the process of
annotating local variables, we discovered that some variables were not in use,
so we deleted their declarations. Finally, we had to replace some legal Java
syntactic constructs to work around certain limitations or bugs of the Alias-
Java compiler, e.g., replace array initializer syntax with the equivalent longer
syntax.

35

4.10 Case Study Limitations

We did not empirically evaluate that the re-engineered ArchJava HillClimber
implementation is actually easier to understand and evolve than the original
Java implementation. That would require having junior programmers (e.g.,
UBC summer interns) co-evolve the ArchJava implementation in parallel with
the original Java implementation to see if the system architecture is preserved
better than if it has been left in pure Java and to see if the maintainers run
into some of the expressiveness issues in ArchJava discussed in Section 6.2.
However, the current level of tool support for ArchJava does not make this an
attractive proposition and co-evolving the two implementations would consti-
tute double work. Finally, this case study did not address the complex issues
that are likely to arise when re-engineering an application that relies heavily
on middleware (e.g., Enterprise Java Beans [24]). Additional case studies are
an important element of future work in this area.

5 Related Work

We previously discussed in Section 3.1 some of the approaches related to
ArchJava and AliasJava. This section overviews related work in the area of
re-engineering and similar case studies.

Re-engineering. Many published re-engineering case studies ([12,40,35]) il-
lustrate best practices for re-engineering and deal with legacy systems that are
much larger than our subject system. We described a case study in-the-small
which emphasized using a recently proposed language that enforces commu-
nication integrity checks. However, the current level of tool support for the
research languages we used may limit the viability of the re-engineered system.

Re-engineering often deals primarily with module views [63] and aims to im-
prove the static system structure. In our approach, we used mainly instance-
level runtime architectural views to visualize and reason about the subject sys-
tem (Figures 11 and 15), although we did consider static module view (Figure
6) to take into account ArchJava and AliasJava’s rules concerning inheritance.
The research community is increasingly using architectural information during
the re-engineering process, e.g.,[39,61,67]. Our approach is similar to the archi-
tectural improvement proposed by Krikhaar et al. [39]: during an architecture
impact analysis phase, structural changes are made to the architectural model
to determine the resulting architecture; then, if the resulting architecture is
desirable, the structural changes are applied to the system to obtain the new
architecture, during a transformation phase. Similarly, several case studies
[14,17,57,59] emphasized the application of design patterns [30] in order to

36

clarify the design. Although component-and-connector architectural views are
at a higher level of abstraction than UML diagrams illustrating design pat-
terns, we used a common pattern for graphical user interface applications,
the Model View Controller (MVC) design pattern to clarify the architectural
intent when adding the ownership annotations.

Refactoring. Most of our program transformations have been previously dis-
cussed in the large body of refactoring literature (See [52] and references
therein). Refactoring typically implies that the destination language is ex-
actly the same as the source language, whereas our work attempts to see the
effect of re-engineering with a new language as a target and with design in-
formation explicitly encoded in the source text (another aspect missing from
refactoring). We attempted to underline this difference in the paper by dis-
tinguishing an early restructuring step (Step 4 in Section 4) from the overall
re-engineering process which also includes reconstituting the system in the
ArchJava language with AliasJava annotations (Steps 5 and 7 in Section 4)
to enforce the architecture in code.

Some refactorings, e.g., checking for duplicated code [8], were not applica-
ble for HillClimber, perhaps due to its relatively small size. The refactoring
community has proposed using metrics [65] or visualization [68] to identify
“code smells” [25] or to determine the effect of refactoring on the maintain-
ability of the program [37]. Our approach relies on language features to provide
assurance of architectural conformance as well as highlight refactoring oppor-
tunities: we augment the program with architectural control flow and data
annotations, use the annotations to reason about the runtime structure of the
program and modify the annotated program based on what those annotations
tell us. Finally, we visualize the instance-based runtime architectural view at
a slightly higher level of abstraction than detailed design.

Other Related Case Studies. Unlike previously published case studies in-
volving adding control flow or aliasing annotations to existing applications
[3,4,54], we were more methodical about having an explicit restructuring step
in preparation for the re-engineering step. We explained each step in detail, as
a starting point to maybe generalize the steps into an “architectural pattern
language” [32] to re-engineer an object-oriented implementation into an Arch-
Java implementation. A previously published AliasJava case study illustrated
adding aliasing and ownership annotations to an existing Java application,
Aphyds [5]. However, the Aphyds case study consisted of annotating only a
self-contained part of the application with no user interface and affected fewer
lines of code than this case study. Previous case studies have reasoned sepa-
rately about communication through control flow [3,4] or shared data [5,33].
The HillClimber case study illustrated the benefit of reasoning about both in
the same implementation as they can affect each other: adding the AliasJava
annotations to the ArchJava implementation revealed additional “code smells”

37

that were not noticed earlier simply by looking at the control flow architecture
and led to additional restructuring. A case study using the Universes owner-
ship type system [54] on an industrial software application is documented in
[33]. Although the subject system in the Universes case study is larger than
HillClimber (around 55,000 lines of code), only a portion of the system was
annotated. In the Universes case study, the author performed much of the
restructuring in the process of adding the aliasing annotations. In many cases,
adding ownership annotations generated many compile errors that took time
to resolve. Finally, the Universes case study used mainly design-level object
interaction views and only focused on the data sharing perspective. In the
HillClimber case study, we used architectural views and reasoned about both
control flow and data sharing.

6 Lessons Learned

In this section, we describe some of the lessons we learned during the case
study, in the belief that a wish list will provide impetus for improving the
languages, techniques and tools we used. Many of these lessons may already
be known, but unfortunately, it seems that some of them were ignored in the
design of some of the more recent languages and tools that we used in this
case study. We re-emphasize them for the next generation of languages and
tools so they can handle larger systems.

6.1 Hints for Language and Tool Designers

Keep It Iterative. The activities that seemed to make the process harder
were precisely the ones that interfered with the iterative nature of the process:
e.g., once a program is converted to ArchJava, refactoring support available
for a Java program is no longer available, even if the ArchJava program still
has many classes that are still plain Java classes. For instance, after we started
migrating the code to ArchJava, we discovered that we had forgotten to en-
capsulate several fields in the base classes in the graphFramework package.
Even though none of the classes in that package had been converted then to
component classes or declared ports, we could no longer use refactoring tool
support. Fowler offers an additional insight: “[...] irreversibility [is] one of
the prime drivers of complexity. And agile methods [...] contain complexity
by reducing irreversibility” [26]. Turning a Java program into an ArchJava
program is an irreversible transformation.

Keep It Incremental. Having the ability to incrementally convert the pro-
gram to ArchJava was extremely valuable. For instance, turning a class into a

38

component class can suddenly generate many ArchJava compile errors (e.g., if
that type was used as a constructor argument). However, there was always an
easy workaround: non-component classes can have ports as well. So in some
cases, we resorted to first adding ports and then converting the class to a
component class after we better understood the dependencies. However, the
legacy mode was not always perfect: currently, one can add ports to an or-
dinary class, but one cannot add connect expression except for a component
class. If one is not careful and does not connect the inherited ports when in-
stantiating the subclasses, these ports may remain disconnected and produce
runtime exceptions.

Tolerate Incompleteness. Even development environments are moving to-
wards tolerating incompleteness. For example, the Eclipse Java Development
Tooling [28] allows running and debugging code which still contains unresolved
errors. The ability to temporarily tolerate incompleteness and errors is even
more critical for a language such as ArchJava. During a re-engineering activ-
ity, mixing the two concerns (i.e., the implementation and the architecture)
is hard if one wants to first codify the desired architecture, yet maintain a
running system. Some Architecture Description Languages require declaring
ports but do not require declaring the provided and required functionality on
the ports. ArchJava always requires both. ArchJava currently elegantly sup-
ports architectural design with abstract components and ports, which allow an
architect to specify and typecheck an architecture before beginning program
implementation. However, it does not easily support the ability to incremen-
tally enforce architectural conformance checking. Some possible options could
include having different warning levels, or having a setting to relax some of
the checks for required and provided functionality, at least temporarily.

Automate as Much as Possible. Although automation has been a ma-
jor, long-term goal of software engineering research and practice to aid engi-
neers in development and evolution tasks, we realized that the tool support
is still rudimentary in many cases. Although we were able to use standard
refactoring tools for many of the simple program transformations, we think it
would have been helpful to have a set of tools to further automate the process
of re-structuring the original program. Identifying program code in need of
refactoring is still mostly a manual exercise. However, we believe that for this
kind of re-engineering, where the rules are relatively well known, automated
support would be particularly useful. For instance, a tool could take a list
of the intended component classes, look for known problems (such as public
fields of those types or constructor arguments of those types), suggest a list
of refactoring (e.g., encapsulate fields), automatically construct some of the
refactorings, and finally give the user the opportunity to preview the proposed
changes and accept or reject them.

39

6.2 Perceived ArchJava Limitations

There are important limitations to the currently available tool support for the
ArchJava language that affect the viability of the re-engineered HillClimber
application. The ArchJava development environment offers only basic features
and does not provide support for debugging and refactoring. However, there
are more fundamental issues that we encountered during this case study that
we would like to see addressed in future versions of ArchJava.

Separate Inheritance from Subtyping. ArchJava’s type system, follow-
ing the conventional type systems of implementation languages, focuses on
implementation-level substitutability. A crucial characteristic of conventional
type systems is that all the external services a component requires are stated
in its type, along with a subset of the services that the component provides.
This characteristic ensures that when the type of some component is given,
any component implementation that conforms to the type can be used in the
actual system without violating basic rules of component composition . From
an architectural information hiding standpoint, and in keeping with having in-
terfaces that are as narrow as possible, we thought that it was counterintuitive
to push the declarations of all required methods into the base class, although
some were only really needed in the subclasses. The problem is that inher-
itance and subtyping need to be separated, so one can inherit to get reuse
without subtyping. ArchJava should separate these two to get substitutability
of subtypes but not necessarily of subclasses (where it may not be needed),
and to get as much information hiding as is needed.

Runtime Exceptions. ArchJava is designed on the premise that if a pro-
gram type checks successfully, the match between the implementation and
specified architecture is guaranteed. Unfortunately, certain classes of archi-
tectural errors are only caught at runtime. For instance, since a component
instance can still be freely passed between components as an expression of type
java.lang.0Object, an exception is thrown if an expression is downcast to a
component type outside the scope of its parent component instance. Similarly,
a runtime exception is thrown when accessing a port that is not connected.
Extensive testing is still needed to verify that no serious defects are intro-
duced into a program when re-engineering it into an ArchJava program. To
some extent, the risk of introducing such defects that did not previously exist
may lower the value of the re-engineering activity.

Missing Port Types. ArchJava does not have explicit port types. We re-
sorted to using comments next to the port name to specify the type of the
port. The absence of port types in ArchJava imposed some amount of code

3 This distinction in the way required and provided services are handled is known
as the contravariant subtyping principle.

40

public component class HillEngine {

public ICanvasPort canvasPort {
provides void doThis();

}

public IEnginePort enginePort {
provides void doThis();

}

// Constructor

public HillEngine()

{

}

// Provided method implementations

public void IEnginePort.doThis() {

}
public void ICanvasPort.doThis() {

}

Fig. 16. Proposed syntax using port types and explicit interfaces.

duplication for declaring required methods. On the other hand, this allowed
each component to expose a narrower interface in a given port, by only requir-
ing or providing methods that it actually uses or implements directly. Having
port types would also enable a feature similar to the C# explicit interfaces
[69]. In HillClimber, we had to rename some methods to avoid having a clash
between two provided methods of the same name. ArchJava currently sup-
ports supplying a provided method body inline in the port declaration, but
this may be unwieldy for lengthy methods. An alternative syntax using port
types and explicit interfaces is proposed in Figure 16.

Missing Port Directionality. ArchJava does not currently allow develop-
ers to express that a port can have only required methods or only provided
methods. There is no way to distinguish cases where this happens by chance
or where the architect’s intent is that the port is unidirectional.

Missing Strategy for Component Construction. As discussed earlier, it
would be helpful if ArchJava provided a better mechanism for completing the
initialization of a component, and guarantee that the initialization method
would always be called. One option is to use a Final Constructor as in some
component systems as discussed earlier. More generally, ArchJava should have
some kind of strategy that creates subcomponents as they are needed, rather
than at a particular fixed point which could be either too soon or too late.

Relaxing Architectural Constraints. In many real world architectures, it

41

is often necessary to make exceptions to architectural constraints. For exam-
ple, in a layered architecture with strict performance requirements, it may be
necessary to tunnel between layers so that calls skip one or more layers in or-
der to follow more direct routes, as explained in [27]. Embedded architecture
description languages such as ArchJava currently have no mechanism for han-
dling these exceptions. For instance, even type-safe programming languages
such as C# allow programmers to mark code blocks as unsafe [69] and perform
low-level operations that are normally not available.

Tightening Architectural Constraints. Even when architecture is speci-
fied in source code and enforced by the compiler, there are still methods of
circumventing the imposed architectural structure. For example, components
that are intended to be isolated from each other could still communicate via
shared files or network messages.

Maintaining the Architecture in Code. Although architecture descrip-
tions in source code reduce the need to maintain external documentation,
developers still need to devote resources to maintaining the embedded archi-
tectural description. In a degenerate case, it is possible to circumvent archi-
tectural constraints by making the corresponding objects non-architecturally
relevant (i.e. using ordinary Java classes), and internal to a single architecture-
level component, for example. Therefore, effort must be devoted to ensuring
that the embedded architecture specification is appropriate, complete and up-
to-date. Having the ability to externally visualize the architecture can prevent
such scenarios.

6.3 Percewed AliasJava Limitations

Manually adding aliasing and sharing annotations to a program of non trivial
size taught us a few lessons for ownership systems.

Incrementally and Partially Specifying Annotations. As they stand
today, aliasing annotations cannot always be added by small increments: in
many cases, adding annotations to the entire system is a prerequisite for an-
alyzing a specific component or a specific data sharing aspect. This makes it
relatively challenging to get started on a large code base. The subject system
of a previous AliasJava case study [5] cleanly adhered to the Model View Con-
troller (MVC) architectural style. Having such a design enabled us to annotate
only the model part of the architecture: but even there, the model component
and all its subcomponents had to be completely annotated.

In HillClimber, it was not as easy to perform an incremental or partial annota-
tion of the program since the design is much more tightly coupled. According to
the Structural Analysis for Java tool [34], changing the graphFramework . Graph

42

class could potentially affect 53 out of the 92 classes (i.e., 57%). And indeed,
making the class graphFramework.Graph<data> take a domain parameter af-
fected many classes. Similarly, annotating the other top-level classes meant
that almost the entire program had to be touched, as shown by the changed
lines of code measurements discussed earlier. A similar lesson was drawn in
[33], even though that case study was also attempting to annotate only a part
of the program.

Inferring Annotations Automatically. Inferring annotations automati-
cally is a problem that is currently receiving quite a bit of attention [5]. Based
on the previous lessons, we think that this attention is warranted in order to
make using aliasing and ownership annotations practical for everyday use by
programmers.

Tool support that even partially infers and automates adding annotations
would be extremely useful: e.g., if domain parameters are added to a class,
have a tool make all the derived classes also take at least those domain param-
eters. Similarly, if a domain parameter is added to the class, the same domain
parameter could be added to any class that instantiates the parameterized
class. In the absence of practical inference of annotations and tool support, it
is a lot harder to follow an incremental approach when annotating a program.

Supporting Legacy Mode. AliasJava does not allow implementations of
interface methods or overrides of abstract methods to change the ownership
annotation. Allowing subtypes to be annotated in ways that are incompatible
with their supertypes breaks substitutability and is unsound. However, two
applications instantiating a framework, library or third-party component may
need to annotate the same methods in incompatible ways depending on their
usage.

For instance, AliasJava annotates the this receiver by default with lent.
However, application code implementing abstract methods or interface meth-
ods (e.g., from a user interface framework) can do arbitrary things with the
this pointer such as storing it or passing it to other components. So when an-
notating legacy GUI code, the lent default may not be appropriate. We think
this problem can be solved in AliasJava by adding some kind of parameter to
the superclass, e.g., by making each method parametric in the ownership type
of its receiver.

Adding Annotations to Libraries. Adding annotations to libraries or
third-party components is often not an option if the source code is not avail-
able. And even when the source code is available, annotating a library should
be avoided, as it will have to be redone for each new version of the library. Fi-
nally, two applications may require two incompatible annotations of the same
library. A similar issue with another ownership system was aptly called the

43

“method needed twice” problem in [33]. A feasible solution that is currently
not implemented is to allow annotations to be added to existing code through
external files. This would solve the unavailable library code problem as well
as the library evolution problem, as one would only have to re-annotate the
modified interfaces of the library.

In HillClimber, we ran into this problem: we had a graphFramework.GraphApplet
class which extends the library java.applet.Applet class. For the HillClimber
application class GraphApplet, we wanted the overridden method init to have

a shared this annotation, whereas the AWT Applet init method had a lent
(the default) annotation for this.

Supporting Common Idioms. The AliasJava annotations were generally
perceived as too heavyweight for many relatively common programming id-
ioms. For instance, in many object-oriented applications, it is common to have
a child object point back to its parent object. When ownership parameters
are added, if a class A has a reference to a class B with domain parameters
< a, 3,7 >, then class A has to take domain parameters «, (3,7 in addition
to any domain parameters of its own 9, €, resulting in class A with domain
parameters < «, 3,7, 9, € >. However, the first three domain parameters may
only be used to properly annotate the reference to type B. This quickly can
lead to lengthy domain parameter lists and can be counterintuitive if some of
the domains are intended to be private. Having shorthand annotations such
as owner used in the Sequence example (used in Figure 5) does help a little.

Supporting Additional Annotations. The design of the AliasJava annota-
tion system focused on precisely specifying the aliasing relationships between
objects in the system. As a result, it does not include a few annotations that
are used in some of the related work. For instance, package-based confinement
[10] provides a middle ground between the global shared domain and domains
that are local to an object. AliasJava supports shared, which indicates the
worst case of a globally aliased reference. One typically wants a certain object
to be shared between a small number of classes, not globally, without hav-
ing to create many domain parameters for fine grained sharing. For instance,
read-only annotations [11] can express useful additional invariants about a
system. Similarly, external uniqueness [19] may reduce the burden of anno-
tating internal objects. These features could be added to a future version of
the AliasJava language in a natural way. Additional case studies with these
combined language features would be needed to evaluate their practicality.

Since the case study was first conducted and in light of the lessons learned, we
made various enhancements to ArchJava and AliasJava to address some of the
adoptability challenges discussed above. We converted many compilation er-
rors to warnings which makes it easier to maintain a running system that can
be functionally tested while the re-engineering is underway. To support incre-

44

mental and partially specifiable annotations, we re-implemented the AliasJava
system as Java 1.5 annotations [1] as opposed to a language extension. Having
the annotated program remain a legal Java 1.5 program enables the use of all
the tool support available for Java programs, and makes it easier to justify
the claim that programs are easier to evolve with AliasJava annotations than
without. Finally, expressing AliasJava using annotations could make it easier
to extend the language in a non-breaking way. However, ArchJava is not yet
available as an annotation-only system.

7 Conclusion

Architectural specifications are often not sufficiently maintained along with
the actual implementation. Languages such as ArchJava effectively enforce
architectural structure in source code and promise to help prevent the loss of
architectural information, and the resulting architectural drift and erosion. Al-
though such languages are best applied during the initial development phases,
they can be applied to existing systems to re-engineer, document and enforce
the desired structure.

By eliciting and refining some of the underlying re-engineering principles such
as those outlined in [4], we hope to make the re-engineering activity less daunt-
ing, less painful and less error prone. We also pointed out several limitations
of the languages and the tools we used that will need to be overcome before
they can be used effectively in production software development.

Acknowledgements

We thank Thomas LaToza, Bradley Schmerl and the anonymous reviewers
for comments on this material. We also thank Alan Mackworth for granting
us the permission to use the HillClimber code base and publish details of the
case study. This work was supported in part by NASA cooperative agreements
NCC-2-1298 and NNA0O5CS30A, NSF grant CCR-0204047, a 2004 IBM Eclipse
Innovation Grant, the Army Research Office grant number DAAD19-02-1-
0389 entitled “Perpetually Available and Secure Information Systems” and
was performed as a joint research project in Strategic Partnership between
Carnegie Mellon University and Jet Propulsion Laboratory.

45

References

1]

2]

[9]

Abi-Antoun, M. and Aldrich, J. JavaD: Bringing Ownership Domains to
Mainstream Java. Technical Report CMU-ISRI-06-110, 2006.

Abi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B. and Garlan, D. Differencing
and Merging of Architectural Views. In Proc. 21st IEEE International
Conference on Automated Software Engineering (ASE’06), pp. 47-58, 2006.

Aldrich, J., Chambers, C. and Notkin, D. ArchJava: Connecting Software
Architecture to Implementation. In Proc. International Conference on Software
Engineering (ICSE), pp. 187-197, 2002.

Aldrich, J., Chambers, C. and Notkin, D. Architectural Reasoning in ArchJava.
In Proc. European Conference on Object-Oriented Programming (ECOOP),
Lecture Notes In Computer Science; Vol. 2374, pp. 334-367, 2002.

Aldrich, J., Kostadinov, V. and Chambers, C. Alias Annotations for Program
Understanding. In Proc. of Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pp. 311-330 2002.

Aldrich, J. and Chambers, C. Ownership Domains: Separating Aliasing Policy
from Mechanism. In European Conference on Object-Oriented Programming
(ECOOP), pp. 1-25, 2004.

Microsoft Active Template Library
(ATL) for COM, 2004. http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/vclib/html/_atl CComObjectRootEx.asp

Balazinska, M., Merlo, E., Dagenais, M., Lague, B. and Kontogiannis, K.
Advanced clone-analysis to support object-oriented system refactoring. In Proc.
IEEE Working Conf. Reverse Engineering (WCRE), p. 98, 2000.

Bloch, J. Effective Java. Addison-Wesley. 2001.

[10] Bokowski, B. and Vitek, J. Confined Types. In Proc. Object-Oriented

Programming Systems, Languages, and Applications (OOPSLA), pp. 82-96,
1999.

[11] Boyland, J., Noble, J. and Retert, W. Capabilities for Sharing: A Generalization

of Uniqueness and Read-Only. In Proc. European Conference on Object-
Oriented Programming (ECOOP), Lecture Notes in Computer Science Volume
2072, pp. 2-27, 2001

[12] Britcher, R. Re-engineering Software: A Case Study. In IBM Systems Journal,

Vol.29, No.4, pp. 551-567, 1990.

[13] Brodie, M. L. and Stonebraker, M. Migrating Legacy Systems: Gateways,

Interfaces and the Incremental Approach. Morgan-Kaufman Publishers, 1995.

46

[14] Cha, J.E., Kim, C.H. and Yang, Y. J. Architecture based Software
Reengineering Approach for Transforming from Legacy System to Component
Based System through Applying Design Patterns. In Software Engineering
Research and Applications, Lecture Notes in Computer Science, Volume 3026,
pp. 266-278, 2003.

[15] Chapman, R. SPARK - a state-of-the-practice approach to the Common
Criteria implementation requirements. In Proc. International Common Criteria
Conference, July 2001.

[16] Chikofsky, E. and Cross, J. Reverse Engineering and Design Recovery: A
Taxonomy. In IEEE Software, Vol. 7, No. 1, pp. 13-17, 1990.

[17] Chu, W.C., Lu, C. W., Shiu J. P. and He, X. Pattern-based Software Re-
engineering: A Case Study. In Proc. Sixth Asia Pacific Software Engineering
Conference (APSEC 99), pp. 300-308, 1999.

[18] CISpace: Tools for learning Computational Intelligence. http://www.cs.ubc.
ca/labs/1lci/CIspace/

[19] Clarke, D. G. and Wrigstad, T. External uniqueness is unique enough. In Proc.
European Conference on Object-Oriented Programming (ECOOP), pp. 176-
200, 2003.

[20] Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord,
R. and Stafford, J. Documenting Software Architecture: View and Beyond,
Addison-Wesley, 2003.

[21] Cordy, J.R. The TXL Source Transformation Language. In Science of Computer
Programming Vol. 61, No. 3, pp. 190-210, 2006.

[22] Demeyer, S., Ducasse, S. and Nierstrasz, O. Object-Oriented Reengineering
Patterns, Morgan Kaufmann Publishers, 2002.

[23] Object Technology International, Inc. Eclipse Platform Technical Overview,
2003. http://www.eclipse.org/whitepapers/eclipse-overview.pdf

[24] Sun Microsystems. Enterprise JavaBeans. http://java.sun.com/products/
ejb/docs.html

[25] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D. Refactoring:
Improving the Design of Existing Programs. Addison-Wesley, 1999.

[26] Fowler, M. Who needs an architect? In IEEE Software, Vol. 20, No. 5, pp. 11-13,
2003.

[27] Griswold, W. G., Notkin, D. Architectural Tradeoffs for a Meaning-Preserving
Program Restructuring Tool. In IEEE Transactions of Software Engineering,
Vol. 21, No. 4, pp. 275-287, 1995.

[28] Eclipse. Java Development Tooling (JDT) core. http://dev.eclipse.org/
viewcvs/index.cgi/jdt-core-home/main.html?rev=1.97

47

[29] Instantiations, Inc. EclipsePro Audit tool, 2006. Available at http://www.
instantiations.com/eclipsepro/

[30] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[31] Garlan, D., Monroe, R. and Wile, D. Acme: Architectural Description of
Component-Based Systems. In Foundations of Component-Based Systems,
Cambridge University Press, pp. 47-67, 2000.

[32] Goedicke, M. and Zdun, U. Piecemeal Legacy Migrating with an Architectural
Pattern Language: A Case Study. In Journal of Software Maintenance: Research
and Practice, Vol. 14, No. 1, pp. 1-30, 2002.

[33] Haechler, Thomas. Applying the Universe type system to an industrial
application: case study. Master Project Report, Department of Computer
Science, Swiss Federal Institute of Technology, 2005.

[34] IBM alphaWorks, Structural Analysis for Java tool 2004. Available at http:
//www.alphaworks.ibm.com/tech/sa4j

[35] Jacobson, I. and Lindstrom. F. Reengineering of old systems to an
object-oriented architecture. In Proc. Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), pp. 340-350, 1991.

[36] Jaktman, C. B., Leaney, J. and Liu, M. Structural Analysis of the Software
Architecture - A Maintenance Assessment Case Study. In Proc. TC2 First
Working IFIP Conference on Software Architecture (WICSA1), pp. 455-470,
1999.

[37] Kataoka, Y., Imai, T. Andou, H. and Fukaya, T. A quantitative evaluation of
maintainability enhancement by refactoring. In Proc. International Conference
on Software Maintenance (ICSM), pp. 576-585, 2002.

[38] Krasner, G.E. and Pope, S.T. A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80. In Journal of Object-
Oriented Programming, Vol. 1, No. 3, pp. 26-49, 1988.

[39] Krikhaar, R., Postma, A., Sellink, A., Stroucken, M., Verhoef, C. A Two-Phase
Process for Software Architecture Improvement. In Proc. IEEE International
Conference on Software Maintenance (ICSM), pp. 371-380, 1999.

[40] Gannod, G.C., Sudindranath, G., Fagnani, M.E. and Cheng, B.H.C.
PACKRAT: A Software Reengineering Case Study. In Proc. Working
Conference on Reverse Engineering (WCRE), pp. 125-134, 1998.

[41] Garlan, D. and Shaw, M. An Introduction to Software Architecture. In
Advances in Software Engineering and Knowledge Engineering, I (Ambriola
V, Tortora G, Eds.) World Scientific Publishing Company, 1993.

[42] Lam, P. and Rinard, M. A Type System and Analysis for the Automatic
Extraction and Enforcement of Design Information. In Proc. European
Conference on Object-Oriented Programming (ECOOP), Lecture Notes in
Computer Science Volume 2743, pp. 275-302, 2003.

48

[43] LaToza, T.D., Venolia, G. and DeLine, R. Maintaining Mental Models: A Study
of Developer Work Habits. In Proc. IEEE International Conference on Software
Engineering (ICSE), pp. 492-501, 2006.

[44] Lattix Inc’s Dependency Manager (LDM) tool. Available at http://www.
lattix.com/

[45] Lieberherr, K. and Holland, I. Assuring Good Style for Object-Oriented
Programs. In IEEE Software, Vol. 6, No. 5, pp. 38-48, 1989.

[46] Lieberherr, K., Lorenz, D.H. and Wu, P. A Case for Statically Executable
Advice: Checking the Law of Demeter with AspectJ. In Proc. 2nd International
Conference on Aspect-Oriented Software Development (AOSD ’03), pp. 40-49,
2003.

[47] Luckham, D.C., and Vera, J. An Event Based Architecture Definition Language.
In IEEE Transactions of Software Engineering Vol. 21, No. 9, pp. 717-734, 1995.

[48] MacKenzie, D., Eggert, P. and Stallman, R. Comparing and Merging Files with
GNU diff and patch. Network Theory Ltd, 2003.

[49] Madhav, N. Testing Ada 95 Programs for Conformance to Rapide Architectures.
In Proc. Reliable Software Technologies - Ada Europe 96, 1996.

[50] Medvidovic, N., Oreizy, P., Robbins, J.E. and Taylor, R.N. Using Object-
Oriented Typing to Support Architectural Design in the C2 Style. In Proc.
Fourth ACM Symposium on the Foundations of Software Engineering, pp. 24-
32, 1996.

[51] Medvidovic, N. and Taylor, R. N. A Classification and Comparison Framework
for Software Architecture Description Languages. In IEEE Transactions of
Software Engineering, Vol. 26, No. 1, pp. 70-93, 2000.

[52] Mens, T. and Tourwé, T. A Survey of Software Refactoring. In IEEE
Transactions on Software Engineering, Vol. 30, No. 2, pp. 126-139, 2004.

[53] Moriconi, M., Qian, X. and Riemenschneider, R.A. Correct Architecture
Refinement. In IEEE Transactions on Software Engineering, Vol. 21, No. 4,
pp- 356-372, 1995.

[54] Peter Miiller and Arnd Poetzsch-Heffter. Universes: A Type System for
Controlling Representation Exposure. In A. Poetzsch-Heffter and J. Meyer
(Hrsg.): Programmiersprachen und Grundlagen der Programmierung, 10.
Kolloquium, Informatik Berichte 263, 1999/2000.

[55] Murphy, G. C., Notkin, D. and Sullivan K. J. Software Reflexion Models:
Bridging the Gap between Design and Implementation. In IEEE Transactions
on Software Engineering, Vol. 27, No. 4, pp. 364-380, 2001.

[56] Omondo EclipseUML. http://www.omondo.com/

[57] OCinneide, M. and Nixon, P. A methodology for the automated introduction
of design patterns. In Proc. IEEE International Conference on Software
Maintenance (ICSM), 1999.

49

[58] Perry, D. E. and Wolf, A. L. Foundations for the Study of Architecture. ACM
SIGSOFT Software Engineering Notes, Vol. 17, No. 4, pp. 40-52, 1992.

[59] Ping, Y., Kontogiannis, K. and Lau, T.C. Transforming Legacy Web
Applications to the MVC Architecture. In Proc. Eleventh Annual International
Workshop on Software Technology and Engineering Practice (STEP’04), pp.
133-142, 2003.

[60] Prieto-Diaz, R. and Neighbors, J. Module Interconnection Languages. Journal
of Systems and Software, Vol. 6, No. 4, pp. 307-334, 1986.

[61] Riva, C., Selonen, P., Systa, T. and Xu, J. UML-based reverse engineering and
model analysis approaches for software architecture maintenance. In Proc. IEEE
International Conference on Software Maintenance (ICSM), pp. 50-59, 2004.

[62] Sangal, N., Jordan, E., Sinha, V. and Jackson, D. Using dependency models
to manage complex software architecture. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pp. 167-176, 2005.

[63] Schwanke, R. W., Platoff, M. A. Cross References are Features. In Machine
Learning: From Theory to Applications, pp. 107-123, 1993.

[64] Schmerl, B. and Garlan, D. AcmeStudio: Supporting Style-Centered
Architecture Development. In Proc. IEEE International Conference on Software
Engineering (ICSE), pp. 704-705, 2004.

[65] Simon, F., Steinbriickner, F. and Lewerentz, C. Metrics Based Refactoring, In
Proc. 5th European Conference on Software Maintenance and Reengineering
(CSMR 2001), pp. 30-38, 2001.

[66] Stevens, P. and Pooley, R. Systems Reengineering Patterns. In Proc. 6th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
pp- 17-23, 1998.

[67] Tran, J.B., Godfrey, M.W., Lee, E.H.S. and Holt, R.C. Architectural repair
of open source software. In Proc. 8th International Workshop on Program
Comprehension (IWPC), pp. 48-59, 2000.

[68] van Emden, E. and Moonen, L. Java quality assurance by detecting code smells.
In Proc. Working Conference on Reverse Engineering (WCRE), pp. 97-106,
2002,

[69] Wiltamuth, S. and Hejlsberg, A. C# Language Specification. Standard ECMA-
334, 2nd edition, 2002.

[70] ITU-T. Recommendation Z.100, Specification and Description Language (SDL).
Geneva, Switzerland, November 1999.

20

