
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Model-driven Migration of Supervisory
Machine Control Architectures

Bas Graaf, Sven Weber and Arie van Deursen

Report TUD-SERG-2006-020a

SERG

TUD-SERG-2006-020a

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Journal of Systems and Software

c© copyright 2006, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Model-driven Migration of Supervisory Machine Control Architectures ?

Bas Graaf a,∗, Sven Weber b,c and Arie van Deursen a,d

aDelft University of Technology, Delft, The Netherlands
bASML, Veldhoven, The Netherlands

cEindhoven University of Technology, Eindhoven, The Netherlands
dCWI, Amsterdam, The Netherlands

Abstract

Supervisory machine control is the high-level control in advanced manufacturing machines that is responsible for the coordination
of manufacturing activities. Traditionally, the design of such control systems is based on finite state machines. An alternative, more
flexible approach is based on task-resource models. This paper describes an approach for the migration of supervisory machine
control architectures towards this alternative approach. We propose a generic migration approach based on model transformations
that includes normalisation of legacy architectures before their actual transformation. To this end, we identify a number of key
concerns for supervisory machine control and a corresponding normalised design idiom. As such, our migration approach constitutes
a series of model transformations, for which we define transformation rules. We illustrate the applicability of this model-driven
approach by migrating (part of) the supervisory control architecture of an advanced manufacturing machine: a wafer scanner
developed by ASML. This migration, towards a product-line architecture, includes a change in architectural paradigm from finite
state machines to task-resource systems.

1. Introduction

As software systems evolve they tend to become increas-
ingly complex [Lehman and Belady, 1985]. Furthermore,
the architecture documentation and its corresponding
implementation tend to follow asynchronous evolution-
ary paths. Consequently, the conformance between the
architecture specification and software implementation
decreases as a software system evolves [Bril et al., 2005].

In practice, increased complexity and loss of confor-
mance between the architecture as intended and the archi-
tecture as implemented make a system more difficult to
change [Perry and Wolf, 1992]. This results in an increase
of both development and maintenance effort. The involved
effort can, for instance, be reduced by the separation of
concerns, the use of product-line architectures, model-
driven development and automatic code generation.

? This is a substantially revised and expanded version of our paper:
Migrating Supervisory Control Architectures Using Model Transfor-
mations. In Proc. 10th European Conf. Software Maintenance and
Reengineering (CSMR 2006), IEEE CS, 2006.
∗ Corresponding author

Email addresses: b.s.graaf@tudelft.nl (Bas Graaf),
sven.weber@asml.com (Sven Weber), arie.van.deursen@cwi.nl
(Arie van Deursen).

In this paper we consider the migration of supervisory
machine control (Smc) architectures towards a product-
line approach that, amongst others, supports model-driven
development and code generation. In practice, adopting
such techniques requires architectural changes. When
migrating towards a product line, such a migration needs
to be applied repeatedly to migrate different product ver-
sions into product-line members. Therefore, ideally, one
would like to make such a migration reproducible by au-
tomatically transforming one architecture into another. In
this paper we investigate how this can be done using model
transformations. Developing a model-driven migration ap-
proach is particularly beneficial in a setting where product
migration is not a one-off exercise.

In an advanced manufacturing machine, supervisory con-
trol [Ramadge and Wonham, 1987; Gohari and Wonham,
2003] is responsible for the coordination of the (discrete)
high-level machine behaviour. This requires, amongst oth-
ers, interpretation of manufacturing requests, synchronisa-
tion, scheduling, conditional execution, and exploitation of
concurrency with respect to the resulting manufacturing
activities [Sabuncuoglu and Bayiz, 2000; Buttazzo, 2002;
Reveliotis, 2005]. For advanced manufacturing machines,
the control systems have an indicative order of magnitude
of 10 Smc components, each encompassing 104 − 105 lines
of code.

Preprint submitted to Elsevier 7th November 2006

SERG Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures

TUD-SERG-2006-020a 1

This paper was motivated by the prototype migration of
the Smc architecture of a wafer scanner as developed by
ASML, a manufacturer of equipment for the semiconductor
industry. We use this wafer scanner as a running example to
illustrate the migration of a legacy architecture, based on
finite state machines (Fsm’s), to a new architecture that is
based on task-resource systems (Trs’s). This migration is
spurred by the fact that a Trs-based Smc architecture, as
opposed to an Fsm-based one, is declarative, separates con-
cerns, and supports run-time dependent decisions [Van den
Nieuwelaar, 2004]. As a result, the maintainability and flex-
ibility of the migrated software systems is improved.

We consider the start and end point of the migration as
different architectural views [IEEE-1471, 2000]. We refer to
these views as the source and target view respectively. An
important element of an architectural view is its primary
presentation [Clements et al., 2002], which typically con-
tains one or more diagram(s). In this paper we focus on the
models and their governing meta-models underlying those
diagrams. In our migration approach we use these models
to consolidate and reuse as much existing design knowledge
as possible. As such, we consider migration to constitute a
series of model transformations, which we implemented us-
ing the Model Driven Architecture (Mda [OMG, 2005a]).
It should be noted that we only consider the actual migra-
tion approach; the paradigms for the migration start point
and end point are prescribed by our industrial case.

In order to define a reproducible mapping and perform
the migration, we define practical transformation rules in
terms of patterns associated with the source and target
meta-models. These transformation rules are practical in
the sense that they are based on an actual migration as
performed manually by an expert. Based on this migration,
we have formulated generic, concern-based transformation
rules. These rules are defined using a model transformation
language making our approach automated. Due to practi-
cal reasons, which are mainly associated with the informal
use of modelling languages in industry [Graaf et al., 2003;
Lange et al., 2006], we first normalise the legacy models
before applying our model transformations.

Although we focus on the migration of the Smc archi-
tecture of a particular manufacturing system, the ASML
wafer scanner, the contributions of this paper are applica-
ble to similar (paradigm) migrations of supervisory con-
trol components in general. The presented industrial results
serve as a proof a concept, additional migrations have to
be performed before the results can be properly quantified.
The experiences as outlined in this paper are, to a lesser ex-
tent, relevant for all software architecture migrations that
can be seen as model transformation problems.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work. In Section 3 we introduce
Smc, concerns specific to Smc systems, and our running ex-
ample. A generic migration approach, which we use for the
migration between the introduced architectural paradigms,
is presented in Section 4. The source paradigm of the mi-
gration and the normalisation of its associated views are

discussed in Sections 5 and 6. The target paradigm and
our transformation rules are treated in Sections 7 and 8.
We illustrate each step of the migration by means of a run-
ning example. Section 9 reflects on the migration results.
Finally, we conclude in Section 10 with a summary of con-
tributions and an overview of future work.

2. Related work

The process that we propose considers migration as a
mapping from a source to a target view. This approach is
inspired by the approach for architecture reconstruction as
described by Van Deursen et al. [2004]. There, architecture
reconstruction is considered to be a mapping from a source
view that is extracted from code to an architectural target
view.

Our process can also be seen as the application of the
Mda to software migration rather than to software devel-
opment. In the Mda, software development is conceived as
a series of transformations from source models to target
models. As such, in both processes, model transformations
are applied but in our case an essential normalisation step
is added to the original Mda framework.

Fahmy and Holt [2000a,b] discuss several types of
generic architecture transformations that can be viewed as
graph transformations. In this paper we consider domain-
specific transformations on architectural models that are
more complex than typed graphs; next to typed nodes,
our models also include attributes on nodes and edges.
Moreover, their transformations are intended for small,
evolutionary changes to a software architecture, whereas
the transformations as discussed in this paper are driven
by the migration to a different architectural paradigm.

Bosch and Molin [1999] use architecture transformations
during architecture design to realise the non-functional
quality requirements of a system. Of the transformation
types they identify, the application of an architectural style
is closest to our work. To some extent, changing the archi-
tectural paradigm from Fsm’s to Trs’s, as considered in
this paper, could be understood as such a transformation.
In our case, however, this transformation also results in a
product-line architecture.

In other work, transformations are applied to the migra-
tion of software at the level of source code. Baxter et al.
[2004] present a toolkit that uses generalised compiler tech-
nology for this purpose. Gray et al. [2004] use this toolkit
for model-driven program transformations where vertical
and horizontal transformations are identified. Here, verti-
cal transformations concern the creation of software arti-
facts from artifacts at different abstraction levels (trans-
lation). Application of the Mda typically involves vertical
transformations, whereas they investigate its applicability
to horizontal transformations. The architecture migration
we discuss can also be considered a horizontal transforma-
tion. However, where they focus on the source code, we
consider migration at the design level.

2

Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures SERG

2 TUD-SERG-2006-020a

3. Migration context

In this section we first define the Smc context. Next, we
introduce the motivating case and running example for this
paper: a typical wafer scanner as produced, for instance, by
ASML. In this setting we briefly discuss the key concerns
for Smc systems in general. These concerns need to be ad-
dressed during architecture migration. As such, they form
the basis for the design of our normalisation and transfor-
mation rules.

3.1. Supervisory machine control

The machine control context is clarified in Figure 1. From
a supervisory perspective, (sub)frames, transducers and as-
sociated regulative controllers form mechatronic subsystems
that execute manufacturing activities to add value to prod-
ucts. The recipe- and customer-dependent routing of multi-
product flows, with varying optimisation criteria, consti-
tutes one of the key (supervisory) control issues. More-
over, advanced manufacturing machines must respond cor-
rectly and reproducibly to manufacturing requests, run-time
events and results. Consequently, to interpret manufactur-
ing requests and to ensure feasible machine behaviour, a
supervisory machine control component is required to coor-
dinate the execution of manufacturing activities [Ramadge
and Wonham, 1987; Sabuncuoglu and Bayiz, 2000; Van den
Nieuwelaar, 2004].

Figure 1. Machine control context

In practice, a high-level manufacturing request is trans-
lated into valid low-level machine behaviour using multi-
ple, consecutive control-layers. This is supported by recur-
sive application of the control context from Figure 1: man-
ufacturing activities of one level become manufacturing re-
quests for the next level until the level of the mechatronic
subsystems.

3.2. Running example: a wafer scanner

In this paper we consider the ASML wafer scanner as a
representative example of an advanced manufacturing ma-
chine. Wafer scanners are used in the semiconductor indus-
try and perform the most critical step in the manufacturing
process of integrated circuits (IC’s). Figure 2 illustrates a
scanner and its subsystems.

A neighbouring machine, the track (TR), performs pre-
processing steps and delivers silicon wafers to the pre-
alignment system (PA), where the wafer orientation and
alignment are determined and adjusted. Next, the load

@Measure

@Expose

Figure 2. Simplified layout of a wafer scanner

robot (LR) transports the wafer to one of the two wafer
stages (WS:0 or WS:1). Here, the wafer characteristics
are measured. After measurement, the wafer stages are
swapped and the measured wafer is exposed. During expo-
sure, a laser projects an image of the required IC pattern
onto the wafer’s surface through a demagnification lens. A
wafer is exposed in a scanning fashion, similar to the pro-
cess used in a photo-copier. Eventually, the wafer comes to
hold hundreds of small copies (i.e. dies) of this pattern.

After exposure, the stages swap back and the unload
robot (UR) transports the exposed wafer to the discharge
unit (DU) where it is buffered. Next, the wafer is picked up
by the track again to undergo various post-processing steps.
Now, the wafer is ready for another exposure if needed; the
process is re-entrant. With each passing, another layer is
added to each die. Once the wafer has been fully processed
and inspected, it is diced into individual dies that are pack-
aged to form IC’s such as microprocessors.

For the Smc component of the wafer scanner depicted in
Figure 2, we can identify the ‘process wafer w ’ manufactur-
ing request, which supports concurrent measuring and ex-
posing of two wafers. To perform this request manufactur-
ing activities such as ‘load wafer w onto wafer stage WS:0’
and ‘unload wafer w from wafer stage WS:1’ are executed.
For instance, after a wafer has been exposed, and the stages
have swapped, the wafer must be unloaded from its stage.
In turn, these activities are requests for a lower-level Smc
component. In this paper we will use the ‘process wafer’
and ‘unload wafer’ requests as illustrative examples.

3.3. Concerns for supervisory machine control systems

In advanced manufacturing machines, multiple manufac-
turing activities - and sequences hereof - may fulfil a partic-
ular request and, in turn, multiple mechatronic subsystems
may be available to perform a particular activity. That is,
multiple alternatives exist that require the selection of a
specific subset of both manufacturing activities and mecha-
tronic subsystems to fulfil a given manufacturing request.
For instance, when considering Figure 2, removing a wafer
from DU can be done using either UR or LR. For supervi-
sory control of advanced manufacturing machines in gen-
eral, the following key concerns are identified.

The execution of an activity on a selected subsystem im-
plies a specific physical state transition of that subsystem.
The selected sequence of activities for a subsystem requires
matching end states and begin states of consecutive state

3

SERG Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures

TUD-SERG-2006-020a 3

transitions. When these states do not match, an additional
transition, a setup, has to be executed between consecutive
activities. For instance, when UR is idle at PA, a rotation
has to be performed before a wafer can be unloaded. In
Smc, these sequence-dependent setups are common.

Intuitively, controlled usage of mechatronic subsystems
is another important concern. The control system generally
checks the availability of a subsystem that is required for
a manufacturing activity. Once available, the subsystem
should be effectively claimed for the given activity. When
an activity has been (co)performed by claimed mechatronic
subsystem(s), all should be unclaimed or released. In our
wafer scanner example, the unloading of a wafer requires
both UR and, for instance, WS:0.

In order to take full advantage of installed capacity, con-
current execution of activities is done where possible. In
practice, activities can be executed concurrently unless this
is explicitly prohibited by precedence (sequence) relations
between manufacturing activities or usage of the required
mechatronic subsystems. In our wafer scanner example, one
wafer can be measured and prepared for exposure while
another wafer is being exposed.

Synchronous execution is another common concern. This
not only refers to synchronisation of activities such that
they are executed one after the other (e.g. load a wafer
before processing it). It also applies to synchronisation of
specific subsystem state transitions related to two activi-
ties. For instance, physical space is often limited, resulting
in multiple mechatronic subsystems that simultaneously
operate within a confined space. This results in so-called
hazardous areas in which subsystems can collide and state
transitions must be induced synchronously to ensure safety
(e.g. swapping WS:0 and WS:1).

Finally, conditional execution of manufacturing activi-
ties needs to be supported. That is, depending on certain
conditions in a machine, different execution paths for a
manufacturing request might be activated, each consisting
of consecutive manufacturing activities. An example of such
a condition in our wafer scanner example is the presence of
another wafer on the wafer stage at the measure-side.

During migration, sequence-dependent setups, subsys-
tem usage, concurrent execution, synchronous execution
and conditional execution are concerns that need to be ad-
dressed. To this end, we defined concern-based transforma-
tion rules that map these concerns from the legacy to the
new architecture.

4. Model-driven migration

Ideally, the migration of software architectures is com-
plete, reproducible, reliable and automated. We consider
the start and end point of the migration as different archi-
tectural views, referred to as the source and target view re-
spectively. This is similar to the approach for architecture
reconstruction as described by Van Deursen et al. [2004].
An architecture view is associated with a viewpoint [IEEE-

1471, 2000], that, amongst others, specifies a meta-model
for models underlying the primary presentation [Clements
et al., 2002] of that view. In this paper we focus on those
models.

For the migration of source models into target models we
propose the migration approach as shown in Figure 3. It
uses a two-step process that includes a normalisation and
transformation step.

source model
Normalised Target

model

Target

meta−model

Source

meta−model source meta−model
Normalised

rules
Normalisation

rules
Transformation

Source

model

source

conforms to

constrains

target

conforms to conforms to

transform

source target

specify

normalise

specify

Figure 3. Generic two-phased migration approach

Models and their specifications are often incomplete and
have a tendency to become inconsistent and ambiguous
over time. This makes directly translating a source model
into a target model inherently difficult. This is amplified
further by tool limitations and the generally informal use
of modelling paradigms and languages in industry [Graaf
et al., 2003; Lange et al., 2006]. Combined with incomplete
or generic meta-models (e.g. the Uml meta-model), or no
explicit meta-models at all, a multitude of models becomes
conceivable that all have the same intended meaning.

In fact, an analysis of how Smc concerns are addressed in
the source models for our migration, revealed a large vari-
ation in the used idiom. This makes it infeasible to specify
generic corresponding transformation rules. As such, we in-
troduce an intermediate normalisation step that uses a set
of normalisation rules to obtain a normalised source model.
The normalisation rules are defined as mappings from the
source meta-model to the normalised source meta-model.
This normalised meta-model describes a subset of the mod-
els described by the source meta-model. Next, a set of trans-
formation rules can be applied to transform a normalised
source model into the target model. These transformation
rules are defined as mappings from the normalised source
meta-model to the target meta-model.

In all, we see migration as a series of automated model
transformations that are defined on meta-models to trans-
form a source model into a target model using a distinct
normalisation step. This approach is generic in the sense
that it can be applied to any conforming source and target
model without loss of generality. To actually implement this
approach we require (normalised) source and target meta-
models, normalisation rules, and transformation rules.

Although the approach is generic, our industrial case im-
poses some practical restrictions on the enabling technolo-
gies. Spurred by the fact that the existing architecture doc-
umentation contained source models (partly) in Uml stat-
echarts, we decided to implement the different steps of our

4

Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures SERG

4 TUD-SERG-2006-020a

migration approach using Mda technologies. In the Mda
vision, software development is considered to be a series of
model transformations. Similarly, we consider software mi-
gration as a series of model transformations. Starting from
Uml, technologies compatible with Mda offer convenient
and off-the-shelf means to define and manipulate mod-
els. Furthermore, the MetaObject Facility (Mof [OMG,
2005b]) can be used for the definition of meta-models. Fi-
nally, various model transformation languages are available
to define transformations.

We defined all transformations in the Atlas Transfor-
mation Language (Atl), described by Jouault and Kurtev
[2005]. An advantage of Atl is its syntax, which is simi-
lar to that of the Object Constraint Language (Ocl). This
allows people that have been working with the Uml meta-
model to understand and create transformation rules with
relative ease. The actual Atl transformation engine re-
lies on two implementations of Mof: the Eclipse Model-
ing Framework (Emf [Eclipse Foundation, 2005]) and the
Metadata Repository (Mdr [MDR, 2006]). The Atl trans-
formation engine can be used in combination with Xml
Metadata Interchange serialisations (Xmi) of models and
meta-models that were defined using Mof. As our source
meta-model we used the Mof-Uml meta-model available
from the Omg [OMG, 2001]. To create source models, we
can simply use a Uml modelling tool that supports Xmi
export. For the target meta-model we also used Emf as it
allows for automatic generation of a primitive, tree-based
editor for any arbitrary meta-model. This editor can then
be used to inspect the results of our transformations.

5. Source meta-model

In this paper, we consider Fsm’s as the given starting
point for the migration. The use of Fsm’s as a paradigm for
supervisory control has been proposed by, for instance, Ra-
madge and Wonham [1987]. Here, the set of possible ma-
chine behaviours is considered to form a language. A dis-
crete supervisory Fsm is synthesised that restricts this lan-
guage by disabling a subset of events to enforce valid ma-
chine behaviour. This requires the behaviour in all possi-
ble states for all requests to be specified explicitly using
(un)conditional state transitions with associated triggers
(events), and effects or state actions (manufacturing activ-
ities). When using this paradigm, concurrent execution is
the result of independent parts of concurrently executing
state machines that can optionally share events to synchro-
nise. Consequently, multiple Fsm’s are used per controller
(typically one for each type of request).

Our source models are specified using Uml statechart
diagrams. The relevant part of the meta-model is shown
in Figure 4. Apart from this meta-model, the Uml spec-
ification also provides a large number of well-formedness
rules, specified in Ocl, of which a few are mentioned be-
low. Using this meta-model, Uml state machines can be
constructed that model behaviour as a traversal of a graph

StateMachine

State

0..1

top+

CompositeState

+ isConcurrent :Boolean

SimpleState FinalState

StateVertex

Pseudostate

+ kind :PseudostateKind

Transition

outgoing+

*source+

incoming+

*target+

Action

+ script :ActionExpression

effect+0..10..1 entry+

0..1
exit+

0..1

0..1

Event

0..1

transitions+

*

container+

0..1

subvertex+
*

Guard

+ expression :BooleanExpression

guard+

0..1

*

trigger+0..1

Created with Poseidon for UML Community Edition. Not for Commercial Use.
Figure 4. Source meta-model (excerpt from [OMG, 2001])

of state nodes interconnected by transition arcs.
In Figure 4 a state node, or StateVertex, is the target

or source of any number of Transitions and can be of dif-
ferent types. A State represents a situation in which some
invariant over state variables holds. In addition, an op-
tional entry or exit Action is executed when the state is
entered or exited. The meta-model defines different types
of States. A CompositeState contains (owns) a number of
substates (subvertex). If a CompositeState is concurrent
(isConcurrent) it contains at least two composite substates
that execute in parallel. A SimpleState is a State without
any substates. Execution of an enclosing CompositeState
ends when a FinalState is entered.

Next to state nodes that describe a distinct situation, the
meta-model also offers a type of StateVertex that models
a transient node of a state graph: a Pseudostate. It allows
modelling of more complex (conditional) transition paths.
Three types of pseudo-states (PseudostateKind) are rele-
vant for the state models in this paper: initial, choice, and
junction. An initial Pseudostate is the default node of a
CompositeState. A choice Pseudostate is used to create a
dynamic conditional branch that depends on the action on
its incoming transitions. Alternative paths may be joined
using a junction Pseudostate.

Nodes in a state machine are connected by transitions
that model the Transition from one State (source) to an-
other (target). A Transition is fired by an Event (trigger).
A Transition without such an explicit trigger is fired by an
implicit completion Event that is generated upon comple-
tion of all activities in the currently active State. A Guard is
a boolean expression attached to a Transition that disables
or enables its firing upon occurrence of its trigger (depend-
ing on whether it evaluates to true or to false). The effect of
a Transition specifies an Action to be executed upon its fir-
ing. Finally, a StateMachine consists of a set of transitions
and a top State that is a CompositeState.

As an example of how this meta-model is used in prac-

5

SERG Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures

TUD-SERG-2006-020a 5

tice, consider the state machines in Figure 5, which corre-
spond to the process wafer and unload wafer requests as in-
troduced in Section 3.2. Such state machines are the source
models for the migration. Note that our example requests
were adopted from two distinct supervisory control compo-
nents with an indicative order of magnitude of 10 requests,
10−102 states, and 102−103 transitions. Although we use
actual manufacturing requests as running examples, we do
not depict or discuss these requests in full detail for reasons
of confidentiality.

From the number of choice pseudo-states and guarded
transitions it becomes clear that conditional execution is
the dominant concern in the process wafer request in Fig-
ure 5(a). In other words, the activated path is dependent
on conditional synchronisation (e.g. wafer@measure) with
other, concurrently executing requests.

Figure 5(b) illustrates that after the actual transfer
(TRANSFER FINISHED) the alternative completion sequences
of subsequent activities, which are associated with the
UR moved and WS moved events, are specified exhaus-
tively. Furthermore, observe the use of two distinct re-
source usage patterns for WS and UR in our unload wafer
request: for WS only an available Event (WS available)
and release Action (release WS) are specified, for UR also
a claim Action (claim UR) has been specified.

Note that, for reasons of simplicity, we choose not to
include resource usage and setups in the specification of
the process wafer request. Even from our example requests
it becomes clear that, in practice, concerns are addressed
using a multitude of idioms and constructs. This is the main
reason for the introduction of our normalisation step.

6. Normalisation Rules

Uml, as a generic modelling language, lacks constructs
to support its application in the domain of Smc systems.
This makes that, when using ‘plain’ Uml, various design id-
ioms are available for handling Smc concerns. For instance,
guards (e.g. ‘subsystem is available’) were often modelled as
events (e.g. ‘subsystem becomes available’) although these
are fundamentally different. Similarly, manufacturing ac-
tivities can be specified as actions on state transitions or
as actions in separate states. This idiom diversity is fuelled
further by tool limitations. For instance, tools that support
a specific Uml version, do not necessarily support all of its
constructs.

In order to define architecture transformations, we need
source models in a normalised form. These normalised mod-
els are associated with a meta-model that adds constraints
to the legacy source meta-model and augments it with Smc-
specific constructs. These constraints and additional model
elements are used in well-formedness rules that prescribe
how Smc-specific concerns are to be specified. For this,
Uml allows attaching constraints to model elements using
Ocl, and for the definition of additional model elements
by stereotypes. Together, these enable the definition of a

Table 1
Smc profile stereotypes

Stereotype baseClass description

�wait� State wait for resource state

�claim� Action claim resource action

�release� Action release resources action

�available�Guard resource available guard

�available� Event resource becomes available event

suitable Uml-Smc profile for the normalised source meta-
model. Example diagrams that conform to this profile are
shown in Figure 6.

Normalised source models have to comply to a number of
well-formedness rules. Most importantly, concerns have to
be specified in a uniform way. We have defined a standard-
ised idiom for the concerns as identified in Section 3.3. We
introduce this idiom by example of Figure 6. Normalisation
involves modifying source models to remove any violation
of these well-formedness rules.

Table 1 lists the stereotypes that we define as part of the
Smc profile. Next to stereotypes, the profile also defines a
number of constraints. Listing 1 lists some of these con-
straints, specified in Ocl as invariants over the Uml meta-
model (C1 -C4). We merely use the constraints indicated by
the def keyword to define extra properties on the elements
mentioned in their context. This simplifies the specifica-
tion of other constraints. Application of these stereotypes
and constraints is discussed below.

Intuitively, the normalisation is context dependent and
requires (some) domain knowledge. Moreover, the normali-
sation rules not only depend on the specific source paradigm
but also on the modelling conventions as encountered in the
specific (industrial) migration context. Therefore, we illus-
trate the normalisation step by defining the used context-
specific normalisation rules for our case study.

Subsystem setups In the source model, subsystem state
consistency is ensured by specifying setup transitions for
every possible subsystem state at design-time. In practice,
this is not done exhaustively. Instead, domain-knowledge is
used to limit the number of setup related alternative tran-
sitions. Although subsystem setups can performed auto-
matically using the Trs paradigm and, thus, do not need
to be specified explicitly, we do preserve them during the
normalisation step. This in fact ensures that the migrated
control system mimics the behaviour of the legacy control
system exactly. When reconsidering Figure 5(b) and 6(b),
the move to rotate Action is in fact a resource setup.

For the normalised source model we do not use a specific
idiom for setup activities; setups are modelled as any other
manufacturing activity. If we would be less concerned with
exact preservation of behaviour, setup activities could be
simply removed during normalisation. In that case, domain
knowledge is required to distinguish between setup activi-
ties and manufacturing activities.

6

Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures SERG

6 TUD-SERG-2006-020a

WAIT_WAFER_ARRIVED

exit/get_prealignment_and_measurement_data

arrived

LOADING

entry/load_wafer

[else]

[wafer@measure]

WAIT_MEASURE_CLEARED

[else]

measure_cleared

COMBINED_LOADING_UNLOADING

entry/load_while_unload

[exposed_wafer@measure]

loaded

MEASURING

prepared

PREPARING

measured

loaded

measured prepared

SWAPPING

entry/swap

EXPOSING

entry/expose

/measure_cleared

exposed

[next_wafer2process]

[else]

WAIT_WAFER_MEASURED_PREPARED

[wafer@measure]

[exposed_wafer@measure]

SWAPPING

entry/swap

prepared

UNLOADING

entry/unload_wafer

swapped

/measure_cleared

measure_cleared

[else]

[else]

WAIT_WAFER_MEASURED WAIT_WAFER_PREPARED

measured

MEASURE_AND_PREPARE

entry/prepare, measure

[next_wafer2process]

[else]

WAIT_MEASURE_CLEARED

measured

prepared

Created with Poseidon for UML Community Edition. Not for Commercial Use.(a) Process wafer

IDLE CHECK_RCB

entry/ check RCB comm.

do_unload

START_TO_CLAIM_UR

WS available

READY_TO_CLAIM_UR

[UR not ready]

CLAIM_UR

entry/ claim UR

[UR ready]

START_TRANSFER

entry/ start transfer W2U

TRANSFER_FINISHED

WAIT_FOR_UR_OR_WS_MOVED

entry/ UR move to rotate, WS finish exchange

[else]

WAIT_WS_MOVED

exit/ release WS

UR_moved

WAIT_UR_MOVED

exit/ release UR

WS_moved

FINISH_UR_WS_MOVED

entry/ check RCB comm.

UR_movedWS_moved

FINISHED

exit/ report done
[RCB ok]

[combined_load]

transfer_finished

Created with Poseidon for UML Community Edition. Not for Commercial Use.

(b) Unload wafer

Figure 5. Example manufacturing requests

Subsystem usage The pattern to address the ‘subsystem
usage’ concern is best understood from one of the orthogo-
nal regions in the composite state in Figure 6(b). Before a
manufacturing activity (e.g. finish exchange) that requires
a certain subsystem (WS) is executed, a choice pseudo-
state is entered. Then, if the required resource is available
([WS available]), it is claimed (claim WS) by the transi-
tion towards the state in which the manufacturing activity
is executed (FINISH). Otherwise, a state (WAIT FOR WS) is
entered that is only left when an event occurs indicating
the resource has become available (WS available). The re-
source is claimed (claim WS) on the transition triggered by
that event. Once the manufacturing activity is performed,
claimed resources are released again by a release action that
is executed when exiting the state (release). This pattern
can easily be generalised.

We use the stereotypes defined by the Smc profile (Ta-
ble 1) to distinguish between Actions, Guards, Events, and
States related to the use of subsystems and those related

to the execution of manufacturing activities (to which no
stereotypes are applied). Normalisation introduces stereo-
types for specific model elements that are related to the
subsystem usage concern. Furthermore, from Figure 5(b),
and its normalised counterpart in Figure 6(b), it can be
seen that additional model elements are introduced to com-
plete the pattern described above. Note that in Figure 6
stereotypes are displayed only for states: this is a limitation
of the Uml tool we are using (i.e. ’Poseidon for Uml’).

Application of the stereotypes to source models re-
quires domain knowledge to recognise the subsystem usage
concern. This becomes apparent when reconsidering Fig-
ure 6(b). Here, WAIT FOR WS is a state in which the system
waits for a subsystem to become available. This is intu-
itively different from the WAIT WAFER MEASURED states in
Figure 6(a), where the intention is to specify that the sys-
tem waits for a manufacturing activity to be completed.
The�wait� stereotype is only applied to the former state.

For normalisation of source models we require that re-

7

SERG Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures

TUD-SERG-2006-020a 7

context Action def:
−− an action is a release action if a stereotype named ’release’ is applied to it
let isRelease : Boolean = self.stereotype−>exists(s|s.name=’release’)

context State def:
−− a state is a wait state if a stereotype named ’wait’ is applied to it
let isWait : Boolean = self.stereotype−>exists(s|s.name=’wait’)

context Event def:
−− an event is an available event if a stereotype named ’available’ is applied to it
let isRelease : Boolean = self.stereotype−>exists(s|s.name=’release’)

−− C1: all release Actions are state exit actions
context Action inv:

isRelease implies State.allInstances−>exists(s|s.exit=self))

−− C2: a wait state has at least one outgoing transition triggered by an available event
context State inv:

isWait implies outgoing−>exists(t|t.trigger.isAvailable))

−− C3: state entry actions are actions that execute manufacturing activities (i.e. without stereotype)
context State inv:

entry.stereotype−>isEmpty

−− C4: all state nodes have no more than two incoming and outgoing transitions
context StateVertex inv:

outgoing−>size() <= 2 and incoming−>size() <= 2

Listing 1. Some well-formedness rules of the Smc profile, in Ocl

source usage patterns are made complete. In Figure 5(b),
for instance, only a release action is specified for WS. In
Listing 1 C1 , C2 , and C3 are related to the subsystem usage
pattern. C1 specifies that a �release� Action only occurs
as a state exit Action. C2 states that at least one of the
outgoing Transitions for a�wait� State is triggered by an
�available� Event. Finally, to conform to constraint C3 ,
all Actions related to manufacturing activities are moved
to States as entry Actions. An example of this is the report
done (entry) Action in Figure 5(b) that was normalised to
an exit Action (Fig. 6(b)).

Synchronous execution Synchronisation between subse-
quent manufacturing activities in the source models is sim-
ply achieved by their order in the state machine. Further-
more, synchronisation between subsystem state transitions
is not modelled at this level. As such, no specific idiom is
used to specify this concern. In general, however, we have
to take this concern into account while normalising the pat-
terns associated with other concerns. While inserting and
moving activities we have to make sure that we do not
change their order in the normalised source model.

Concurrent execution In the original source models,
concurrency was often modelled using States, includ-
ing Actions that start two or more manufacturing ac-

tivities and separate transition paths for all possible
completion sequences, which are enabled by (external)
completion Events. As an example, consider state MEA-

SURE AND PREPARE and associated completions events pre-
pared and measured in Figure 5(a). Because those events
can only be associated with their corresponding manufac-
turing activities using naming conventions, such an ap-
proach complicates the determination of the scope of con-
current execution. Therefore, we require that concurrency
is modelled using a concurrent CompositeState containing
(orthogonal) regions. This implies that during normalisa-
tion, manufacturing activities are mapped to CompositeS-
tates when they are started in a single State node and al-
ternative completion sequences are specified exhaustively.
Figure 6(b) contains an example of concurrent execution,
where two resource usage patterns are executed in parallel.

Conditional execution The idiom for conditional execu-
tion is more complicated. First, we require it to be speci-
fied using a choice Pseudostate, having two outgoing Tran-
sitions. One specifies some condition as a Guard, while
the other specifies [else] as a Guard. Furthermore, we re-
quire ‘proper’ nesting of conditional activation paths in a
state machine. This means that we require pairs of corre-
sponding, alternative paths through the state machine to
be merged one at a time (using junction Pseudostates), and

8

Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures SERG

8 TUD-SERG-2006-020a

in reverse order. Figure 6(a) contains several (nested) ex-
amples of this pattern.

Without this requirement for proper nesting, finding the
set of States, and thus Actions, which are enabled when
some Guard evaluates to true would become rather compli-
cated. For the transformation of our source models to target
models, finding this set of states is a necessary step. ‘Non-
proper’ nesting occurs, for instance, in the bottom-half of
the process wafer request in Figure 5(a). This results in
replication of the activities performed on each path during
normalisation. The three CompositeStates in the bottom-
half of Figure 6(a) illustrate this replication. Part of this
particular normalisation step is covered by constraint C4 ,
which states that a path through a state machine can only
split in two paths and that no more than two paths can be
joined in a single state node. Because the Ocl constraint
to express proper nesting is rather lengthy, we did not in-
clude it here.

7. Target meta-model

We consider Trs as the given paradigm for the end-
point of the migration. This end-point is based on a re-
search prototype [Van den Nieuwelaar, 2004]. Using the
Trs paradigm, a manufacturing request is translated into
valid machine behaviour in two phases. First, upon ar-
rival of a manufacturing request, a scheduling problem in
the context of that request is instantiated during a plan-
ning phase. For this, the request is interpreted through
rules that operate on capabilities (resource types) and be-
haviours (task types). Here, a manufacturing activity cor-
responds to a task and a mechatronic subsystem to a re-
source. The first phase results in a hierarchical digraph that
consists of tasks and their (precedence) relations. Nodes in
this graph can be composite to either denote a set of tasks
that all need to be executed or to denote a set of tasks of
which only one will be executed based on some condition.
Second, a scheduling phase constructively assigns tasks in
this digraph to specific resources over time [Viennot, 1986;
Van den Nieuwelaar, 2004]. This results in a fully timed,
coordinated Trs that can be dispatched for execution.

The end-point for our migration is a product-line archi-
tecture, of which Figure 7 displays the module view. In this
architecture, the decisional responsibilities are assigned to
three generic and reusable components: Planner, Scheduler,
and Dispatcher. This product-line architecture offers vari-
ability with respect to tasks and resources and can be in-
stantiated for a specific controller by implementing System
definition and Subsystem interface modules. These modules
define the specific system under control and implement
the interfacing with lower-level components. The former is
amenable for code generation, allowing for a reduction of
software development time and effort.

In order to define our target models, we introduce a gov-
erning target meta-model as depicted in Figure 8. There,
the system definition from Figure 7 is represented by the

Figure 7. Module view for the product-line Smc architecture

SystemDefinition, which serves as a root element. This sys-
tem definition consists of a static and dynamic part. The
static part defines the available Behaviours, Resources and
Capabilities of the system under control. These are used to
model types of manufacturing activities, subsystems, and
types of subsystems. In addition, to address the subsystem
usage concern, it defines which capabilities are required by
which behaviour. Furthermore, the corresponding begin-
State and endState are specified in CapabilityUsage. These
states are, for instance, used to determine sequence depen-
dent setups.

The dynamic part of Figure 8 represents the rules for
uniquely mapping a manufacturing Request to SimpleTasks,
which are of a specific Behaviour, and assigning Resources
that fulfil a required Capability. Conditional execution can
be specified using OrTasks, that contains two Tasks (iftrue
and iffalse) that may be composite. The evaluation of its
condition determines which one will be dispatched. To clus-
ter Tasks that all need to be performed, an AndTask can
be used. Finally, every Task includes a set of predecessors,
i.e. other Tasks that need to be executed before it can be
dispatched. This relation is used to (dis)allow concurrency
and imply synchronisation.

8. Transformation

Our transformation rules are defined as mappings from
a normalised source meta-model (i.e. our Uml profile) to a
Trs meta-model. We used Mof to define the target meta-
model rather than tailoring the Uml using yet another pro-
file. In this section we first introduce the transformation
language that was used to define the transformation step
of our migration approach.

For the definition of our transformations we used the
following strategy. First, we indicate how elements in the
normalised source meta-model are related to the primary
elements of the target meta-model. Second, for each of the
identified Smc concerns we define and tailor transforma-
tion rules to relate the corresponding patterns in the nor-
malised source model and the target model. These rules are
described reasoning backwards, meaning that for each of
the elements of the target meta-model we explain for what
source model patterns they will be created.

9

SERG Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures

TUD-SERG-2006-020a 9

MEASURE_AND_PREPARE

MEASURING

entry/measure

/measured

PREPARING

entry/prepare

/prepared

WAIT_WAFER_ARRIVED

entry/get_prealignment_and_measurement_data

Choice

arrived

LOADING
entry/load_wafer[else]

Choice

[wafer@measure]

COMBINED_LOADING_UNLOADING

entry/load_while_unload
[exposed_wafer@measure]

anonymous

WAIT_MEASURE_CLEARED

[else]
@measure_cleared

SWAPPING

entry/swapEXPOSING

entry/expose

/@measure_cleared

Choice

LOADING
entry/load_wafer

[else]

COMBINED_LOADING_UNLOADING

entry/load_while_unload

[wafer@measure]

Junction Junction

Choice

[exposed_wafer@measure]
[wafer@measure]

SWAPPING

entry/swap UNLOADING

entry/unload/@measure_cleared

WAIT_WAFER_MEASURED_PREPARED

WAIT_WAFER_MEASURED

measured

WAIT_WAFER_PREPARED

prepared

Choice

WAIT_MEASURE_CLEARED

[else] Junction

[next_wafer2process]

WAIT_WAFER_MEASURED_PREPARED

WAIT_WAFER_MEASURED

measured

WAIT_WAFER_PREPARED

prepared

Junction

measure_cleared

WAIT_WAFER_MEASURED_PREPARED

WAIT_WAFER_MEASURED

measured

WAIT_WAFER_PREPARED

prepared

[else] Choice
[else]

[next_wafer2process]

[else]

Junction

Created with Poseidon for UML Community Edition. Not for Commercial Use.
(a) Normalised process wafer request

Concurrent_State

 choice
FINISH

entry/finish exchange
exit/release

<< wait >>
WAIT_FOR_WS

[WS available]/claim WS

[else]

/WS_moved

WS available/claim WS

 choice

<< wait >>
WAIT_FOR_UR

MOVE

entry/move UR to rotate
exit/release

UR available/claim UR

[else]

[UR available]/claim UR /UR_moved

CHECK_RCB

entry/check RCB comm.

REPORT

entry/report done
[RCB ok]

<< wait >>
WAIT_FOR_WS

choice

<< wait >>
WAIT_FOR_UR

choice

[else]

[WS available]/claim WS

WS available/claim WS [else]

TRANSFER

entry/transfer W2U
exit/release

[UR available]/claim UR

UR available/claim UR
[else]

CHECK_RCB

entry/check RCB comm.

[combined_load]

choice

/transfer_finished]

Created with Poseidon for UML Community Edition. Not for Commercial Use.(b) Normalised unload wafer request

Figure 6. Normalised source models

10

Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures SERG

10 TUD-SERG-2006-020a

Behaviour

+ name :EString

CapabilityUsage

+ beginState :EInt
+ endState :EInt

requires+ *

Capability

+ name :EString

capability+

Resource

+ name :EString

fulfils+

SystemDefinition

behaviours+

1..*

capabilities+

*

resources+

*

Task

+ id :EString

Static Dynamic

OrTask

+ condition :EString
AndTask

Request

+ name :EString
requests+

1..*

SimpleTask
behaviour+

tasks+
1..*

predecessors+

*

tasks+
* iftrue+

iffalse+

Created with Poseidon for UML Community Edition. Not for Commercial Use.
Figure 8. Target meta-model

In all, application of these transformation rules to a
source model that conforms to our Smc profile, results in
a target model that defines the System definition module
for a particular Smc component (i.e. an instance of the
architecture depicted in Fig. 7).

Next, we first introduce Atl. Then we discuss rules that
generate the elements of the ‘basic’ types of the target meta-
model in Figure 8: SystemDefinition, Behaviour, Capabil-
ity, Resource, Request, and SimpleTask. Subsequently, we
describe rules to create the elements and relations related
to the concerns as previously described in Section 3.3. Fi-
nally, we discuss the results of the application of these rules
to our example requests.

8.1. The Atlas Transformation Language

All transformation rules are implemented using Atl. As
an example, consider the Atl fragment in Listing 2. An
Atl transformation module consists of rules that contain a
from clause, specifying a source pattern (s), and a to clause
specifying a target pattern (t). The source pattern con-
sists of a source type (UML!SimpleState) and an optional
guard, which is a Boolean expression specified in Ocl. The
target pattern consists of a set of elements that each spec-
ify a target type (TRS!SimpleTask) and an associated set
of bindings. A binding refers to a feature of the type (e.g.
predecessors) and specifies an expression that is used to
initialise the feature. The source and target types in the
transformation rules in this paper refer to the source and
target meta-models in Figures 4 and 8. As such, the rule
in Listing 2 matches SimpleStates that conform to some
constraints expressed by the guard. This rule generates a
SimpleTask for which it specifies a set of bindings.

For every element in the source model that matches the
source pattern of a rule, the elements specified by the target
pattern are created in the target model. Note that in Atl,
the source model is read-only and the target model is write-

rule Tasks {
from s:UML!SimpleState (

s.isTaskState and not thisModule.
behaviourStates−>includes(s))

to t: TRS!SimpleTask (
behaviour <− thisModule.resolveTemp(s.

behaviourState,’b’),
predecessors <− s.getPredecessors)

}

Listing 2. Atl example

only. This can also be seen from Listing 2, where only the
source model is navigated to initialise the features referred
to in the bindings of the target pattern. Therefore, a specific
value-resolution algorithm is used to initialise features: if
the expression of a binding refers to another target element
(created by the same rule) it is simply assigned, if it refers
to a source element it is resolved by application of the rule
that matches that source element and taking the default
(first) target element.

For cases where the required target element is not the de-
fault element of another rule, Atl offers the ‘resolveTemp’
construct, a so-called helper operation. It takes a source
model element and a reference to a specific target element of
the matching rule as input parameters. In Listing 2, for ex-
ample, this is done in the binding of the behaviour feature.
In this case s.behaviourState evaluates to a SimpleState
that is matched by another rule with multiple target ele-
ments, of which the ‘b’ target element is selected to bind
to that feature.

Helpers are typically defined in the context of a meta-
model element and effectively add a feature or operation
to instances of that element (cf. the use of Ocl definition
constraints in List. 1). Alternatively, a helper can be de-
fined without any context. Then, the default context of
the complete transformation module, represented by the

11

SERG Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures

TUD-SERG-2006-020a 11

thisModule element, applies. The resolveTemp helper is
also defined in this default context.

8.2. Basic target model elements

SimpleTask and Behaviour SimpleTasks correspond to
manufacturing activities, and Behaviours correspond to
types of manufacturing activities in Smc systems. There-
fore, to create SimpleTasks and Behaviours in the target
model we need to identify Actions corresponding to man-
ufacturing activities in the source model.

According to the Uml Smc profile, an Action that corre-
sponds to a manufacturing activity has no stereotype and
is executed as a State entry Action (see C3 in List. 1). For
every such Action, a SimpleTask needs to be created in the
target model. This is specified by the rule in Listing 3. It
contains a guard that uses the behaviourStates helper to
only match SimpleStates that map to a Behaviour. Note
that in the specification, we do not map Actions to Sim-
pleTasks, but instead we map the SimpleStates in which
they are executed to SimpleTasks. This does not adversely
affect our migration results since Actions corresponding to
SimpleTasks are always State entry Actions (by constraint
C3 of the Smc profile).

In the source model, the executed behaviour is specified
in the Action’s script attribute. Therefore, Actions with
identical script attributes effectively define an Action type
and should be mapped to the same Behaviour. To imple-
ment this, the behaviourStates helper first selects the set of
SimpleStates corresponding to a SimpleTask (i.e. all Sim-
pleStates with entry Actions without stereotype) and sub-
sequently determines the set of Actions with unique Be-
haviours. For all Actions in this set, a SimpleTask and a
Behaviour are created by the behaviour rule. Additionally,
we have implemented a rule that creates a SimpleTask for
all other SimpleStates with such entry actions.

For (Simple)Tasks, the predecessors attribute has to be
set to the set of direct predecessor tasks. Furthermore, a
Behaviour’s requires attribute is set to a CapabilityUsage
element. This is discussed in Section 8.3 for the related
synchronous execution and subsystem usage concerns.

Resource and Capability To create Resources and Capa-
bilities we need to identify mechatronic subsystems in the
source models. However, in the Fsm paradigm, mechatronic
subsystems are not modelled explicitly. Hence, the source
model does not contain elements that directly correspond
to Resources and Capabilities. We can, however, take ad-
vantage of the fact that in the Fsm paradigm, subsystems
are explicitly claimed. We create Resources in the target
model based on Actions that claim a specific subsystem,
i.e. Actions to which the�claim� stereotype has been ap-
plied. Furthermore, for every resource we simply create a
separate Capability (Resource type).

In the specification of the involved transformation rules
(not shown) we had to take into account that Capabilities

can be claimed multiple times during a single request. This
results in multiple Actions claiming the same Capability.
Because we do not want to create a separate Capability for
each of the Actions claiming the same capability, we defined
a helper similar to the behaviourStates helper.

SystemDefinition and Request The SystemDefinition root
element in a target model contains all required elements
that define the domain specific part of an Smc controller. As
such, this element corresponds to a complete source model.

A Request encompasses rules that determine how that
particular manufacturing request, such as our unload wafer
from Figure 5(b), is planned. Planning rules involve a set of
Tasks and corresponding predecessor relations. Addition-
ally, a Task can be an AndTask or an OrTask. In the source
model, a complete state machine is used to specify how a
manufacturing request is to be executed. So, we create a
Request element in the target model for every StateMa-
chine in the source model.

Listing 4 shows the Atl specification of this mapping.
The Request rule generates a Request element for every
StateMachine in the source model. This Request contains
tasks which are created by other rules. As will be explained
later, States or Guards in the source model may map to
Tasks in the target model. Because the tasks in our tar-
get model may be composite in which case they own other
tasks, we should take care not to select all model elements
in the complete state machine that map to a Task. In-
stead, for a Request we discard all States or Guards inside a
CompositeState other than the top, and on paths that are
only conditionally enabled (i.e. by a transition’s guard). To
this end, we defined two additional generic helpers. First,
rootOfSubTree takes a set of states as argument and recur-
sively selects the ‘first’ state of that set (i.e. the one without
incoming transitions from other states in the set). Second,
getTaskModelElements is applied to that ‘first’ State to
collect all model elements that map to a Task. In essence,
this helper takes a set of states and traverses this set as a
state ‘tree’ starting from the State (or Guard) it is applied
to, and bypassing CompositeStates and conditional paths.
During this traversal it collects all model elements it en-
counters that map to a Task (i.e. Guards or States).

The SystemDefinition rule generates a SystemDefinition
element that corresponds to the complete source model.
The behaviours, resources and capability features of the
SystemDefinition element are bound to the result of other
rules. In particular for behaviours and resources we had
to use the resolveTemp helper as these are not created by
the default target elements of the involved rules. In this
case, the relevant source model elements are selected by
two helpers that are defined in the context of the transfor-
mation module itself: behaviourStates gives all the source
model elements (SimpleStates) that map to a Behaviour,
and resourceActions gives all the source model elements
(�claim� Actions) that map to a Resource. The request

12

Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures SERG

12 TUD-SERG-2006-020a

rule Behaviours {
from s: UML!SimpleState (

thisModule.behaviourStates−>includes(s))
to t: TRS!SimpleTask (

behaviour <− b,
predecessors <− s.getPredecessors),

b: TRS!Behaviour (
name <− s.entry.script.body,
requires <− s.incoming−>collect(i|i.source)−>iterate(s; ss:Set(UML!SimpleState) = Set {}|ss−>union(s.

getResourceClaims)))
}

Listing 3. Rule for tasks and behaviours

rule Request {
from sm: UML!StateMachine
to rq: TRS!Request (

tasks <− thisModule.rootOfSubTree(sm.top.subvertex,sm.top.subvertex−>asSequence()−>first()).
getTaskModelElements(sm.top.subvertex))

}
rule SystemDefinition {

from sm: UML!Model
to sd: TRS!SystemDefinition (

behaviours <− thisModule.behaviourStates−>collect(e|thisModule.resolveTemp(e,’b’)),
resources <− thisModule.claimActions−>collect(e|thisModule.resolveTemp(e,’r’)),
capabilities <− thisModule.claimActions,
requests <− UML!StateMachine−>allInstances())

}

Listing 4. Rule for SystemDefinition and Requests

feature is bound to the elements created by the Request
rule for all StateMachines in the source model.

8.3. Concern-based transformation rules

Resource usage To address the resource usage concern we
need to relate Behaviours to the Resources and Capabilities
(resource types) they require. In the target meta-model,
CapabilityUsage elements are used to this end. However,
we cannot derive the CapabilityUsage elements in the tar-
get model directly, since our source models only contain
dynamic information. Consequently, we will have to derive
them indirectly instead.

For each subsystem usage pattern, as described in Sec-
tion 6 we conclude that the subsystems claimed at that
point are required for the corresponding manufacturing ac-
tivity. These are all the subsystems that are claimed after
the previous release action. In the target model, Capabil-
ityUsage elements are then defined connecting the corre-
sponding Behaviour and Capabilities. For our unload wafer
request, for instance, this results in the definition of a Ca-
pabilityUsage element relating the transfer W2U behaviour
to the WS capability.

The from clause of the rule in Listing 5 matches all
�wait� States, using the isWait attribute helper. The

to clause of this rule creates a CapabilityUsage element
in the target model. The resolveTemp helper is used to
set the capability attribute to the target of the rule that
matches the �claim� Action involved in the resource
usage pattern. Next, a Behaviour is linked to Capabili-
tyUsage elements by its requires feature. Listing 3 shows
that this is done by first selecting all States directly pre-
ceding the State in which an Action that corresponds to
the Behaviour is executed. On each of these predecessor
States, we iteratively call the getResourceClaims helper
that recursively finds all �wait� States by backwards
traversal of the state machine until a �release� Action
is encountered. A �release� Action releases all claimed
subsystems. The�wait� States in the returned set match
the ResourceUsage rule and the Behaviour is linked by its
requires attribute to the corresponding CapabilityUsage
elements.

Resource setups In the target model, setups are automat-
ically inserted by the generic (solving) part of the product-
line architecture. This is done at run-time, based on mis-
matching beginState and endState attributes of the Capa-
bilityUsage element. To some extent, these could be derived
from the explicitly specified setups in the source model.

13

SERG Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures

TUD-SERG-2006-020a 13

rule ResourceUsage {
from s:UML!SimpleState (s.isWait)
to cu: TRS!CapabilityUsage (

capability <− thisModule.claimActions−>select(a|a.script.body=s.outgoing−>select(t|t.effect.isClaim).effect.
script.body))

}

Listing 5. Rule for resource usage pattern

In this paper, however, we do not define a corresponding
transformation rule as it depends heavily on domain knowl-
edge. Using our transformations, setups will explicitly end
up in the target model as just another task and behaviour.
As said, this ensures that the migrated control system mim-
ics the behaviour of the legacy control system exactly, thus
resulting in a validated and acceptable baseline.

Synchronous execution The target model defines prece-
dence relations between those Tasks that require synchro-
nisation (within the same Request). In principle, these re-
lations follow from the execution order of the manufactur-
ing activities and the corresponding Actions within a nor-
malised state machine. In addition, (virtual) resources can
be used for external synchronisation.

For synchronisation within a Request, predecessor rela-
tions are created for every task by searching for its set of
(direct) predecessor tasks. For this we have defined two
helpers that both operate on the elements that match rules
that create Tasks. The first helper is depicted in Listing 6
and is defined on StateVertex whereas the second one is de-
fined on Guard. For each Task, one of these getPredecessors
helpers is invoked on its corresponding StateVertex or

Guard. These helpers determine whether the current ele-
ment (self) corresponds to a task. If so, this element is re-
turned. Otherwise, the helper is recursively applied to the
finite set of all direct preceding modelling elements that
may map to a task.

Concurrent execution The normalised pattern for concur-
rency, as discussed in Section 6, is a CompositeState with
orthogonal regions. To address the concurrent execution
concern we need to identify instances of such patterns in
the source model.

We defined a transformation rule that creates an And-
Task for every concurrent CompositeState in the source
model except for the top CompositeState of the StateMa-
chine. Basically, the predecessors relation is the mechanism
used in the target model to (dis)allow concurrency: if two
tasks are not related by the transitive closure of the prede-
cessors relation, they can execute concurrently. Now, these
potentially concurrent tasks are executed as soon as exe-
cution of their predecessors has finished and the required
resources are available. In turn, this also implies that a
task can have multiple (concurrent) predecessors. Collect-
ing predecessor tasks was already discussed in the previous
paragraph.

Conditional Execution As discussed in Section 6, the
normalised source model uses a state with two outgoing
guarded transitions to specify conditional execution. Every
two alternative conditional branches in a source model are
mapped to an OrTask in the target model. This OrTask
contains two subtasks (iftrue and iffalse), which may be
composite and represent the two conditionally executed
branches following a State with two outgoing guarded
Transitions. Subsequently, for the creation of those sub-
tasks, we need to find all model elements that map to a
task in each of the branches.

The specification of this transformation rule is depicted
in Listing 7. This rule matches one of the Guards (not the
else) for every conditional execution pattern, determined
by the isOrTaskGuard helper. It creates an AndTask for
each of the two branches using the getTaskModelElements
helper. The set of States that this helper uses to deter-

mine the scope in which it has to select all ModelElements
that map to a Task is calculated by the guardedTaskStates
helper. This helper selects all States ‘guarded’ by some

guard. To this end, it calculates the difference between the
path through the state machine that starts from the target
of the conditional transition and the corresponding alter-
native transition path.

8.4. Transformation results

In total, we needed approximately 300 lines of Atl code
to implement all the necessary transformation rules and
helpers for the transformation step of our migration ap-
proach. Once the source model, source meta-model, target
meta-model, and transformation module are defined and
located, the Atl transformation engine generates the tar-
get model (e.g. a system definition) in its serialised form.
The results as obtained for the normalised unload wafer
request are depicted in Figure 9.

Figure 9(a) shows a screen capture of the created Trs
target model, inspected using the tree-based editor that
was generated for our Trs meta-model by the Emf plugin.
There, Trs model elements are shown in a tree structure
to indicate containment. Furthermore, it can be seen that
we are dealing with a Smc component that accepts a Re-
quest unload wafer. The selected element under the Proper-
ties tab in the bottom part reveals that “SimpleTask check
RCB comm.” can only be dispatched after its predecessor
“OrTask combined load” has been executed.

14

Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures SERG

14 TUD-SERG-2006-020a

helper context UML!StateVertex def: getPredecessors:Set(UML!ModelElement) =
if self.incoming−>isEmpty() then

Set{}
else if self.isOrTaskStateJoin then

self.getFork.outgoing−>collect(e|e.guard)−>select(e|e.isOrTaskGuard)
else if self.incoming−>collect(e|e.guard)−>select(e|not e.oclIsUndefined())−>exists(e|e.isOrTaskGuard or if e.

oppositeGuard.oclIsUndefined() then false else e.oppositeGuard.isOrTaskGuard endif) then
Set{}

else if self.incoming−>collect(e|e.source)−>select(e|e.isTaskState)−>isEmpty() then
self.incoming−>collect(e|e.source.getPredecessors)−>flatten()

else
self.incoming−>collect(e|e.source)−>select(e|e.isTaskState)

endif endif endif endif;

Listing 6. Collect predecessors on StateVertex

rule ConditionalExecution {
from g:UML!Guard (g.isOrTaskGuard)
to t: TRS!OrTask(

condition <− g.expression.body,
iftrue <− at true,
iffalse <− at false,
predecessors <− g.getPredecessors),

at true: TRS!AndTask(
tasks <− g.transition.target.getTaskModelElements(g.guardedTaskStates))

at false: TRS!AndTask(
tasks <− g.oppositeGuard.transition.target.getTaskModelElements(g.oppositeGuard.guardedTaskStates)

}

Listing 7. Rule for conditional execution patterns

The consequence of using a custom meta-model is that
we only have the basic generated editor to visualise and
document our transformation results. Again, we turned to
model transformations to solve this problem. As there is no
suitable graphical representation for complete Trs models
yet, we defined a transformation that maps a Trs model
to Uml Activity Graphs for the dynamic part (one for each
request) and a Uml Class model for the static part. The
result of this transformation can easily be displayed using
Uml tools. Figure 9(b), for instance, shows the dynamic
part of our unload wafer request displayed as an Uml Ac-
tivity Graph.

9. Evaluation

Applicability Application of our generic, model-driven mi-
gration approach requires that the source view and target
view can be defined using a meta-model. When this is pos-
sible, the actual migration from source to target constitutes
a series of model transformations.

In practice, models are only made as complete and accu-
rate as is demanded by their application. However, these de-
mands become more stringent when these models are used
as input for automated processing such as model trans-
formations. As a result, the context-specific normalisation

step is crucial to the applicability of our migration approach
in industrial contexts where (source) models are typically
used for communication and documentation purposes only.

Mof based meta-models only provide the abstract syn-
tax for conforming models and do not define how to visu-
alise them (concrete syntax). In fact this is a drawback of
using a custom meta-model: no model editors and viewers
are available, apart from the basic editor as generated by
the Emf plugin. In this paper we again turned to model
transformations to document and visualise our results. The
use of model transformations provides an elegant and flexi-
ble way of generating architecture documentation that can
easily be tailored to meet specific documentation require-
ments of a migration context.

It turned out that a model-driven migration approach
based on Mda is useful for rapid (incremental) development
of normalisation rules and transformation rules. That is,
results can easily be visualised and documented given the
wide variety of available tools.

Scalability With respect to the scalability of our approach
we can safely state that our experiments are of the same
order of magnitude as full-fledged component migrations
for real-world wafer scanner applications. More concretely,
the two requests that were migrated as a proof of concept

15

SERG Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures

TUD-SERG-2006-020a 15

(a) Trs target model

<<UR>>
move UR to rotate

check RCB comm.

report done

check RCB comm.

<<UR ,WS>>
transfer W2U

<<WS>>
finish exchange

[not(combined_load)]

[combined_load]

(b) Activity Diagram

Figure 9. Results for unload wafer request

account for approximately 10-20% of the source code for
our Smc components. The application of our transforma-
tion rules to the two representative examples presented in
this paper requires less than 10 seconds to complete on a
modern notebook. Furthermore, we expect the execution
time to be linear with respect to the number of requests.
More important for the execution time is the nesting depth
of conditional paths. For our industrial case we have not
encountered requests with deeper nesting than our exam-
ple requests.

Effectiveness Our model-driven approach requires that
implicit design decisions and design knowledge is consoli-
dated and made explicit for the definition of meta-models
and transformation rules. This increases the general under-
standing of concerns and the associated implications (and
difficulties) surrounding the architecture migration. More-
over, the need for experts on both the domain and the tar-
get paradigm is confined to the definition of the normalisa-
tion and transformation rules.

The effectiveness of both the Mda approach and our
model-driven migration approach depends partially on the
ability of modelling, transformation and code generation
tools to cooperate. As such, standards involved with the
Mda, such as Mof, Uml, and particularly Xmi, play an
important role. In practice, the availability of different ver-
sions of these specifications made it difficult to setup an
appropriate tool chain. For instance, we could not use the
latest version of our Uml modelling tool (i.e ’Poseidon for
UML’) because the Uml meta-model it uses, was incom-
patible with the Atl transformation engine. Although we

took the liberty of selecting tools that were able to cooper-
ate, we still needed to implement some additional transfor-
mations using eXtensible Stylesheet Language Transforma-
tions (Xslt) to overcome some incompatibilities between
the various tools. In industry it will not always be possible
to select a specific set of tools for the migration given prac-
tical considerations such as licensing, support, and training
costs.

Apart from tool support, the required human interven-
tion during the normalisation step also determines the effec-
tiveness of our migration approach. The complexity of the
normalisation step depends on the number of constraints
that the restricted source meta-model adds to the legacy
source meta-model (if present). Here, a trade-off applies:
fewer constraints make the transformation, which is typi-
cally automated, more complex because more specification
alternatives have to be covered. For instance, if we would
allow Actions corresponding to manufacturing activities to
occur as Actions on Transitions, searching for predecessors
would become much more complicated. On the other hand,
the normalisation step requires less effort in that case.

In our case, the target meta-model specifies the domain-
specific part of a product-line. We believe that model
transformations are particularly applicable as a migra-
tion approach for the recurring migration of individual
product-line members. In general, a model-based migra-
tion approach is beneficial in situations where a number
of similar artifacts need to be migrated. Such a setting
provides sufficient return on investment for the definition
of meta-models, normalisation rules, and transformation
rules.

More specifically, when considering the previously men-
tioned trade-off, a larger number of artifacts that need to
be migrated justifies a higher investment in the definition
of transformation rules, allowing for a less involved nor-
malisation step. As another example of this trade-off, con-
sider our assumption of proper nesting. It implies that al-
ternative branches in a state machine are joined two at a
time and in reverse order. One could relax this assumption
(constraint) and implement a more intricate transforma-
tion rule to handle this relaxation.

Extensibility Currently, our transformation rules do not
handle synchronisation across different requests. This could
prove to be a limitation for the large scale application of our
transformation rules. Hereto, we would have to (at least)
extend our profile to include a special type of Event to
denote external events for such inter-request dependencies.

The overall extensibility of our migration approach is
demonstrated by using source models with two distinct ori-
gins for our experiments. In the case of the unload wafer
request we used the available architecture documentation
of the involved Smc component. This documentation con-
tained Uml statechart diagrams for the component’s re-
quests, including our example request.

16

Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures SERG

16 TUD-SERG-2006-020a

s0

s1

t0 t1 t2 t54 t3

t55

s2

t4

s3

t5

s4

t7s5

t8

s6

t9

s7

t10

s8

t11

s9

t12t66

s22

t47

s23

t48

t6 t73 t74

t17 t70

t16t69

t53

t13 t14t15 t57 t75

s10

t18 t77

s11

t76

t81

s24

t51 t80

t27 t72

t19 t20t58

t56

s12

t21

s13

t22

s14

t23s15

t24

s16

t25

t38 t39

t78

s19

t37t79

t84

t31t82

s17

t32t33

t61

s18

t34t35

t28t29 t30 t59 t26 t71

t85

t36 t83

t62

s20

t42t43

s21

t44

t40 t41

t60 t45 t63 t46 t64

t50 t68 t49 t67 t52 t65

Figure 10. One of three concurrent state models (made anonymous)

However, for the Smc component that performs the
process wafer request documentation was not available.
Instead we had to reconstruct the source model from the
source code. For this we took advantage of the fact that this
component was based on a proprietary library for Fsm’s.
Using this library, the component implemented three
concurrent state machines that covered the combined be-
haviour of all requests and combinations hereof. Figure 10
depicts one of the component’s three state machines.

This particular state machine illustrates the typical re-
sult of an evolving software architecture: two legacy state-
based components were augmented with a new supervisor.
This supervisor was obtained by taking the product of the
two legacy state-machines and adding two choice pseudo-
states (i.e. s1 and s11) to allow for different activation paths,
based on legacy request combinations.

We extracted the process wafer request state machine
from the three implemented concurrent state machines and
the corresponding source code by isolating state transition
paths and combining them into a request state model. The
resulting extracted source models were used as the input
for our normalisation step. In fact, such an extraction step
in which we isolate request state machines (i.e. to obtain
models to be normalised) can be seen as an extension of
the ‘front-end’ of our approach.

The ‘back-end’ of our approach can be extended as well
by steps that further process the result of our model trans-
formations. We already mentioned the generation of doc-
umentation. Another possible extension is the generation
of source code to actually generate the System Definition
module of the product-line architecture (Fig. 7). Both can
be specified using model transformations.

Note that we did not yet consider the domain specific in-
terface modules of the product-line architecture. However,
this only constitutes a minor hurdle since we can simply en-
capsulate the existing source code bodies for each behavior
(preserving interface functionality and behavior).

10. Conclusions and future work

In this paper we formulated the migration of Smc sys-
tems as a model transformation problem. The starting
point is an Smc architecture based on Fsm’s; the end point
is a product-line Smc architecture based on Trs’s. Our ap-
proach supports the generic migration of the product-line
members.

We demonstrated that the development framework for
the Mda can be successfully applied in a migration context
as well: migration can be seen as a series of model trans-
formations. We proposed a generic two-phase model-driven
migration approach that uses a distinct normalisation and
transformation steps to derive the modules required to in-
stantiate the Trs product-line architecture for a particular
(sub)system. The normalisation step is crucial in overcom-
ing semi-formal, incomplete and ambiguous specifications
as well as tool and language limitations. This normalisa-
tion step requires domain knowledge and manual effort, but
makes our approach suited for industrial application.

A trade-off has been identified between the inherent
complexity of automated transformations and the required
manual effort during normalisation. Based on Smc-specific
concerns and a normalised source meta-model, we have
defined and implemented a set of generic transforma-
tion rules that support a migration towards Trs-based
product-line architectures. The applicability of these rules
has been illustrated for a real-world industrial case. Since
our transformation rules operate on normalisations, they
can be applied to Fsm-Trs migrations of Smc systems
without loss of generality.

The industrial case that motivated this paper imposes
not only the source and target paradigms but places practi-
cal constraints on the enabling technologies as well. Start-
ing from Uml, we selected technologies compatible with
the Mda to setup a convenient tool-chain that supports
the definition and manipulation of models. Using this tool

17

SERG Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures

TUD-SERG-2006-020a 17

chain, several requests from different Smc components have
been migrated as a proof of concept. Our experiments show
that the application of model transformations not only in-
creases the understandability of such a migration, but also
reduces the need for domain experts.

As such, the main contributions of this paper are:
– The illustrated applicability of the Mda approach to

architecture migrations. To this end, we introduced a vi-
tal normalisation step that enables migrations in an in-
dustrial setting.

– A practical view on the use of meta-models and profiles
for migrations in general and, more specifically, on the
normalisation, and transformation of Smc source mod-
els.

– The specification of a set of model transformation rules,
an Smc Uml profile, and a Trs meta-model that can be
applied to Fsm-Trs migrations of Smc architectures.
We are in the process of extending our work along the

following lines. First, we want to further investigate the ex-
traction of source models for our transformation directly
from source code. This may also enable (partial) formali-
sation and automation of our normalisation step. Second,
at the other end of the migration, we want to extend our
approach with code generation from Trs models for the
application-specific modules of the Trs product-line archi-
tecture, again using technologies related to the Mda. This
would provide for a full-fledged model-driven migration ap-
proach: from legacy code to new code through a series of
model transformations.

Acknowledgements

The work in this paper has been sponsored by Sen-
ter (Ideals project) and NWO Jacquard (Reconstructor
project). We would like to thank the Ideals team and
ASML, in particular Remco van Engelen, Ed de Gast,
Koen van der Heijden, Barend van den Nieuwelaar, Do-
minique Perdaen, Joost Worms and Asia van de Mortel-
Fronczak for their input and feedback. Finally, we thank
Slinger Jansen of Utrecht University for his comments.

References

Baxter, I. D., Pidgeon, C., Mehlich, M., 2004. DMS: Program trans-
formations for practical scalable software evolution. In: Proc. 26th

Int’l Conf. Software Engineering (ICSE 2004). IEEE Computer
Society, pp. 625–634.

Bosch, J., Molin, P., 1999. Software architecture design: evaluation
and transformation. In: Proc. 6th Symposium on Engineering of
Computer-Based Systems (ECBS ’99). IEEE CS, pp. 4–10.

Bril, R., Krikhaar, R., Postma, A., 2005. Architectural support in
industry: a reflection using C-POSH. J. software maintenance and
evolution: research and practice 17, 3–25.

Buttazzo, G., 2002. Hard real-time computing systems: predictable
scheduling algorithms and applications. Kluwer Academic Pub-

lishers.
Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little,

R., Nord, R., Stafford, J., 2002. Documenting Software Architec-
tures:Views and Beyond. Addison-Wesley.

Eclipse Foundation, 2005. Eclipse modeling framework (EMF). http:
//www.eclipse.org/emf.

Fahmy, H., Holt, R. C., 2000a. Software architecture transformations.
In: Proc. 16th Int’l Conf. Software Maintenance (ICSM 2000).
IEEE CS, pp. 88–96.

Fahmy, H., Holt, R. C., 2000b. Using graph rewriting to specify
software architectural transformations. In: Proc. 15th IEEE Int’l
Conf. Automated Software Engineering. IEEE Computer Society,
pp. 187–196.

Gohari, P., Wonham, W., 2003. Reduced supervisors for timed
discrete-event systems. IEEE Trans. Automatic Control 48 (7),
1187–1198.

Graaf, B., Lormans, M., Toetenel, H., November–December 2003.
Embedded software engineering: state of the practice. IEEE Soft-
ware 20 (6), 61–69.

Gray, J., Zhang, J., Roychoudhury, S., Wu, H., Sudarsan, R., Anirud-
dha, Neema, S., Shi, F., Bapty, T., 2004. Model-driven pro-
gram transformation of a large avionics framework. In: Proc. 3rd

Int’l Conf. Generative Programming and Component Engineering
(GPCE 2004). Springer-Verlag, pp. 361–378.

IEEE-1471, 2000. IEEE recommended practice for architectural de-
scription of software intensive systems. IEEE Std 1471–2000.

Jouault, F., Kurtev, I., 2005. Transforming models with ATL. In:
Proc. of the Model Transformations in Practice Workshop at
MoDELS2005.

Lange, C. F., Chaudron, M. R., Muskuens, J., March 2006. In prac-
tice: UML software architecture and design description. IEEE
Software 23 (2), 40–46.

Lehman, M. M., Belady, L. A. (Eds.), 1985. Program evolution: pro-
cesses of software change. Academic Press Professional, Inc., San
Diego, CA, USA.

MDR, 2006. mdr: netbeans.org : Metadata repository. http://mdr.
netbeans.org/.

OMG, 2001. OMG Unified Modeling Language Specification, version
1.4. http://www.uml.org.

OMG, 2005a. MDA. http://www.omg.org/mda.
OMG, 2005b. Meta-object facility (MOF). http://www.omg.org/mof.
Perry, D. E., Wolf, A. L., 1992. Foundations for the study of software

architecture. ACM SIGSOFT Software Engineering Notes 17 (4),
40–52.

Ramadge, P., Wonham, W., 1987. Supervisory control of a class
of discrete event processes. SIAM J. Control and Optimization
25 (1), 206–230.

Reveliotis, S. A., 2005. Real-Time Management of Resource Alloca-
tion Systems. A Discrete Event Systems Approach. Vol. 79 of Int’l
Series in Operations Research & Management Science. Springer-
Verlag.

Sabuncuoglu, I., Bayiz, M., 2000. Analysis of reactive scheduling
problems in a job-shop environment. European J. operational re-
search 126, 567–586.

Van den Nieuwelaar, N., 2004. Supervisory machine control by
predictive-reactive scheduling. Ph.D. thesis, Technische Univ.
Eindhoven.

Van Deursen, A., Hofmeister, C., Koschke, R., Moonen, L., Riva, C.,
2004. Symphony: View-driven software architecture reconstruc-
tion. In: Proc. of the 4th Working IEEE/IFIP Conf. Software
Architecture (WICSA 4). IEEE CS, pp. 122–134.

Viennot, G. X., 1986. Heaps of pieces, I: Basic definitions and combi-
natorial lemmas. In: Labelle, G., Leroux, P. (Eds.), Proc. Colloque
de combinatoire énumérative (UQAM 1985), Montreal, Canada.
Vol. 1234 of Lecture Notes in Math.. Springer-Verlag, pp. 321–350.

18

Graaf et al. – Model-driven Migration of Supervisory Machine Control Architectures SERG

18 TUD-SERG-2006-020a

TUD-SERG-2006-020a
ISSN 1872-5392 SERG

