
Protecting mobile agents from
external replay attacks

Carles Garriguesa,∗, Nikos Migasb, William Buchananb,
Sergi Roblesa, Joan Borrella

aDepartment of Information and Communications Engineering, Autonomous University of
Barcelona, 08193 Bellaterra, Spain

bSchool of Computing, Napier University, Edinburgh EH10 5DT, United Kingdom

Abstract

This paper presents a protocol for the protection of mobile agents against external replay
attacks. This kind of attacks are performed by malicious platforms when dispatching an
agent multiple times to a remote host, thus making it reexecute part of its itinerary. Cur-
rent proposals aiming to address this problem are based on storing agent identifiers, or trip
markers, inside agent platforms, so that future reexecutions can be detected and prevented.
The problem of these solutions is that they do not allow the agent to perform legal migra-
tions to the same platform several times. The aim of this paper is to address these issues
by presenting a novel solution based on authorisation entities, which allow the agent to be
reexecuted on the same platform a number of times determinedat runtime. The proposed
protocol is secure under the assumption that authorisationentities are trusted.

Key words: Mobile agents; Security; Malicious hosts; Replay attacks;Trip marker;
Protected itinerary

1 Introduction

Mobile agents can provide many benefits to the development ofdistributed appli-
cations, but their use also poses many security threats. Research on mobile agent

∗ Corresponding author. Tel.: +34-935813577; fax: +34-935814477
Email addresses:carles@deic.uab.es (Carles Garrigues),

n.migas@napier.ac.uk (Nikos Migas),w.buchanan@napier.ac.uk (William
Buchanan),sergi.robles@uab.es (Sergi Robles),joan.borrell@uab.es
(Joan Borrell).

Preprint submitted to Elsevier 7 May 2008

Main document



technology has identified and solved a number of security-related issues, but there
are still many remaining unsolved (Zachary, 2003).

Most of the research work undertaken on mobile agent security is concentrated
on the problem of malicious platforms, as platforms have complete control over
the agent execution, and can thus do almost anything with theagent code or data.
Therefore, achieving a complete solution is considered impossible, although sev-
eral problems can be mitigated. For example, even though platforms cannot be
prevented from manipulating the results generated by the current execution of the
agent, they can certainly be prevented from tampering with the results generated by
the agent on other platforms.

Most proposed methods on mobile agent protection against malicious platforms try
to provide a generic solution to cover as many security threats as possible, usually
without putting the solution into practise in any real-lifeapplications. On the other
hand, most real-life agent-based applications do not take security into account. Sub-
sequently, various proposals on mobile agent security havefailed to address specific
scenarios where their solutions may not be valid. In the context of this paper, the
solutions presented in the literature for agent replay attacks have failed to address
scenarios where the agent has to loop over a certain number ofplatforms an unde-
termined number of times (Tsipenyuk, 2004). Agent replay attacks can be classified
in two different categories (Yee, 2003):

Internal replay attacks These occur when the agent is forced to execute repeat-
edly on a single platform using different inputs, aiming to obtain different re-
sponses and draw conclusions about its behaviour.

External replay attacks These are performed by malicious platforms by resend-
ing the agent to another platform, thus making the agent reexecute part of its
itinerary.

Internal replay attacks are impossible to avoid because theplatform has complete
control over the execution, and can always reset the agent toits arrival state. On
the contrary, external replay attacks can be avoided if platforms keep a record of
previously executed agents.

The problem of current solutions (Yee, 2003; Westhoff et al., 1999; Wilhelm et al.,
1998; Li et al., 2000; Suen, 2003; Mir and Borrell, 2003; Che et al., 2006; Cucu-
rull et al., 2005) against external replay attacks is that they do not allow an agent
to be executedn times on the same platform, especially ifn is determined at run-
time. However, the agent’s itinerary often contains roundtrips that require the same
platform to be visited several times. Thus, current solutions force programmers to
sacrifice some of the inherent flexibility in mobile agent itineraries.

In order to enhance security and flexibility, this paper presents a solution based on
authorisation entities. The advantage is that these entities are entitled to generate
new identifiers for the agent, thus allowing the repeatable migration of the agent

2



to the same platform. Therefore, the proposed solution allows programmers to de-
velop secure mobile agent applications and still maintaining the agents’ intrinsic
flexibility.

The rest of the paper is structured as follows. Section 2 introduces the related work
on preventing replay attacks. Section 3 presents the proposed protocol for replay
attack prevention. Section 4 describes the implementationof the proof-of-concept
of the proposed solution. Section 5 concludes the paper and points out future direc-
tions.

2 Background

Replay attacks (Syverson, 1994) have traditionally been considered as a form of
network attack. They are based on capturing some of the messages exchanged be-
tween two entities and sending them again at a later time. These attacks are usually
performed during authorisation or key agreement protocols, in order to perform,
for example, masquerade attacks.

Traditional mechanisms to prevent replay attacks are basedon using nonces, times-
tamps, session tokens, or any other information that allowsentities to bind their
messages to the current protocol run (Aura, 1997). For example, an HTTP exchange
between a browser and a server may include a session token that uniquely identifies
the current interaction session. The token is usually sent as an HTTP cookie, and is
calculated as a hash of the session data, user preferences, and so on.

Mobile agent systems are also exposed to traditional replayattacks. Any communi-
cation between two agents, or two platforms, or an agent and aplatform is exposed
to this kind of attacks. Mechanisms like the ones previouslymentioned (based on
nonces and session tokens) can be used to withstand these attacks.

In addition to traditional replay attacks, mobile agent systems are also exposed to
agentreplay attacks. Agent replay attacks are not based on replaying a message
sent across the network, but on reexecuting an agent that hasalready been exe-
cuted on a platform. In addition, these attacks are usually performed by platforms
which are part of the agent’s itinerary, and they are harder to prevent in this case.
When agent replay attacks are performed by external platforms, they can easily
be detected using authentication mechanisms (Navarro-Arribas and Borrell, 2006)
or mechanisms designed to prevent traditional replay attacks (Karnik and Tripathi,
2001). Agent replay attacks can be divided into two classes:internal and external
replay attacks.

Internal replay attacks occur when a dishonest platform repeatedly runs an agent
with the same or different set of inputs each time. A platformmight execute an

3



agent multiple times in order to understand its behaviour, or until the desired out-
put is obtained. This type of attack is also known asblackbox testing(Hohl, 1998),
and is usually performed when the agent code has been protected using some ob-
fuscation technique.

This kind of attacks is performed inside a single platform, and cannot be externally
observed by any other entity. Even if the agent tried to record all its actions on an
external monitoring service, the execution environment could still interfere with
these external communications, and route the messages to anincorrect recipient,
or alter the contents of the messages, and so on. Moreover, agent attempts to store
their state information in a secure external entity could beeasily bypassed by mali-
cious platforms altering the agent execution. In practise,internal replay attacks are
impossible to prevent or detect (Yee, 2003).

External agent replay attacks occur when a dishonest platform propagates an agent
to a remote host, without this migration being defined in the agent’s itinerary. This
kind of attack is especially difficult to deal with, as it is difficult to distinguish be-
tween a legal migration of the agent to its next destination and a replayed migration
that the agent did not intend to do. For example, supposing that the agent’s itinerary
includes a migration from platformA to B, then platformA is authorised to send
the agent to platformB, and the agent is also authorised to be executed on plat-
form B. As a result, no authentication mechanism can be used to prevent platform
A from maliciously resending the agent to platformB multiple times. This kind of
attack can be carried out against a shopping agent, for example, in order to generate
unintended purchases.

In order to provide a solution to this problem, Yee (2003) suggests considering a
replay attack as an illegal state transition. Every platform within the itinerary im-
plements a state transition inconsistency detection (STID) algorithm, which is able
to determine when a migration from one platform to another isan illegal transition.
The problem of this approach is that platforms must be aware of all possible ille-
gal state transitions for every agent execution. In addition, illegal state transitions
may be mistakenly identified if the agent is performing a loopin which the same
platform is visited repeatedly.

In Vigna (1998), a protocol is presented that allows replay attacks to be detected
upon completion of an agent execution. The protocol is basedon recording the
agent’s execution on each platform. Platforms must keep a log of the operations
performed by every agent, so that agent owners can detect anymalicious manipula-
tion of the agents’ itinerary. This technique suffers from some drawbacks, such as
the size of the logs that have to be maintained. In general, detecting replay attacks
after they have been performed is useless in many occasions.For example, if the
agent is buying a product, detecting a replay attack that leads to buying the product
more than once is usually inappropriate, especially if the price of the product is too
low to justify future legal actions.

4



Other work (Westhoff et al., 1999; Wilhelm et al., 1998; Li etal., 2000; Suen,
2003; Mir and Borrell, 2003; Che et al., 2006) on mobile agentprotection against
malicious platforms suggests the use of trip markers for preventing replay attacks.
A trip marker is an agent identifier that must be stored by platforms, which can be
used to detect and prevent future attempts of reexecuting the same agent. Again,
the problem of these solutions is that they do not take into account the case where
the agent itinerary includes one or more platforms that mustbe visited more than
once. As a result, a legal reexecution of the agent in the sameplatform can be
misinterpreted as a replay attack.

These issues were identified by Cucurull et al. (2005), who proposed a solution
based on including counters inside the agent trip marker. Every platform is as-
signed a different counter, which indicates the maximum number of times that an
agent can be executed on a platform. Platforms keep a record of which agents have
been executed, and the number of times they have done so. Before starting the ex-
ecution of an agent, platforms check that the number of timesthat the agent has
been previously executed does not exceed the number of allowed executions stored
in the agent trip marker.

The problem of this approach, however, is that the number of times that a given
platform can be visited must be known in advance, specifically when the agent’s
itinerary is created, so that this information can be introduced inside the agent trip
marker. Consequently, this approach does not allow the agent to dynamically decide
on the number of times a given platform will be visited.

Preventing the agent from being executed more than once has also been referred in
the literature as ensuring theexactly-once execution property(Straßer et al., 1998).
This property is usually considered when designing fault-tolerant mechanisms for
mobile agents. Ensuring the exactly-once execution property implies that, when
the agent is launched to do a certain task: first, the task willbe eventually executed,
regardless of host or communication failures that may occur; and second, the task
will not be performed more than once.

Solutions presented to ensure the exactly-once execution property are based on
using external entities that monitor the execution of the agent. When a failure pre-
vents the agent from continuing its itinerary, another agent is launched to resume
the execution at the point the original agent left it. The problem of these solutions is
that the communications between the agent and the monitoring system lead to con-
siderable traffic overheads. In addition, these protocols severely reduce the agent’s
autonomy, as the agent has to constantly interact with the monitoring entity. Thus,
they sacrifice one of the major advantages associated with the use of mobile agent
technology.

To summarise, no solution presented so far against replay attacks allows an agent
to dynamically determine the number of repeated executionsof the same task on

5



one or more platforms along its itinerary. Considering thatone of the greatest ap-
peals of mobile agents is their dynamism and flexibility, hard-coding the number of
possible migrations to a platform in advance can be a seriousimpediment for im-
plementing real-life applications. The next section describes the proposed protocol
which solves this problem.

3 Replay attack protection

Protecting mobile agents against all kinds of replay attacks becomes a serious and
complex problem to solve. The simplest case is where the itinerary does not contain
any loops in its itinerary, that is, the agent does not need torepeatedly execute the
same task on one or more platforms. In a loop-free scenario, if the agent has to
migrate to a certain platform several times, it will do so in different stages of its
itinerary, which means that it will be executing different tasks. Replay attacks are
easy to prevent in this case. Platforms can store an identifier of the stage or task
executed, together with the agent trip marker. Fig. 1 shows an example of this kind
of itinerary. In this case,platform Bis visited in two different nodes (or stages) of
the itinerary: the first one to execute node 2, and the second one to execute node 4.

Fig. 1. Simple itinerary where the same platform is visited twice

It is worth noting that the usage of the termnodein the context of this paper is
different from that found in computer networks terminology, where a node simply
refers to a location in the network. In this paper, an itinerary node, or, simply, node,
refers to the stage of the agent execution that is associatedwith a certain task and a
certain platform.

The most difficult case is where the agent has to execute the same task on the same
platform several times, especially if this number of times is determined at runtime.
Fig. 2 shows an example of this kind of itinerary.

As shown in the figure, the itinerary contains a loop, which starts atplatform B.
The detection of replay attacks is especially difficult, forexample, whenplatform
C resends the agent toplatform D. How canplatform Ddetermine whether the new
reexecution is a replay attack or a new iteration of the loop?

Before presenting the proposal for external replay attack prevention, the next sub-
section describes the requirements that any valid solutionshould fulfil.

6



Fig. 2. Itinerary containing a loop with 3 platforms that arevisited repeatedly

3.1 Requirements of the solution

First of all, different agents must have different identifiers or trip markers, even if
they perform exactly the same tasks. This also implies that any new instance of the
same agent must carry a different trip marker.

Secondly, a valid solution on replay attacks has to focus on their prevention, rather
than just on their after-the-fact detection.

Thirdly, platforms must store the trip markers of the agentspreviously executed,
along with an identifier of the task performed by the agent, toallow agents to revisit
the same platform in different stages of its itinerary.

Finally, a valid solution on replay attacks should not involve the interaction of the
agent with external entities. This allows the agent to run autonomously, without
depending on the control or interaction with any monitoringservice.

3.2 The protocol

The proposed protocol for the protection against replay attacks is based on using
trip markers and authorisation entities. A trip marker is anauthorisationthat allows
the agent to execute a certain set of nodes. Each node has an authorisation entity
associated with it, and this entity is the only one entitled to generate new valid trip
markers (authorisations) for the execution of that node. Platforms must store the
trip markers of previously executed agents, so that no trip marker can be used more
than once to execute the same node.

The steps required to create a replay-safe mobile agent, andthen the operations car-
ried out by the agent platform to detect and prevent replay attacks are presented in
this section. The combined actions comprise the protectionprotocol which tackles
replay attacks in mobile agent environments.

In order to create a replay-safe mobile agent, the programmer must define the set
of nodes that comprise the agent itinerary, assigning the following information to

7



each one of them:

• a node identifier
• a task
• a node type
• an authorisation entity
• an authorisation node
• a set of next destinations

Although nodes can be assigned various types, for the purposes of the proposed
protocol only two types are considered:

Regular A regular node is an itinerary stage where the agent executes its task and
jumps to the next platform of the itinerary.

Loop A loop node is an itinerary stage where the agent decides whether ornot to
start a new iteration and revisit a certain number of nodes.

As an example, in the itinerary of Fig. 2, node 2 is aloop node, and the remaining
nodes are allregular. However, as proposed in Straßer et al. (1998), other nodes
types could be defined, for example, to provide more flexibility in the definition of
the agent itinerary. These other types would be treated in the same way asregular
nodes and, therefore, are not important for the definition ofthe proposed protection
protocol.

In addition to a type, the programmer must assign an authorisation entity and an au-
thorisation node to every node. The authorisation node is the node where the agent
trip marker must be generated. This implies that the agent trip marker is only valid
if it has been generated in the appropriate authorisation node. The authorisation en-
tity is the corresponding platform or individual that must generate and sign the trip
marker. In some cases, as explained next, a node can have no authorisation node
associated with it, because the execution of that node is authorised by the agent
owner.

The authorisation node that is assigned to each node dependson whether or not the
node is located inside a loop. If the node is part of a loop, itsauthorisation node
is the loop node located at the start of the loop. The corresponding authorisation
entity is the platform where theloop node is executed. In all other cases, the node
has no associated authorisation node, and the corresponding authorisation entity is
the agent’s owner. As an example, Fig. 3 shows which authorisation entity and node
are associated with each node of a complex itinerary. This itinerary contains two
loops, one nested inside the other.

The itinerary shown in Fig. 3 has an outer loop starting atplatform A. In this plat-
form, the agent decides how many iterations of the outer loophave to be performed.
If the agent decides to enter this loop, it will visitplatform Band thenplatform C,
which is the starting point of the inner loop. The inner loop contains just one node,

8



Fig. 3. Authorisation entities (AE) and authorisation nodes (AN) assigned to the nodes of
a complex itinerary

executed onplatform D.When the agent exits the inner and the outer loop, it mi-
grates toplatform E, where it reaches the end of its itinerary.

The itinerary shown in Fig. 3 has three different authorisation entities: the agent’s
owner,platform Aandplatform C. Platform Ais the starting point of the outer loop,
and thus it is the authorisation entity of nodes 2 and 3. On theother hand,platform
C is the authorisation entity of node 4, as this node belongs tothe inner loop. For
the remaining nodes, the authorisation entity is the agent’s owner.

It is important to note that the authorisation entities are selected by the agent pro-
grammer, and the proposed protocol assumes that the programmer trusts these enti-
ties to execute theloopnodes included in the itinerary. In the example of Fig. 3, the
protocol assumes that the programmer trustsplatform Aandplatform Cto execute
nodes 1 and 3 correctly. As mentioned in section 2, no protection mechanism can
be used to prevent a malicious platform from subverting the agent execution, so the
number of loop iterations could be easily altered as well.

Once the aforementioned information has been assigned to every node, the pro-
grammer must secure the itinerary using a protection protocol. This protocol must
satisfy the following properties:

• It must not allow platforms to access or modify any part of theitinerary which is
intended for other platforms.

• It must not be possible to introduce new nodes in the itinerary.
• It must not be possible to traverse the itinerary nodes in an order different from

the order initially defined.
• Every itinerary node must be uniquely bound to the agent it belongs to. As a

result, it must not be possible to reuse any part of the agent itinerary in a different
agent.

• It must support flexible itineraries, which allow the agent to make decisions about

9



its travel plan at runtime.

In order to define the proposed protocol, it will be assumed that a unique agent
identifier is used to bind the itinerary nodes with the agent.This agent identifier can
be simply a timestamp attached to a big random number, or any other information
that uniquely identifies each agent instance.

An example of a protocol that guarantees all the properties mentioned above is the
one presented in Mir and Borrell (2003). This protocol is based on constructing the
protected itinerary as a chain of digital envelopes, in sucha way that they can only
be opened by the appropriate platform in the correct order.

After defining all itinerary nodes and securing them using anitinerary protection
protocol, the programmer must generate a trip marker for theagent. Agent trip
markers must always contain the following information:

Agent identifier This is the same identifier included in the protected itinerary,
which ensures that any given agent instance can be uniquely identified.

Authorisation node This is the identifier of the node where the trip marker is gen-
erated.

Expiry date This is the date after which the trip marker can no longer be used.
It allows platforms to remove expired trip markers from their tables, which is
usually convenient but has no real effect on the protocol.

Loop counter This counter is incremented by one unit every time the agent has to
start a new loop iteration.

In the trip marker created by the programmer initially, the authorisation node is
not set, as the programmer has no associated itinerary node.This is consistent with
what has been specified in the itinerary nodes. When the authorisation entity of a
node is the agent programmer, then the node has no associatedauthorisation node.

The trip marker initially created must be signed by the agentprogrammer or owner,
who is always the authorisation entity assigned to the first itinerary node. This trip
marker must then be placed at the top of the agent’s trip marker stack. As will be
seen later, the trip marker stack stores trip markers previously used by the agent
during its execution. The top of this stack always contains the trip marker currently
used.

Thus far, the steps required to create a replay-safe mobile agent have been de-
scribed. Fig. 4 shows a representation of the components of an agent resulting from
this protection. Next, the operations carried out by platforms to prevent a mobile
agent from being replayed are presented.

In order to start the execution of an agent, platforms must extract the information
of the current node from the protected itinerary. The operations carried out to do
this extraction depend on the itinerary protection protocol used. In most cases, this

10



Agent

Protected Itinerary:

Trip marker stack:

Signed AgentID CountExpiry

Node 1 Node n...

Node info

Auth node ID
by Auth Entity

Auth entity

NodeID

AgentID

Type

Task

Auth node ID

Next platforms

Fig. 4. Components of an agent protected against replay attacks

implies using the platform’s private key, which ensures that no other platform can
access the contents of the current node. By extracting the current node from the
protected itinerary, platforms obtain the node identifier,agent identifier, task, type,
next platforms, authorisation entity and authorisation node.

In addition, platforms must retrieve the agent’s trip marker from the top of the
agent’s trip marker stack. The trip marker contains the agent identifier, authorisation
node, expiry date and loop counter.

Platforms must also maintain a table with the trip markers ofpreviously executed
agents. Along with the trip marker, these tables must contain the identifier of the
node executed by the agent. To effectively prevent replay attacks, platforms should
only remove entries from their tables once they have expired.

In order to ensure that the agent is not being replayed, platforms must first use
the agent’s current node type to determine if the agent is executing aregular node
or a loop node. In case that the agent is executing aregular node, platforms must
perform the set of checks summarised in the algorithm of Fig.5.

The most relevant lines of the algorithm of Fig. 5 are described in detail below:

Line 1 The platform uses a public key server to obtain the public keyof the current
authorisation entity. With this public key, the platform verifies the trip marker
signature.

Line 2 The platform checks that the trip marker has been generated in the appro-
priate itinerary node. This involves checking that the authorisation node included
in the trip marker is equal to that extracted from the currentnode.

Line 3 The platform checks that the agent identifier included in thetrip marker is
equal to the one obtained from the current node. This prevents a trip marker from
being reused in a different agent, even if it was generated bythe same owner.

Line 4 The platform checks the trip marker expiry date. If the trip marker has
expired, the agent execution is discarded.

Line 5 The platform uses the agent identifier to look for a previous trip marker of
the same agent in its trip marker table.

11



1: verify trip marker (TM) signature
2: check current auth. node = TM auth. node
3: check agent’s identifier
4: check current date< expiry date
5: check platform’s TM table
6: if agent was not executed beforethen
7: save TM in platform’s table
8: else
9: if node ident. is differentthen

10: save TM in platform’s table
11: else
12: if loop counter> previous onethen
13: replace previous TM from platform’s table
14: else
15: discard agent execution
16: end if
17: end if
18: end if
19: run agent

Fig. 5. Algorithm for checking trip markers inregular nodes

Line 7 If there is no trip marker with the same agent identifier, the platform stores
the new trip marker along with the current node identifier in its trip marker table.

Line 9 Otherwise, this means that the same agent was executed before on this plat-
form. In this case, the platform checks if the agent’s current node identifier is
equal to that of the previous execution.

Line 10 If the new node identifier is different, it means that the agent is to execute
a different itinerary node. The platform stores the trip marker along with the new
node identifier in its trip marker table.

Line 12 Otherwise, this means that the same itinerary node was executed before
on this platform. The platform then compares the current loop counter with the
one included inside the trip marker obtained from the trip marker table.

Line 13 If the current loop counter is greater than the previous one,it means that
the agent is performing a new iteration of a loop. In this case, the platform re-
places the previous trip marker with the current one from itstrip marker table.

Line 15 Otherwise, this means that the current trip marker has already been used,
and the agent execution is discarded.

Line 19 If the agent execution has not been discarded in any of the previous steps
of the algorithm, the current node’s task is executed.

The above algorithm is necessary in order to verify that the agent is not being
replayed when it is executing aregular node. When the agent is executing aloop
node, basically the same checks are performed, but two additional operations are
required.

12



1: verify TM signature with the pubkey of either the
current platform or the current authorisation entity

2: check TM auth. node = current node or current
auth. node.

3 to 18: the same operations as algorithm of Fig. 5

19: generate new TM by incrementing loop counter
20: sign new TM with current platform’s private key
21: if this is the first iterationthen
22: add new TM to agent’s TM stack
23: else
24: replace previous TM from agent’s TM stack
25: end if
26: run agent
27: if agent exits loopthen
28: Remove TM from the top of stack
29: end if

Fig. 6. Algorithm for trip marker handling inloop nodes

Firstly, the platform must generate and sign a new trip marker for the agent. This
new trip marker authorises the agent to execute all the nodesincluded inside the
loop. The new trip marker is added at the top of the agent’s trip marker stack, thus
keeping the previous trip marker in the second position of this stack. This allows
the agent to recover the trip marker used before entering theloop, which is essential
because the trip marker generated by the current platform will no longer be valid
when the agent exits the loop.

Secondly, if the signature verification performed inline 1of the previous algorithm
fails, the platform will use its own public key to verify the current trip marker
signature. This allows the agent to execute the currentloopnode using a trip marker
generated by this same platform in a previous iteration.

As an example, in the itinerary of Fig. 3,platform A is the authorisation entity of
nodes 2 and 3. For each iteration of these two nodes,platform Amust generate and
sign a new trip marker for the agent. In addition, it must verify the signature of the
current trip marker with either its own public key or the owner’s. Once the agent
exits the loop, the trip marker signed byplatform Amust be removed from the top
of the agent’s trip marker stack, so that the original trip marker signed by the owner
can be used again to continue the agent execution onplatform E.

The algorithm shown in Fig. 6 summarises the operations carried out by the plat-
form when the agent is executing aloop node. The most relevant lines of the algo-
rithm of Fig. 6 are described in detail below:

Line 1 The platform verifies the agent trip marker signature with either its own
public key or the public key of the current authorisation entity. If both verifica-

13



tions fail, the agent execution is discarded.
Line 2 The platform checks that the trip marker has been generated in the appro-

priate itinerary node. This involves checking that the authorisation node included
in the trip marker is equal to either the current node or the current authorisation
node. This allows the agent to use a trip marker generated by this same platform
in the previous iteration.

Line 3 to 18 The platform checks the agent’s identifier, expiry date, loop counter
and node identifier, performing the operations 3 to 18 of the algorithm of Fig. 5.

Line 19 Before the agent task is executed, the platform generates a new trip marker.
This new trip marker contains the same information as the previous one, except
for the authorisation node, which is set to the current node,and the loop counter,
which is incremented by one.

Line 20 The platform signs the resulting trip marker with its own private key.
Line 22 If the agent is to perform its first iteration of the loop, the new trip marker

is added at the top of the agent’s trip marker stack.
Line 24 Otherwise, the current trip marker, which was generated by this same plat-

form in the previous iteration, is replaced by the newly generated one.
Line 26 The current task is executed, and the agent eventually decides whether or

not a new iteration has to be performed.
Line 28 If no more iterations are required, the agent removes the trip marker from

the top of the stack.

Thus far, the complete protocol aiming at preventing external replay attacks has
been presented, describing the creation of a protected mobile agent and the opera-
tions performed by agent platforms to withstand replay attacks. In the next section,
the most important characteristics of the proposed protocol are discussed.

3.3 Discussion

The proposed protocol is based on using trip markers (authorisations) which are
generated at runtime by authorisation entities. The agent itinerary is comprised of
a set of nodes, where each one is associated with a certain authorisation entity.
Platforms only execute the current node of the agent itinerary if the trip marker has
been signed by the appropriate authorisation entity.

Every itinerary node is also associated with an authorisation node. Using both an
authorisation entity and node prevents the reuse of the agent trip marker in scenarios
where the same authorisation entity is assigned to different nodes of the itinerary. In
these cases, an attacker might try to replay an agent by reusing a trip marker signed
by the proper authorisation entity but not generated in the appropriate itinerary
stage. However, this would be detected by platforms when they check if the trip
marker has been generated in the appropriate authorisationnode.

14



Every itinerary node contains an agent identifier, which is also included in the agent
trip marker. This prevents a given trip marker from being reused in different agents,
as this would be detected by platforms when comparing the agent identifier ex-
tracted from the current node with the one included in the trip marker.

In order to prevent replay attacks effectively, the agent itinerary must be crypto-
graphically protected, so that no attacker can change the information associated
with a given node. Moreover, the itinerary protection must keep an agent task from
being executed on a platform or itinerary stage different from that initially defined.

The proposed protocol does not involve the interaction of the agent with external
entities, and only assumes thatloop nodes will be executed on platforms trusted
by the programmer. Because it is not possible to prevent platforms from tampering
with the agent execution, it is legitimate to assume that theplatform associated with
a loopnode is trusted by the programmer to evaluate the loop condition.

Platforms must prevent their trip marker tables from fillingup by removing entries
that have already expired. Additionally, some other policyhas to be implemented
in order to enable the removal of entries when no more trip markers can be added
to the table (e.g., removing older entries first).

The proposed protocol supports free roaming agents that candecide their itinerary
by themselves and can discover new hosts to be visited at runtime. However, the
agent itinerary must be protected with a protocol that supports free roaming agents
as well. An example of such protocol can be found in Garrigueset al. (2008). The
proposed itinerary protection protocol is based on introducing trusted platforms
into the agent’s itinerary. The public keys of these trustedplatforms are used to
encrypt the agent’s code and data to be executed on the hosts discovered at run-
time. Then, when the agent is executed on a trusted platform,the itinerary is re-
constructed using the public keys of the newly discovered platforms. The protocol
described in this paper can be used in combination with the protocol proposed in
Garrigues et al. (2008), provided that the platforms assigned to authorisation nodes
are known at the time of creating the itinerary. Thus, the corresponding authorisa-
tion entities can be specified in the protected itinerary.

The proposed protocol does not support agent cloning. In general, mobile agent
cloning introduces the problem of resolving identities properly when the replicas
communicate with other agents or platforms. With regard to the proposed protocol,
cloning a mobile agent would imply generating a new trip marker for the replica,
however, this is not possible unless the new trip marker is generated by an authori-
sation entity. Nevertheless, authorisation entities are designed to generate new trip
markers only when new loop iterations have to be started. As aresult, the proposed
protocol does not support agent cloning. Further research will be conducted in the
future to extend the proposed protocol in order to allow for agent cloning.

15



Fig. 7. Components of an agent protected against replay attacks with an agent-driven im-
plementation

4 Implementation

In order to prove the viability of the proposed protocol, a prototype implementation
has been created and experimentation has been carried out using the Java-based
Jade platform (Bellifemine et al., 2003) as the agent execution environment.

Agents have been implemented following anagent-drivenapproach, as proposed
by Ametller et al. (2004). According to Ametller et al. (2004), mobile agents are
created from two main components: a protected itinerary anda control code. The
protocol used to protect the itinerary is not imposed by Ametller’s approach; the
choice depends on the requirements of the given application. The control code man-
ages the traversal of the itinerary, which involves the decryption of the protected
itinerary data, the execution of the agent’s tasks, and the agent’s migration to the
next destination specified in the itinerary. The advantage of using an agent-driven
approach is that agents handle their protection mechanismsin an autonomous way,
without requiring platforms to know how the agent is internally protected.

In this implementation, the itinerary is protected using the protocol presented by
Mir and Borrell (2003). Fig. 7 shows the main components of anagent resulting
from implementing the protocol presented in this paper using an agent-driven ap-
proach.

As this figure shows, the agent is made up by three components:the trip marker, the
control code and the protected itinerary. These componentsare bound by an agent
identifier, thus preventing from dishonest reuse in other agents.

As proposed by Ametller et al. (2004), the agent identifier isconstructed as a hash
of the agent control code. In addition, the control code is unique for every agent, and
it is bound to the agent itinerary so that any malicious data insertion or modification

16



of the itinerary can be detected. At the same time, the itinerary data is encrypted
in such a way that any change in the control code will keep thisdata from being
decrypted.

In order to implement the proposed protection protocol based on an agent-driven
approach, platforms must provide two services required by the agent control code.
These services are available to the agent by exposing two functions:

decrypt This function allows agents to decrypt data using the platform’s private
key. As described in Ametller et al. (2004), data is bound to the agent using
a hash of the control code. Thus, this function can check thatthe data being
decrypted really belongs to the requesting agent.

checkTripMarker This function first checks that the trip marker really belongs to
the requesting agent. For this purpose, it computes a hash ofthe agent control
code and compares it with the agent identifier included in thetrip marker. If this
verification succeeds, this function validates the trip marker by performing the
operations shown in the algorithms of Figs. 5 and 6.

As it can be seen, the trip marker check is triggered by the agent. Thus, the pro-
tection against replay attacks is completely optional, andwill only be performed
by those agents calling thecheckTripMarkerfunction. Forcing every agent to sup-
port the replay protection protocol would unnecessarily increase the complexity of
many applications where security is not an issue.

In order to develop a better understanding of the construction of a replay-safe mo-
bile agent, the following subsections describe each of the main steps required: cre-
ation of the control code, protection of the itinerary and generation of the agent trip
marker.

4.1 Creating the agent control code

Both itinerary protection management and next platform decision making take
place in the control code. The following are the relevant variables used by this
code:

publicKey this variable is initialised to the Base64 encoding of a public key used
for binding the control code with the itinerary, and making the control code
unique at the same time (Ametller et al., 2004).

tripMarkerStack this variable will contain the agent trip marker stack, oncethe
agent instance has been created.

protectedItinerary this variable will contain the agent protected itinerary, once
the agent instance has been created.

The following are the relevant methods used by this code:

17



nodeExtraction this method extracts the information of the current node from the
protected itinerary. The algorithm proposed by Mir and Borrell (2003) is used for
this purpose. The platform’sdecryptfunction is called to request the decryption
of the itinerary data.

action this method is the entry point to the agent execution. It firstcalls thenode-
Extractionmethod to extract the current node’s information from the itinerary.
Then, it calls the platform’scheckTripMarkerfunction to verify that the agent is
not being replayed. Finally, it executes the current task and, eventually, triggers
the migration to the next platform of the itinerary.

Once the agent control code has been created, it is compiled and an executable
.classfile is obtained. It is worth noting that the control code is almost the same for
all agents, so it can be easily reused. However, the control code contains a public
key which is different for each agent. Therefore, the hash ofthis control code is
always unique, and it is a suitable agent identifier.

4.2 Creating the protected itinerary

After creating the agent control code, the protected itinerary is built. Every node
of this itinerary contains: node identifier, agent identifier, authorisation entity and
node, task, type and next platforms, as explained in section3.2.

As proposed by Ametller et al. (2004), every node is now signed with the private
key associated with the public key included in the agent control code. This private
key is only available to the owner, and is different for each agent. Therefore, at-
tackers cannot introduce new nodes in the itinerary nor reuse them in a different
agent.

In order to meet the requirements specified by the replay protection protocol pre-
sented in this paper, the itinerary is now secured using protocol proposed by Mir
and Borrell (2003).

4.3 Creating the agent trip marker and the final instance

After creating the control code and the protected itinerary, the initial agent trip
marker is generated. This trip marker includes: agent identifier, authorisation node,
expiry date and loop counter. All this information is signedwith the owner’s private
key.

Once the control code, the protected itinerary, and the agent trip marker have been
generated, a new instance of the agent can be finally created.The protected itinerary
and the agent trip marker are supplied as parameters to this new agent instance, so

18



Fig. 8. Itinerary of the car purchasing service agent

that thetripMarkerStackand theprotectedItineraryvariables can be initialised.

4.4 Simulation and tests

In order to test the implementation of the proposed protocol, a simple mobile agent-
based application has been simulated. This application shows the need for protec-
tion against replay attacks, and the results of the simulation prove that replay attacks
can be effectively prevented, and agents can be executed in completely reasonable
times.

This example application implements an automated car purchasing service. The
service allows an individual to find the best price for a car, given its specific make
and model, and the set of car dealers that have to be queried. The application carries
out the purchase remotely from the user’s financial institution, and this institution
serves as the trusted location where the application decides which offer to accept.

Once the user has introduced all the required information inthe application, a mo-
bile agent is launched to visit every car dealer and obtain the price offered for the
given model. After visiting all car dealers, a new round is started to negotiate an
improvement on the best price previously obtained. This process is repeated un-
til two consecutive iterations lead to the same best price. After each iteration, the
agent visits the user’s financial institution, to decide whether or not a new iteration
has to be started.

When the best price is obtained, the agent proceeds with the car purchase. The
purchase is always completed remotely from the user’s financial institution, which
ensures that this operation is performed securely in a trusted environment. Once
the purchase has concluded, the agent returns to its home platform, and presents
the resulting purchase contract to the user. The agent itinerary defined for the im-
plementation of this example application is shown in Fig. 8.

This application demonstrates a simple scenario where the use of the mobile agent
technology can introduce a number of advantages, such as reducing network load,

19



Table 1
Execution times (ms) for protected and unprotected agents

Visited nodes: 15 27 39 51

Unprotected Exec time: 11365 22094 32837 43665

agent Time/node: 757 818 841 856

Protected Exec time: 16641 31682 46715 61836

agent Time/node: 1109 1173 1197 1212

Increase: 46.4% 43.4% 42.3% 41.6%

by employing local communications, as well as automation ofe-commerce pro-
cesses. Considering that the negotiation can be a rather lengthy process, mobile
agent technology enhances significantly the usability of this application in devices
with intermittent, low bandwidth connections, as it eliminates the need for perma-
nent connections with the remote sites.

This application also demonstrates the need of an agent to dynamically determine
the number of repeatable visits required over a certain set of platforms. Unlike
replay protection mechanisms previously presented, the proposed protocol allows
the agent to visit the same platform as many times as necessary, without leaving
it exposed to replay attacks. This is an essential part within the context of this
application, as a malicious platform (e.g. an ill-intentioned car dealer) could easily
resend the agent to its next destination to trigger additional car purchases.

In order to validate the proposed protocol, this application was simulated by intro-
ducing several malicious platforms in the agent’s itinerary. These platforms acted
as dishonest car dealers trying to trigger more purchases every time they could pro-
vide the best offer for a car. As expected, none of these attacks succeeded, because
the next platforms of the itinerary immediately detected that the trip marker of the
replayed agent had already been used.

The experiments performed also compared the execution times of the replay-safe
agent with the unprotected agent in order to determine the overhead of the proposed
protection protocol. The agent created for the tests was given an itinerary with
three car dealers. The number of iterations required to reach the best price was
varied in order to identify the overhead in terms of the agent’s execution time. The
evaluation setup used to make the tests was made up by 6 computers with 2 GHz
Intel Pentium(R) IV processors and 256 MB RAM memory each. These computers
were connected in a laboratory to a 100 Mbps Ethernet LAN. Table 1 shows the
resulting execution times.

According to table 1, the execution time of a replay-safe agent is 43% higher than
the execution of an unprotected agent on average. This increase, however, depends

20



greatly on the specifics of the application’s requirements.In the context of this sce-
nario, the agent negotiations with the car dealers took onlya relatively short time.
As a result, the time spent handling protection mechanisms significantly impacted
the overall agent’s execution time. In contrast, applications with high processing
requirements may require the agent to execute time-consuming tasks, and thus, in
that context, the time spent handling protection mechanisms would be negligible.

The increase in the replay-safe agents’ execution times is readily reasonable, taking
into account the complexity of the proposed protocol, and the added complexity of
the itinerary protection protocol (Mir and Borrell, 2003).The overhead introduced
by the execution of these protocols (around 350ms in absolute terms) is completely
acceptable for this application. However, this may vary from one application to an-
other. To conclude, it can be said that the implementation ofthe proposed protocol
is not only advisable for any real-world application where security is an issue, but
also perfectly feasible.

5 Conclusions

This paper presented a protocol aiming to protect mobile agents against external
replay attacks. Previous published work on this area was mainly based on storing
a trip marker, or some other kind of agent identification, inside agent platforms.
This identifier was fixed for the whole agent execution, and, as a result, it was not
possible to define itineraries where the same platform was visited more than once.

The proposed protocol protects agents against replay attacks, and allows agents to
traverse itineraries that contain loops. The nodes that arepart of a loop can be tra-
versed repeatedly, an undetermined number of times. This allows programmers to
define itineraries which take full advantage of the inherentflexibility of the mobile
agent paradigm.

In order to make this possible, the proposed protocol is based on associating every
node with an authorisation entity and node. The agent execution is only allowed if
the agent trip marker has been generated and signed in the appropriate authorisation
node, and by the corresponding authorisation entity.

The agent itinerary is cryptographically protected, in such a way that the autho-
risation entity assigned to a given node cannot be changed. Additionally, the trip
marker contains a unique agent identifier that is also included inside every itinerary
node. Thus, the trip marker of an agent cannot be dishonestlyreused in different
agents.

In order to prove the validity of the proposed protocol, implementation and ex-
perimentation work has been carried out using the Jade agentplatform, and was

21



based on an agent-driven protection approach. The advantage of this approach is
that agents were provided with a code that managed their own itinerary and protec-
tion mechanisms. As a result, agents can become more autonomous, and platforms
can easily support the execution of agents with different protection algorithms.

The application simulated an automated, agent-based, car purchasing service with
price negotiation and car purchase features. In such a scenario, replay-safe mobile
agents are of utmost importance, as non-protected agents can be easily forced by
malicious platforms to execute the purchase function multiple times, resulting in
considerable loss of money. The simulation results prove that replay attacks can be
effectively prevented, and replay-safe mobile agents can be executed in reasonable
times. The expected increase in execution time was acceptable for the simulated
application, despite representing 350ms of the total execution time for every node.
In other applications with higher processing requirements, this overhead will likely
be negligible.

Further work will be carried out to support agent cloning, and to develop tools that
simplify the development of replay-safe mobile agents, by automating the protec-
tion of the itinerary and the protection against replay attacks.

Acknowledgements

This work has been funded by the Spanish Ministry of Science and Technology
(MCYT) through the project TIC2003-02041, and the Spanish Ministry of Educa-
tion and Science (MEC) through the project TSI2006-03481.

References

Ametller, J., Robles, S., Ortega, J. A., 2004. Self-Protected Mobile Agents. In:
AAMAS ‘04: Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems. IEEE Computer Society, pp. 362–
367.

Aura, T., 1997. Strategies against Replay Attacks. In: Proceedings of the Computer
Security Foundations Workshop. IEEE Computer Society, pp.59–68.

Bellifemine, F., Caire, G., Poggi, A., Rimassa, G., 2003. JADE - A White Paper.
Tech. rep., Telecom Italia Lab, available at http://jade.tilab.com.

Che, H., Li, D., Sun, J., Yu, H., 2006. A Novel Solution of Mobile Agent Security:
Task-Description-Based Mobile Agent. IJCSNS International Journal of Com-
puter Science and Network Security 6 (2B), 121–125.

Cucurull, J., Ametller, J., Ortega-Ruiz, J. A., Robles, S.,Borrell, J., 2005. Protect-
ing Mobile Agent Loops. In: Mobility Aware Technologies andApplications.
Vol. 3744 of Lecture Notes in Computer Science. Springer-Verlag, pp. 74–83.

22



Garrigues, C., Robles, S., Borrell, J., 2008. Securing dynamic itineraries for
mobile agent applications. Journal of Network and ComputerApplications
doi:10.1016/j.jnca.2007.12.002.

Hohl, F., 1998. Time Limited Blackbox Security: ProtectingMobile Agents From
Malicious Hosts. In: Mobile Agents and Security. Vol. 1419 of Lecture Notes in
Computer Science. Springer Verlag, p. 92.

Karnik, N. M., Tripathi, A. R., 2001. Security in the Ajanta mobile agent system.
Software Practice and Experience 31 (4), 301–329.

Li, T., Seng, C. Y., Lam, K. Y., 2000. A Secure Route Structurefor Information
Gathering Agent. In: Proceedings of the 3rd Pacific Rim Int. Workshop on Multi-
Agents: Design and Applications of Intelligent Agents. Vol. 1881 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, pp. 101–114.

Mir, J., Borrell, J., 2003. Protecting Mobile Agent Itineraries. In: Mobile Agents
for Telecommunication Applications (MATA). Vol. 2881 of Lecture Notes in
Computer Science. Springer Verlag, pp. 275–285.

Navarro-Arribas, G., Borrell, J., 2006. An XML Standards Based Authorization
Framework for Mobile Agents. In: Secure Mobile Ad-hoc Networks and Sensors.
Vol. 4075 of Lecture Notes in Computer Science. Springer Verlag, pp. 54–66.

Straßer, M., Rothermel, K., Maiöfer, C., 1998. Providing Reliable Agents for Elec-
tronic Commerce. In: Proceedings of the International IFIP/GI Working Con-
ference. Vol. 1402 of Lecture Notes in Computer Science. Springer-Verlag, pp.
241–253.

Suen, A., 2003. Mobile Agent Protection With Data Encapsulation And Execution
Tracing. Ph.D. thesis, The Florida State University.

Syverson, P., 1994. A Taxonomy of Replay Attacks. In: Proceedings of the Com-
puter Security Foundations Workshop. IEEE Computer Society, pp. 131–136.

Tsipenyuk, Y. Y., 2004. Detecting External Agent Replay andState Modification
Attacks. Master’s thesis, University of California.

Vigna, G., 1998. Cryptographic Traces for Mobile Agents. In: Mobile Agents and
Security. Vol. 1419 of Lecture Notes in Computer Science. Springer-Verlag, pp.
137–153.

Westhoff, D., Schneider, M., Unger, C., Kaderali, F., 1999.Methods for Protecting
a Mobile Agent’s Route. In: Proceedings of the 2nd Int. Information Security
Workshop (ISW ’99). Vol. 1729 of Lecture Notes in Computer Science. Springer-
Verlag, pp. 57–71.

Wilhelm, U. G., Staamann, S., Buttyan, L., 1998. On the problem of trust in mobile
agent systems. In: Proceedings of the Symposium on Network and Distributed
System Security. Internet Society.

Yee, B., 2003. Monotonicity and partial results protectionfor mobile agents. In:
Proceedings of the 23rd Int. Conf. on Distributed ComputingSystems. IEEE
Computer Society, pp. 582–591.

Zachary, J., 2003. Protecting Mobile Code in the Wild. Internet Computing, IEEE
7 (2), 78–82.

23




