Main document

Protecting mobile agents from
external replay attacks

Carles Garrigues™, Nikos Migas®, William Buchanart,
Sergi Robles, Joan Borrelt
aDepartment of Information and Communications Engineeriiggonomous University of
Barcelona, 08193 Bellaterra, Spain
bSchool of Computing, Napier University, Edinburgh EH10 5Dfited Kingdom

Abstract

This paper presents a protocol for the protection of molglengs against external replay
attacks. This kind of attacks are performed by maliciousfglans when dispatching an
agent multiple times to a remote host, thus making it reebeepart of its itinerary. Cur-
rent proposals aiming to address this problem are basesongtgent identifiers, or trip
markers, inside agent platforms, so that future reexecsitian be detected and prevented.
The problem of these solutions is that they do not allow thentaigp perform legal migra-
tions to the same platform several times. The aim of this papt® address these issues
by presenting a novel solution based on authorisationiesitivhich allow the agent to be
reexecuted on the same platform a number of times deternainaedtime. The proposed
protocol is secure under the assumption that authorisatitities are trusted.

Key words: Mobile agents; Security; Malicious hosts; Replay attadki marker;
Protected itinerary

1 Introduction

Mobile agents can provide many benefits to the developmedistributed appli-
cations, but their use also poses many security threateaRgson mobile agent

* Corresponding author. Tel.: +34-935813577; fax: +34-93397
Email addressescar | es@lei c. uab. es (Carles Garrigues),

n. m gas@api er. ac. uk (Nikos Migas),w. buchanan@api er. ac. uk (William
Buchanan)ser gi . r obl es@iab. es (Sergi Robles); oan. borrel | @Qiab. es
(Joan Borrell).

Preprint submitted to Elsevier 7 May 2008



technology has identified and solved a number of securlgted issues, but there
are still many remaining unsolved (Zachary, 2003).

Most of the research work undertaken on mobile agent sgcisritoncentrated
on the problem of malicious platforms, as platforms have @ete control over
the agent execution, and can thus do almost anything withdleeat code or data.
Therefore, achieving a complete solution is consideredssijble, although sev-
eral problems can be mitigated. For example, even thoudifopias cannot be
prevented from manipulating the results generated by threcuexecution of the
agent, they can certainly be prevented from tampering Wethrésults generated by
the agent on other platforms.

Most proposed methods on mobile agent protection againgtioes platforms try
to provide a generic solution to cover as many security teras possible, usually
without putting the solution into practise in any real-lipplications. On the other
hand, most real-life agent-based applications do not tagergy into account. Sub-
sequently, various proposals on mobile agent security tagteel to address specific
scenarios where their solutions may not be valid. In theedruaf this paper, the
solutions presented in the literature for agent replayckstdave failed to address
scenarios where the agent has to loop over a certain numipéatédrms an unde-
termined number of times (Tsipenyuk, 2004). Agent repl#gckis can be classified
in two different categories (Yee, 2003):

Internal replay attacks These occur when the agent is forced to execute repeat-
edly on a single platform using different inputs, aiming tataon different re-
sponses and draw conclusions about its behaviour.

External replay attacks These are performed by malicious platforms by resend-
ing the agent to another platform, thus making the agentemég part of its
itinerary.

Internal replay attacks are impossible to avoid becauseldttorm has complete
control over the execution, and can always reset the agdts &orival state. On
the contrary, external replay attacks can be avoided ifqiats keep a record of
previously executed agents.

The problem of current solutions (Yee, 2003; Westhoff etl&199; Wilhelm et al.,
1998; Li et al., 2000; Suen, 2003; Mir and Borrell, 2003; Chale 2006; Cucu-
rull et al., 2005) against external replay attacks is thay ttho not allow an agent
to be executed times on the same platform, especiallynifs determined at run-
time. However, the agent’s itinerary often contains roupdithat require the same
platform to be visited several times. Thus, current sohdiforce programmers to
sacrifice some of the inherent flexibility in mobile agentdiaries.

In order to enhance security and flexibility, this paper prés a solution based on
authorisation entitiesThe advantage is that these entities are entitled to genera
new identifiers for the agent, thus allowing the repeataliration of the agent



to the same platform. Therefore, the proposed solutiomvallarogrammers to de-
velop secure mobile agent applications and still maintgrthe agents’ intrinsic
flexibility.

The rest of the paper is structured as follows. Section Bdhices the related work
on preventing replay attacks. Section 3 presents the pedppotocol for replay

attack prevention. Section 4 describes the implementatiohe proof-of-concept

of the proposed solution. Section 5 concludes the papera@intsput future direc-

tions.

2 Background

Replay attacks (Syverson, 1994) have traditionally beetsidered as a form of
network attack. They are based on capturing some of the gessxchanged be-
tween two entities and sending them again at a later times@ ttacks are usually
performed during authorisation or key agreement protoénlsrder to perform,
for example, masquerade attacks.

Traditional mechanisms to prevent replay attacks are baseding nonces, times-
tamps, session tokens, or any other information that allemtgies to bind their
messages to the current protocol run (Aura, 1997). For elgrap HT TP exchange
between a browser and a server may include a session tokemthaely identifies
the current interaction session. The token is usually seahddTTP cookie, and is
calculated as a hash of the session data, user preferendesg an.

Mobile agent systems are also exposed to traditional reggtagks. Any communi-
cation between two agents, or two platforms, or an agent ghakform is exposed
to this kind of attacks. Mechanisms like the ones previouséntioned (based on
nonces and session tokens) can be used to withstand thedesatt

In addition to traditional replay attacks, mobile agentteyss are also exposed to
agentreplay attacks. Agent replay attacks are not based on lieglaymessage
sent across the network, but on reexecuting an agent thadlressly been exe-
cuted on a platform. In addition, these attacks are usuaitfopmed by platforms
which are part of the agent’s itinerary, and they are harm@révent in this case.
When agent replay attacks are performed by external piafpthey can easily
be detected using authentication mechanisms (Navarrbasand Borrell, 2006)
or mechanisms designed to prevent traditional replay kdté€arnik and Tripathi,
2001). Agent replay attacks can be divided into two classgéstnal and external
replay attacks.

Internal replay attacks occur when a dishonest platforreatguly runs an agent
with the same or different set of inputs each time. A platfomght execute an



agent multiple times in order to understand its behaviougnail the desired out-
put is obtained. This type of attack is also knowrbisckbox testingHohl, 1998),
and is usually performed when the agent code has been mdtesing some ob-
fuscation technique.

This kind of attacks is performed inside a single platforng aannot be externally
observed by any other entity. Even if the agent tried to medirits actions on an
external monitoring service, the execution environmentid¢atill interfere with
these external communications, and route the messagesihe@rect recipient,
or alter the contents of the messages, and so on. Moreowst atiempts to store
their state information in a secure external entity couleasly bypassed by mali-
cious platforms altering the agent execution. In practigernal replay attacks are
impossible to prevent or detect (Yee, 2003).

External agent replay attacks occur when a dishonest platboopagates an agent
to a remote host, without this migration being defined in therd’'s itinerary. This
kind of attack is especially difficult to deal with, as it idfaiult to distinguish be-
tween a legal migration of the agent to its next destinatrahareplayed migration
that the agent did not intend to do. For example, supposaighle agent’s itinerary
includes a migration from platforrA to B, then platformA is authorised to send
the agent to platfornB, and the agent is also authorised to be executed on plat-
form B. As a result, no authentication mechanism can be used temrelatform

A from maliciously resending the agent to platfoBmultiple times. This kind of
attack can be carried out against a shopping agent, for deamprder to generate
unintended purchases.

In order to provide a solution to this problem, Yee (2003)grs8is considering a
replay attack as an illegal state transition. Every platfovithin the itinerary im-
plements a state transition inconsistency detection (pa&l@orithm, which is able
to determine when a migration from one platform to anothaniglegal transition.
The problem of this approach is that platforms must be awbadl possible ille-
gal state transitions for every agent execution. In addlitibegal state transitions
may be mistakenly identified if the agent is performing a laogvhich the same
platform is visited repeatedly.

In Vigna (1998), a protocol is presented that allows repligcks to be detected
upon completion of an agent execution. The protocol is basedecording the
agent’s execution on each platform. Platforms must keemaidhe operations
performed by every agent, so that agent owners can deteataligious manipula-
tion of the agents’ itinerary. This technique suffers fromm& drawbacks, such as
the size of the logs that have to be maintained. In genertdctlieg replay attacks
after they have been performed is useless in many occastongxample, if the
agent is buying a product, detecting a replay attack thasléabuying the product
more than once is usually inappropriate, especially if thespof the product is too
low to justify future legal actions.



Other work (Westhoff et al., 1999; Wilhelm et al., 1998; Liadt, 2000; Suen,

2003; Mir and Borrell, 2003; Che et al., 2006) on mobile agaotection against
malicious platforms suggests the use of trip markers fovgareng replay attacks.
A trip marker is an agent identifier that must be stored byfptats, which can be
used to detect and prevent future attempts of reexecutmgdime agent. Again,
the problem of these solutions is that they do not take intoawat the case where
the agent itinerary includes one or more platforms that rbastisited more than
once. As a result, a legal reexecution of the agent in the sdatborm can be

misinterpreted as a replay attack.

These issues were identified by Cucurull et al. (2005), whop@sed a solution
based on including counters inside the agent trip markeenEplatform is as-

signed a different counter, which indicates the maximum lpemof times that an
agent can be executed on a platform. Platforms keep a retwrdich agents have
been executed, and the number of times they have done soeBeéoting the ex-

ecution of an agent, platforms check that the number of tithasthe agent has
been previously executed does not exceed the number ofalexecutions stored
in the agent trip marker.

The problem of this approach, however, is that the numbeintdd that a given
platform can be visited must be known in advance, speciicalien the agent’s
itinerary is created, so that this information can be intic&tl inside the agent trip
marker. Consequently, this approach does not allow thet&égedpnamically decide
on the number of times a given platform will be visited.

Preventing the agent from being executed more than oncddwmbeen referred in
the literature as ensuring tlegactly-once execution propeiigtraller et al., 1998).
This property is usually considered when designing faaltrint mechanisms for
mobile agents. Ensuring the exactly-once execution ptgpemlies that, when
the agent is launched to do a certain task: first, the taskeiventually executed,
regardless of host or communication failures that may gamnl second, the task
will not be performed more than once.

Solutions presented to ensure the exactly-once executmpefy are based on
using external entities that monitor the execution of thenbagWhen a failure pre-
vents the agent from continuing its itinerary, another ageraunched to resume
the execution at the point the original agent left it. Thelyeon of these solutions is
that the communications between the agent and the morgtsyistem lead to con-
siderable traffic overheads. In addition, these protoalsi®ly reduce the agent’s
autonomy, as the agent has to constantly interact with thatorang entity. Thus,
they sacrifice one of the major advantages associated vathgd of mobile agent
technology.

To summarise, no solution presented so far against replagkatallows an agent
to dynamically determine the number of repeated executibtise same task on



one or more platforms along its itinerary. Considering tha¢ of the greatest ap-
peals of mobile agents is their dynamism and flexibilitycheoding the number of
possible migrations to a platform in advance can be a seiopsdiment for im-
plementing real-life applications. The next section déss the proposed protocol
which solves this problem.

3 Replay attack protection

Protecting mobile agents against all kinds of replay agdmcomes a serious and
complex problem to solve. The simplest case is where theréity does not contain
any loops in its itinerary, that is, the agent does not neadpeatedly execute the
same task on one or more platforms. In a loop-free scendribgiagent has to
migrate to a certain platform several times, it will do so iffedent stages of its
itinerary, which means that it will be executing differeasks. Replay attacks are
easy to prevent in this case. Platforms can store an identifithe stage or task
executed, together with the agent trip marker. Fig. 1 showexample of this kind
of itinerary. In this caseplatform Bis visited in two different nodes (or stages) of
the itinerary: the first one to execute node 2, and the secoadaexecute node 4.

@G -@ -

platform A platform B platform C  platform B
Fig. 1. Simple itinerary where the same platform is visitetcé

It is worth noting that the usage of the temodein the context of this paper is
different from that found in computer networks terminolpgfere a node simply
refers to a location in the network. In this paper, an itingreode, or, simply, node,
refers to the stage of the agent execution that is associdtied certain task and a
certain platform.

The most difficult case is where the agent has to execute the &gk on the same
platform several times, especially if this number of timedetermined at runtime.
Fig. 2 shows an example of this kind of itinerary.

As shown in the figure, the itinerary contains a loop, whidrtstatplatform B
The detection of replay attacks is especially difficult, ésample, whemplatform
C resends the agent ptatform D. How canplatform Ddetermine whether the new
reexecution is a replay attack or a new iteration of the loop?

Before presenting the proposal for external replay attaekgntion, the next sub-
section describes the requirements that any valid solstionld fulfil.



B—@ [

platform C  platform D

platform A platform B platform E

Fig. 2. Itinerary containing a loop with 3 platforms that aisited repeatedly

3.1 Requirements of the solution

First of all, different agents must have different identsgier trip markers, even if
they perform exactly the same tasks. This also implies tanaw instance of the
same agent must carry a different trip marker.

Secondly, a valid solution on replay attacks has to focusein prevention, rather
than just on their after-the-fact detection.

Thirdly, platforms must store the trip markers of the agemviously executed,
along with an identifier of the task performed by the agendJitaw agents to revisit
the same platform in different stages of its itinerary.

Finally, a valid solution on replay attacks should not imeothe interaction of the
agent with external entities. This allows the agent to ruto@omously, without
depending on the control or interaction with any monitorsegvice.

3.2 The protocol

The proposed protocol for the protection against replegcitt is based on using
trip markers and authorisation entities. A trip marker isathorisatiorthat allows
the agent to execute a certain set of nodes. Each node hashamisation entity
associated with it, and this entity is the only one entitedénerate new valid trip
markers (authorisations) for the execution of that nodatf®ms must store the
trip markers of previously executed agents, so that no tagker can be used more
than once to execute the same node.

The steps required to create a replay-safe mobile agenthandhe operations car-
ried out by the agent platform to detect and prevent repliacls are presented in
this section. The combined actions comprise the protegiiotocol which tackles
replay attacks in mobile agent environments.

In order to create a replay-safe mobile agent, the programmast define the set
of nodes that comprise the agent itinerary, assigning thewmg information to



each one of them:

e anode identifier

a task

a node type

an authorisation entity
an authorisation node

a set of next destinations

Although nodes can be assigned various types, for the pespofsthe proposed
protocol only two types are considered:

Regular A regularnode is an itinerary stage where the agent executes itsask a
jumps to the next platform of the itinerary.

Loop A loopnode is an itinerary stage where the agent decides whetmat ¢o
start a new iteration and revisit a certain number of nodes.

As an example, in the itinerary of Fig. 2, node 2 imap node, and the remaining
nodes are altegular. However, as proposed in Stral3er et al. (1998), other nodes
types could be defined, for example, to provide more flexybiti the definition of

the agent itinerary. These other types would be treatedeisdime way agegular
nodes and, therefore, are not important for the definitich@proposed protection
protocol.

In addition to a type, the programmer must assign an autttaisentity and an au-
thorisation node to every node. The authorisation nodeeisitiile where the agent
trip marker must be generated. This implies that the aggnirtarker is only valid
if it has been generated in the appropriate authorisatide nbhe authorisation en-
tity is the corresponding platform or individual that mustgrate and sign the trip
marker. In some cases, as explained next, a hode can havehwisation node
associated with it, because the execution of that node fs&ased by the agent
owner.

The authorisation node that is assigned to each node depandsether or not the
node is located inside a loop. If the node is part of a loopaitghorisation node

is theloop node located at the start of the loop. The correspondingoasttion
entity is the platform where thieop node is executed. In all other cases, the node
has no associated authorisation node, and the corresgpaudinorisation entity is
the agent’s owner. As an example, Fig. 3 shows which autitsisentity and node
are associated with each node of a complex itinerary. Timerdry contains two
loops, one nested inside the other.

The itinerary shown in Fig. 3 has an outer loop startinglatform A In this plat-
form, the agent decides how many iterations of the outer hawe to be performed.
If the agent decides to enter this loop, it will vigitatform Band therplatform G
which is the starting point of the inner loop. The inner logptins just one node,



4

AE: Platform C
AN: 3

2 3

AE: Platform A AE: Platform A platform D
AN: 1 AN: 1

/ ~  platform B platform G c

AE: Owner

AN: —

1

AE: Owner
AN: —

platform A platform E

Fig. 3. Authorisation entities (AE) and authorisation n®@@&N) assigned to the nodes of
a complex itinerary

executed omplatform D.When the agent exits the inner and the outer loop, it mi-
grates tlatform E where it reaches the end of its itinerary.

The itinerary shown in Fig. 3 has three different authorgaéntities: the agent’s
owner,platform Aandplatform C Platform Ais the starting point of the outer loop,
and thus it is the authorisation entity of nodes 2 and 3. Omther handplatform
C is the authorisation entity of node 4, as this node belongksdanner loop. For
the remaining nodes, the authorisation entity is the agenther.

It is important to note that the authorisation entities aleced by the agent pro-
grammer, and the proposed protocol assumes that the progratmusts these enti-
ties to execute thiwopnodes included in the itinerary. In the example of Fig. 3, the
protocol assumes that the programmer trpgsform Aandplatform Cto execute
nodes 1 and 3 correctly. As mentioned in section 2, no priotechechanism can
be used to prevent a malicious platform from subverting genaexecution, so the
number of loop iterations could be easily altered as well.

Once the aforementioned information has been assignedety eode, the pro-
grammer must secure the itinerary using a protection pobtdtis protocol must
satisfy the following properties:

e It must not allow platforms to access or modify any part ofithnerary which is
intended for other platforms.

e It must not be possible to introduce new nodes in the itiryerar

¢ It must not be possible to traverse the itinerary nodes inrdaralifferent from
the order initially defined.

e Every itinerary node must be uniquely bound to the agentlirges to. As a
result, it must not be possible to reuse any part of the atjaetary in a different
agent.

¢ It must support flexible itineraries, which allow the agentrtake decisions about



its travel plan at runtime.

In order to define the proposed protocol, it will be assumed ghunique agent
identifier is used to bind the itinerary nodes with the ag€his agent identifier can
be simply a timestamp attached to a big random number, or tigy mformation
that uniquely identifies each agent instance.

An example of a protocol that guarantees all the propertiestioned above is the
one presented in Mir and Borrell (2003). This protocol isdzhsn constructing the
protected itinerary as a chain of digital envelopes, in sualay that they can only
be opened by the appropriate platform in the correct order.

After defining all itinerary nodes and securing them usingtisxerary protection
protocol, the programmer must generate a trip marker foratjent. Agent trip
markers must always contain the following information:

Agent identifier This is the same identifier included in the protected itingra
which ensures that any given agent instance can be uniqiestyified.

Authorisation node This is the identifier of the node where the trip marker is gen-
erated.

Expiry date This is the date after which the trip marker can no longer elus
It allows platforms to remove expired trip markers from thaibles, which is
usually convenient but has no real effect on the protocol.

Loop counter This counter is incremented by one unit every time the agastd
start a new loop iteration.

In the trip marker created by the programmer initially, theharisation node is
not set, as the programmer has no associated itinerary mbigais consistent with
what has been specified in the itinerary nodes. When the asdltion entity of a
node is the agent programmer, then the node has no assamighedisation node.

The trip marker initially created must be signed by the ageogrammer or owner,
who is always the authorisation entity assigned to the firstiiary node. This trip
marker must then be placed at the top of the agent’s trip matkek. As will be
seen later, the trip marker stack stores trip markers pusWyoused by the agent
during its execution. The top of this stack always contdnesttip marker currently
used.

Thus far, the steps required to create a replay-safe mobdatehave been de-
scribed. Fig. 4 shows a representation of the componentsagent resulting from
this protection. Next, the operations carried out by platif® to prevent a mobile
agent from being replayed are presented.

In order to start the execution of an agent, platforms musaekthe information
of the current node from the protected itinerary. The openatcarried out to do
this extraction depend on the itinerary protection protosed. In most cases, this

10



Agent Node info
. NodelD
Trip marker stack: _
|
Y
SblygADIhegmity ( AgentlD | Auth node ID | Expiry | Count ) p Auth node ID
Next platforms
Protected Itinerary: Node 1 - Noden |’ |Tyi|

Fig. 4. Components of an agent protected against replagkatta

implies using the platform’s private key, which ensureg timother platform can
access the contents of the current node. By extracting threrdunode from the
protected itinerary, platforms obtain the node identifiggent identifier, task, type,
next platforms, authorisation entity and authorisatiodeno

In addition, platforms must retrieve the agent’s trip markem the top of the
agent’s trip marker stack. The trip marker contains the eigentifier, authorisation
node, expiry date and loop counter.

Platforms must also maintain a table with the trip markerpretiously executed
agents. Along with the trip marker, these tables must corttee identifier of the
node executed by the agent. To effectively prevent replaglks, platforms should
only remove entries from their tables once they have expired

In order to ensure that the agent is not being replayed,gotaf must first use
the agent’s current node type to determine if the agent isugey aregular node
or aloop node. In case that the agent is executirrggular node, platforms must
perform the set of checks summarised in the algorithm of%ig.

The most relevant lines of the algorithm of Fig. 5 are desttiin detail below:

Line 1 The platform uses a public key server to obtain the publiceke current
authorisation entity. With this public key, the platformrifies the trip marker
signature.

Line 2 The platform checks that the trip marker has been generatdg:iappro-
priate itinerary node. This involves checking that the atigation node included
in the trip marker is equal to that extracted from the currexte.

Line 3 The platform checks that the agent identifier included inttipemarker is
equal to the one obtained from the current node. This pregetiip marker from
being reused in a different agent, even if it was generatatidogame owner.

Line 4 The platform checks the trip marker expiry date. If the triprker has
expired, the agent execution is discarded.

Line 5 The platform uses the agent identifier to look for a previoisrharker of
the same agent in its trip marker table.

11



1: verify trip marker (TM) signature

2: check current auth. node = TM auth. node
3: check agent’s identifier

4: check current date expiry date

5: check platform’s TM table

6: if agent was not executed befdhen

7:  save TMin platform’s table

8: else
9

if node ident. is differerthen
10: save TM in platform’s table
11:  else
12: if loop counter> previous onghen
13: replace previous TM from platform’s table
14: else
15: discard agent execution
16: end if
17:  endif
18: end if

19: run agent

Fig. 5. Algorithm for checking trip markers irgular nodes

Line 7 If there is no trip marker with the same agent identifier, tlafprm stores
the new trip marker along with the current node identifietsrtiip marker table.

Line 9 Otherwise, this means that the same agent was executee lefthis plat-
form. In this case, the platform checks if the agent’s curresde identifier is
equal to that of the previous execution.

Line 10 If the new node identifier is different, it means that the dgeto execute
a different itinerary node. The platform stores the trip keamalong with the new
node identifier in its trip marker table.

Line 12 Otherwise, this means that the same itinerary node was &dtbefore
on this platform. The platform then compares the currenp loounter with the
one included inside the trip marker obtained from the tripkaatable.

Line 13 If the current loop counter is greater than the previous @meeans that
the agent is performing a new iteration of a loop. In this cése platform re-
places the previous trip marker with the current one frontripsmarker table.

Line 15 Otherwise, this means that the current trip marker hasdyrbaen used,
and the agent execution is discarded.

Line 19 If the agent execution has not been discarded in any of thequesteps
of the algorithm, the current node’s task is executed.

The above algorithm is necessary in order to verify that thenais not being
replayed when it is executingragular node. When the agent is executingpap
node, basically the same checks are performed, but twoiadlaitoperations are
required.

12



1: verify TM signature with the pubkey of either the
current platform or the current authorisation entity

2: check TM auth. node = current node or current
auth. node.

3to 18: the same operations as algorithm of Fig. 5

19: generate new TM by incrementing loop counter
20: sign new TM with current platform’s private key
21: if this is the first iteratiothen

22: add new TM to agent’'s TM stack

23: else

24:  replace previous TM from agent’'s TM stack
25: end if

26: run agent

27: if agent exits loophen

28: Remove TM from the top of stack

29: end if

Fig. 6. Algorithm for trip marker handling ifobop nodes

Firstly, the platform must generate and sign a new trip mdidethe agent. This
new trip marker authorises the agent to execute all the nodésled inside the
loop. The new trip marker is added at the top of the agenpistrarker stack, thus
keeping the previous trip marker in the second position isf $kack. This allows
the agent to recover the trip marker used before enterinigtipe which is essential
because the trip marker generated by the current platfothmaionger be valid

when the agent exits the loop.

Secondly, if the signature verification performediire 1 of the previous algorithm
fails, the platform will use its own public key to verify theucent trip marker

signature. This allows the agent to execute the cutoaqtnode using a trip marker
generated by this same platform in a previous iteration.

As an example, in the itinerary of Fig. Blatform Ais the authorisation entity of
nodes 2 and 3. For each iteration of these two ngdatform Amust generate and
sign a new trip marker for the agent. In addition, it mustfyettie signature of the

current trip marker with either its own public key or the owaeOnce the agent

exits the loop, the trip marker signed platform Amust be removed from the top
of the agent’s trip marker stack, so that the original trigkeasigned by the owner
can be used again to continue the agent executigiaiform E

The algorithm shown in Fig. 6 summarises the operationsechaut by the plat-

form when the agent is executindaop node. The most relevant lines of the algo-

rithm of Fig. 6 are described in detail below:

Line 1 The platform verifies the agent trip marker signature witihesi its own
public key or the public key of the current authorisationitgntf both verifica-

13



tions fail, the agent execution is discarded.

Line 2 The platform checks that the trip marker has been generatda:iappro-
priate itinerary node. This involves checking that the atitation node included
in the trip marker is equal to either the current node or threscu authorisation
node. This allows the agent to use a trip marker generateki®game platform
in the previous iteration.

Line 3 to 18 The platform checks the agent’s identifier, expiry dateploounter
and node identifier, performing the operations 3 to 18 of tgeréghm of Fig. 5.

Line 19 Before the agent task is executed, the platform generats &ip marker.
This new trip marker contains the same information as theigue one, except
for the authorisation node, which is set to the current nadd,the loop counter,
which is incremented by one.

Line 20 The platform signs the resulting trip marker with its ownvate key.

Line 22 If the agent is to perform its first iteration of the loop, themntrip marker
is added at the top of the agent’s trip marker stack.

Line 24 Otherwise, the current trip marker, which was generatedthisysme plat-
form in the previous iteration, is replaced by the newly gatexl one.

Line 26 The current task is executed, and the agent eventually eeeitiether or
not a new iteration has to be performed.

Line 28 If no more iterations are required, the agent removes thartarker from
the top of the stack.

Thus far, the complete protocol aiming at preventing exteraplay attacks has
been presented, describing the creation of a protectedenadpent and the opera-
tions performed by agent platforms to withstand replayciialn the next section,
the most important characteristics of the proposed protreodiscussed.

3.3 Discussion

The proposed protocol is based on using trip markers (aigttamns) which are
generated at runtime by authorisation entities. The agieetrary is comprised of
a set of nodes, where each one is associated with a certdioresation entity.
Platforms only execute the current node of the agent itngaféhe trip marker has
been signed by the appropriate authorisation entity.

Every itinerary node is also associated with an authoasatiode. Using both an
authorisation entity and node prevents the reuse of thet agemarker in scenarios
where the same authorisation entity is assigned to difteretes of the itinerary. In
these cases, an attacker might try to replay an agent byngeagrip marker signed
by the proper authorisation entity but not generated in {h@r@priate itinerary
stage. However, this would be detected by platforms whey theck if the trip
marker has been generated in the appropriate authorisaitte

14



Every itinerary node contains an agent identifier, whiclide ancluded in the agent
trip marker. This prevents a given trip marker from beingsesliin different agents,
as this would be detected by platforms when comparing thatadentifier ex-
tracted from the current node with the one included in thgernrarker.

In order to prevent replay attacks effectively, the aganerary must be crypto-
graphically protected, so that no attacker can change floeniation associated
with a given node. Moreover, the itinerary protection muestixan agent task from
being executed on a platform or itinerary stage differemnfthat initially defined.

The proposed protocol does not involve the interaction efapent with external
entities, and only assumes tHabp nodes will be executed on platforms trusted
by the programmer. Because it is not possible to preverfopias from tampering
with the agent execution, it is legitimate to assume thaptatorm associated with
aloop node is trusted by the programmer to evaluate the loop dondit

Platforms must prevent their trip marker tables from filluqgby removing entries
that have already expired. Additionally, some other poheg to be implemented
in order to enable the removal of entries when no more trigkerarcan be added
to the table (e.g., removing older entries first).

The proposed protocol supports free roaming agents thadezide their itinerary
by themselves and can discover new hosts to be visited ahrenHowever, the
agent itinerary must be protected with a protocol that suggoee roaming agents
as well. An example of such protocol can be found in Garrigaied. (2008). The
proposed itinerary protection protocol is based on intobuiy trusted platforms
into the agent’s itinerary. The public keys of these trugttatforms are used to
encrypt the agent’s code and data to be executed on the hestsvered at run-
time. Then, when the agent is executed on a trusted platfibvenitinerary is re-
constructed using the public keys of the newly discoveratfgims. The protocol
described in this paper can be used in combination with tb&opol proposed in
Garrigues et al. (2008), provided that the platforms asgign authorisation nodes
are known at the time of creating the itinerary. Thus, theesponding authorisa-
tion entities can be specified in the protected itinerary.

The proposed protocol does not support agent cloning. lergénmobile agent
cloning introduces the problem of resolving identitiesgedy when the replicas
communicate with other agents or platforms. With regarthéoroposed protocol,
cloning a mobile agent would imply generating a new trip neaffior the replica,
however, this is not possible unless the new trip markermegeed by an authori-
sation entity. Nevertheless, authorisation entities asaghed to generate new trip
markers only when new loop iterations have to be started.i&sult, the proposed
protocol does not support agent cloning. Further reseaiitihvevconducted in the
future to extend the proposed protocol in order to allow fyera cloning.

15



Control Code

¢ Extract current node .
s Check trip marker Protected Itinerary
¢ Execute local task Node 1 Node n
¢ Migrate to next destination e
lHash()
AgentID |
]
Trip Marker N
AgentID
_
ign . '
SbygAutEgntity( AgentID )

Fig. 7. Components of an agent protected against replagkatigith an agent-driven im-
plementation

4 Implementation

In order to prove the viability of the proposed protocol, atptype implementation
has been created and experimentation has been carriedingtths Java-based
Jade platform (Bellifemine et al., 2003) as the agent exac@nvironment.

Agents have been implemented following agent-drivenapproach, as proposed
by Ametller et al. (2004). According to Ametller et al. (2Q00#Mobile agents are

created from two main components: a protected itineraryaaodntrol code. The

protocol used to protect the itinerary is not imposed by Alees approach; the

choice depends on the requirements of the given applicaftmacontrol code man-

ages the traversal of the itinerary, which involves the yetoon of the protected

itinerary data, the execution of the agent’s tasks, and gleatzss migration to the

next destination specified in the itinerary. The advantdgesimg an agent-driven

approach is that agents handle their protection mechanisarsautonomous way,
without requiring platforms to know how the agent is intéiynprotected.

In this implementation, the itinerary is protected using frotocol presented by
Mir and Borrell (2003). Fig. 7 shows the main components ohgant resulting

from implementing the protocol presented in this papergisim agent-driven ap-
proach.

As this figure shows, the agent is made up by three comporibatgip marker, the
control code and the protected itinerary. These comporaatbound by an agent
identifier, thus preventing from dishonest reuse in othenésg

As proposed by Ametller et al. (2004), the agent identifieisstructed as a hash

of the agent control code. In addition, the control code iquafor every agent, and
itis bound to the agent itinerary so that any malicious dagaition or modification

16



of the itinerary can be detected. At the same time, the #iryedata is encrypted
in such a way that any change in the control code will keepdhts from being
decrypted.

In order to implement the proposed protection protocol asean agent-driven
approach, platforms must provide two services requirechbyagent control code.
These services are available to the agent by exposing tvabiduns:

decrypt This function allows agents to decrypt data using the ptat® private
key. As described in Ametller et al. (2004), data is boundhi® agent using
a hash of the control code. Thus, this function can check ttiatdata being
decrypted really belongs to the requesting agent.

checkTripMarker This function first checks that the trip marker really belsihg
the requesting agent. For this purpose, it computes a haste gigent control
code and compares it with the agent identifier included irtribanarker. If this
verification succeeds, this function validates the trip keaby performing the
operations shown in the algorithms of Figs. 5 and 6.

As it can be seen, the trip marker check is triggered by thatagéwus, the pro-
tection against replay attacks is completely optional, wildonly be performed
by those agents calling tleeckTripMarkerfunction. Forcing every agent to sup-
port the replay protection protocol would unnecessarityease the complexity of
many applications where security is not an issue.

In order to develop a better understanding of the constmaif a replay-safe mo-
bile agent, the following subsections describe each of thiisteps required: cre-
ation of the control code, protection of the itinerary andeyation of the agent trip
marker.

4.1 Creating the agent control code

Both itinerary protection management and next platformisiec making take
place in the control code. The following are the relevanialdes used by this
code:

publicKey this variable is initialised to the Base64 encoding of a jmukéy used
for binding the control code with the itinerary, and makirgp tcontrol code
unique at the same time (Ametller et al., 2004).

tripMarkerStack this variable will contain the agent trip marker stack, ottoe
agent instance has been created.

protectedlitinerary this variable will contain the agent protected itineramgce
the agent instance has been created.

The following are the relevant methods used by this code:

17



nodeExtraction this method extracts the information of the current nodmftbe
protected itinerary. The algorithm proposed by Mir and BB(2003) is used for
this purpose. The platformtecryptfunction is called to request the decryption
of the itinerary data.

action this method is the entry point to the agent execution. It fiadlis thenode-
Extractionmethod to extract the current node’s information from tliveenary.
Then, it calls the platform’sheckTripMarkerfunction to verify that the agent is
not being replayed. Finally, it executes the current tagk amentually, triggers
the migration to the next platform of the itinerary.

Once the agent control code has been created, it is compiléda executable
.Classfile is obtained. It is worth noting that the control code imakbt the same for
all agents, so it can be easily reused. However, the comba# contains a public
key which is different for each agent. Therefore, the hasthisf control code is
always unique, and it is a suitable agent identifier.

4.2 Creating the protected itinerary

After creating the agent control code, the protected ifiners built. Every node
of this itinerary contains: node identifier, agent identjfauthorisation entity and
node, task, type and next platforms, as explained in se8tn

As proposed by Ametller et al. (2004), every node is now gignih the private
key associated with the public key included in the agentrobobde. This private
key is only available to the owner, and is different for eaglera. Therefore, at-
tackers cannot introduce new nodes in the itinerary norer¢fism in a different
agent.

In order to meet the requirements specified by the replayeption protocol pre-
sented in this paper, the itinerary is now secured usingpobtproposed by Mir
and Borrell (2003).

4.3 Creating the agent trip marker and the final instance

After creating the control code and the protected itinertlrg initial agent trip
marker is generated. This trip marker includes: agent iflentauthorisation node,
expiry date and loop counter. All this information is sigréth the owner’s private
key.

Once the control code, the protected itinerary, and thetagpmarker have been
generated, a new instance of the agent can be finally crédteghrotected itinerary
and the agent trip marker are supplied as parameters toghisgent instance, so

18



/ Car dealers
Home Financial Home
platform institution platform

Fig. 8. Itinerary of the car purchasing service agent

that thetripMarkerStackand theprotectedltineraryariables can be initialised.

4.4 Simulation and tests

In order to test the implementation of the proposed prot@simple mobile agent-
based application has been simulated. This applicatiowsltiwe need for protec-
tion against replay attacks, and the results of the sinariggrove that replay attacks
can be effectively prevented, and agents can be executexhipletely reasonable
times.

This example application implements an automated car pgiog service. The
service allows an individual to find the best price for a careq its specific make
and model, and the set of car dealers that have to be queheapplication carries
out the purchase remotely from the user’s financial institytand this institution
serves as the trusted location where the application degitiech offer to accept.

Once the user has introduced all the required informatidherapplication, a mo-

bile agent is launched to visit every car dealer and obtarptice offered for the

given model. After visiting all car dealers, a new round &rt&d to negotiate an
improvement on the best price previously obtained. Thisgse is repeated un-
til two consecutive iterations lead to the same best pridgerAeach iteration, the

agent visits the user’s financial institution, to decide thiee or not a new iteration

has to be started.

When the best price is obtained, the agent proceeds withah@uwrchase. The
purchase is always completed remotely from the user’s finhimstitution, which
ensures that this operation is performed securely in aetustvironment. Once
the purchase has concluded, the agent returns to its hortferplaand presents
the resulting purchase contract to the user. The agentamyelefined for the im-
plementation of this example application is shown in Fig. 8.

This application demonstrates a simple scenario wheresh®ithe mobile agent
technology can introduce a number of advantages, such asingdhetwork load,

19



Table 1
Execution times (ms) for protected and unprotected agents

Visited nodes: 15 27 39 51

Unprotected Exec time: 11365 22094 32837 43665
agent Time/node: 757 818 841 856
Protected  Exectime: 16641 31682 46715 61836
agent Time/node: 1109 1173 1197 1212
Increase: 46.4% 43.4% 42.3% 41.6%

by employing local communications, as well as automatioe-cbmmerce pro-

cesses. Considering that the negotiation can be a rathgthleprocess, mobile

agent technology enhances significantly the usability isfdlpplication in devices

with intermittent, low bandwidth connections, as it elimies the need for perma-
nent connections with the remote sites.

This application also demonstrates the need of an agentandigally determine
the number of repeatable visits required over a certain sptatforms. Unlike
replay protection mechanisms previously presented, tbpgsed protocol allows
the agent to visit the same platform as many times as negesgtrout leaving
it exposed to replay attacks. This is an essential part withé context of this
application, as a malicious platform (e.g. an ill-intental car dealer) could easily
resend the agent to its next destination to trigger additioar purchases.

In order to validate the proposed protocol, this applicatias simulated by intro-
ducing several malicious platforms in the agent’s itingrdihese platforms acted
as dishonest car dealers trying to trigger more purchassyg gmne they could pro-
vide the best offer for a car. As expected, none of thesekstteucceeded, because
the next platforms of the itinerary immediately detecteat the trip marker of the
replayed agent had already been used.

The experiments performed also compared the executiors tohthe replay-safe
agent with the unprotected agent in order to determine teehead of the proposed
protection protocol. The agent created for the tests wasngan itinerary with
three car dealers. The number of iterations required tohrélae best price was
varied in order to identify the overhead in terms of the agesxecution time. The
evaluation setup used to make the tests was made up by 6 cenmmith 2 GHz
Intel Pentium(R) IV processors and 256 MB RAM memory eactesehcomputers
were connected in a laboratory to a 100 Mbps Ethernet LANIeTalshows the
resulting execution times.

According to table 1, the execution time of a replay-safenage43% higher than
the execution of an unprotected agent on average. Thisaseréowever, depends

20



greatly on the specifics of the application’s requiremedntthe context of this sce-
nario, the agent negotiations with the car dealers took amblatively short time.

As a result, the time spent handling protection mechanisgmsfisantly impacted

the overall agent’s execution time. In contrast, applaraiwith high processing
requirements may require the agent to execute time-comgutasks, and thus, in
that context, the time spent handling protection mechasisould be negligible.

The increase in the replay-safe agents’ execution timeadily reasonable, taking
into account the complexity of the proposed protocol, ardaitided complexity of
the itinerary protection protocol (Mir and Borrell, 2003he overhead introduced
by the execution of these protocols (around 350ms in abstéans) is completely
acceptable for this application. However, this may varyrfrane application to an-
other. To conclude, it can be said that the implementatidgh@proposed protocol
is not only advisable for any real-world application wheeegity is an issue, but
also perfectly feasible.

5 Conclusions

This paper presented a protocol aiming to protect mobile@gagainst external
replay attacks. Previous published work on this area waslypnaased on storing
a trip marker, or some other kind of agent identificationjdasagent platforms.
This identifier was fixed for the whole agent execution, aisca aesult, it was not
possible to define itineraries where the same platform wsitedi more than once.

The proposed protocol protects agents against replaykaftand allows agents to
traverse itineraries that contain loops. The nodes thgpanteof a loop can be tra-
versed repeatedly, an undetermined number of times. Tlowsprogrammers to
define itineraries which take full advantage of the inheflexibility of the mobile
agent paradigm.

In order to make this possible, the proposed protocol ishbaseassociating every
node with an authorisation entity and node. The agent execigt only allowed if
the agent trip marker has been generated and signed in thegayape authorisation
node, and by the corresponding authorisation entity.

The agent itinerary is cryptographically protected, intsacway that the autho-
risation entity assigned to a given node cannot be changeditidnally, the trip
marker contains a unique agent identifier that is also iredudside every itinerary
node. Thus, the trip marker of an agent cannot be dishonesiked in different
agents.

In order to prove the validity of the proposed protocol, iempkntation and ex-
perimentation work has been carried out using the Jade adgifdrm, and was

21



based on an agent-driven protection approach. The adwaofatis approach is
that agents were provided with a code that managed theirtovemary and protec-
tion mechanisms. As a result, agents can become more autsoand platforms
can easily support the execution of agents with differeatqmtion algorithms.

The application simulated an automated, agent-baseducahgsing service with
price negotiation and car purchase features. In such asogreplay-safe mobile
agents are of utmost importance, as non-protected agemtsecaasily forced by
malicious platforms to execute the purchase function mleltiimes, resulting in
considerable loss of money. The simulation results proaertplay attacks can be
effectively prevented, and replay-safe mobile agents eaexiecuted in reasonable
times. The expected increase in execution time was acdegtabthe simulated
application, despite representing 350ms of the total di@ttime for every node.
In other applications with higher processing requiremghis overhead will likely
be negligible.

Further work will be carried out to support agent cloningd &amdevelop tools that
simplify the development of replay-safe mobile agents, bipmnating the protec-
tion of the itinerary and the protection against replaycksa

Acknowledgements

This work has been funded by the Spanish Ministry of Sciemae Bechnology
(MCYT) through the project TIC2003-02041, and the Spanishisfry of Educa-
tion and Science (MEC) through the project TSI2006-03481.

References

Ametller, J., Robles, S., Ortega, J. A., 2004. Self-Prettdiiobile Agents. In:
AAMAS ‘04: Proceedings of the Third International Joint Gemence on Au-
tonomous Agents and Multiagent Systems. IEEE Computere8oqp. 362—
367.

Aura, T., 1997. Strategies against Replay Attacks. In: @&dmgs of the Computer
Security Foundations Workshop. IEEE Computer Society>pp68.

Bellifemine, F., Caire, G., Poggi, A., Rimassa, G., 2003DEA- A White Paper.
Tech. rep., Telecom Italia Lab, available at http://jaitibtcom.

Che, H., Li, D., Sun, J., Yu, H., 2006. A Novel Solution of MtsbAgent Security:
Task-Description-Based Mobile Agent. IJCSNS Internadlojournal of Com-
puter Science and Network Security 6 (2B), 121-125.

Cucurull, J., Ametller, J., Ortega-Ruiz, J. A., Robles,Brrell, J., 2005. Protect-
ing Mobile Agent Loops. In: Mobility Aware Technologies adgplications.
\ol. 3744 of Lecture Notes in Computer Science. Springetad pp. 74-83.

22



Garrigues, C., Robles, S., Borrell, J., 2008. Securing dyaoatineraries for
mobile agent applications. Journal of Network and Computpplications
doi:10.1016/j.jnca.2007.12.002.

Hohl, F., 1998. Time Limited Blackbox Security: Protectikigbile Agents From
Malicious Hosts. In: Mobile Agents and Security. Vol. 1419 ecture Notes in
Computer Science. Springer Verlag, p. 92.

Karnik, N. M., Tripathi, A. R., 2001. Security in the Ajantaofnile agent system.
Software Practice and Experience 31 (4), 301-329.

Li, T., Seng, C. Y., Lam, K. Y., 2000. A Secure Route Structimelnformation
Gathering Agent. In: Proceedings of the 3rd Pacific Rim Irark8hop on Multi-
Agents: Design and Applications of Intelligent Agents. MbB81 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, pp. 14.

Mir, J., Borrell, J., 2003. Protecting Mobile Agent Itineérs. In: Mobile Agents
for Telecommunication Applications (MATA). Vol. 2881 of teure Notes in
Computer Science. Springer Verlag, pp. 275-285.

Navarro-Arribas, G., Borrell, J., 2006. An XML StandardssBd Authorization
Framework for Mobile Agents. In: Secure Mobile Ad-hoc Netigand Sensors.
\ol. 4075 of Lecture Notes in Computer Science. Springeldgeipp. 54—-66.

Stral3er, M., Rothermel, K., Maidfer, C., 1998. Providindi&de Agents for Elec-
tronic Commerce. In: Proceedings of the International A&IPNorking Con-
ference. Vol. 1402 of Lecture Notes in Computer Sciencein§pr-Verlag, pp.
241-253.

Suen, A., 2003. Mobile Agent Protection With Data EncapsuteAnd Execution
Tracing. Ph.D. thesis, The Florida State University.

Syverson, P., 1994. A Taxonomy of Replay Attacks. In: Prdoegs of the Com-
puter Security Foundations Workshop. IEEE Computer Spqogt. 131-136.
Tsipenyuk, Y. Y., 2004. Detecting External Agent Replay &tdte Modification

Attacks. Master’s thesis, University of California.

Vigna, G., 1998. Cryptographic Traces for Mobile Agents.NMobile Agents and
Security. Vol. 1419 of Lecture Notes in Computer Scienceirfger-Verlag, pp.
137-153.

Westhoff, D., Schneider, M., Unger, C., Kaderali, F., 199@thods for Protecting
a Mobile Agent’s Route. In: Proceedings of the 2nd Int. Infation Security
Workshop (ISW '99). Vol. 1729 of Lecture Notes in Computerg®ce. Springer-
Verlag, pp. 57-71.

Wilhelm, U. G., Staamann, S., Buttyan, L., 1998. On the probbf trust in mobile
agent systems. In: Proceedings of the Symposium on NetwuatlkDéstributed
System Security. Internet Society.

Yee, B., 2003. Monotonicity and partial results protectfon mobile agents. In:
Proceedings of the 23rd Int. Conf. on Distributed ComputBygtems. IEEE
Computer Society, pp. 582-591.

Zachary, J., 2003. Protecting Mobile Code in the Wild. InegrComputing, IEEE
7 (2), 78-82.

23





