
The Journal of Systems and Software 82 (2009) 144–154
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss
An anomaly prevention approach for real-time task scheduling q

Ya-Shu Chen a, Li-Pin Chang b, Tei-Wei Kuo c,*, Aloysius K. Mok d

a Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
b Department of Computer Science, National Chiao-Tung University, Hsin-Chu 300, Taiwan
c Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan
d Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712, USA

a r t i c l e i n f o
Article history:
Received 8 June 2006
Received in revised form 2 July 2008
Accepted 21 July 2008
Available online 9 August 2008

Keywords:
Scheduling anomaly
Real-time task scheduling
Process synchronization
Scheduler stability
0164-1212/$ - see front matter � 2008 Elsevier Inc. A
doi:10.1016/j.jss.2008.07.038

q This paper is an extended version of the paper
(2005).

* Corresponding author.
E-mail addresses: yschen@mail.ntust.edu.tw (Y.

edu.tw (L.-P. Chang), ktw@csie.ntu.edu.tw (T.-W. Ku
Mok).
a b s t r a c t

This research responds to practical requirements in the porting of embedded software over platforms and
the well-known multiprocessor anomaly. In particular, we consider the task scheduling problem when
the system configuration changes. With mutual-exclusive resource accessing, we show that new viola-
tions of the timing constraints of tasks might occur even when a more powerful processor or device is
adopted. The concept of scheduler stability and rules are then proposed to prevent scheduling anomaly
from occurring in task executions that might be involved with task synchronization or I/O access. Finally,
we explore policies for bounding the duration of scheduling anomalies.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

One of the key factors in the development of successful embed-
ded-system products is reusing software and hardware IP’s to
shorten the time to the market, and maximize the reconfigurability
in product development. The issues in software-IP reuse are very
different from those in hardware-IP reuse, especially since many
applications today must have good response time and high reliabil-
ity. Such requirements in system implementations often imply the
need for software portability over platforms, not just for function-
ality but also in terms of the timing behaviors of the target soft-
ware (Buttazzo, 2002). This observation underlies the motivation
of this study which the explores real-time task scheduling method-
ology that could retain selected timing behaviors of task execu-
tions when system platforms change.

The real-time resource allocation problem has been an active
research topic in the past decades. Optimal scheduling algorithms
such as the rate-monotonic scheduling algorithm, the earliest-
deadline-first algorithm, and the least-slack-first algorithm (Liu
and Layland, 1973; Mok, 1993) have been proposed for different
contexts. Real-time task scheduling was also explored for different
system architecture assumptions (such as those for multiprocessor
ll rights reserved.

that appeared in Chen et al.

-S. Chen), lpchang@cs.nctu.
o), mok@cs.utexas.edu (A.K.
scheduling (Baker, 2003; Dhall, 1977), scheduling with end-to-end
deadlines (Chen et al., 2000; Kao and Garcia-Molina, 1997), impre-
cise computation (Lin et al., 1987), and probabilistic performance
guarantee (Abeni and Buttazzo, 1998; Abeni and Buttazzo, 1999).
Many excellent scheduling algorithms have been proposed (such
as those for independent task scheduling (Liu and Layland, 1973;
Mok, 1993), task synchronization (Sha et al., 1990), multiframe
scheduling (Mok and Chen, 1997), and rate-based scheduling
(Jeffay and Goddard, 1999; Liu and Goddard, 2003; Spuri et al.,
1995). However, there has been little work addressing the schedul-
ing anomaly problem for platform changing in real-time task
scheduling.

This study is motivated by the practical needs of embedded-
system implementations when system platforms change, and the
well-known multiprocessor anomaly (Manimaran and Siva Ram
Murthy, 1997; Mok, 2000; Graham, 1976; Shen et al., 1990; Shen
et al., 1993). We consider the task scheduling problem for software
portability, in which performance requirements might be violated.
We show that new violations of the timing constraints of tasks
might occur even when a more powerful processor or device is
adopted. The occurrence of these new violations is referred to as
scheduling anomaly in this paper. We propose the concept of
scheduler stability and anomaly-prevention rules to avoid schedul-
ing anomaly. We consider task executions that might be involved
with task synchronization or I/O access. Finally, we explore policies
for bounding the duration time of scheduling anomaly. A series of
experiments was conducted to evaluate the capability of the pro-
posed anomaly-prevention rules, for which we present very
encouraging results.

mailto:yschen@mail.ntust.edu.tw
mailto:lpchang@cs.nctu. edu.tw
mailto:lpchang@cs.nctu. edu.tw
mailto:ktw@csie.ntu.edu.tw
mailto:mok@cs.utexas.edu
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

Y.-S. Chen et al. / The Journal of Systems and Software 82 (2009) 144–154 145
The rest of this paper is organized as follows: Section 2 presents
the research motivation and problem definition. Section 3 shows
the non-existence of greedy scheduling algorithms in avoiding
scheduling anomalies and defines a necessary condition for any
occurrence of a scheduling anomaly. Section 4 first presents two
rules for anomaly prevention and then a methodology to bound
the duration time of a scheduling anomaly. Section 5 presents
the performance evaluation for our algorithms. Finally, Section 6
summarizes the paper and indicates directions for future research.

2. Problem definition

2.1. Motivation

The motivation of this research could be illustrated by an exam-
ple schedule over a uniprocessor system in which a violation of
timing constraints might occur, due to the upgrading of the
processor:

Suppose that there are two tasks s1 and s2 in this system, where
the priority of s1 is higher than that of s2, and both need to access
the same resource R exclusively. In the original schedule, as shown
in Fig. 1a, s2 first runs without acquiring R (referred to as s2;1). La-
ter s1 arrives and preempts s2 (referred to as s1;1). Then s1 locks R
(referred to as s1;2) and later unlocks it and executes until its com-
pletion (referred to as s1;3). When s1 is completed s2 resumes. s2

requests R and executes until s2 unlocks R (referred to as s2;2), at
which point, s2 executes and completes its execution (referred to
as s2;3). Suppose that the processor is now upgraded such that
the duration of each subtask si;j is reduced by some amount. As
Fig. 1. An anomaly of task execution

Fig. 2. An anomaly of task executions over a
shown in Fig. 1b, s1 now completes its execution later because
the upgrading of the processor lets s2;2 start before s1 arrives.

Now let us consider the same task executions with the exclusive
resource access on R being replaced with that on an I/O device (also
referred to as a resource in this paper). The schedule, as shown in
Fig. 2a, is similar to its counter-part in Fig. 1a, except that the dura-
tions of s1;2 and s2;2 are longer because of I/O access. Fig. 2b shows
the revised schedule after the upgrading of the processor. Similar
to the previous discussions, s1 also completes later in a system
with a more powerful processor even though it has a higher prior-
ity. In addition, the delay in s1’s execution is more significant be-
cause of I/O access (even though parallelism is observed in this
example).

Considerations of the scheduling anomaly should not be based
simply on the fact that processor speed nearly doubles in every
18 months. Instead, we should consider the variety of embedded
system products and their platforms when softwares are ported
among platforms/systems with different processor/device speeds.
Technical problems should be on the reasons behind the anomaly
and the way to avoid it. It underlies the motivation of this research.
2.2. Problem formulation

We first define some terminology and then formally define the
scheduling problem.

Definition 2.1. Passive Resources: A resource is passive if the
resource requires the consumption of the processor power during
its the access.
s due to hardware upgradings.

uniprocessor system with an I/O device.

146 Y.-S. Chen et al. / The Journal of Systems and Software 82 (2009) 144–154
Good examples of passive resources include semaphores, mutex
locks, event objects, and database locks. Passive resources could be
accessed without locks or with exclusive or shared locks, depend-
ing on the characteristics of the resources and application logics. A
resource is active if it is not passive. Good examples of active re-
sources include disks, printers, network adaptors, and transceivers.
A task might issue a request on an active resource and resume its
execution if the request is asynchronous and granted. If the request
is synchronous, then the task is suspended until the request is ful-
filled. In this paper, we are interested in non-preemptible active re-
sources, such as disks, with synchronous requests. We assume an
access request to be serviced immediately on the corresponding
active resource once it is granted and available, and we do not con-
sider I/O buffering or caching.

We denote the jth invocation of task si as Ji;j (referred to as a
job), where a task is periodic. A job Ji;j comprises a sequence of
sub-jobs to be executed in order. For example, a sub-job can be a
subroutine of an application. Ji;j;k denotes the kth sub-job of Ji;j.
Let C ¼ fðCPU;SpeedCPUÞ; ðDev1; SpeedDev1

Þ; � � � ; ðDevn; SpeedDevn
Þg

denote a system configuration, in which the processor runs at a
speed SpeedCPU, and each active resource Devi operates at a speed
SpeedDevi

. A system configuration C0 ¼ fðCPU;Speed0CPUÞ; ðDev1;

Speed0Dev1
Þ; � � � � � � ; ðDevn; Speed0Devn

Þg is greater than or equal to C
(denoted as C0 P C) if and only if Speed0CPU is no less than
SpeedCPU, and each Speed0Devi

of C0 is no less than the corresponding
SpeedDevi

of C. We assume that the time required to complete any
sub-job J over C0 is no more than that of J over C if C0 P C.

Given a set T of jobs in an n-task set fs1; s2; . . . ; sng between a
given interval P, let P be a given real-time scheduler, and
S ¼ PCðTÞ be the schedule resulting from the scheduling of jobs
in T by the scheduler P based on a given system configuration C.
Note that jobs in T have their arrival times fixed for a given T. Let
hC

PðJi;j;kÞ denote the completion-time of Ji;j;k under a scheduler P
based on a system configuration C. We say that a scheduler is stable
according to the following definition:

Definition 2.2. Stability: A real-time scheduler P is stable if and
only if 8i;j;k; h

C
PðJi;j;kÞP hC0

PðJi;j;kÞ for any task set T and any two
system configurations C and C0 when C0 P C.

A real-time scheduler is unstable if it is not stable. An unstable
scheduler may or may not result in an anomaly for any two given
system configurations C and C0 and a given task set T. An anomaly
occurs for a real-time scheduler P with two given system configu-
rations C and C0 and a given task set T if and only if
9i;j;k; h

C0

PðJi;j;kÞ > hC
PðJi;j;kÞ when C0 P C. The objective of this paper is

to explore the stability property of real-time schedulers.
In the rest of this paper, a scheduling algorithm (e.g., rate-

monotonic scheduling (RM) (Liu and Layland, 1973) or earliest-
deadline-first scheduling (EDF) (Liu and Layland, 1973)) with a
resource synchronization protocol (e.g., non-preemptible critical
section protocol (NCSP) (Mok, 1993), priority-ceiling protocol
(PCP) (Sha et al., 1990), or stack-resource policy (SRP) (Baker,
1990) are referred to as a scheduler. For example, a scheduler can
be RM with NCSP. A set of anomaly-prevention rules to be proposed
are to revise the protocol of a scheduler for anomaly prevention.
3. Scheduler stability – greediness versus stability

It was shown in Mok (2000) that there does not exist a totally
on-line optimal scheduler in the presence of non-preemptive re-
source access, where a totally on-line scheduler makes a scheduling
decision without the knowledge of the future arrivals of tasks and
their timing constraints. Schedulers considered in this case are
greedy, and a greedy scheduler always grants a resource request
among the pending requests if the resource is available. A sched-
uler is greedy if and only if both its scheduling algorithm and its
resource synchronization protocol are greedy. For example, the
scheduler of rate-monotonic scheduling with NCSP is greedy. Our
discussions first begin with the stability of greedy schedulers be-
cause they are widely adopted in many real-time operating sys-
tems. We shall first show that no greedy scheduler is stable in
the presence of non-preemptive resources and then explore anom-
aly-free resource synchronization issues.

Theorem 1. No greedy real-time scheduler is stable in the presence of
non-preemptive resources.

Proof. The correctness of this theorem can be proved by examples
similar to those in Figs. 1 and 2: Consider the executions of two
tasks s1 and s2 with passive resource sharing on R (Please see
Fig. 1), where s2 has a lower priority but arrives earlier than s1.
Let s1 arrive before s2 locks R non-preemptively in a given system
configuration C. Now suppose that s1 arrives after s2 attempts to
lock R in another system configuration C0, where C0 > C. Since R
is available, any greedy scheduler would grant the request of s2

on R. As a result, s1 would be blocked by s2 for its request to R. Sim-
ilar to the condition in Fig. 1, the completion-time of s1 would be
delayed. The correctness of this theorem on active resource sharing
could be proved in a way similar to that in Fig. 2. h

How to avoid anomaly could be a difficult problem in system
implementations unless proper constraints are given for the do-
main of interest. The discussions of greedy schedulers are to show
that they are vulnerable to anomalies. That no greedy schedulers
can be stable has been proven in Theorem 1. On the other hand,
system upgrades are not beneficial if the adopted scheduler is sta-
tic. This work considers anomaly-prevention rules for greedy
schedulers to consider not only anomaly prevention but also re-
source utilization. Contrast to a totally clairvoyant scheduler, the
technical issue is how to conduct anomaly prevention with limited
future knowledge. In this paper, we focus our discussion on the stabil-
ity of real-time schedulers in adopting a more powerful system config-
uration C0, with respect to a given baseline system configuration C (i.e.,
C0 P C). We first present a necessary condition for the stability of a
real-time scheduler with respect to a system configuration C and
then explore the stability issues of existing resource synchroniza-
tion protocols in later sections.

Theorem 2. Given a system configuration C, a real-time scheduler P is
unstable with respect to C only if there exists a sub-job in some given
task set T that experiences a preemption or blocking in S0 ¼ PC0 ðTÞ but
not in S ¼ PCðTÞ, where C0 is another system configuration, and C0 P C.

Proof. Suppose that there exists an anomaly for some sub-job Ji;j;k

in T, i.e., hC0

PðJi;j;kÞ > hC
PðJi;j;kÞ. The occurrence of the anomaly is due to

one of the following two cases: (1) Ji;j;k’s beginning time is delayed
in S0 compared to that in S, because Ji;j;k is blocked in S0 due to
resource contention. (2) Ji;j;k is preempted by some higher-priority
sub-job in S0, and the preemption does not happen in S. h

Theorem 2 could serve as a necessary condition to retain the
stability of a given real-time scheduler with respect to a system
configuration. We can always prevent the occurrence of any anom-
aly by negating the necessary condition. The technical question,
however, is how to maintain the preemption and blocking relation-
ship in a given system configuration when a more powerful system
configuration is adopted.
4. Anomaly prevention

In this section, anomaly-prevention rules are introduced. How
the proposed anomaly-prevention rules can be integrated into a

Fig. 3. An NCSP-IDI schedule.

Y.-S. Chen et al. / The Journal of Systems and Software 82 (2009) 144–154 147
greedy scheduler of rate-monotonic scheduling algorithm with
non-preemptible critical section protocol (NCSP) (Mok, 1993) is
demonstrated.1

4.1. Anomaly prevention – passive resources

In this section, we first discuss the handling of passive resources
and present two naive rules for anomaly prevention.

4.1.1. Insertions of idle time
Given the arrival times of tasks and the duration time of each

resource access, an existing protocol could be revised and be stable
based on the following rule: Whenever a task sL requests a passive
resource R at time t and it might access R for D time units, the request
is held pending if ðt þ DÞ is larger than the arrival time of some higher-
priority task sH. We refer to this as the idle-time-insertion (IDI) rule.
Note that when only a fixed set of periodic tasks is considered, the
arrival time of each task could be derived based on its period and
initial phase.

We shall revise the well-known non-preemptible critical sec-
tion protocol (NCSP) (Mok, 1993) according to the IDI rule (referred
to as NCSP-IDI) to better illustrate the concept of the IDI rule,
where NCSP is combined with a priority-driven scheduling algo-
rithm, except that no preemption/context-switch is allowed in a
critical section. Consider the executions of three periodic tasks,
s1, s2 and s3, where the period of s1, s2, and s3 are 20, 25, and
35, respectively. Let the two passive resources R1 and R2 be shared
among the three tasks, where s1 has the highest priority, and s3

has the lowest priority. Fig. 3 shows their executions under
NCSP-IDI. Suppose that s1, s2, and s3 arrive at time 9, time 4, and
time 0, respectively. The request for R2 by s3 is held pending at
time 3 because the corresponding access could not be completed
before time 4 (referred to as s3;4), i.e., the arrival time of s2. As a
result, the processor is idle from time 3 to time 4. The request of
R2 by s2 is granted at time 6 because the corresponding access
would be completed before time 9 (referred to as s2;2), i.e., the ar-
rival time of s1. At time 9, s2 completes its execution, and s1 is dis-
patched. When s1 completes its execution at time 14, s3 resumes
its execution, and its pending request is granted because the corre-
sponding access would be completed before time 16, where the
next arrival time of higher-priority tasks is 29.

As shown in the previous example, the definition of NCSP re-
mains the same, except that a resource request could be pending
when the request might result in blocking any higher-priority task.
Clearly, the scheduling decision could be done very efficiently. The
time complexity of the revised NCSP protocol is O(n), where n is
the number of tasks in a fixed set of periodic tasks. However, such
1 The scheduler is sufficiently simple to demonstrate how the anomaly-prevention
rules can be applied. Note that, since the correctness of the proposed anomaly-
prevention rules is independent of any resource synchronization protocols, the rules
are applicable to other schedulers, such as a rate-monotonic scheduling algorithm
with PCP (Sha et al., 1990) or SRP (Baker, 1990).
a rule is very restrictive since lower-priority tasks could be repeat-
edly delayed due to pending requests. Given a taskset
T ¼ fs1; s2; . . . ; sng, by letting a task be idle if any higher-priority
tasks is currently idle, the extra time overheads imposed on task
si by using the IDI rule for anomaly prevention can be simply com-
puted as:

li ¼
Xi

k¼1

sk

X
j<k

pk

pj

& ’ !

where sk is the duration of the longest critical section of tasks sk.
When task set T is scheduled by rate-monotonic scheduling

with IDI, a sufficient condition of the schedulability of task set T is:

8si 2 T;
X
j–i

cj

pj
þ ci þ li

pi
6 i � ð2i�1 � 1Þ

The schedulability test takes into consideration all the potential
overheads of idle time insertion for anomaly prevention. An admit-
ted task set can suffer from neither deadline violations nor
anomalies.

Consider a task set T, a system configuration C, and the up-
graded system configuration C0. Let a preemption or a blocking
be new if it exists in S0 ¼ PC0 ðTÞ but not in S ¼ PCðTÞ. With the
IDI rule, anomaly prevention is enforced because (1) there are no
new preemptions and (2) in both S and S0 a task is never blocked
by a low-priority task.

Consider a low-priority task in S ¼ PCðTÞ that is preempted by a
high-priority task. In S0 ¼ PC0 ðTÞ, the low-priority task may or may
not be preempted by the high-priority task, because the low-prior-
ity task’s execution time in S0 ¼ PC0 ðTÞ is reduced. However, the
low-priority task in S0 ¼ PC0 ðTÞ may lock a resource earlier than
it does in S ¼ PCðTÞ. Without the IDI rule, in S0 ¼ PC0 ðTÞ, the low-
priority task may introduce a new blocking to the high-priority
task. Because of this new blocking, the high-priority task in
S0 ¼ PC0 ðTÞ may complete later than it does in S ¼ PCðTÞ, and it
may experience new preemptions. However, the IDI rule avoids
any blocking, so the new preemptions are impossible. On the other
hand, a high-priority task never introduces new preemptions, be-
cause it preempts low-priority tasks only on its arrivals (i.e., task
periods), which are independent of system configurations.
4.1.2. Preservation of access order
The idle-time-insertion rule is conservative in task synchroniza-

tion. Another naive rule is to maintain the resource access order of
resources in S ¼ PCðTÞ when another system configuration C0 is gi-
ven. We could avoid any anomaly in task scheduling by referencing
either a pre-run schedule or an on-line generated schedule
S ¼ PCðTÞ.

Given a schedule S ¼ PCðTÞ for a system configuration C (gener-
ated either in an on-line or off-line fashion), we can order all of the
resource requests in S according to their granted time, and they
will be sequentially ordered. We define the order-preservation

Fig. 4. An NCSP-OP schedule.

148 Y.-S. Chen et al. / The Journal of Systems and Software 82 (2009) 144–154
(OP) rule as follows: The granting of resource requests from tasks exe-
cuting over another system configuration, C0, must be consistent with
their corresponding granting order in S. That is, a resource request R
will be pending for a system configuration C0 if there exists some
resource request that is granted before R in the referenced sche-
dule S but is not yet granted in S0.2 When there is no ambiguity,
we use the symbol of a sub-job to denote the corresponding resource
request made in the beginning of the sub-job for the rest of this
paper.

NCSP can be revised with the OP rule (referred to as NCSP-OP)
to illustrate this concept: Consider the executions of the same task
set, denoted as T, in Fig. 3, except that the execution time of each
task is doubled. Fig. 4a shows a schedule S ¼ PCðTÞ of the task
set under NCSP for a given system configuration C. The granting or-
der of resource requests in S is OC ¼ ðs3;2; s2;2; s1;2; s3;4Þ. Suppose
that we run T over another system configuration C0, where the
computing power of C0 is twice that of C. Fig. 4b shows the result-
ing schedule S0 ¼ PC0 ðTÞ over C0. At time 1, the request on R1 issued
by s3 is granted, since it is the first granted request in OC . At time 3,
the request on R2 issued by s3 will be pending because the granting
of the request will violate the order in OC . The request on R2 issued
by s2 is granted at time 6, and the request on R2 by s1 is then
granted at time 10. When s1 completes at time 14, s3’s request
on R2 is granted at time 14, and that is the last granted request
in OC .

As mentioned above, the OP rule can be conducted by referenc-
ing either an off-line generated pre-run schedule or an on-line
emulated schedule. The analysis of time and space complexity of
the two alternatives are as follows:

The space complexity of generating a pre-run schedule is
Oð
Pn

i¼1ni � ðLCM=piÞ � mÞ, where ni and pi are the numbers of sub-
tasks and the period of task si, respectively. LCM and m are the hy-
per-period of the task set and the total number of passive resources
in the system, respectively. A pre-schedule contains a complete
schedule within a hyper-period with respect to the original system
configuration C. With the access order in the pre-run schedule, to
check whether a request to a resource can be granted takes con-
stant time (i.e., O(1) time).

At any time instant, each task would have no more than one
pending resource request. In other words, to enforce the access-or-
2 When an off-line schedule is used, the job arrival times of each task must be
known and fixed. The duration time of each resource access must also be known and
fixed.
der rule, at any time instant, with respect to system configuration
C0, we need to maintain the original precedence of no more than n
pending requests in the access order of resources in S ¼ PCðTÞ. This
can be accomplished by emulating schedule S ¼ PCðTÞ to see
which one among the n currently pending requests should be
granted first. The schedule S ¼ PCðTÞ is progressively emulated
on the arrival of a task, and it takes Oð

Pn
i¼1ni �mÞ time to emulate

how the newly arriving task is scheduled in S ¼ PCðTÞ. With on-
line emulation, to grant one among the n pending requests takes
no more than O(n) time.

The correctness of the OP rule is based on Theorem 2. We shall
show that the OP rule allows no extra blocking and preemption in
S0 ¼ PC0 ðTÞ with respect to S ¼ PCðTÞ. We shall first show that no
extra blocking in S0 ¼ PC0 ðTÞ with respect to S ¼ PCðTÞ can occur.
Let rh and rl be requests to a passive resource R from a high-priority
task and a low-priority task, respectively. In S ¼ PCðTÞ, there can
be two cases: rh precedes rl or rl precedes rh. For the case of rh pre-
ceding rl, rl naturally is never ‘‘blocked” by rh because rh is from a
high-priority task. Furthermore, as long as the OP rule is enforced,
rl can never be granted before rh and no new blocking exists. For
the case of rl preceding rh, if rh is blocked by rl in S0 ¼ PC0 ðTÞ, then
rh is also blocked by rl in S ¼ PCðTÞ. That is because the low-prior-
ity task has successfully locked resource R before the arrival of the
high-priority task and thus rh is blocked by rl. Since the arrivals of
tasks (i.e., task periods) are not affected by upgrades to system con-
figurations, the low-priority task always successfully locks re-
source R before the high-priority task. As to extra preemption,
the reason that the OP rule introduces no extra preemption is sim-
ilar to that of the IDI rule. The only difference is that a low-priority
task will not block a high-priority task if the blocking is not in
S ¼ PCðTÞ.

4.2. Anomaly prevention – active and passive resources

The purpose of this section is to extend the idea in anomaly pre-
vention to the handling of active resources and a more flexible way
in the bounding of the anomaly duration.

4.2.1. IDI and OP rules – active resources
This section revisits Theorem 2 on anomaly prevention in terms

of the IDI and OP rules when active non-preemptible resources are
considered. We shall first show that the speedup of active re-
sources could introduce new preemptions and might result in
anomaly. We will then address the revision of the IDI and OP rules.

Fig. 5. Scheduling anomaly involving with I/O device access.

Y.-S. Chen et al. / The Journal of Systems and Software 82 (2009) 144–154 149
Fig. 5a shows the executions of tasks for a system configuration
C, as shown in Fig. 2a. Suppose that the performance of the active
resource (AR) is improved such that s1;2 is completed earlier, and
s1;3 preempts s2;1, as shown in 5b. As a result, the completion-time
of s2;1 is delayed because the parallelism of task executions is
reduced.

We can extend the OP rule by preserving the preemption rela-
tionship of sub-jobs of tasks. Similar to the informal proof in Sec-
tion 4.1.2, we could show that any priority-driven scheduler
revised with the new OP rule is stable. However, the IDI rule could
not be extended in a similar way because active resources would
introduce new task preemptions, where the rationale behind the
IDI rule is highly dependent on the predictablity of preemption
times, which are only due to the arrivals of higher-priority tasks
in Section 4.1.1. Note that new preemptions caused by the speedup
of active resources would simply result in the delay of the comple-
tion-time of lower-priority tasks. One way to avoid this in the
application of the IDI rule is to avoid such preemptions when the
related active resource access is completed too early, compared
to that in the original system configuration.

4.2.2. Anomaly with a bounded duration time
This section proposes rules to limit bound the number of occur-

rences of scheduling anomalies and, thus, the anomaly duration for
a task. The main idea is to manage the number of priority inver-
sions per task such that the occurrences of anomaly is under con-
trol. We first use the well-known priority ceiling protocol (PCP)
(Sha et al., 1990) and NCSP as examples to illustrate the priority
inversion problem due to active-resource access.

Under PCP, each resource is given a ceiling equal to the maxi-
mum priority of tasks that might access the resource, and a re-
source request of a task is granted if the task priority is higher
than the maximum ceiling of resources locked by other tasks.
When active and passive resources are considered together in the
enforcement of the ceiling rule, PCP guarantees that the maximum
number of priority inversions for each task is one.3 Task scheduling
under NCSP is similar to that under PCP. Any task scheduled under
NCSP is guaranteed one priority inversion in the worse case because
3 This claim holds only if a pending request of a lower-priority task on an active
resource could not be granted at the time moment when a higher-priority task
resumes its execution from an access on the active resource. Otherwise, the
maximum number of priority inversions for each task is one plus the number o
active resource access by the task. The statement is true even when active and passive
resources are considered together in ceiling enforcement.
f

any access to an active or passive resource is in a critical section, and
no context switch is allowed. The price paid for the one priority
inversion in the above two cases is the reduction of the execution
parallelism. Now suppose that active and passive resources are sep-
arately considered in task synchronization. That is, the granting of a
request on a passive/active resource considers only the maximum
ceiling of passive/active resources locked by other tasks. The maxi-
mum number of priority inversions for each task under PCP becomes
one plus the number of accesses to active resources from the task.
This is because a higher-priority task might suffer from one extra
priority inversion whenever it resumes from the access of an active
resource. Better parallelism is achieved but with the cost of priority
inversion. A similar phenomenon could also be observed for tasks
scheduled under NCSP. As astute readers might point out, with a lar-
ger maximum number of priority inversions, there can be more
scheduling anomalies. Such observations underlie the motivation
of the following rule in anomaly management, referred to as the
anomaly control (AC) rule: We consider only fixed-priority assign-
ment in task scheduling in this section.

Let each table entry AC[i] denote the number of blocking tolerable
to a task si. (1) Whenever a job of si completes its execution, AC[i] is
reset to the initial setting. (2) Whenever a blocking occurs to si, AC[i]
is decremented by one. (3) Any request to a resource from si is blocked
if any AC[j] of some higher-priority task is no more than 0. (4) Active
resources should be managed independently of passive resources.

Consider the executions of three tasks sH, sM and sL being
scheduled by NCSP revised with the AC rule (referred to as NCSP-
AC), where sH is the highest-priority task, and sL is the lowest-pri-
ority task. As shown in Fig. 6, AC½si� for each task si is initially set as
2. sM arrives at time 0 and is granted a request on an active re-
source (AR) at time 1 because AC½sH� > 0. When sH that arrives at
time 1 and makes a request to AR at time 2, the request is blocked
because AR is accessed non-preemptively now (or some critical
section in accessing an active resource is active now). As a result,
AC½sH� is decremented by 1. When sL arrives at time 2, it starts
its execution because sH is blocked on a pending request on AR,
and sM is waiting for the completion of the access on AR. The lock
request by sL on a passive resource R1 is granted at time 3 because
no task is yet in a critical section accessing a passive resource (the
separated consideration of active and passive resources), and
AC½sM�;AC½sH� > 0. At time 4, sM completes its access of AR, and
the request of sH on AR is granted. But sM could not resume at time
4 because sL is executing in a critical section, AC½sM� is decre-
mented by 1 because of the blocking. When sL unlocks R1 and
leaves its critical section at time 5, sM resumes. sM then enters a

Fig. 6. An NCSP-AC schedule.

150 Y.-S. Chen et al. / The Journal of Systems and Software 82 (2009) 144–154
critical section by successfully locking R2 (where AC½sH� > 0) at
time 6 and later blocks sH a time 7 when sH completes its access
on AR. AC½sH� becomes 0 at time 7 and forbids sM and sL from lock-
ing any active or passive resource again until its completion.

As readers might point out, the maximum number of priority
inversions for a task, indeed, implies the maximum occurrence
number of scheduling anomalies (with respective to a system con-
figuration with the worst-case consideration). We conclude that
the maximum number of scheduling anomalies for a task si under
NCSP revised with the AC rule is the maximum number of priority
inversions, i.e., the initial value of AC[i]. With a setting of AC[], the
maximum duration of an anomaly is thus bounded, given the max-
imum access duration of active/passive resources.

5. Performance evaluation

5.1. Experimental setup and performance metrics

In this section, the proposed anomaly-prevention rules IDI to-
gether with OP and the proposed anomaly-bounding rule AC were
evaluated. A scheduler of rate-monotonic scheduling with NCSP is
adopted as the baseline scheduler. NCSP-IDI, NCSP-OP, and NCSP-
AC refer to the baseline schedulers revised by the IDI rule, the OP
rule, and the AC rule, respectively. Two schedulers, rate-monotonic
scheduling with priority ceiling protocol (referred as PCP) (Sha
et al., 1990) and rate-monotonic scheduling with stack resource
policy (referred as SRP) (Baker, 1990), were used for performance
comparisons. All the schedulers were evaluated for the anomaly
problem and the speedup in the completion-time of each task.

The primary metric was the number of anomaly occurrences
over the total number of task instances, referred to as the anomaly
ratio. Let X and Y be the number of anomaly occurrences and the
total number of task instances in an experiment, respectively.
The anomaly ratio was defined as X=Y . The second performance
metric was the completion ratio, which stands for the ratio of the
total number of fulfilled task instances (i.e., task instances com-
plete before their deadlines) to the total number of all task in-
stances. Note that all task sets in the experiments are randomly
generated without testing their schedulability in advance. In each
experiment, a baseline system configuration C was adopted for
comparisons. Let ct and ct0 denote the completion times of a task
instance scheduled by an experimented scheduler under the base-
line system configuration and a given system configuration C0,
respectively. Suppose that the task instance was ready at time t.
The completion-time ratio for the task instance under a given sched-
uler and C0 was defined as ct0�t

ct�t . The completion-time ratio for a
given scheduler under C0 was defined as the average completion-
time ratio of all task instances scheduled by the scheduler in the
experiment.

In the experiments, the number of tasks per task set ranged
from 5 to 20 and the number was randomly picked for each exper-
iment. Each task was periodic, and the deadline of a task instance
was equal to the arrival time of its following task instance. The
number of fundamental frequencies for a task set in our experi-
ments ranged from 2 to 4 and was randomly assigned to tasks
(Kamenoff and Weiderman, 1991; Kim et al., 1996; Locke et al.,
1991; Molini et al., 1990; Kuo et al., 2003). Fundamental frequen-
cies are the common factors of all the task periods generated for
experiments. For example, the two fundamental frequencies of
periods 5, 15, 45 are 3 and 5. Let each task s in the experiments
be denoted as s ¼ ðcCPU � �; cactive � �; p � �Þ, where cCPU � �, cactive � �,
and p � � were the CPU computation time, the active-resource exe-
cution time, and the period of s, respectively. Since � was used in
the experiments as the baseline time unit, � would be omitted
for the simplicity of presentation when temporal parameters were
presented in the rest of this paper (e.g., s would be abbreviated as
ðcCPU; cactive; pÞ). Note that � could be any positive constant time
interval, e.g., 1 ms. The periods of tasks were randomly picked be-
tween 150 and 3000 time units under the constraints for the se-
lected number of fundamental frequencies. The CPU utilization of
each task ranged from 5% to 30%. When an active resource was
adopted in the experiment, the utilization of the active resource
for the task was between 20% and 40% of its CPU utilization. The
number of passive resources for each task set ranged from 3 to 6
and was randomly picked. Which task would use which passive re-
source was determined by a random distribution function. How-
ever, a task that might consume more CPU time tended to use
more passive resources. In the experiments, 1000 task sets was
generated for each system configuration. Each run of the simula-
tion for a task set was done for the least common multiple of
all of the task periods. Each experiment was given a system config-
uration C ¼ fðCPU; SpeedCPUÞ; ðDev1; SpeedDev1Þg, the system con-
figuration fðCPU;1Þ; ðDev1;1Þg served as the baseline in the
experiments. In other words, if a task instance s ¼ ðcCPU; cactive; pÞ

Y.-S. Chen et al. / The Journal of Systems and Software 82 (2009) 144–154 151
needed c � � time units to complete its execution on the CPU for a
configuration fðCPU;1Þ; ðDev1;1Þg, then s needed ðc � �Þ=k time
units to be completed over the new CPU for a configuration
fðCPU;kÞ; ðDev1;1Þg.

5.2. Experimental results

5.2.1. Systems with passive resources only
In this section, NCSP-IDI and NCSP-OP were evaluated in, com-

parison to PCP, SRP, and NCSP, where only passive resources were
shared among tasks. The anomaly ratio, completion ratio, and com-
pletion-time ratio for the simulated schedulers were reported for
comparisons.

Fig. 7 shows the anomaly ratio of all of the simulated schedul-
ers. The X-axis denotes the subsets of task sets, where ‘‘First X Pri-
ority” stands for the first X priority tasks in the task set. The Y-axis
denotes the anomaly ratio. As shown in Fig. 7, PCP, SRP, and NCSP
all suffered from the anomaly problem. For example, each task in-
stance under PCP might suffer from an average of 0.12 times of
Fig. 7. Anomaly ratios for schedulers when only passive resources were shared
among tasks.

Fig. 8. Completion-time ratios for schedulers when o
anomaly occurrences, when the CPU speed was doubled. Because
of anomaly prevention, NCSP-IDI and NCSP-OP did not have any
anomaly problem.

Fig. 8 shows results for the completion-time ratios of the simu-
lated schedulers, where the X-axis denotes the speedup ratio of the
CPU, and the Y-axis denotes the completion-time ratios. That is,
when the speedup ratio was 2X, the CPU speed was doubled. The
first 1/4 priority tasks refers to a group of high-priority tasks in
rate-monotonic scheduling. By separately observing the effects of
anomaly prevention on high-priority tasks and all the tasks, it
can compare the effects of anomaly prevention on tasks of different
priorities. Fig. 8a shows the completion-time ratios of the first 1/4
priority tasks in the task set. NCSP-IDI and NCSP-OP provided fairly
stable improvement over the completion-time of each task.
Although PCP, SRP, and NCSP also seemed to provide stable
improvement over the completion times of the first 1/4 priority
tasks, Fig. 8b shows the results from a different perspective. In par-
ticular, it shows the ratio of the completion-time ratio to the in-
verse of CPU speedups (i.e., the linear-speedup curve in Fig. 8a)
for the first 1/4 priority task in the task set. This provides a better
view in observing the completion-time ratio when the CPU speed-
up varies. Note that the ratios of the completion-time ratio to the
inverse of the CPU speedup for NCSP-IDI and NCSP-OP were almost
the same for different increases of CPU speed. On the other hand,
the ratios for SRP, PCP, and NCSP changed slightly and were higher
than those for NCSP-IDI and NCSP-OP. Note that with smaller ra-
tios, the completion-time ratio was better. NCSP-OP outperformed
NCSP-IDI with respect to high-priority tasks, because NCSP-IDI
pessimistically inserts idle time to avoid any blocking for anomaly
prevention.

However, lower-priority tasks were sacrificed to permit the
scheduling of higher-priority tasks under NCSP-OP. This is be
shown by Fig. 8c, in which reported the completion-time ratios
of all tasks. As shown in Fig. 8c, the completion-time ratios of
NCSP-OP is higher than that of Fig. 8a. Fig. 8a shows the completion
ratios of first 1/4 priority tasks, including that the response of low-
er-priority tasks was little improved under NCSP-OP as system
configurations were upgraded. This was the price paid for the
anomaly prevention and the benefits of higher-priority tasks. With
the OP rule, although the completion-time ratio never gets worse,
it does not linearly scale with the CPU speedup. One can consider
applying the IDI rule together with the OP rule: A request for an
available passive resource is immediately granted if the resource
can be released before the arrival of any higher-priority tasks.
nly passive resources were shared among tasks.

152 Y.-S. Chen et al. / The Journal of Systems and Software 82 (2009) 144–154
Otherwise, the request should be granted to conform to the OP
rule. Based on the proposed guidelines, smart heuristics can be
proposed to better match the characteristics of schedulers and
platforms. It should be noted that to optimally order the granting
of resource accessing in terms of completion-time ratios is intrac-
table (Mok, 2000). Most importantly, we must emphasize that
NCSP-IDI and NCSP-OP were both free from any anomaly, which
is our design objective.

Fig. 9 shows the completion ratios for the simulated schedulers,
where the X-axis denotes the increased CPU speed, and the Y-axis
denotes the completion ratios. Note that all the task sets in the
experiments are randomly generated without testing their schedu-
lability in advance. The completion ratios in Fig. 9 show how tasks
of different priorities are benefited by upgrades to system configu-
rations. With larger the completion ratios, the tasks benefit more
from the upgrades. Fig. 9a shows that the completion ratios of
the first 1/4 priority tasks was increased for each scheduler as
the CPU was speeded up. NCSP-IDI showed the benefit in the favor
of high-priority tasks since their completion ratios were the largest
among those of others. However, anomaly-prevention schedulers
Fig. 9. Completion ratios for schedulers when only

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(1,1) (1,1.5)

C
om

pl
et

io
n

R
at

io

(CPU speed, device speed)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(1,1) (1.5,1)

C
om

pl
et

io
n

 R
at

io

(CPU speed, device speed)

(b) Completion ratio for tasks und
varied device speeds and fixed CPU

(a) Completion ratio for tasks u
fixed device speeds and varied CP

Fig. 10. Completion ratio for schedulers when both passive r
tended to sacrifice the scheduling of lower-priority tasks, as shown
in Fig. 9b. Note that the completion ratio improvement achieved by
NCSP-OP did not seemed significant, which was because NCSP-OP
postponed resource accesses issued by low-priority tasks to pre-
serve orders in resource accessing.

5.2.2. Systems with passive resources and active resources
In this section, NCSP-AC was evaluated and compared against

NCSP, where both active resources and passive resources were
shared among tasks. As shown in Section 4.2.2, NCSP-AC would
introduce parallelism to the executions over the CPU and active re-
sources, while the number of priority inversions encountered by
each task could still be controlled. In this part of the experiments,
the completion ratios for the simulated schedulers were reported
for comparison. Note that the number of priority inversions that
could be encountered by each task instance was set between 3
and 5 as a parameter for NCSP-AC, and one active resource (e.g.,
Dev1 in system configurations) was shared among tasks.

Fig. 10 shows the completion ratios for the simulated schedul-
ers, where the X-axis denotes different system configurations. For
passive resources were shared among tasks.

(1,2)

(2,1)

er
 speeds

nder
U speeds

esources and active resources were shared among tasks.

Y.-S. Chen et al. / The Journal of Systems and Software 82 (2009) 144–154 153
example, (1,1.5) denotes a system configuration
fðCPU;1Þ; ðDev1;1:5Þg. The Y-axis denotes the completion ratios.
Figs. 10a and b showed the completion ratios for different schedul-
ers when the CPU or the active resource was upgraded, respec-
tively. It can be seen that NCSP-AC greatly outperformed NCSP in
terms of completion ratios when all tasks were considered, though
NCSP was slightly better than NCSP-AC when only the first 1/4 pri-
ority tasks were considered. That was because NCSP-AC is intended
to exchange a controllable number of priority inversions imposed
on high-priority tasks for a higher degree of system parallelism.
As may be noted, any upgrade to the active resource did not result
in a significant improvement over the completion ratios, compared
to upgrading the CPU. That was because the upgrading of the active
resource might reduce potential parallelism in many cases.
6. Conclusion

As more and more software programs with timing constraints
are ported among different platforms, the considerations of the
timing behaviors of software become a critical issue. This research
addresses important scheduling anomaly issues that are motivated
by the practical needs in embedded-system implementations. We
propose the concept of scheduler stability when system platforms
change. We show that new violations of the timing constraints of
tasks might occur even when a more powerful processor or device
is adopted. Anomaly-prevention rules are first proposed to avoid
scheduling anomalies in handling passive resources, such as sema-
phores. We then extend the idea to the management of active and
passive resources. Finally, we present a rule to limit the number of
maximum occurrences and the duration of scheduling anomalies
for each task by an anomaly control rule based on a counting-table.
A series of experiments was conducted to evaluate the capability of
the proposed anomaly control rules, which present very encourag-
ing results.

In future research, we will further explore scheduling anoma-
lies under different system architectures, such as hyper-threading
platforms and embedded I/O subsystems. Since the variety of
embedded systems products has made software portability an
important issue, more research in this direction should prove very
rewarding.

References

Abeni, L., Buttazzo, G., 1998. Integrating multimedia applications in hard real-time
systems. In: Proceedings of the IEEE Real Time System Symposium, pp. 4–13.

Abeni, L., Buttazzo, G., 1999. Qos guarantee using probabilistic deadlines. In:
Proceedings of the Euromicro Conference on Real-Time Systems.

Baker, T.P., 1990. A stack-based resource allocation policy for real-time process. In:
Proceedings of the IEEE Real-Time System Symposium.

Baker, T.P., 2003. Multiprocessor edf and deadline monotonic schedulability
analysis. In: Proceedings of the IEEE Real-Time Systems Symposium.

Buttazzo, G.C., 2002. Scalable applications for energy-aware processors. In:
Proceedings of the International Conference on Embedded Software.

Chen, D., Mok, A.K., Baruah, S.K., 2000. Scheduling distributed real-time tasks in the
DGMF model. In: Proceedings of the IEEE Real Time Technology and
Applications Symposium, pp. 14–22.

Chen, Y.-S., Chang, L.-P., Kuo, T.-W., Mok, A.K., 2005. Real-time task scheduling
anomaly: observation and prevention. In: Proceedings of the ACM Symposium
on Applied Computing.

Dhall, S.K., 1977. Scheduling Periodic-Time-Critical Jobs on Single Processor and
Multiprocessor Computing Systems. Ph.D. thesis, University of Illinois, Urbana.

Graham, R.L., 1976. Computer and job-shop scheduling theory. In: Coffman, E.G.,
Bruno, J.L. (Eds.), Bounds on the Performance of Scheduling Algorithm. Wiley-
Interscience, New York, pp. 165–227.

Jeffay, K., Goddard, S., 1999. A theory of rate-based execution. In: Proceedings of the
IEEE Real-Time Systems Symposium, December, pp. 304–314.

Kamenoff, N.I., Weiderman, N.H., 1991. Hartstone distributed benchmark:
requirements and definitions. In: Proceedings of the IEEE Real-Time Systems
Symposium.

Kao, B., Garcia-Molina, H., 1997. Deadline assignment in a distributed soft real-time
system. IEEE Transactions on Parallel and Distributed Systems 8 (12), 1268–
1274.
Kim, N., Ryu, M., Hong, S., Saksena, M., Choi, C., Shin, H., 1996. Visual assessment of a
real-time system design: a case study on a CNC controller. In: Proceedings of
the IEEE Real-Time Systems Symposium.

Kuo, T.-W., Chang, L.-P., Liu, Y.-H., Lin, K.-J., 2003. Efficient on-line schedulability
tests for real-time systems. IEEE Transaction on Software Engineering 29 (8).

Lin, K.J., Natarajan, S., Liu, J.W.-S., 1987. Imprecise results: utilizing partial
computations in real-time systems. In: Proceedings of the IEEE Real-Time
Systems Symposium, December, pp. 210–217.

Liu, C.L., Layland, J.W., 1973. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM 20 (1), 46–61.

Liu, X., Goddard, S,. 2003. Resource sharing in an enhanced rate-based execution
model. In: Proceedings of the Euromicro Conference on Real-Time Systems.

Locke, C.D., Vogel, D., Mesler, T., 1991. Building a predictable avionics platform in
ada: a case study. In: Proceedings of the IEEE Real-Time Systems Symposium.

Manimaran, C., Siva Ram Murthy, G., 1997. Dynamic scheduling of parallelizable
tasks and resource reclaiming in real-time multiprocessor systems. In:
Proceedings of the High Performance Computing, December, pp. 18-21.

Mok, A., Chen, D., 1997. A multiframe model for real-time tasks. IEEE Transactions
on Software Engineering 23 (10), 635–645.

Mok, A.K., 1993. Fundamental Design Problem of Distributed System for Hard-Real
Time Environment. Ph.D. thesis, Department of Electrical Engineering and
Computer Science, MIT, May.

Mok, A.K., 2000. Tracking real-time systems requirements. In: Proceedings of the
Workshop on Modelling Software System Structures in a Fastly Moving
Scenario.

Molini, J.J., Maimon, S.K., Watson, P.H., 1990. Real-time system scenarios. In:
Proceedings of the IEEE Real-Time Systems Symposium.

Sha, L., Rajkumar, R., Lehoczky, J., 1990. Priority inheritance protocols: an approach
to real-time synchronization. IEEE Transactions on Computers 39 (9).

Shen, C., Ramamritham, K., Stankovic, J., 1990. Resource reclaiming in real time. In:
Proceedings of the IEEE Real-Time System Symposium.

Shen, C., Ramamritham, K., Stankovic, J., 1993. Resource reclaiming in
multiprocessor real-time systems. IEEE Transactions on Parallel and
Distributed Computing 4 (4), 382–397.

Spuri, M., Buttazzo, G., Sensini., 1995. Scheduling aperiodic tasks in dynamic
scheduling environment. In: Proceedings of the IEEE Real-Time Systems
Symposium.

Ya-Shu Chen joined Department of Electronic Engineering, National Taiwan Uni-
versity Science and Technology, at August 2007. She currently serves as an Assistant
Professor. Ya-Shu Chen earned her BS degree in computer information and science
at National Chiao-Tung University in 2001. Then, she studied in Department of
Computer Science and Information Engineering, National Taiwan University, and
was supervised by Prof. Tei-Wei Kuo. She successfully defended her master thesis
and doctoral dissertation at 2003 and 2007, respectively. Her research interest
includes operating systems, embedded storage systems, and hardware/software co-
design.

Li-Pin Chang received BS degree in Computer Science from I-Shou University, and
MS/Ph.D. degrees in Engineering from Department of Computer Science and
Information Engineering at Taiwan University. At May 2005, he joined the faculty of
Department of Computer Science, National Chiao-Tung University. He currently
serves as Assistant Professor. He has served on the editorial board of Journal of
Signal Processing Systems (Springer, SCI-E), and technical committee of interna-
tional conferences including ACM Symposium on Applied Computing (SAC), IEEE
Real-Time Systems Symposium (RTSS), IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), and IEEE/IFIP Inter-
national Conference On Embedded and Ubiquitous Computing (EUC). Prof. Li-Pin
Chang’s research interest includes operating systems, real-time systems, and
embedded storage systems.

Tei-Wei Kuo received the B.S.E. degree in Computer Science and Information
Engineering from National Taiwan University in Taipei, Taiwan, in 1986. He
received the M.S. and Ph.D. degrees in Computer Sciences from the University of
Texas at Austin in 1990 and 1994, respectively. He is currently a Professor of the
Department of Computer Science and Information Engineering, National Taiwan
University. Starting from Feb 2006, he also serves as a Deputy Dean of the College of
Electrical Engineering and Computer Science, National Taiwan University.

Prof. Kuo has served in the editorial board of many journals, including the Journal
of Real-Time Systems (SCI) and IEEE Transactions on Industrial Informatics. He is
also the General Chair of the IEEE Real-Time Systems Symposium (RTSS) in Barce-
lona, Spain, in 2008, and the Program Chair in Tucson, Arizona, USA, in 2007, where
RTSS is the flagship conference in real-time systems. Since 2005, Prof. Kuo has
served as the Steering Committee Chair of the IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA), the best
real-time systems conference in the Asian and Pacific Region. Prof. Kuo serves as an
Executive Committee member of the IEEE Technical Committee on Real-Time
Systems since 2005. He received the Ten Young Outstanding Persons Award of
Taiwan in 2004 and a number of research awards, including the Distinguished
Research Award from the National Science Council in 2003, the Distinguished

154 Y.-S. Chen et al. / The Journal of Systems and Software 82 (2009) 144–154
Teaching Award from the National Taiwan University in 2005 (Top 1%), and another
two teaching awards from the National Taiwan University in 2003 and 2004 (top
10%). His research interests include embedded systems, real-time task scheduling,
real-time operating systems, flash-memory storage systems, and real-time data-
base systems. He has over 140 technical papers published or been accepted in
international journals and conferences and more than 10 patents in USA and Tai-
wan on the designs of flash-memory storage systems.

Aloysius K. Mok received the BS degree in Electrical Engineering, the MS degree in
Electrical Engineering and Computer science, and the PhD degree in Computer
Science, all from the Massachusetts Institute of Technology. He is the Quincy Lee
Centennial Professor in Computer Science at the University of Texas at Austin,
where he has been a member of the faculty of the Department of Computer Sciences
since 1983. He has performed extensive research on computer software systems
and is internationally known for his work in real-time systems. He is a past
chairman of the Technical Committee on Real-Time Systems of the IEEE and has
served on numerous national and international research and advisory panels. His
current interests include real-time and embedded systems, robust and secure
network centric computing, and real-time knowledge-based systems. In 2002, Dr.
Mok received the IEEE Technical Committee on Real-Time Systems Award for his
outstanding technical contributions and leadership achievements in real-time
systems. He is a member of the IEEE.

	An anomaly prevention approach for real-time task scheduling
	Introduction
	Problem definition
	Motivation
	Problem formulation

	Scheduler stability - - greediness versus stability
	Anomaly prevention
	Anomaly prevention - - passive resources
	Insertions of idle time
	Preservation of access order

	Anomaly prevention - - active and passive resources
	IDI and OP rules - - active resources
	Anomaly with a bounded duration time

	Performance evaluation
	Experimental setup and performance metrics
	Experimental results
	Systems with passive resources only
	Systems with passive resources and active resources

	Conclusion
	References

