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Abstract

Gompertz curve has been used to estimate the number of residual faults in testing
phases of software development, especially by Japanese software development com-
panies. Since the Gompertz curve is a deterministic function, the curve cannot be
applied to estimating software reliability which is the probability that software sys-
tem does not fail in a prefixed time period. In this article, we propose a stochastic
model called the Gompertz software reliability model based on non-homogeneous
Poisson processes. The proposed model can be derived from the statistical theory of
extreme-value, and has a similar asymptotic property to the deterministic Gompertz
curve. Also, we develop an EM algorithm to determine the model parameters effec-
tively. In numerical examples with software failure data observed in real software
development projects, we evaluate performance of the Gompertz software reliability
model in terms of reliability assessment and failure prediction.

Key words: software reliability model, Gompertz curve, extremal distributions,
reliability assessment, NHPP, EM algorithm

1 Introduction

During the last three decades, software reliability engineering has played a
central role in quantitative assessment of software quality. In particular, soft-
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ware reliability, which is defined by the probability that software system does
not fail in a prefixed time period, is one of the most important measures of
software quality. To obtain highly accurate estimates for the reliability, a num-
ber of software reliability models (SRMs) have been proposed, so that they
could represent a variety of software development environments [1–5].

Non-homogeneous Poisson process (NHPP) models have particularly gained
much popularity for software engineers as well as researchers to estimate the
software reliability, and also have been utilized to predict the number of resid-
ual faults and software release time. Goel and Okumoto [6], Yamada et al. [7]
and Goel [8] proposed earlier and well-known NHPP-based SRMs. Based on
their NHPP-based models, many researchers developed NHPP-based SRMs
to represent the situation of software development processes.

In this paper, we formulate a new NHPP-based SRM by a different approach
from existing ones. Traditionally, Japanese software development companies
prefer regression analysis based on deterministic functions such as Gompertz
and logistic curves to estimate the number of residual faults. To the best of our
knowledge, Sakata [9] was the first one who utilized the Gompertz and logistic
curves to predict the number of software faults detected. The basic idea behind
his method is non-linear regression, i.e., to fit non-linear deterministic curves to
the cumulative number of detected faults so as to minimize the sum of squared
errors. However, the regression analysis based on deterministic curves is not
appropriate to estimating software reliability. In general, computing software
reliability requires the definition of the event of failure and its occurrence time
(failure time). In the context of regression analysis, we cannot estimate the
failure time, and thus the software reliability is not defined.

Nevertheless, the Gompertz and logistic curves are still used in industry, be-
cause these curves are well fitted to the cumulative number of faults observed
in existing software development processes. This fact motivates us to develop a
new NHPP-based SRM which has similar behavior of the Gompertz or logistic
curve.

Ohba [10] proposed a NHPP-based SRM called the inflection S-shaped model
which involves similar property as the logistic curve. The mean value func-
tion of the inflection S-shaped model is identical to the deterministic logistic
curve. However, since his modeling approach was based on differential equa-
tions of the mean value function, it has not explained relationship between
characteristics of failure times and the cumulative number of faults (failures).

In fact, the debugging theory, or equivalently, the theory of order statis-
tics, [11, 12] can explain the relationship for almost all existing NHPP-based
SRMs. In the debugging theory, we suppose that software initially contains
the finite number of faults and that each fault is detected at independent and

2



identically distributed random times (fault-detection time distribution). If the
initial number of faults is given by a Poisson distributed random variable, the
number of faults detected before arbitrary time follows the NHPP whose mean
behavior is same as the cumulative distribution function (c.d.f.) of the fault-
detection time. In other words, the cumulative number of faults is determined
by the fault-detection time distribution in the debugging theory.

The inflection S-shaped model can also be explained in the framework of
debugging theory, and is the NHPP model whose fault-detection time obeys
logistic distribution. However, it should be noted that logistic distribution is
defined on both negative and positive domains. That is, there are two possible
NHPP-based SRMs which are based on logistic distribution, and they depend
on the methods to modify the logistic distribution into the c.d.f. with positive
domain. If we modify the domain of logistic distribution with truncation, then
the modified logistic distribution is called a truncated logistic distribution. The
NHPP-based SRM with the truncated logistic distribution is exactly reduced
to the inflection S-shaped model. On the other hand, the domain is changed
by taking logarithm. The SRM corresponds to a log-logistic model [13]. The
details of these logistic SRMs are shown in [14].

In this paper, we focus on the Gompertz curve. The Gompertz curve is intro-
duced by B. Gompertz [15] to explain the law of human mortality theoreti-
cally and determine the value of life contingencies. In the context of reliability
engineering, this curve is, for example, used to assess the reliability growth
phenomenon of hardware products (see e.g. Virene [16]). Similar to the logistic
SRMs [10,13], we formulate Gompertz SRMs based on NHPPs. In particular,
we show that the proposed models can be derived from the theory of extreme-
value, and their asymptotic properties are quite similar to the deterministic
Gompertz curve.

Moreover, we develop an EM (expectation-maximization) algorithm [17, 18]
to estimate the model parameters of Gompertz SRMs. Since the Gompertz
SRM has a stronger non-linearity than the existing NHPP-based SRMs, the
computation procedure of maximum likelihood estimates is more complex,
although Hossain and Dahiya [19] and Knafl and Morgan [20] succeeded to
solve the likelihood equations for the exponential SRM [6]. Also, classical
iterative algorithms, such as the Newton’s method, are possibly used to solve
the likelihood equations numerically. Since the Newton’s method is, however,
one of unconstrained optimization algorithms, it does not often function well to
compute the estimates of Gompertz SRMs. In addition, the local convergence
property of the Newton’s method adversely affects the estimation procedure
in Gompertz SRMs. Okamura et al. [14, 21–23] developed the framework of
EM algorithms in the NHPP-based SRMs, and the framework can produce
efficient algorithms to find maximum likelihood estimates of almost all kinds
of NHPP-based SRMs. Since the specific EM algorithms generally depend on
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the fault-detection time distributions, this paper concretely presents an EM
algorithm for the Gompertz SRMs in detail.

The remaining part of this paper is planned as follows. In Section 2, we intro-
duce the basic concept of Gompertz curve, its related work and the modeling
framework of NHPP-based SRMs. In Section 3, we explain statistical prop-
erties of extreme-value statistics and develop the Gompertz SRMs based on
the NHPP. Section 4 is devoted to the parameter estimation problem. After
describing a couple of theoretical results on the maximum likelihood estima-
tion for the Gompertz SRM, we develop the EM algorithm to estimate model
parameters. In Section 5, we investigate performance of the proposed EM
algorithm in terms of the convergence property, and also compare the EM
algorithm with the Newton’s method from the viewpoints of both accuracy
and speed of convergence. Moreover, with software fault-detection data ob-
served in real software development projects, we apply the Gompertz SRM to
assess software reliability and to predict the number of initial fault contents.
We empirically conclude that our new model may function better than the
existing models in several data sets, and that the model is effective on the
goodness-of-fit under some information criteria.

2 Software Reliability Models

2.1 Deterministic Curve Model

Let M(t) be the cumulative number of software faults detected up to time
t (≥ 0). Then the Gompertz curve is given by

M(t) = ωabt

, (1)

where limt→∞M(t) = ω (> 0) denotes the initial number of faults before
testing and a, b ∈ (0, 1) are arbitrary design parameters. It is straightforward
to see that the Gompertz curve draws a typical S-shaped curve and that its
point of inflection is given by t = − log(− log a)/ log b. Figure 1 depicts a
schematic illustration of the Gompertz curves.

The non-linear regression analysis is used to estimate model parameters, i.e.,
ω, a and b. Satoh [24] and Satoh and Yamada [25] introduced a discrete Gom-
pertz curve by discretizing the differential equations for the Gompertz curve,
and applied the discrete Gompertz curve to predict the number of detected
software faults. As mentioned in Introduction, the deterministic curves and
their regression analysis possess a couple of statistical drawbacks.
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To overcome such problems, Yamada [26] considered an NHPP model with
the following mean value function:

M(t) = ω{abt − a}. (2)

Eq. (2) allows us to modify the Gompertz curve so that it satisfies M(0) = 0.
Then the number of detected faults at t = 0 becomes 0 in the NHPP model
(see Fig. 1). On the other hand, Eq. (2) poses the difficulty of computing the
maximum likelihood estimates due to its strong non-linearity. An alternative
way to develop the NHPP model with the Gompertz curve is the use of dis-
continuous mean value function. That is, if we consider the following mean
value function:

M(t) =

⎧⎪⎨
⎪⎩

0, t = 0

ωabt
, t > 0,

(3)

then the NHPP also behaves like the Gompertz curve in the range of t > 0.
However, even if we apply Eq. (3) to assessment of software reliability, the
parameter estimation problem is still remained, i.e., it is difficult to derive the
maximum likelihood estimates for the mean value function in Eq. (3) by using
real software fault-detection data.

2.2 Software Debugging Theory

Let N(t) denote the number of software faults detected by time t, and be a
stochastic point process (distinguish it from the deterministic function M(t)).
We make the following assumptions:

Assumption A: Software failures caused by software faults occur at indepen-
dent and identically distributed (i.i.d.) random times having the probability
distribution function F (t) with density f(t) = dF (t)/dt.

Assumption B: The initial number of software faults, N (> 0), is positive
and finite.

Although Assumption A seems to be strong for practical situation, we can
observe such phenomenon in real software testing processes, especially, system
test phase. Assumption A does not indicate that the software faults are all
detected under only one environment. Since a software fault is detected by
some specific test cases, Assumption A means that test cases are randomly
selected. In fact, the correlation due to selection of test cases appears in the
number of detected faults, but in macroscopic behavior of the process, the
correlation is modelled by variation of fault-detection times. In addition, when
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the correlation is strong so that it could not be ignored, we can use mixed-type
NHPP-based SRMs such as hyperexponential SRMs [27, 28]. In fact, almost
all NHPP-based SRMs can be justified under the above two assumptions.

Under the above assumptions, the probability mass function of the number of
faults detected by time t is given by

Pr{N(t) = n | N} =

(
N

n

)
F (t)nF (t)N−n, (4)

where F (·) = 1 − F (·). Figure 2 illustrates the configuration of software de-
bugging theory. When the software fault-detection time obeys an exponen-
tial distribution F (t) = 1 − exp{−βt} (β > 0), then the stochastic process
{N(t), t ≥ 0} is reduced to a pure birth process with absorbing boundary at
N(t) = N , and also it is well known that such a SRM is equivalent to the
Jelinski and Moranda model [29].

If the number of initial fault contents is unknown, i.e., N is unknown, it
will be appropriate to assume that N is a discrete (integer-valued) random
variable. Langberg and Singpurwalla [11] proved that when the initial number
of software faultsN obeys the Poisson distribution with parameter ω (> 0), the
number of software faults experienced before time t is given by the following
NHPP:

Pr{N(t) = n}=
∞∑

x=0

Pr{N(t) = n | x}ω
xe−ω

x!
=

{ωF (t)}n

n!
e−ωF (t). (5)

Equation (5) is equivalent to the probability mass function of the NHPP hav-
ing the mean value function E[N(t)] = M(t) = ωF (t). From this modeling
framework, the most NHPP-based SRMs can be derived by choosing the soft-
ware fault-detection time distribution F (t). If F (t) = 1 − exp{−βt}, then
we can derive the Goel and Okumoto model [6] with mean value function
M(t) = ω(1 − exp{−βt}). If the software fault-detection time distribution is
given by the gamma distributions with second order and more or the Weibull
distribution, then the resulting NHPP-based SRMs become the delayed S-
shaped SRM [7], Zhao and Xie model [30] or Goel model [8], respectively.
Miller [12] examines further a relationship between the NHPP-based SRMs
and the order statistics based on the probability distribution F (t).
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3 Extreme-Value Modeling

3.1 Statistics of Extremes

Statistics of extremes is an area that treats the behavior of the largest or
smallest value of a given sample population. Since the seminal contribution
by Gnedenko [31] and Gumbel [32], the theory on statistics of extremes is well
established (see [33], [34]). Here we concern only the extremal statistics of
smallest value. Suppose that a software error occurs on k (> 0) program codes,
and that the corresponding (only one) software fault can be detected at the
first time when the faulty code is encountered. Suppose that the time length
when each faulty code appears is an i.i.d. random variable Ti (i = 1, 2, · · · , k)
having the continuous probability distribution function G(t) and the density
g(t) = dG(t)/dt. Then, the smallest time, i.e., the fault-detection time is
defined by Tmin = min(T1, T2, · · · , Tk). From the i.i.d. assumption, it can be
seen that the probability distribution of Tmin and its density function are
derived as

Fk(t) = 1 − {1 −G(t)}k, (6)

fk(t) = k{1 −G(t)}k−1g(t), (7)

respectively. Of our concern is the property of the probability distribution
function of Fk(t) as the number of faulty codes remaining in the software is
sufficiently large, i.e., k approaches infinity.

Gnedenko [31] and independently Gumbel [32] proved that Fk(t) in Eq. (6)
converges to a particular functional form that does not depend on the exact
form of the distribution but rather on the behavior of the initial distribution’s
tail in the direction of the extreme, that is, limk→∞ Fk(t) can be reduced to
one of the three asymptotic forms (which are commonly called as extreme
Type I, Type II and Type III distributions). More specifically, when suitably
normalized (Tmin − bk)/ak possesses a non-degenerate limiting distribution
F (t) as k approaches infinity where ak (> 0) and bk are arbitrary scale and
location parameters with monotone property, then the resulting F (t) must be
a minimum stable law, i.e., it should be identical (except for location and scale
change) to one of the following distributions:

F (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − e−tα , t ≥ 0 (Type I)

1 − e−(−t)−α
, t ≤ 0 (Type II)

1 − e− exp{t}, −∞ < t <∞ (Type III)

(8)
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with α (> 0). In this case we say that the probability distribution limk→∞ Fk(t) =
F (t) belongs to the minimum domain of attraction, i.e., F k(akt+bk) →L F (t),
where ‘→L’ denotes point-wise convergence at continuity points of F (t). The
extreme Type I distribution is the well-known Weibull distribution. Since the
extreme Type II distribution called the Fréchet distribution is defined in the
range of negative real value, it is not suitable to assume as the fault-detection
time distribution. In this article, we are interested in the extreme Type III
distribution called the Gumbel distribution.

Kaufman et al. [35] [36] consider the renewal processes with the extremal type
of inter-failure time distributions and apply them to predict the MTBF (mean
time between faults). Of course, since the time interval to detect successive
faults is an i.i.d. random variable under the renewal assumption, this model
fails to describe the well-known reliability growth phenomenon [1–5]. Another
framework to treat the extremal distributions on the stochastic counting pro-
cess is developed by Miller [37]. He shows that the stochastic point process
of minimal order statistics converges to a minimal extremal-type NHPP with
one of the following three mean value functions:

M(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tα, t > 0;α > 0 (Type I)

(−t)−α, t < 0;α > 0 (Type II)

et, −∞ < t <∞ (Type III).

(9)

If the mean value function is given by M(at + b) with arbitrary a (> 0) and
b, of course, the process is also a minimal extremal type of NHPP. In other
words, the minimal extremal-type NHPP can be characterized by assuming
that the probability distribution of the time to first failure is given by one
of the extremal distributions, i.e., the mean value function of the NHPP is
given by M(t) = − logF (t) and is not bounded, say, limt→∞M(t) → ∞. This
process exhibits the reliability growth phenomenon but the initial number of
software faults before testing should be infinite.

3.2 Gompertz Software Reliability Model

Here we pay our attention to the Gumbel (Type III) distribution in Eq. (8).
If we apply the Gumbel distribution to represent the software fault-detection
time distribution, some modifications will be needed since the support of the
Gumbel distribution is defined on the real space, i.e., −∞ < Tmin < ∞. To
construct the probability distribution function with positive support, we apply
two methods: logarithm and truncation approaches in a fashion similar to [14].
When log T is regarded as the fault-detection time where T is the Gumbel
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distributed random variable, then the resulting probability distribution is the
Weibull distribution. On the other hand, when the probability distribution
function is truncated at the origin; F (t) := 1 − (1 − F (t))/(1 − F (0)), the
corresponding probability distribution is called the Gompertz distribution:

F (t) = 1 − exp

[
λ

α
(1 − eαt)

]
, t ≥ 0. (10)

It is easy to check that the Gompertz distribution is IFR (Increasing Failure
Rate) because the failure rate is given by λ exp(αt). In Fig. 3, the probability
density function of the Gompertz distribution, f(t) = dF (t)/dt, is plotted. The
arbitrary moment of this distribution can be derived from its Laplace-Stieltjes
transform:

F ∗(s) =

∞∫
0

e−stdF (t) = (
λe

α
)λ/αΓ(1 − s/α, λ/α), (11)

where Γ(·, ·) denotes the incomplete gamma function.

Substituting Eq. (10) into Eq. (5) yields the NHPP with the mean value
function:

M(t) = ω
{
1 − exp[

λ

α
(1 − eαt)]

}
. (12)

We call the above NHPP the Gompertz SRM in this paper. The software
reliability for the Gompertz SRM is derived as

R(x | t)= exp {−[M(t + x) −M(t)]}
= exp

{
ωeλ/α

[
exp

(
−λ
α
eα(t+x)

)
− exp

(
−λ
α
eαt

)]}
. (13)

The difference between the Gompertz SRM and the Goel model [6] depends on
how to make the positive support in the Gumbel distribution. As mentioned
before, there are two distinct ways to make the positive support. For example,
the truncated normal distribution and the lognormal distribution can be de-
rived from the normal distribution. The similar approach can be taken for the
Gumbel distribution. When these modified doubly exponential distributions
are assumed for the minimal extremal-type of NHPP by Miller [37], then the
resulting SRMs are reduced to the familiar Power Law process [38] and the
other. In Fig. 4, we illustrate the relationship among the extremal-type NHPP
models, and provide a unified modeling framework of the NHPP-based SRMs
based on the extreme-value theory.
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In the latter argument, we denote the mean value functions for the finite and
infinite bug models by M1(t) = ωF (t) and M2(t) = − logF (t), respectively.

4 Parameter Estimation

4.1 Maximum Likelihood Estimation

Suppose that the time interval data on the software fault-detection, I =
{(t1, y1), (t2, y2), . . . , (tn, yn)}, are available, where (ti, yi) denotes that yi soft-
ware faults are detected during the time interval [ti−1, ti) with 0 < t1 < t2 <
· · · < tn. Given the set of fault-detection data I, the logarithmic likelihood
function (LLF) is given by, for j = 1, 2,

LLF(θ) =
n∑

i=1

yi log [Mj(ti; θ) −Mj(ti−1; θ)] −Mj(tn; θ) −
n∑

i=1

log yi! (14)

where θ is a set of the parameters. On the other hand, suppose that the
time domain data on the software fault-detection, D = (s1, . . . , sk, tobs), are
available, which consist of the software fault-detection time si, i = 1, . . . , k,
and the observation point of time, tobs. In this case, the LLF for the NHPP is
given by

LLF(θ) =
n∑

i=1

log [mj(si; θ)] −Mj(tobs; θ), (15)

where mj(t; θ) = dMj(t; θ)/dt.

The maximum likelihood estimate (MLE) is defined as the parameter θ max-
imizing the LLF. If the function LLF (θ) is strictly concave in θ and there
exists a unique MLE, it has to satisfy the following first order condition of
optimality (likelihood equation):

∂LLF(θ)

∂θ
= 0. (16)

For example, in the Gompertz SRM, the likelihood equation under the interval
data can be derived as follows.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

{
yiλ[ exp {λ

α
eαti} − exp {λ

α
eαti−1} + (1 − αti) exp {αti +

λ

α
eαti−1}

−(1 − αti−1) exp {αti−1 + λ
α
eαti}]

}/
α2{exp (λ

α
eαti) − exp (λ

α
eαti−1)}

+
∑n

i=1 yiλe
λ
α{1 + eαtn(αtn − 1)}

/
α2{e λ

α − exp (λ
α
eαtn)} = 0,

n∑
i=1

yi[ exp {λ
α
eαti} − exp {λ

α
eαti−1}

+ exp {αti + λ
α
eαti−1} − exp {αti−1 + λ

α
eαti}]

/

α{exp (λ
α
eαti) − exp (λ

α
eαti−1)}

−∑n
i=1 yie

λ
α (1 + eαtn)

/
α{e λ

α − exp (λ
α
eαtn)} = 0.

4.2 EM Algorithm

In general, it is not so easy to solve the simultaneous likelihood equations
numerically even if the usual non-linear optimization technique like the New-
ton’s method is applied. Since the model parameters in SRMs have a few
implicit constraints such as positive condition, the Newton’s method does not
always converge to MLEs if the initial values of the algorithm are far from
the MLEs. This problem is caused by the local convergence property in the
algorithms like the Newton’s method. To overcome this problem, Okamura et
al. [14, 21–23] propose iterative algorithms to estimate the model parameters
for many specific SRMs using the EM algorithm.

The EM algorithm is an iterative method for the estimation problem with in-
complete data [17,18]. There are two parts: E-step and M-step. In the E-step,
we calculate the expected value of the LLF for complete data, provided that
incomplete data is observed. Calculating the expected LLF requires the actual
values of model parameters, but provisional estimates of parameters are used
in most cases. In the M-step, we find the estimates so as to maximize the ex-
pected LLF calculated in the E-step. After finding the values which maximize
the expected LLF, the provisional estimates are updated by the parameters.
By executing the E-step and the M-step iteratively until the provisional esti-
mates converge to certain points, we get the MLEs for model parameters.

In this paper, we consider the EM algorithm for the Gompertz SRM. When
focusing on the fact that the sample of the Gompertz distribution is regarded
as a part of the sample of the Gumbel distribution, the EM algorithm for the
Gompertz SRM is essentially equivalent to that for the SRM based on the
Gumbel distribution. In other words, the following result is applicable to all
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the extreme-value types of SRM.

Consider the time domain data on the software fault-detection, D = (s1, . . . , sk, tobs),
which follows the Gompertz distribution. Then the fault data D is obviously
incomplete data, when the fault-detection times are sampled from the Gumbel
distribution, because it is truncated at the origin and the time tobs. That is,
assuming that the truncated fault-detection times are observed, we can obtain
the expected LLF based on the Gumbel distribution. Let Xi, i = 1, . . . , N be
all the fault-detection times. The fault-detection time Xi may involve a nega-
tive value. If Xi takes a negative value, the corresponding fault-detection time
is actually truncated. Under this situation, the sample Xi follows the doubly
exponential distribution, so that we have the expected LLF:

LLF(ω, λ, α) = E[N |D] logω − ω + E[N |D] log λ

+αE

[
N∑

i=1

Xi

∣∣∣∣∣D
]
− λ

α
E

[
N∑

i=1

eαXi

∣∣∣∣∣D
]
. (17)

In Eq. (17), the expected values can be derived by using the following formula
(see e.g. [23]):

E

[
N∑

i=1

h(Xi)

∣∣∣∣∣D
]

=
n∑

i=1

h(si) + ω′

⎛
⎜⎝

0∫
−∞

h(x)f(x)dx+

∞∫
tobs

h(x)f(x)dx

⎞
⎟⎠ ,(18)

where h(t) is an arbitrary function and f(t) is the probability density function
of the Gumbel distribution.

The usual EM algorithm requires closed form solutions of likelihood equations
for the fault-detection time distribution, so that the closed form constructs
the update formulae in the M-step. However, in this case, it is not possible
to find the explicit form of the parameter α, maximizing the expected LLF.
Thus we apply the generalized EM (GEM) algorithm to estimate the param-
eters [17, 18]. The GEM algorithm does not always require the closed form
solutions of likelihood equations, but the corresponding update in the M-step
has to increase the expected LLF. Applying the GEM algorithm, we derive
the following update formulae to estimate the parameters:

ω := E[N |D;ω′, λ′, α′], (19)

λ :=
α′E[N |D;ω′, λ′, α′]

E
[∑N

i=1 e
α′Xi

∣∣∣D;ω′, λ′, α′
] , (20)

α :=α′E[N |D;ω′, λ′, α′]/
E

[
N∑

i=1

(
α′Xi + log

λ′

α′

){
λ′

α′ e
α′Xi − 1

} ∣∣∣∣∣D;ω′, λ′, α′
]
. (21)
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Note that Eq. (21) is not the analytical solution of the parameter α which
maximizes the expected LLF.

Finally, Eqs. (18)– (21) yield the estimation algorithm for the Gompertz SRM.
However, in the above algorithm, the parameter ω involves the number of the
truncated fault-detection time with negative value. Thus the estimate ω should
be modified as ω{1 − exp(−λ/α)} in order to calculate the actual parameter
in the Gompertz SRM.

5 Numerical Illustrations

5.1 Performance Test of EM Algorithm

We investigate the effectiveness of the EM algorithm in the Gompertz SRM by
comparing them with BFGS quasi-Newton algorithm [39]. The BFGS quasi-
Newton method can be used when the Hessian matrix cannot be written in
the simple form. Instead of obtaining an estimate of the Hessian matrix at
a single point, this method gradually builds up an approximate Hessian ma-
trix by using gradient information. We examine the global/local convergence
properties, and further investigate the convergence speed of algorithms with
arbitrary initial values. To do these, we generate two sets of fault-detection
time data by pseudo-random numbers. The number of software faults is 100
and the detection times are distributed by the Gompertz distribution with
parameters (α, λ) = (1, 1) or (α, λ) = (0.1, 1). The EM algorithm and the
BFGS quasi-Newton algorithm are executed to estimate the parameters in
the Gompertz SRM.

To examine the global/local convergence properties and the convergence speed
of algorithms quantitatively, both EM and BFGS quasi-Newton algorithms are
executed 10 and 100 times. In these experiments, the initial values are selected
as 1000 pairs for each data set, where 1000 pairs of values are given by some
points near to the MLEs. If the estimates take negative values before 10 or 100
times iteration, stop the algorithm. We use three criteria for evaluation; rate
of convergence, mean and variance of relative distance to MLEs, which are
abbreviated to ROC, MRD and VRD, respectively. Note that ROC indicates
the global/local convergence properties, and that MRD and VRD show the
convergence speed and stability of algorithms. They are defined as follows.
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ROC =

⎛
⎜⎝ number of estimates

with positive values

⎞
⎟⎠

(total number of initial values)
× 100(%),

(22)

MRD =

∑∣∣∣∣∣(MLEs) − (estimates)

(MLEs)

∣∣∣∣∣⎛
⎜⎝ number of estimates

with positive values

⎞
⎟⎠

, (23)

VRD =

∑∣∣∣∣∣(MLEs) − (estimates)

(MLEs)

∣∣∣∣∣
2

⎛
⎜⎝ number of estimates

with positive values

⎞
⎟⎠

− MRD2.

(24)

It can be recognized that ROC is larger as the algorithm has higher con-
vergence ability. Since we perform each algorithm with the fixed number of
iterations, MRD represents the convergence speed, namely, MRD is smaller
as the resulting estimates are closer to the MLEs under the fixed number of
iterations and the same initial value. Moreover, VRD is smaller as the algo-
rithm is more stable. The stable algorithm can provide the exact MLEs for
arbitrary initial values.

Tables 1 and 2 present ROC, MRD and VRD for the Gompertz SRMs. In
these tables, it is evident that the EM algorithm (EM) is superior to the quasi-
Newton method (QN) in terms of the convergence property, because ROCs
in the EM algorithm are always 100% in both cases. On contrary, ROCs for
the quasi-Newton method is relatively low. This means that the quasi-Newton
method is sensitive to the initial values of parameters. Thus the initial values
in the quasi-Newton method must be carefully selected.

Next, we focus on the convergence speed and stability of algorithms. In general,
it is known that the convergence speed of the EM algorithms is slower than
those of the other methods. From Tables 1 and 2, there is no remarkable
difference between the EM algorithm and the quasi-Newton method. In the
case of α = 1 and λ = 1, the EM algorithm is superior to the quasi-Newton
method in terms of MRD. Furthermore, the VRD for the parameter ω in
the quasi-Newton method is larger than that in the EM algorithm. This fact
implies that it is difficult to estimate the parameter ω accurately by using the
quasi-Newton method. In the case of α = 0.1 and λ = 1, the VRD for the
parameter ω in the quasi-Newton method is relatively large, but the VRDs
in the EM algorithm are small. Thus the careful selection of initial values is
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not needed in the EM algorithm, so that we can estimate the parameters with
sufficient accuracy by using the EM algorithm without spending much effort.

5.2 Goodness-of-Fit Test

We apply two information criteria: Akaike information criterion (AIC) [40] and
Bayesian information criterion (BIC) by Schwartz [41], and the common mean
squared error (MSE) to measure the goodness-of-fit to the actual software
fault data. From the page limitation, we analyze only the case where the time
interval data are available. The criteria for goodness-of-fit test are defined by

AIC =−2 log [LLF (θ|I)] + 2φ
BIC =−2 log [LLF (θ|I)] + φ logψ

MSE =

∑n
i=1 (yi −Mj(ti))

2

n
, j = 1, 2,

where φ is the degree of freedom for the SRM, i.e. the number of free param-
eters, and ψ is the number of data used in the analysis. Four data sets (DS-1
∼ DS-4) are used, where each data includes 81, 32, 62 or 41 failure-count
data [1, 3] 1 .

We compare the Gompertz SRM with the existing NHPP-based SRMs. The
competitive models are given by

Exponential [6]: M1(t) = ω
{
1 − e−βt

}
,

Gamma [7]: M1(t) = ω
{
1 − (1 + βt)e−βt

}
,

Rayleigh [8]: M1(t) = ω
{
1 − e−βt2

}
,

Power Law [38]: M2(t) =
λ

α
tα,

Weibull [8]: M1(t) = ω
{
1 − exp[−λ

α
tα]
}
.

In Figs. 5 ∼ 8, we plot the number of detected software faults and the mean
value functions of six SRMs. In these figures, Gom, Exp, Gam, Ray, Pow
and Wei denote Gompertz SRM in this paper, Exponential SRM [6], Gamma
(delayed S-shaped) SRM [7], Rayleigh SRM [8], Power Law SRM [38] and
Weibull (generalized exponential) SRM [8], respectively. Here in Fig. 7, we

1 We pick the following data set from [1]; DS-1: DataSet 3 in Chapter 11, DS-2:
DataSet 4 in Chapter 11, DS-3: Data Set J1 in Chapter 7 and DS-4: Data Set J2
in Chapter 7.
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omit the mean value function of Exp, since it is identical to the behavior of
Wei. From these figures, it is observed that the Gompertz SRM is relatively
better fitted to the actual data even if the trends of data are different from
each other.

Next, we calculate AIC, BIC and MSE for six SRMs with four data sets. It is
noted that the smaller value of each criterion denotes the better performance
in terms of the goodness-of-fit. Table 3 ∼ Table 6 present the goodness-of-fit
results for DS-1 ∼ DS-4. In Table 3, it is found that the Weibull SRM is the
best model on three test criteria. In Tables 4 and 6, one sees that the Gamma
SRM provides the best performance for all cases. In Table 5, the Gompertz
SRM can provide the best performance in terms of AIC and MSE, but the
Power Law gives the smallest BIC. Throughout all cases, the Gompertz SRM
was the best SRM in only the cases of AIC and MSE with DS-3. Nevertheless,
the most attractive point of this model is that the Gompertz SRM is not totally
inferior to the other representative SRMs. In general, the performance of SRMs
strongly depends on the kind of data. For instance, even if the Exponential
SRM is best fitted to a data set, it may be the worst model for the other data
set. Hence, when the software reliability is assessed with the SRMs, one needs
to select the representative models and to try them in parallel. In that sense,
the Gompertz SRM should be considered as one of the typical SRMs from the
empirical conclusions as well as the theoretical view points.

Finally, we estimate the software reliability given in Figs. 9 ∼ 12. As men-
tioned in Eq. (13), the software reliability is defined as the probability that the
software system does not fail during the time period [t, t + x), provided that
it is operative at time t. From these results, it is observed that Rayleigh SRM
and Power Law SRM give the upper and lower bounds of software reliability
for six SRMs, respectively. Since the model with smaller information criterion
is regarded as the better SRM, it can be expected that the software reliability
based on the best SRM is most reliable. In Fig. 9, the software reliabilities
evaluated by Gamma and Gompertz SRMs are larger than that evaluated by
the Weibull SRM. On the other hand, in Figs. 10 and 12, Gompertz SRM
underestimates the software reliability to Gamma SRM, but the difference is
not so significant in the range greater than R(x | t) = 0.95.

6 Conclusions

In this paper, we have tried to propose a unified modeling framework of the
SRMs based on the extreme-value theory and developed the Gompertz SRM
as one of the representative SRMs. As an effective parameter estimation al-
gorithm, we have developed the EM algorithm to calculate the maximum
likelihood estimates of model parameters involved in the Gompertz SRM. In
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numerical examples, we have checked the convergence properties of the EM
algorithm and performed the goodness-of-fit test to the actual software fault-
detection data. From some numerical observations, it can be concluded that
the proposed Gompertz SRM is rather attractive comparing with the exist-
ing SRMs, and should be treated as one of the representative NHPP-based
models.

We believe that the Gompertz SRM developed in this paper could answer the
questions from practitioners faced in the software quality management; what
can we do with the classical trend-curve modeling approach. In future, we will
examine the usefulness for the Gompertz SRM in software testing practice.
In the Japanese software development companies, the estimation results on
software reliability for several actual projects should be compared based on
the classical deterministic approach and the stochastic one proposed here.
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Table 1
Comparison between EM algorithm and quasi-Newton method (Case 1: α = 1 and
λ = 1).

method parameter ROC MRD VRD

EM(10) ω 100.0% 0.125 1.14E-01

α 100.0% 0.285 3.50E-02

λ 100.0% 0.197 4.25E-02

EM(100) ω 100.0% 0.005 4.26E-06

α 100.0% 0.100 1.55E-03

λ 100.0% 0.048 3.39E-04

QN(10) ω 84.0% 14.319 4.95E+04

α 84.0% 0.208 1.38E-01

λ 84.0% 0.606 1.78E+02

QN(100) ω 78.5% 6.687 5.58E+03

α 78.5% 0.175 1.32E-01

λ 78.5% 0.114 7.86E-02

Table 2
Comparison between EM algorithm and quasi-Newton method (Case 2: α = 0.1
and λ = 1).

method parameter ROC MRD VRD

EM(10) ω 100.0% 0.444 4.01E-01

α 100.0% 0.354 8.27E-02

λ 100.0% 0.327 1.35E-01

EM(100) ω 100.0% 0.131 7.79E-01

α 100.0% 0.186 1.13E-01

λ 100.0% 0.226 1.11E-01

QN(10) ω 98.1% 0.164 2.46E-01

α 98.1% 0.094 5.56E-02

λ 98.1% 0.041 1.44E-02

QN(100) ω 98.0% 0.248 1.91E+01

α 98.0% 0.011 7.59E-03

λ 98.0% 0.007 5.04E-03
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Fig. 5. Behavior of the mean value functions of the NHPP-based SRMs (DS-1).
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Fig. 6. Behavior of the mean value functions of the NHPP-based SRMs (DS-2).
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Fig. 7. Behavior of the mean value functions of the NHPP-based SRMs (DS-3).
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Fig. 8. Behavior of the mean value functions of the NHPP-based SRMs (DS-4).
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Table 3
Goodness-of-fit test result (DS-1).

model AIC BIC MSE

Gom 505.53 512.72 205.55

Exp 500.19 504.97 114.31

Gam 555.84 560.63 416.39

Ray 689.53 694.32 1676.30

Pow 569.61 574.42 1533.35

Wei 496.66 501.48 101.85

Table 4
Goodness-of-fit test result (DS-2).

model AIC BIC MSE

Gom 231.23 235.62 112.41

Exp 241.23 244.16 177.16

Gam 193.24 196.17 37.54

Ray 211.52 214.45 150.89

Pow 275.73 278.72 720.43

Wei 227.34 230.33 226.94

Table 5
Goodness-of-fit test result (DS-3).

model AIC BIC MSE

Gom 287.74 294.12 25.62

Exp 288.14 292.40 27.51

Gam 312.19 316.45 52.17

Ray 326.45 330.70 83.30

Pow 288.09 292.38 34.59

Wei 288.16 292.44 28.76
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Table 6
Goodness-of-fit test result (DS-4).

model AIC BIC MSE

Gom 297.04 302.18 285.96

Exp 325.50 328.93 488.52

Gam 291.44 294.87 232.98

Ray 314.62 318.05 314.11

Pow 390.60 394.07 1623.39

Wei 297.80 301.27 285.96
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Fig. 9. Behavior of the software reliability (DS-1).
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Fig. 10. Behavior of the software reliability (DS-2).
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Fig. 11. Behavior of the software reliability (DS-3).
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Fig. 12. Behavior of the software reliability (DS-4).
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