
Adaptive random testing based on distribution
metrics

This is the Accepted version of the following publication

Chen, Tsongyueh, Kuo, Fei-Ching and Liu, Huai (2009) Adaptive random
testing based on distribution metrics. Journal of Systems and Software, 82 (9).
1419 - 1433. ISSN 0164-1212

The publisher’s official version can be found at
http://www.sciencedirect.com/science/article/pii/S0164121209001101?via=ihub
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/33049/

Adaptive Random Testing Based on

Distribution Metrics∗

Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu†

Faculty of Information and Communication Technologies

Swinburne University of Technology

John Street, Hawthorn 3122 Victoria, Australia

Abstract

Random testing (RT) is a fundamental software testing technique.

Adaptive random testing (ART), an enhancement of RT, generally uses

fewer test cases than RT to detect the first failure. ART generates

test cases in a random manner, together with additional test case

selection criteria to enforce that the executed test cases are evenly

spread over the input domain. Some studies have been conducted to

measure how evenly an ART algorithm can spread its test cases with

respect to some distribution metrics. These studies observed that

there exists a correlation between the failure detection capability and

the evenness of test case distribution. Inspired by this observation,

we aim to study whether failure detection capability of ART can be

∗A preliminary version of this paper was presented at the 7th International Conference
on Quality Software (QSIC 2007) (Chen et al., 2007a).

†Corresponding author. Tel.: +61 3 9214 5276; fax: +61 3 9819 0823.
E-mail addresses: tychen@swin.edu.au (T.Y. Chen), dkuo@swin.edu.au (F.-C. Kuo),

hliu@swin.edu.au (H. Liu).

1

enhanced by using distribution metrics as criteria for the test case

selection process. Our simulations and empirical results show that

the newly proposed algorithms not only improve the evenness of test

case distribution, but also enhance the failure detection capability of

ART.

Keywords: Software Testing, Random Testing, Adaptive Ran-

dom Testing, Test Case Distribution, Discrepancy, Dispersion.

1 Introduction

Improving software quality has become one of the important objectives for

the current software industry (NIST, 2002). Software testing, a major ap-

proach to software quality assurance (Hailpern and Santhanam, 2002), is

widely acknowledged as a vital activity throughout the software develop-

ment process. Many software testing methods are accomplished by defin-

ing test objectives, selecting some inputs of the program under test as test

cases, executing the program with these test cases, and analysing testing

results (Beizer, 1990). Since software normally has an extremely large input

domain (that is, the set of all possible program inputs), testers are always re-

quired to select a portion of the input domain as test cases such that software

failures can be effectively detected with this selected portion of test cases. A

large number of software testing methods have been proposed to guide the

test case selection.

Random testing (RT), a basic test case selection method, simply selects

test cases in a random manner from the whole input domain (Hamlet, 2002;

Myers, 2004). RT has been popularly applied to assess the software reliabil-

ity (Girard and Rault, 1973; Thayer et al., 1978). In addition, RT has been

used in different areas to detect software failures. For example, Miller et al.

2

(1990, 1995) have used RT to test UNIX utility programs, and reported that

a large number of UNIX programs have been crashed or hanged by RT. For-

rester and Miller (2000) applied RT to test Windows NT applications, and it

was observed that 21% of applications were crashed and an additional 24%

of applications were hanged. RT has also been used in the testing of com-

munications protocol implementations (West and Tosi, 1995), graphical user

interfaces (Dabóczi et al., 2003), Java Just-In-Time compilers (Yoshikawa

et al., 2003), embedded software systems (Regehr, 2005), and image process-

ing applications (Mayer and Guderlie, 2006). Moreover, the RT technique

has been implemented in many industrial automatic testing tools, such as

those developed by IBM (Bird and Munoz, 1983), Microsoft (Slutz, 1998),

and Bell Labs (Godefroid et al., 2005).

However, some people (Myers, 2004) criticised that RT may be the “least

effective” testing method for using little or no information about the pro-

gram under test to guide its test case selection. One common characteristic

of faulty programs is that the failure-causing inputs (program inputs that can

reveal failures) are usually clustered together, as reported by White and Co-

hen (1980), Ammann and Knight (1988), Finelli (1991), and Bishop (1993).

Chen et al. (2004) investigated how to improve the failure detection capabil-

ity of RT under such a situation. Given that failure-causing inputs tend to

cluster into contiguous regions (namely failure regions (Ammann and Knight,

1988)), non-failure regions are also contiguous. Therefore, if a test case does

not reveal any failure, it is very likely that its neighbours would not reveal a

failure either. In other words, given the same number of test cases, a more

even spread of test cases should have a better chance to detect a failure.

When RT is used to detect software failures, inputs are usually selected as

test cases according to uniform distribution, that is, all inputs have the same

3

probability of being selected as test cases. Therefore, an input that is adja-

cent to some previously executed but non-failure-causing test cases may still

be selected as the next test case. However, such a test case is also unlikely

to reveal failure. Aiming at enhancing the failure detection capability of RT,

Chen et al. (2004) proposed a new approach, namely adaptive random test-

ing (ART). Like RT, ART also randomly generates test cases from the input

domain. But ART uses additional criteria to guide the test case selection

in order to ensure that all test cases are evenly spread over the whole input

domain. Different test case selection criteria give rise to different ART al-

gorithms, such as fixed-sized-candidate-set ART (FSCS-ART) (Chen et al.,

2004), lattice-based ART (Mayer, 2005), and restricted random testing (Chan

et al., 2006). Previous simulations and empirical studies conducted on these

algorithms have shown that in general, when failure-causing inputs are clus-

tered into contiguous failure regions, ART uses fewer test cases to detect the

first failure than pure RT.

Chen et al. (2007b) have used several metrics to measure and compare

the test case distributions of various ART algorithms. Among these metrics,

discrepancy and dispersion are two metrics commonly used to measure the

equidistribution of sample points. Chen et al. (2007b) investigated both the

test case distributions and the failure detection capabilities of some ART

algorithms, and they empirically justified that there exists a correlation be-

tween the test case distribution and the failure detection capability of an

ART algorithm. For example, the test case selection criterion in FSCS-ART

may bring a large value of discrepancy when the dimension of input domain

is high; while the failure detection capability of FSCS-ART becomes worse

as the dimension of input domain increases.

Previous studies (Chen et al., 2007b) have shown that an even spread of

4

test cases is correlated to a high failure detection capability. Since discrep-

ancy and dispersion reflect different aspects of the test case distribution, we

are motivated to apply these metrics as criteria in the test case selection pro-

cess of ART, aiming at improving the evenness of test case distribution and

the failure detection capability of ART. However, adopting distribution met-

rics as the new test case selection criteria of ART is not so straightforward as

it looks. As will be shown in our study, if an ART algorithm applies discrep-

ancy or dispersion as the standalone test case selection criterion, it will have

an uneven distribution of test cases as well as a poor failure detection capa-

bility. In this paper, we also investigate whether the performance of ART

can be enhanced if discrepancy and dispersion are integrated with existing

test case selection criteria. Our study delivers some interesting results.

Our work is conducted on a particular ART algorithm, namely FSCS-

ART. The structure of the paper is as follows. In Section 2, we give some

preliminary background of ART and present the basic concepts of discrepancy

and dispersion. We propose two new test case selection criteria based on

discrepancy and dispersion in Section 3. In Section 4, we investigate the

performance of ART algorithms that solely use discrepancy or dispersion to

select test cases. In Section 5, we propose some new ART algorithms where

discrepancy and dispersion are integrated with other criteria in the test case

selection process. The simulations and experimental results of these new

algorithms will also be reported in this section. Finally, Section 6 presents

the discussion and conclusion.

5

2 Background

2.1 Notation

For ease of discussion, we introduce the following notation, which will be

used in the rest of this paper.

• E denotes the set of already executed test cases.

• I denotes the input domain.

• dI denotes the dimension of I, which is the number of input parameters

of the program under test.

• ND denotes N -dimension, where N = 1, 2, · · · , dI .

• | · | denotes the size of a set. For example, |E| and |I| denote the size

of E and I, respectively.

• dist(p, q) denotes the Euclidean distance between two points p and q.

• η(p, E) denotes p’s nearest neighbour in E.

2.2 One test case selection criterion of adaptive ran-

dom testing

Generally speaking, besides randomly generating program inputs, ART uses

additional criteria to select inputs as test cases in order to ensure an even

spread of test cases. Fixed-sized-candidate-set ART (FSCS-ART) (Chen

et al., 2004) is one typical ART algorithm. In FSCS-ART, there exist two

sets of test cases, the executed set denoted by E and the candidate set de-

noted by C. E contains all test cases which were already executed but did

6

not reveal any failure; while C contains k randomly generated inputs, where

k is fixed throughout the testing process. The test case selection criterion of

FSCS-ART is as follows. For any cj ∈ C, we define

dj
distance = dist(cj , η(cj, E)). (1)

We choose a candidate cb as the next test case, if its db
distance is the largest

amongst all candidates, that is, ∀j = 1, 2, · · · , k, db
distance ≥ dj

distance. The test

case selection criterion of FSCS-ART is referred to as Sdistance in this paper.

Figure 1 gives the detailed algorithm of FSCS-ART. Chen et al. (2004)

have observed that the effectiveness of FSCS-ART can be significantly im-

proved by increasing k when k ≤ 10. However, the effectiveness appears to

be independent of the value of k when k > 10. In other words, k = 10 is

close to the optimal setting of FSCS-ART. Hence, they have used k = 10 in

their investigation. In this paper, we also set the default value of k as 10.

1. Input an integer k, where k > 1.
2. Set n = 0 and E = {}.
3. Randomly generate a test case t from I, according to uniform distribution.
4. Run the program with t as the test case.
5. while (no failure has been revealed)
6. Add t into E, and increment n by 1.
7. Randomly generate k program inputs (candidates) from I, according to

uniform distribution, to form a candidate set C = {c1, c2, · · · , ck}.
8. Find cb ∈ C according to Sdistance.
9. Set t = cb.
10. Run the program with t as the test case.
11. end while

12. Report the detected failure.
13. Exit.

Figure 1: The algorithm of FSCS-ART

In this paper, for convenience of discussion and illustration, we assumed

7

that the program under test only has numeric inputs. Applications of ART

on non-numeric programs can be found in the studies of Merkel (2004), Kuo

(2006) and Ciupa et al. (2006, 2008).

2.3 Failure detection capability of adaptive random

testing

F-measure, one commonly-used metric for measuring the effectiveness of a

testing method, is defined as the expected number of test cases required to

detect the first failure. As explained by Chen and Merkel (2008), F-measure is

more preferable than other metrics to evaluate and compare the effectiveness

of ART/RT. Hence, we will also use F-measure as the effectiveness metric in

this study.

The F-measure of ART (denoted by FART) depends on many factors, so it

is very difficult to theoretically derive the value of FART . Chen et al. (2007c)

have extensively studied FART for FSCS-ART via a series of simulations.

In each simulation, the failure rate θ (the ratio of the number of failure-

causing inputs to the number of all possible inputs) and the failure pattern

(the shapes of failure regions together with their distribution over the input

domain I) were predefined. Test cases were selected one by one until a point

inside the failure region was picked by ART (that is, a failure was detected).

The number of test cases required to detect the first failure in each test trial,

referred to as F-count (Chen and Merkel, 2008), was thus obtained. Such a

process was repeated for a sufficient number of times until the mean value of

F-counts could be regarded as a reliable approximation for FART within 95%

confidence level and ±5% accuracy range (details on how to get the reliable

approximation can be found in the study of Chen et al. (2004)).

Chen et al. (2007c) have conducted an experiment to evaluate the fail-

8

ure detection capability of ART when failure-causing inputs cluster together.

The details of this experiment are given as follows. I was set to be a hyper-

cube and dI was set as either 1, 2, 3 or 4. A single hypercube failure region

was randomly placed inside I. The size of the failure region was decided by

the failure rate θ, where θ = 0.75, 0.5, 0.25, 0.1, 0.075, 0.05, 0.025, 0.01,

0.0075, 0.005, 0.0025, 0.001, 0.00075, 0.0005, 0.00025, 0.0001, 0.000075, or

0.00005.

ART was originally proposed to enhance the failure detection capability

of RT, whose F-measure (denoted by FRT) is theoretically equal to 1/θ when

test cases are selected with replacement and according to uniform distribu-

tion. In this paper, we will use the ART F-ratio (= FART /FRT) to measure

the enhancement of ART over RT. If F-ratio is smaller than 1, it means that

ART outperforms RT.

2.4 Discrepancy and dispersion as test case distribu-

tion metrics

Discrepancy and dispersion are two commonly used metrics for measuring the

equidistribution of sample points. Intuitively speaking, low discrepancy and

low dispersion indicate that sample points are reasonably equidistributed.

Points sequences with low discrepancy and low dispersion are very useful

in various areas, such as numerical integration (Hua and Wang, 1981), global

optimisation (Niederreiter, 1986), and path planning (Branicky et al., 2001).

Recently, Chen and Merkel (2007) have proposed to apply low-discrepancy

and low-dispersion sequences to generate test cases, aiming at improving

the effectiveness of RT. However, their approach is different from what is

proposed in this study.

Chen et al. (2007b) have used discrepancy and dispersion to measure the

9

evenness of the test case distribution of FSCS-ART (as well as some other

ART algorithms). For ease of discussion, the detailed definitions of these

metrics are given as follows.

• Discrepancy (denoted by MDiscrepancy). Given N sample points inside

I, discrepancy indicates whether different regions in I have an equal

density of points. One standard definition of discrepancy (Niederreiter,

1992) is as follows.

discrepancy = sup
D

∣

∣

∣

∣

A(D)

N
−

|D|

|I|

∣

∣

∣

∣

, (2)

where sup refers to the supremum of a data set, D is any subdomain

of I, and A(D) is the number of points inside D. Due to the infinite

number of D, it is very difficult, if not impossible, to derive the value

of discrepancy exactly according to Equation 2. Therefore, Chen et al.

(2007b) used the following definition to approximate the discrepancy.

MDiscrepancy =
m

max
i=1

∣

∣

∣

∣

|Ei|

|E|
−

|Di|

|I|

∣

∣

∣

∣

, (3)

where D1,D2, · · · ,Dm denote m rectangular subdomains of I, whose

locations and sizes are randomly defined; and E1, E2, · · · , Em, which

are subsets of E, denote the sets of test cases that are located inside

D1,D2, · · · ,Dm, respectively.

In Equation 3, m cannot be too small; otherwise, Equation 3 may not

deliver a reliable approximation of Equation 2. m cannot be too large

either, because the computational overhead of Equation 3 increases

with the increase of m. To balance the computation and accuracy, m

has been set as 1000 by Chen et al. (2007b). In this paper, m is also

10

set as 1000 to be consistent with the previous work.

• Dispersion (denoted by MDispersion). Given a set of points inside I,

dispersion intuitively indicates whether there is a large empty spherical

region (containing no point) in I. The size of this empty region is

usually reflected by the maximum distance that any point has from its

nearest neighbour (Niederreiter, 1992), as shown in Equation 4.

MDispersion =
|E|

max
i=1

dist(ei, η(ei, E\{ei})), (4)

where ei ∈ E.

Chen et al. (2007b) conducted some simulations to measure the values of

discrepancy and dispersion of some ART algorithms. In these simulations, dI

was set as 1, 2, 3 and 4, |E| was set as from 100 to 10000. A sufficient amount

of data were collected in order to get a reliable mean value of a certain metric

within 95% confidence level and ±5% accuracy range (details on how to get

a reliable mean value can be found in the study of Chen et al. (2007b)).

Chen et al. (2007b) observed that FSCS-ART generally has a small value

of MDispersion, and that FSCS-ART normally yields different densities of test

cases for different subdomains inside I, which, in turn, results in a large value

of MDiscrepancy.

3 Discrepancy and dispersion as test case se-

lection criteria

As observed in previous studies (Chen et al., 2007b), the performance of an

ART algorithm has a correlation with the test case distribution. This has

11

motivated us to consider whether the performance of ART can be enhanced

if we enforce a smaller discrepancy or a smaller dispersion during its test

case selection process. Obviously, such an enforcement can be achieved by

using discrepancy or dispersion as the test case selection criterion in an ART

algorithm. The following outlines how discrepancy and dispersion could be

used as test case selection criteria in FSCS-ART.

• Test case selection criterion based on discrepancy (denoted by

Sdiscrepancy).

Given a candidate set C = {c1, c2, · · · , ck} in FSCS-ART, for any cj ∈

C, we define

dj
discrepancy =

m
max
i=1

∣

∣

∣

∣

|E ′
i|

|E ′|
−

|Di|

|I|

∣

∣

∣

∣

, (5)

where E ′ = E ∪ {cj}, and D1,D2, · · · ,Dm denote m randomly de-

fined subdomains of I, with their corresponding sets of test cases

being denoted by E ′
1
, E ′

2
, · · · , E ′

m, which are subsets of E ′. We se-

lect a candidate cb as the next test case, if such a selection will

give rise to the smallest discrepancy than other selections, that is,

∀j = 1, 2, · · · , k, db
discrepancy ≤ dj

discrepancy. To be consistent with the

previous study (Chen et al., 2007b), the value of m in Equation 5 is

also set as 1000 in this paper.

• Test case selection criterion based on dispersion (denoted by

Sdispersion).

Given a candidate set C = {c1, c2, · · · , ck} in FSCS-ART, for any cj ∈

C, we define

dj
dispersion =

|E′|
max
i=1

dist(e′i, η(e′i, E
′\{e′i})), (6)

12

where E ′ = E ∪ {cj} and e′i ∈ E ′. We select a candidate cb as the next

test case, if such a selection will give rise to the smallest dispersion

than other selections, that is, ∀j = 1, 2, · · · , k, db
dispersion ≤ dj

dispersion.

Currently, there are totally three test case selection criteria, Sdistance,

Sdiscrepancy, and Sdispersion. In Section 4, we will study the performance of

ART algorithms where each of these criteria is used as the standalone test

case selection criterion. As will be shown in our study, all three criteria bring

certain degrees of uneven test case distribution as well as poor failure detec-

tion capabilities under some situations. In Section 5, we further investigate

whether the ART performance can be improved if various selection criteria

are integrated in an ART algorithm.

4 FSCS-ART using a single test case selec-

tion criterion

We replaced Sdistance in FSCS-ART algorithm (Statement 8 in Figure 1)

by Sdiscrepancy and Sdispersion, and got two new algorithms, namely FSCS-

ART with Sdiscrepancy (abbreviated as FSCS-ART-dc) and FSCS-ART with

Sdispersion (abbreviated as FSCS-ART-dp), respectively. In this study, we will

evaluate and compare the performance of FSCS-ART-dc, FSCS-ART-dp and

the original FSCS-ART algorithm (denoted by FSCS-ART-dt hereafter for

clarity).

4.1 Analysis of execution time

Mayer and Schneckenburger (2006) have theoretically analysed the execution

time of FSCS-ART-dt, and reported that FSCS-ART-dt requires O(|E|2)

13

time to select |E| test cases. In this section, we attempt to analyse the

execution time of FSCS-ART-dc and FSCS-ART-dp.

A straightforward method to implement FSCS-ART-dc algorithm is to

randomly define m subdomains (D1,D2, · · · ,Dm in Equation 5) for each

round of test case selection, and then to calculate dj
discrepancy for each can-

didate cj according to Equation 5. Such a method, referred to as dynamic-

subdomains method, requires O(|E|) time to select each new test case, and

thus needs O(|E|2) time for selecting |E| test cases. In this study, we apply

a simple method to reduce the computational overhead of FSCS-ART-dc.

Instead of dynamically defining the subdomains, we define m random sub-

domains at the beginning of the testing process, and keep using these prede-

fined subdomains throughout the testing process. Such a static-subdomains

method would also allocate some memory to store the number of executed

test cases inside each subdomain. Since we already know how many ex-

ecuted test cases are located in a subdomain, the value of dj
discrepancy can

be calculated by first identifying those subdomains that contain cj , and then

updating only their associated |E ′
i|s, without changing any other |E ′

i|s. Obvi-

ously, the static-subdomains method only requires a constant time to select

a new test case, and thus needs O(|E|) time for selecting |E| test cases.

We have conducted some simulations to study the failure detection capabil-

ities of these two methods. In brief, our static-subdomains method reduces

the execution time of FSCS-ART-dc to O(|E|) without sacrificing the per-

formance of FSCS-ART-dc. Details of the failure detection capabilities of

FSCS-ART-dc with the static-subdomains method will be reported in the

following section (Figure 3). We also observed that FSCS-ART-dc with the

dynamic-subdomains method has similar failure detection behaviours.

Apparently, the naive implementation of FSCS-ART-dp has the compu-

14

tational overhead in O(|E|3). However, we can reduce its computational

overhead by the following simple method. For each executed test case ei,

some memory is allocated to store dist(ei, η(ei, E\{ei})). In each round of

test case selection, the value of dj
dispersion for a candidate cj can be calculated

simply by comparing dist(ei, cj) with dist(ei, η(ei, E\{ei})) for all elements

in E. In other words, at the expense of some additional memory, the exe-

cution time for each round of test case selection becomes O(|E|); and as a

result, FSCS-ART-dp will require O(|E|2) time to select |E| test cases.

We experimentally evaluated the execution time of FSCS-ART-dc and

FSCS-ART-dp via some simulations. All simulations were conducted on a

machine with an Intel Pentium processor running at 3195 MHz and 1024

megabytes of RAM. The ART algorithms were implemented in C language

and compiled with GNU Compiler Collection (Version 3.3.4) (GCC, 2004).

FSCS-ART-dt, FSCS-ART-dc and FSCS-ART-dp were implemented in a 2D

space. For each algorithm, we recorded the time taken to select a number of

test cases, with |E| = 500, 1000, 1500, 2000, 2500 and 3000. The simulation

results are given in Figure 2, in which, x- and y-axes denote |E| and time

required to generate E, respectively. It is clearly shown that FSCS-ART-

dt and FSCS-ART-dp both require O(|E|2) time to select |E| test cases,

while the execution time of FSCS-ART-dc is in O(|E|). In other words, the

experimental data are consistent with the above theoretical analysis.

4.2 Analysis of failure detection capabilities

Some simulations (with settings identical to those given in Section 2.3) were

conducted to study the failure detection capabilities of FSCS-ART-dc and

FSCS-ART-dp. The size of candidate set k was set as 10, same as the

default setting for FSCS-ART-dt. The experimental results are given in

15

0

2

4

6

8

10

12

14

16

18

500 1000 1500 2000 2500 3000
|E |

g
e
n

e
ra

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

)

FSCS-ART-dt FSCS-ART-dc FSCS-ART-dp

 o o

Figure 2: Comparison of execution time among FSCS-ART-dt, FSCS-ART-
dc and FSCS-ART-dp

Figure 3, which also includes the previous results of FSCS-ART-dt for ease

of comparison.

When simulations were conducted on FSCS-ART-dp, it was found that

it is often extremely difficult, if not impossible, for FSCS-ART-dp to detect

a failure, especially when dI is low (the explanation for such a phenomenon

will be given later). Therefore, this study can only collect F-measures of

FSCS-ART-dp in 3D and 4D space. Figure 3 reports that FSCS-ART-dc

only marginally outperforms RT, and FSCS-ART-dp usually has a higher

F-measure than RT. In brief, neither discrepancy nor dispersion will result

in a good failure detection capability when each of them is applied as the

standalone test case selection criterion.

Intuitively speaking, an even spread of test cases implies a low discrep-

ancy and a low dispersion, but neither a low discrepancy nor a low dispersion

necessarily implies an even spread of test cases. Therefore, it is understand-

able that using discrepancy or dispersion solely in the test case selection

16

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a
ti

o
 =

 F
A

R
T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dc FSCS-ART-dp

3.a FSCS-ART-dc and FSCS-ART-dp in 1D
space

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a
ti

o
 =

 F
A

R
T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dc FSCS-ART-dp

3.b FSCS-ART-dc and FSCS-ART-dp in 2D
space

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a
ti

o
 =

 F
A

R
T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dc FSCS-ART-dp

3.c FSCS-ART-dc and FSCS-ART-dp in 3D
space

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a
ti

o
 =

 F
A

R
T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dc FSCS-ART-dp

3.d FSCS-ART-dc and FSCS-ART-dp in 4D
space

Figure 3: Failure detection capabilities of FSCS-ART-dc and FSCS-ART-dp

process may not deliver an even spread of test cases, and thus may not bring

a good failure detection capability.

4.3 Analysis of test case distributions

In order to further explain why these FSCS-ART-dc and FSCS-ART-dp can-

not perform better than RT, more simulations were conducted to investigate

their test case distributions (the experimental settings are identical to those

used in Section 2.4). The simulation results are reported in Figures 4 and 5,

in which, the previous results for FSCS-ART-dt and RT are also included for

ease of comparison.

17

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 2000 4000 6000 8000 10000
|E |

M
D

is
c
re

p
a
n

c
y

FSCS-ART-dt FSCS-ART-dc FSCS-ART-dp RT

4.a MDiscrepancy in 1D space

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 2000 4000 6000 8000 10000
|E |

M
D

is
c
re

p
a
n

c
y

FSCS-ART-dt FSCS-ART-dc FSCS-ART-dp RT

4.b MDiscrepancy in 2D space

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 2000 4000 6000 8000 10000
|E |

M
D

is
c
re

p
a
n

c
y

FSCS-ART-dt FSCS-ART-dc FSCS-ART-dp RT

4.c MDiscrepancy in 3D space

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 2000 4000 6000 8000 10000
|E |

M
D

is
c
re

p
a
n

c
y

FSCS-ART-dt FSCS-ART-dc FSCS-ART-dp RT

4.d MDiscrepancy in 4D space

Figure 4: MDiscrepancy of FSCS-ART-dc and FSCS-ART-dp

It is observed that FSCS-ART-dc always has a smaller MDiscrepancy than

FSCS-ART-dt and RT, as intuitively expected; however, its MDispersion is

larger than that of FSCS-ART-dt, and similar to that of RT. As observed

by Chen et al. (2007b), a good failure detection capability of an ART al-

gorithm is always associated with a small value of Mdispersion. FSCS-ART-

dc does not have a smaller Mdispersion than RT, although it has a small

Mdiscrepancy. Therefore, it is understandable that FSCS-ART-dc does not sig-

nificantly outperform RT. Given this observation, a small MDiscrepancy alone

is not enough to imply a good failure detection capability of ART.

As far as FSCS-ART-dp is concerned, it can be found that FSCS-ART-dp

normally has a fairly large MDiscrepancy although its MDispersion is smaller than

18

0.00

0.01

0.02

0.03

0 2000 4000 6000 8000 10000
|E |

M
D

is
p

e
rs

io
n

FSCS-ART-dt FSCS-ART-dc FSCS-ART-dp RT

5.a MDispersion in 1D space

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 2000 4000 6000 8000 10000
|E |

M
D

is
p

e
rs

io
n

FSCS-ART-dt FSCS-ART-dc FSCS-ART-dp RT

5.b MDispersion in 2D space

0.05

0.10

0.15

0.20

0.25

0.30

0 2000 4000 6000 8000 10000
|E |

M
D

is
p

e
rs

io
n

FSCS-ART-dt FSCS-ART-dc FSCS-ART-dp RT

5.c MDispersion in 3D space

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 2000 4000 6000 8000 10000
|E |

M
D

is
p

e
rs

io
n

FSCS-ART-dt FSCS-ART-dc FSCS-ART-dp RT

5.d MDispersion in 4D space

Figure 5: MDispersion of FSCS-ART-dc and FSCS-ART-dp

that of FSCS-ART-dt. The large value of MDiscrepancy for FSCS-ART-dp may

be due to the definition of dispersion used in this study. The intuition of dis-

persion is to measure the largest empty spherical region inside I. Given that

the sample points are uniformly distributed, the largest nearest neighbour

distance (Equation 4 in Section 2.4) is a good metric to reflect the size of

this empty spherical region. However, when FSCS-ART-dp solely uses such

a definition to select test cases without considering the uniform distribution,

it is quite likely that the selected test cases would be clustered into some re-

gions inside I. As an example to illustrate the cluster of test cases, Figure 6

shows test cases (denoted by diamond dots) selected by FSCS-ART-dp in a

2D space, with |E| = 1000 and 10000, respectively. As shown in Figure 6,

19

test cases selected by FSCS-ART-dp are not evenly spread at all. This not

only explains why FSCS-ART-dp has a large MDiscrepancy, but also answers

why FSCS-ART-dp has a poor failure detection capability. Briefly speaking,

a fairly large MDiscrepancy is always associated with a poor performance of an

ART algorithm, no matter how small MDispersion is.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

6.a |E| = 1000

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

6.b |E| = 10000

Figure 6: Some test cases selected by FSCS-ART-dp in 2D space

Another interesting phenomenon of FSCS-ART-dp is that its failure de-

tection capability and MDiscrepancy become better as dI increases. The reason

behind such a phenomenon is explained as follows. Suppose that there are

two points p = (x1, x2, · · · , xdI
) and q = (x1+∆x1, x2+∆x2, · · · , xdI

+∆xdI
),

where xi and xi +∆xi denote the coordinates of p and q on the ith dimension

(i = 1, 2, · · · , dI), respectively. Obviously, dist(p, q) =
√

∑dI

i=1
(∆xi)2. For

points p and q to be very close to each other, all |∆xi|s ought to be very

small. Intuitively speaking, when dI is higher, it is less likely that all |∆xi|s

have small values, and thus it is less likely for p and q to be physically adja-

cent. In other words, the uneven distribution of test cases in FSCS-ART-dp

diminishes with the increase of dI . As a result, MDiscrepancy of FSCS-ART-dp

becomes smaller with the increase of dI , and the performance of FSCS-ART-

dp improves with the increase of dI .

20

5 Adaptive random testing based on distri-

bution metrics (DM-ART)

As discussed in Section 4, although discrepancy and dispersion measure cer-

tain aspects of the evenness of test case distribution, neither of them can

ensure an even spread of test cases if each of them is solely used as the test

case selection criterion in ART. Compared with these two criteria, Sdistance is

a better test case selection criterion, because it gives FSCS-ART-dt a small

MDispersion, and also a good failure detection capability. However, as pointed

out by Chen et al. (2007b), Sdistance is not perfect, because it may result in a

relatively large MDiscrepancy and a poor performance for some special cases.

In this section, we will investigate how to improve the performance of ART

by using Sdiscrepancy and Sdispersion as additional test case selection criteria to

supplement Sdistance.

This study proposes some new algorithms, which use Sdiscrepancy and

Sdispersion to select test cases together with Sdistance. Since some of test case

selection criteria in the new algorithms are originally from some distribution

metrics, the new algorithms are named as ART based on distribution metrics

(DM-ART).

5.1 DM-ART algorithms with two selection criteria

The algorithms proposed in this section, which include two levels of test

case selections, are called as two-level DM-ART (2L-DM-ART). The detailed

algorithm of 2L-DM-FSCS-ART is given in Figure 7.

In 2L-DM-FSCS-ART, two test case selection criteria, denoted by S1 and

S2, will be selected before the testing process (Statement 3 in Figure 7).

One criterion will be Sdistance, while the other will be either Sdiscrepancy or

21

1. Input two integers k and l, where k > l > 1.
2. Set n = 0 and E = {}.
3. Set two selection criteria S1 andS2, where (i)S1 = Sdiscrepancy or Sdispersion,

and S2 = Sdistance; or (ii)S1 = Sdistance, and S2 = Sdiscrepancy or Sdispersion.
4. Randomly generate a test case t from I, according to uniform distribution.
5. Run the program with t as the test case.
6. while (no failure has been revealed)
7. Add t into E, and increment n by 1.
8. Randomly generate k program inputs (candidates) from I, according to

uniform distribution, to form a candidate set C = {c1, c2, · · · , ck}.
9. Find l best candidates c′

1
, c′

2
, · · · , c′l fromC, according to S1, to form a new

candidate set C ′ = {c′
1
, c′

2
, · · · , c′l}.

10. Find the best candidate c′b from C ′, according to S2.
11. Set t = c′b.
12. Run the program with t as the test case.
13. end while

14. Report the detected failure.
15. Exit.

Figure 7: The algorithm of 2L-DM-FSCS-ART

Sdispersion. Hence, there are totally four new ART algorithms. 2L-DM-FSCS-

ART with S1 = Sdiscrepancy and S2 = Sdistance is referred to as FSCS-ART-dc-

dt. The other three algorithms are similarly referred to as FSCS-ART-dp-dt,

FSCS-ART-dt-dc, and FSCS-ART-dt-dp. Based on the results in Section 4.1,

we can conclude that the execution time of the 2L-DM-FSCS-ART algorithms

is in O(|E|2).

It should be noted that it is not expected to have a good failure detection

capability when only Sdiscrepancy and Sdispersion are used together as the se-

lection criteria. As shown in Section 4, both FSCS-ART-dc and FSCS-ART-

dp exhibit certain degrees of uneven distribution of test cases. However,

there does not exist any complementary relationship between discrepancy

and dispersion, that is, there is no intuition why their uneven distributions

22

will offset each other. Therefore, it is not intuitively expected that FSCS-

ART-dc-dp and FSCS-ART-dp-dc outperform RT. Our simulation results

on FSCS-ART-dc-dp and FSCS-ART-dp-dc are consistent with the above

intuitive expectation.

A series of simulations (with settings identical to those given in Sec-

tion 2.3) were conducted to investigate the failure detection capabilities of

the 2L-DM-FSCS-ART algorithms given in Figure 7. In these simulations,

k is set as 10 to be consistent with previous studies of FSCS-ART-dt. l

in 2L-DM-FSCS-ART algorithms cannot be either too large (that is, close

to k) or too small (that is, close to 1); otherwise, one of the two selection

criteria will have an effectively dominating impact on the performance of 2L-

DM-FSCS-ART. In these simulations, we set l = 3, 5, or 7. Figures 8, 9, 10

and 11 report the simulation results on FSCS-ART-dc-dt, FSCS-ART-dp-

dt, FSCS-ART-dt-dc and FSCS-ART-dt-dp, respectively. It should be noted

that FSCS-ART-dp-dt with l = 3, 5 and FSCS-ART-dt-dp with l = 5, 7 in

1D space have the same problem as FSCS-ART-dp in low dI cases, that is, an

uneven distribution of test cases. Therefore, Figures 9 and 11 do not include

the data for these algorithms for 1D case. The reason why these algorithms

perform well for high dI cases have been given in Section 4.

The following observations can be made from the simulation results.

• All 2L-DM-FSCS-ART algorithms outperform FSCS-ART-dt for the

cases of high θ and high dI .

• For 2L-DM-FSCS-ART algorithms with S2 = Sdistance (FSCS-ART-dc-

dt and FSCS-ART-dp-dt), the failure detection capabilities improve

with the increase of l.

• For 2L-DM-FSCS-ART algorithms with S1 = Sdistance (FSCS-ART-dt-

23

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dc-dt (l=3)

FSCS-ART-dc-dt (l=5) FSCS-ART-dc-dt (l=7)

8.a FSCS-ART-dc-dt in 1D space

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dc-dt (l=3)

FSCS-ART-dc-dt (l=5) FSCS-ART-dc-dt (l=7)

8.b FSCS-ART-dc-dt in 2D space

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dc-dt (l=3)

FSCS-ART-dc-dt (l=5) FSCS-ART-dc-dt (l=7)

8.c FSCS-ART-dc-dt in 3D space

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dc-dt (l=3)

FSCS-ART-dc-dt (l=5) FSCS-ART-dc-dt (l=7)

8.d FSCS-ART-dc-dt in 4D space

Figure 8: Failure detection capabilities of FSCS-ART-dc-dt

dc and FSCS-ART-dt-dp), the failure detection capabilities improve

with the decrease of l.

The first observation is consistent with the intuitive expectation. It has

been observed by (Chen et al., 2007b,c) that when θ and dI are high, the

original FSCS-ART-dt algorithm does not perform well and does not evenly

distribute its test cases in terms of some distribution metrics. Since 2L-

DM-FSCS-ART algorithms use these metrics to guide the test case selection

process, these algorithms are expected to have better failure detection capa-

bilities than the original FSCS-ART-dt under these situations. For the cases

of low dI or low θ, the original FSCS-ART-dt algorithm performs very well,

and it could be observed that as dI or θ decreases, the FART of FSCS-ART-dt

24

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dp-dt (l=3)

FSCS-ART-dp-dt (l=5) FSCS-ART-dp-dt (l=7)

9.a FSCS-ART-dp-dt in 1D space

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dp-dt (l=3)

FSCS-ART-dp-dt (l=5) FSCS-ART-dp-dt (l=7)

9.b FSCS-ART-dp-dt in 2D space

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dp-dt (l=3)

FSCS-ART-dp-dt (l=5) FSCS-ART-dp-dt (l=7)

9.c FSCS-ART-dp-dt in 3D space

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dp-dt (l=3)

FSCS-ART-dp-dt (l=5) FSCS-ART-dp-dt (l=7)

9.d FSCS-ART-dp-dt in 4D space

Figure 9: Failure detection capabilities of FSCS-ART-dp-dt

becomes smaller, approaching to the theoretical bound which an optimal test-

ing method can reach without any information about failure locations (Chen

and Merkel, 2008). Therefore, it is understandable that 2L-DM-FSCS-ART

algorithms do not significantly decrease the FART when θ is low or dI is low.

The second and third observations are explained as follows. As mentioned

in Section 4, neither Sdiscrepancy nor Sdispersion is sufficient to ensure an even

spread of test cases. These selection criteria must work together with Sdistance.

In FSCS-ART-dc-dt and FSCS-ART-dp-dt algorithms, the next test case

is selected from l candidates according to Sdistance. Intuitively speaking,

a larger value of l implies that Sdistance affects performance of these two

algorithms more significantly than Sdiscrepancy or Sdispersion. In FSCS-ART-dt-

25

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /
 F

R
T

FSCS-ART-dt FSCS-ART-dt-dc (l=3)

FSCS-ART-dt-dc (l=5) FSCS-ART-dt-dc (l=7)

10.a FSCS-ART-dt-dc in 1D space

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /
 F

R
T

FSCS-ART-dt FSCS-ART-dt-dc (l=3)

FSCS-ART-dt-dc (l=5) FSCS-ART-dt-dc (l=7)

10.b FSCS-ART-dt-dc in 2D space

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /
 F

R
T

FSCS-ART-dt FSCS-ART-dt-dc (l=3)

FSCS-ART-dt-dc (l=5) FSCS-ART-dt-dc (l=7)

10.c FSCS-ART-dt-dc in 3D space

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /
 F

R
T

FSCS-ART-dt FSCS-ART-dt-dc (l=3)

FSCS-ART-dt-dc (l=5) FSCS-ART-dt-dc (l=7)

10.d FSCS-ART-dt-dc in 4D space

Figure 10: Failure detection capabilities of FSCS-ART-dt-dc

dc and FSCS-ART-dt-dp algorithms, Sdistance is used to identify l candidates

amongst which Sdiscrepancy or Sdispersion is going to select one as a test case.

Intuitively speaking, in these two algorithms, a smaller l implies that Sdistance

affects the ART performance more significantly than Sdiscrepancy or Sdispersion.

5.2 DM-ART algorithms with three selection criteria

2L-DM-ART algorithms presented in the previous section can only adopt

one distribution metric as a test case selection criterion (the other selec-

tion criterion is Sdistance from the original FSCS-ART-dt algorithm). In this

section, some more DM-ART algorithms, namely three-level DM-ART (3L-

DM-ART), are developed to make use of both Sdiscrepancy and Sdispersion as

26

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dt-dp (l=3)

FSCS-ART-dt-dp (l=5) FSCS-ART-dt-dp (l=7)

11.a FSCS-ART-dt-dp in 1D space

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dt-dp (l=3)

FSCS-ART-dt-dp (l=5) FSCS-ART-dt-dp (l=7)

11.b FSCS-ART-dt-dp in 2D space

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dt-dp (l=3)

FSCS-ART-dt-dp (l=5) FSCS-ART-dt-dp (l=7)

11.c FSCS-ART-dt-dp in 3D space

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dt-dp (l=3)

FSCS-ART-dt-dp (l=5) FSCS-ART-dt-dp (l=7)

11.d FSCS-ART-dt-dp in 4D space

Figure 11: Failure detection capabilities of FSCS-ART-dt-dp

well as Sdistance in the test case selection process. Figure 12 gives the detailed

algorithm of 3L-DM-FSCS-ART.

As shown in Figure 12, 3L-DM-FSCS-ART will set three test case selec-

tion criteria prior to testing (Statement 3 in Figure 12), which are denoted

by Sa, Sb and Sc, respectively. Six 3L-DM-FSCS-ART algorithms can be de-

veloped, which can be referred to as FSCS-ART-dc-dp-dt (denoting 3L-DM-

FSCS-ART with Sa = Sdiscrepancy, Sb = Sdispersion and Sc = Sdistance), FSCS-

ART-dc-dt-dp, FSCS-ART-dp-dc-dt, FSCS-ART-dp-dt-dc, FSCS-ART-dt-

dc-dp, and FSCS-ART-dt-dp-dc. Like 2L-DM-FSCS-ART, 3L-DM-FSCS-

ART algorithms also require O(|E|2) time to select |E| test cases.

We conducted some simulations (with settings identical to those given in

27

1. Input three integers k, g and h, where k > g > h > 1.
2. Set n = 0 and E = {}.
3. Set three selection criteria Sa, Sb and Sc, where Sa, Sb, Sc = Sdiscrepancy,

Sdispersion, or Sdistance, and Sa 6= Sb 6= Sc.
4. Randomly generate a test case t from I, according to uniform distribution.
5. Run the program with t as the test case.
6. while (no failure has been revealed)
7. Add t into E, and increment n by 1.
8. Randomly generate k program inputs (candidates) from I, according to

uniform distribution, to form a candidate set C = {c1, c2, · · · , ck}.
9. Find g best candidates c′

1
, c′

2
, · · · , c′g from C, according to Sa, to form a

new candidate set C ′ = {c′
1
, c′

2
, · · · , c′g}.

10. Find h best candidates c′′
1
, c′′

2
, · · · , c′′h from C ′, according to Sb, to form a

new candidate set C ′′ = {c′′
1
, c′′

2
, · · · , c′′h}.

11. Find the best candidate c′′b from C ′, according to Sc.
12. Set t = c′′b .
13. Run the program with t as the test case.
14. end while

15. Report the detected failure.
16. Exit.

Figure 12: The algorithm of 3L-DM-FSCS-ART

Section 2.3) to evaluate the failure detection capabilities of these 3L-DM-

FSCS-ART algorithms. It was found that all 3L-DM-FSCS-ART algorithms

have more or less similar failure detection capabilities. We plot the ART F-

ratios of FSCS-ART-dc-dt-dp in Figure 13, which also includes the previous

simulation results of FSCS-ART-dt, FSCS-ART-dc-dt (l = 7), FSCS-ART-

dt-dp (l = 3) for ease of comparison. In our simulations, the values of g

and h for FSCS-ART-dc-dt-dp are set as 7 (similar to the optimal setting for

FSCS-ART-dc-dt shown in Section 5.1) and 3 (similar to the optimal setting

for FSCS-ART-dt-dp), respectively.

Based on Figure 13, we have the following observations.

• All three DM-ART algorithms outperform FSCS-ART-dt when θ and

28

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dc-dt

FSCS-ART-dt-dp FSCS-ART-dc-dt-dp

13.a Comparison in 1D space

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dc-dt

FSCS-ART-dt-dp FSCS-ART-dc-dt-dp

13.b Comparison in 2D space

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dc-dt

FSCS-ART-dt-dp FSCS-ART-dc-dt-dp

13.c Comparison in 3D space

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

FSCS-ART-dt FSCS-ART-dc-dt

FSCS-ART-dt-dp FSCS-ART-dc-dt-dp

13.d Comparison in 4D space

Figure 13: Comparison of Failure detection capabilities for FSCS-ART-dt,
FSCS-ART-dc-dt, FSCS-ART-dt-dp, FSCS-ART-dc-dt-dp

dI are high.

• For 1D and 2D cases, all three DM-ART algorithms have similar failure

detection capabilities.

• For 3D and 4D cases,

– When θ is very small (θ < 0.001), all three DM-ART algorithms

have similar performances.

– When θ is very large (θ > 0.1), FSCS-ART-dt-dp and FSCS-ART-

dc-dt-dp have similar performances, which are better than that of

FSCS-ART-dc-dt.

29

– Under other situations (0.001 < θ < 0.1), FSCS-ART-dc-dt and

FSCS-ART-dc-dt-dp have similar performances, which are better

than that of FSCS-ART-dt-dp.

As shown in Figure 13, among all three investigated DM-ART algorithms,

FSCS-ART-dc-dt-dp is the best enhancement to the original FSCS-ART-dt

algorithm for various dI and θ. This is consistent with the intuition that the

more criteria are integrated in an ART algorithm, the better performance

the algorithm will have. Therefore, in the following sections, we only choose

FSCS-ART-dc-dt-dp as the target of our study.

5.3 Test case distributions of DM-ART

More simulations (with settings identical to those given in Section 2.4) were

conducted to collect the values of MDiscrepancy and MDispersion for FSCS-

ART-dc-dt-dp. The simulations results are reported in Figures 14 and 15,

respectively. These figures also include the previous simulation results of

FSCS-ART-dt and RT for ease of comparison.

Based on the experimental data, we observe the followings.

• FSCS-ART-dc-dt-dp always has a smaller MDiscrepancy than FSCS-

ART-dt.

• For 1D and 2D cases, MDispersion for FSCS-ART-dc-dt-dp is similar to

that of FSCS-ART-dt.

• For 3D and 4D cases, FSCS-ART-dc-dt-dp has a marginally smaller

MDispersion than FSCS-ART-dt.

In brief, FSCS-ART-dc-dt-dp spreads test cases more evenly than FSCS-

ART-dt, as expected. Such an observation confirms the rationale behind

30

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 2000 4000 6000 8000 10000|E |

M
D

is
c
re

p
a
n

c
y

FSCS-ART-dt FSCS-ART-dc-dt-dp RT

14.a MDiscrepancy in 1D space

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 2000 4000 6000 8000 10000|E |

M
D

is
c
re

p
a
n

c
y

FSCS-ART-dt FSCS-ART-dc-dt-dp RT

14.b MDiscrepancy in 2D space

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 2000 4000 6000 8000 10000|E |

M
D

is
c
re

p
a
n

c
y

FSCS-ART-dt FSCS-ART-dc-dt-dp RT

14.c MDiscrepancy in 3D space

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2000 4000 6000 8000 10000|E |

M
D

is
c
re

p
a
n

c
y

FSCS-ART-dt FSCS-ART-dc-dt-dp RT

14.d MDiscrepancy in 4D space

Figure 14: MDiscrepancy of FSCS-ART-dc-dt-dp

ART that the more evenly test cases are spread, the better failure detection

capability an ART algorithm has.

5.4 Effectiveness of DM-ART on real-life programs

The original FSCS-ART-dt algorithm has been used to test some real-life pro-

grams (Chen et al., 2004). These programs, which were published by ACM

(1980) and Press et al. (1986), were error-seeded using the technique of muta-

tion (Budd, 1981). For ease of comparison with the previous studies, we also

used these error-seeded programs to study the effectiveness of DM-ART. We

selected four particular programs as the subject programs, namely airy, bessj,

plgndr, and el2, whose input domains are 1D, 2D, 3D, and 4D, respectively.

31

0.00

0.01

0.02

0.03

0 2000 4000 6000 8000 10000|E |

M
D

is
p

e
rs

io
n

FSCS-ART-dt FSCS-ART-dc-dt-dp RT

15.a MDispersion in 1D space

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 2000 4000 6000 8000 10000|E |

M
D

is
p

e
rs

io
n

FSCS-ART-dt FSCS-ART-dc-dt-dp RT

15.b MDispersion in 2D space

0.05

0.10

0.15

0.20

0.25

0.30

0 2000 4000 6000 8000 10000|E |

M
D

is
p

e
rs

io
n

FSCS-ART-dt FSCS-ART-dc-dt-dp RT

15.c MDispersion in 3D space

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 2000 4000 6000 8000 10000|E |

M
D

is
p

e
rs

io
n

FSCS-ART-dt FSCS-ART-dc-dt-dp RT

15.d MDispersion in 4D space

Figure 15: MDispersion of FSCS-ART-dc-dt-dp

The details of these 4 programs are given in Table 1.

In the simulations conducted in Sections 4.2, 5.1 and 5.2, various values

of θ can be selected for study, and the predefined failure regions can reside in

any location inside I. However, θ and the location of failure regions in these

mutated programs cannot be varied easily to generate a sufficient number

of samples to achieve a statistically significant measurement of the failure

detection capability.

In this study, we aim to investigate the effectiveness of FSCS-ART-dc-

dt-dp under different scenarios (different θ and different locations of failure

regions). Therefore, we kept the same seeded errors, but randomly generated

100 different range values for the input domain of each mutated program.

32

Table 1: Program name, dimension, and seeded errors for each subject pro-
gram

Program Dimension Number of seeded errors

AOR ROR SVR CR

airy 1 1

bessj 2 2 1 1

plgndr 3 1 2 2

el2 4 1 3 2 3

AOR arithmatic operator replacement

ROR relational operator replacement

SVR scalar variable replacement

CR constant replacement

Each randomly selected range value may yield a different θ and a different

location of the failure region within the input domain. The shape of the

failure region may also be affected. In this way, each subject program can

be tested under 100 distinct scenarios.

We used both FSCS-ART-dt and FSCS-ART-dc-dt-dp to test the subject

programs. The ART F-ratios of FSCS-ART-dt and FSCS-ART-dc-dt-dp on

these programs are reported by boxplots in Figure 16. Boxplots (Tukey,

1977), which are widely used in descriptive statistics, provide a convenient

way of depicting the distribution of a data set. In a box plot, the first

quartile (x.25), the median (x.50), and the third quartile (x.75) of a data set

are represented by the bottom edge, the central line, and the top edge of the

box, respectively. Upper and lower whiskers (denoted by small horizontal

lines outside the box) refer to the maximum and minimum values of a data

set, respectively. The whiskers and the box’s edges are connected by two

vertical lines. Boxplots in Figure 16 also include the mean values of ART

F-ratios, denoted by square dots.

33

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FSCS-ART-dt F-ratio FSCS-ART-dc-dt-dp F-ratio

16.a ART F-ratios on airy

0.5

0.6

0.7

0.8

0.9

1.0

1.1

FSCS-ART-dt F-ratio FSCS-ART-dc-dt-dp F-ratio

16.b ART F-ratios on bessj

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

FSCS-ART-dt F-ratio FSCS-ART-dc-dt-dp F-ratio

16.c ART F-ratios on plgndr

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

FSCS-ART-dt F-ratio FSCS-ART-dc-dt-dp F-ratio

16.d ART F-ratios on el2

Figure 16: Comparison of Effectiveness on real-life programs for FSCS-ART-
dt and FSCS-ART-dc-dt-dp

Similar to what have been observed in the simulation studies reported

in Section 5.2, the failure detection capability of FSCS-ART-dc-dt-dp de-

pends on dI , but FSCS-ART-dc-dt-dp has a smaller mean value of ART

F-ratios than FSCS-ART-dt. The use of boxplots in Figure 16 helps to show

that FSCS-ART-dc-dt-dp has a much smaller value range of ART F-ratios

than FSCS-ART-dt. Such an observation implies that FSCS-ART-dc-dt-dp

is more preferable to FSCS-ART-dt, not only because the former generally

has a better failure detection capability than the latter, but also because the

former’s failure detection capability is less dependent on the value of θ and

34

the location of failure region.

6 Discussion and Conclusion

Adaptive random testing (ART) was proposed to enhance the failure detec-

tion capability of random testing (RT) by evenly spreading test cases over the

input domain. In many ART algorithms, besides the random generation of

the program inputs, some test case selection criteria are additionally used to

ensure an even spread of random test cases. Though even spread is intuitively

simple, there does not exist a standard definition of even spread, needless to

say the existence of a standard measurement for the evenness of test case dis-

tribution. Research (Chen et al., 2007b) has been attempted to use various

distribution metrics to reflect, if not measure, how evenly an ART algorithm

spreads test cases. Previous studies have conclusively shown that some ART

algorithms, which are not regarded by certain distribution metrics as evenly

spreading their test cases, usually perform poorly. This correlation between

test case distribution and failure detection capability has motivated us to

develop some new ART algorithms, which apply these distribution metrics,

mainly discrepancy and dispersion, as test case selection criteria in ART.

We first studied some algorithms using each of these metrics as the stan-

dalone criterion to select test cases in ART. Our simulation results showed

that these ART algorithms have poor failure detection capabilities. This is

due to the fact that a low discrepancy and a low dispersion are just necessary

characteristics of an even spread of test cases, but not vice versa. In fact,

simply enforcing test cases to solely satisfy a single criterion leads to certain

degrees of uneven test case distribution.

We further investigated the integration of these metrics and the notion

35

of “far apart” in FSCS-ART (that is, keeping test cases as far apart from

one another as possible), and proposed a new family of ART algorithms,

namely ART based on distribution metrics (DM-ART). Two subcategories of

DM-ART algorithms, namely 2L-DM-FSCS-ART and 3L-DM-FSCS-ART,

were investigated via simulations. The simulation results showed that by

keeping the “far apart” notion as the more influential test case selection

criterion, some DM-ART algorithms not only spread test cases more evenly,

but also have better failure detection capabilities than the original FSCS-

ART algorithm. It was also observed that one 3L-DM-FSCS-ART algorithm,

namely FSCS-ART-dc-dt-dp, provides the best performance improvement

over the original FSCS-ART algorithm among all DM-ART algorithms. An

empirical study on FSCS-ART-dc-dt-dp further showed that as compared

with the original FSCS-ART algorithm, DM-ART has a failure detection

capability less dependent on the failure rate and the location of failure region.

In summary, the integration of discrepancy and dispersion with the notion

of “far apart” does improve both the evenness of the test case distribution

and the failure detection capability.

There are various definitions of discrepancy and dispersion in the litera-

ture, and we have only adopted the most commonly used definitions in this

study. It is interesting to further investigate the impacts of other definitions

of discrepancy and dispersion. Chen et al. (2007b) have pointed out that

the ART algorithms under their study may not well satisfy the definitions of

some distribution metrics. Restricted random testing, for example, generally

has a small dispersion, but a relatively large discrepancy, just like FSCS-

ART. Therefore, the innovative approach of this study, that is, adopting test

case distribution metrics as test case selection criteria in ART, can be equally

applied to enhance other existing ART algorithms.

36

Acknowledgment

This research project is supported by an Australian Research Council Dis-

covery Grant (DP0880295).

References

ACM, 1980. Collected Algorithms from ACM. Association for Computing

Machinery.

Ammann, P. E., Knight, J. C., 1988. Data diversity: an approach to software

fault tolerance. IEEE Transactions on Computers 37 (4), 418–425.

Beizer, B., 1990. Software Testing Techniques. Van Nostrand Reinhold.

Bird, D. L., Munoz, C. U., 1983. Automatic generation of random self-

checking test cases. IBM Systems Journal 22 (3), 229–245.

Bishop, P. G., 1993. The variation of software survival times for different

operational input profiles. In: Proceedings of the 23rd International Sym-

posium on Fault-Tolerant Computing. pp. 98–107.

Branicky, M. S., LaValle, S. M., Olson, K., Yang, L., 2001. Quasi-randomized

path planning. In: Proceedings of the 2001 IEEE International Conference

on Robotics and Automation. IEEE Computer Society, pp. 1481–1487.

Budd, T. A., 1981. Mutation analysis: Ideas, examples, problems and

prospects. In: Chandrasekaran, B., Radicci, S. (Eds.), Computer Program

Testing. North-Holland, Amsterdam, pp. 129–148.

37

Chan, K. P., Chen, T. Y., Towey, D., 2006. Restricted random testing: Adap-

tive random testing by exclusion. International Journal of Software Engi-

neering and Knowledge Engineering 16 (4), 553–584.

Chen, T. Y., Kuo, F.-C., Liu, H., 2007a. Distribution metric driven adaptive

random testing. In: Proceedings of the 7th International Conference on

Quality Software (QSIC 2007). pp. 274–279.

Chen, T. Y., Kuo, F.-C., Liu, H., 2007b. On test case distributions of adaptive

random testing. In: Proceedings of the 19th International Conference on

Software Engineering and Knowledge Engineering (SEKE 2007). pp. 141–

144.

Chen, T. Y., Kuo, F.-C., Zhou, Z. Q., 2007c. On favorable conditions for

adaptive random testing. International Journal of Software Engineering

and Knowledge Engineering 17 (6), 805–825.

Chen, T. Y., Leung, H., Mak, I. K., 2004. Adaptive random testing. In:

Proceedings of the 9th Asian Computing Science Conference. pp. 320–329.

Chen, T. Y., Merkel, R., 2007. Quasi-random testing. IEEE Transactions on

Reliability 56 (3), 562–568.

Chen, T. Y., Merkel, R., 2008. An upper bound on software testing effective-

ness. ACM Transactions on Software Engineering and Methodology 17 (3),

16:1–16:27.

Ciupa, I., Leitner, A., Oriol, M., Meyer, B., 2006. Object distance and

its application to adaptive random testing of object-oriented programs.

In: Proceedings of the First International Workshop on Random Testing

(RT2006). Portland, ME, USA, pp. 55–63.

38

Ciupa, I., Leitner, A., Oriol, M., Meyer, B., 2008. ARTOO: adaptive random

testing for object-oriented software. In: Proceedings of the 30th Interna-

tional Conference on Software Engineering (ICSE’08). ACM Press, pp.

71–80.

Dabóczi, T., Kollár, I., Simon, G., Megyeri, T., 2003. Automatic testing of

graphical user interfaces. In: Proceedings of the 20th IEEE Instrumenta-

tion and Measurement Technology Conference 2003 (IMTC ’03). Vail, CO,

USA, pp. 441–445.

Finelli, G. B., 1991. NASA software failure characterization experiments.

Reliability Engineering and System Safety 32 (1–2), 155–169.

Forrester, J. E., Miller, B. P., 2000. An empirical study of the robustness of

Windows NT applications using random testing. In: Proceedings of the

4th USENIX Windows Systems Symposium. Seattle, pp. 59–68.

GCC, 2004. GNU compiler collection, http://gcc.gnu.org.

Girard, E., Rault, J., 1973. A programming technique for software reliability.

In: Proceedings of 1973 IEEE Symposium on Computer Software Relia-

bility. IEEE, pp. 44–50.

Godefroid, P., Klarlund, N., Sen, K., 2005. DART: directed automated ran-

dom testing. In: Proceedings of ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI 2005). ACM Press, pp.

213–223.

Hailpern, B., Santhanam, P., 2002. Software debugging, testing, and verifi-

cation. IBM Systems Journal 41 (1), 4–12.

39

Hamlet, R., 2002. Random testing. In: Marciniak, J. (Ed.), Encyclopedia of

Software Engineering, 2nd Edition. John Wiley & Sons.

Hua, L. K., Wang, Y., 1981. Applications of Number Theory to Numerical

Analysis. Springer, Berlin.

Kuo, F.-C., 2006. On adaptive random testing. Ph.D. thesis, Faculty of Infor-

mation and Communications Technologies, Swinburne University of Tech-

nology.

Mayer, J., 2005. Lattice-based adaptive random testing. In: Proceedings of

the 20th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2005). ACM, New York, USA, pp. 333–336.

Mayer, J., Guderlie, R., 2006. On random testing of image processing ap-

plications. In: Proceedings of the 6th International Conference on Quality

Software (QSIC 2006). IEEE Computer Society, pp. 85–92.

Mayer, J., Schneckenburger, C., 2006. An empirical analysis and comparison

of random testing techniques. In: Proceedings of the 2006 ACM/IEEE In-

ternational Symposium on Empirical Software Engineering (ISESE 2006).

ACM Press, pp. 105–114.

Merkel, R., 2004. Enhancement of adaptive random testing. Ph.D. thesis,

School of Information Technology, Swinburne University of Technology.

Miller, B. P., Fredriksen, L., So, B., 1990. An empirical study of the reliability

of UNIX utilities. Communications of the ACM 33 (12), 32–44.

Miller, B. P., Koski, D., Lee, C. P., Maganty, V., Murthy, R., Natarajan,

A., Steidl, J., 1995. Fuzz revisited: a re-examination of the reliability of

40

UNIX utilities and services. Tech. Rep. CS-TR-1995-1268, University of

Wisconsin.

Myers, G. J., 2004. The Art of Software Testing, 2nd Edition. John Wiley

and Sons, revised and updated by T. Badgett and T. M. Thomas with C.

Sandler.

Niederreiter, H., 1986. Quasi-monte carlo methods for global optimization.

In: Proceedings of the 4th Pannonian Symposium on Mathematical Statis-

tics. pp. 251–267.

Niederreiter, H., 1992. Random Number Generation and Quasi-Monte-Carlo

Methods. SIAM.

NIST, 2002. The economic impacts of inadequate infrastructure for software

testing, http://www.nist.gov/director/prog-ofc/report02-3.pdf,

National Institute of Standards and Technology, Gaithersburg, Maryland,

USA.

Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., 1986.

Numerical Recipes. Cambridge Unversity Press.

Regehr, J., 2005. Random testing of interrupt-driven software. In: Proceed-

ings of the 5th ACM International Conference on Embedded Software (EM-

SOFT’05). ACM Press, pp. 290–298.

Slutz, D., 1998. Massive stochastic testing of SQL. In: Proceedings of the

24th International Conference on Very Large Databases (VLDB 1998). pp.

618–622.

Thayer, R. A., Lipow, M., Nelson, E. C., 1978. Software Reliability. North-

Holland.

41

Tukey, J. W., 1977. Exploratory Data Analysis. Addison-Wesley.

West, C. H., Tosi, A., 1995. Experiences with a random test driver. Computer

Networks and ISDN Systems 27, 1163–1174.

White, L. J., Cohen, E. I., 1980. A domain strategy for computer program

testing. IEEE Transactions on Software Engineering 6 (3), 247–257.

Yoshikawa, T., Shimura, K., Ozawa, T., 2003. Random program generator

for Java JIT compiler test system. In: Proceedings of the 3rd International

Conference on Quality Software (QSIC 2003). pp. 20–24.

42

