N

N

A method to build information systems engineering
process metamodels

Charlotte Hug, Agnes Front, Dominique Rieu, Brian Henderson-Sellers

» To cite this version:

Charlotte Hug, Agneés Front, Dominique Rieu, Brian Henderson-Sellers. A method to build infor-
mation systems engineering process metamodels. Journal of Systems and Software, 2009, 82 (10),
pp.1730. 10.1016/j.jss.2009.05.020 . hal-00450705

HAL Id: hal-00450705
https://hal.science/hal-00450705

Submitted on 18 Jun 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00450705
https://hal.archives-ouvertes.fr

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

A Method to build Information Systems Engineerimgdess Metamodels

Charlotte Hug*, Agnes Front*, Dominique Rieu*, Britlenderson-Sellers**

*LIG — SIGMA, Grenoble University, 220 rue de lai@le, 38400 Saint Martin d’'Héres, France
Charlotte.Hug@imag.fr
Tel: (33) 4 76 63 55 79
Fax: (33) 4 76 63 55 50

**Department of Software Engineering, Faculty ofdrmation Technology, University of Technology, $gy,
P.O. Box 123, Broadway NSW 2007, Australia

Abstract: Several process metamodels exist. Eatiieaf presents a different viewpoint of the sanfierimation
systems engineering process. However, there aegiating correspondences between them. We propose a
method to build unified, fitted and multi-viewpoiptocess metamodels for information systems engimgge
Our method is based on a process domain metantateaddntains the main concepts of information syste
engineering process field. This process domain mede! helps selecting the needed metamodel confeps
particular situational context. Our method is dlased on patterns to refine the process metambldelprocess
metamodel can then be instantiated according tor@nisation’s needs. The resulting method isesgmted as
a pattern system.

Keywords: information systems engineering, methugireeering, process metamodel, method, pattern.
1. Introduction

Many information systems engineering method deding exist. According to Harmsen (Harmsen, 199%) “a
Information Systems Engineering Method is an iraégpt collection of procedures, techniques, product
descriptions, and tools, for effective, efficiemhd consistent support of the IS engineering psioskere,
according to Booch (Booch, 1991), a method is §andus process to generate a set of models dexgribi
various aspects of software being built using serk-defined notation”. Integration and rigour dagst be
appropriated by the use of a metamodel that defireesnodelling language (to describe the work poteju
together with a metamodel describing process aodymer elements and integrating with the modelling
language (e.g. ISO/IEC, 2007). The former metamizdesed to ensure the correctness of the workuystod
models and diagrams whilst the latter metamode$ésl to underpin the process model (a.k.a. methgypl
Process models offer approaches for developingnmdton systems in a well-disciplined manner. Here will
consider process modelling in the context of infation systems engineering.

An information systems engineering process is aptexnendeavour. (Cauvet, 2006) presents the various
arguments for the modelling of an engineering psect is argued that the process must be modielledtier to
depict its various stages, as well as to guidalifierent actors involved throughout the life cyclde
modelling of a process may also allow the subsetguenitoring of its progress in real time, thatassay its
implementation, often called its enactment. Finalye model allows the recording of what has bemedfor
reusing the most generic parts or for monitorind @mproving the process. Organisations wishing taleh their
process — as accurately as possible and at atstghe engineering life cycle — are faced wilhious
problems. For example, the organisationally-agmedess model or methodology should be a good fite
organisational maturity, skills level etc. (HenaersSellers and Nguyen, 2004). Creating such a rdelbgy is
the focus of situational method engineering (SME&jrikkemper, 1996). The definition of a process elaab
might be created using SME should be headed byepisicrules and relationships; a process metanmdel
therefore necessary for instantiating process nsottedeed, the need for industry adoption of metatwofor
solving business problems, perhaps using a modedengineering (MDE) approach has been recemggdi
by Forrest (Forrest, 2008) based on his first-haddstry involvement.

Many different process metamodels exist ((HareB7)9(OMG, 2005), (OPF, 2005), (Potts and Brun88)9
(Rolland et al., 1995), and (Rolland et al., 198®png others); while there are others, such asZ834),
(OOSPICE, 2002) that include process issues apart all-embracing software development methogiplo
Each of them defines different concepts:

- (OMG, 2005), (OPF, 2005) deal with the conceftwark unit, work definition and roles,

- (Harel, 1987) comprises the concepts of prodiiate and transition,

1

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

- (Potts and Bruns, 1988) includes the concepissok, alternative and argument,
- (Rolland et al., 1995) deals with the conceptsitfation and intention,
- (Rolland et al., 1999) include the concepts tdimtion and strategy.

Each of these different process metamodels repieserifferent viewpoint of the information systems
engineering process. A viewpoint is a process getsge; it is not necessarily associated with digalar actor
or role. (Dowson, 1987), (Mi and Scacchi, 1996) #Rdlland, 1998) define the different process metdeh
categories, which we consider here as viewpoinaseB on this categorization, we can say that, 8yéoaG,
2005) and (OPF, 2005) are activity-oriented procestamodels, (Harel, 1987) is a product-orienteat@ss
metamodel, (Potts and Bruns, 1988) is decisiomtedt (Rolland et al., 1995) is context-oriented @Rolland
et al., 1999) is strategy-oriented. There is obsfipa link between these different process metamsadece they
represent the same conceptualization but from ferdiiit viewpoint. However, these links have neveerb
explicitly defined — a focus of our paper. The espondences between the different viewpoints shbeld
explicit in order to provide a complete vision @ktinformation systems engineering process. Nowsaday
define a multi-viewpoint information systems engiring process, different process metamodels ohdesled
viewpoints have to be used, effectively indepengenind instantiated since no formalized links exisshow
the correspondences between the viewpoints.

Furthermore, some of the existing process metara@telso large that they can be difficult to un@ed. Large
metamodels thus tend to be only partially used bgtrprocess/method engineers. Hence, existing C&MIE
based on big metamodels may waste resources.

For very many individual projects, one of thesedefisned metamodels will be an appropriate fit te th
organizational requirements. Indeed, this is tlasoa that standards, such as those of ISO, exstetkr, in
many other instances, method engineers need toicerabncepts from two or more metamodels i.e. thend:
- Multi-viewpoints and unified process metamodels,

- Metamodels fitted to the organisation or progmcificities.

(Karagiannis and Kuhn, 2002) advocate the intradnadf flexibility into metamodels. Consequentlg,this
paper, we propose a method that supports the bgilafi fitted, multi-viewpoint and unified procesgtamodels
in order to support the real-life situations whepredetermined, standardized metamodel is inadeqUiat
parallel SME but at a higher abstraction level,naene this approach as Situational MetaModel Enginge
(SMME). This method is based on a process domatammadel that contains the main concepts of thedfft
existing process metamodels such as work unit, stdategy etc. The first phase of the method ctssif
selecting the needed concepts from the processidansamodel. A draft process metamodel contaittieg
main concepts of the required process metamoghebduced. The draft process metamodel is thene@famd
extended in the second phase of the method, masig patterns. The method is represented tharkg#dtern
system.

The paper is organized as follow. Section 2 prestat different existing process metamodels, d byiathesis
and the main problems encountered. Section 3 desctihe phases of the proposed method, selectibn an
refinement, and the resources used: the procesaidanetamodel and the patterns. Section 4 pretents
pattern formalism and the pattern system and Seétidescribes an example. Section 6 discussesltited
works and Section 7 concludes this paper.

2. Existing process metamodels

In this section, we present the different existingcess metamodels classified according to thereifit process
viewpoints: activity, product, decision, contextiasirategy.

2.1. Activity-oriented process metamodels

Activity-oriented process metamodels allow buildingdels concentrating on the activities and tagkfopmed
in producing a product together with their order{Rplland, 1998). They typically comprise the cqutseof
Work Unit or Work Definition that have Productsiaputs and outputs and are performed by a Role.

SPEM (OMG, 2005), The Open Process Framework (28085), OOSPICE (OOSPICE, 2002), SMSDM (AS,
2004) and 1SO 24744 (1SO, 2007) are process metalsiaainly activity-oriented. Some of them, sush a
SPEM and I1SO 24744, include other viewpoints sichraduct varying degrees of detail.

The process models of methods such as RUP (Kruck@8®), XP (Beck, 1999) and SCRUM (Schwaber and
Beedle, 2001) are instances of activity-orientemtpss metamodels and thus are activity-orientecesso
models.

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

Figure 1 presents an extract of SPEM metamodel (ORIBS5). A WorkDefinition can be an Activity, a Pea
an lteration or a Lifecycle (the last two not shgmvorkDefinition describes the work performed lire t
Process. A ProcessRole defines responsibilities specific WorkProducts, and defines the roles pleaform
and assist in specific activities. ProcessRolbéssubclass of ProcessPerformer (not shown in EigjurA
ProcessPerformatefines a performer for a set of WorkDefinitionsaiprocess (OMG, 2005). The
ActivityParameter meta-class allows the specifawatf the inputs and outputs (WorkProduct) of a
WorkDefinition.

parentWork | 0..*

WorkDefinition 0.% WorkProduct ActivityParameter

subWork
M2 workProduct | 0..*

0.1 responsibleRole
Phase Activity activity 0..*_ProcessRole

0..* assistant

Figure 1. The activity-oriented process metamodRiig.
2.2. Product-oriented process metamodels

Product-oriented process metamodels permit thantiation of models that couple the product statiné
activities that generate this state (Rolland, 1998y present the concepts of Product that hefferelnt States
and transitions defined between the states. Theuptctate represents the situation of a produgtpaecise
moment of the process, the transitions being défiretween these states to represent the orderidai wie
states can change. The transitions are relatidmgeba a source state and a target state; theyiggered by an
event.

The metamodel for Statecharts (Harel, 1987), Sftehines (OMG, 2007), as well as the metamodehef t
Entity Process Model (EPM) (Humphrey and Kelln€89) and the State-Transition template (Finkelsétial.,
1990), are examples of product-oriented procesammudels that use the above concepts.

Figure 2 shows the simplified product-oriented psxmetamodel of the State-Transition approactké¢itein
et al., 1990) as an example of this class of poetamodels. One or more States composed a Prodhilet
Transitions are defined between the States.

Product
M2
0.] 1.*
Transition " souree State
0.* target 1

Figure 2. Simplified State-Transition product-otish process metamodel.
2.3. Decision-oriented process metamodels

Decision-oriented process metamodels allow buildimoglels that present the successive transformadibas
product due to decisions (Rolland, 1998). They tdlg concepts of Issues that need answers dedmed
Alternatives. Alternatives can be supported or cigjé by ArgumentsAn issue is a problem met during the
information systems process engineering. Alterestiare different options to sole the issue. Thexratives are
based on arguments.

3

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

IBIS (Kunz and Rittel, 1970) first introduced thetion of decision-oriented process. It was thenrowpd by
Potts and Bruns (Potts and Bruns, 1988), PotteqP189) and in the DAIDA project (Jarke et a@92).
Figure 3 presents the decision-oriented procesamuztel defined in (Potts, 1989). Steps during imfaiion
systems engineering can raise Issues. Alternatésggond to Issues and are supported or objected by
Arguments, citing Artefacts. Alternatives can cdmite to Steps. An Issue can review an Artefadt¢ha be
modified by a Step.

0. modifies 0 *

Artefact Step
0.* |
0.* reviews " 0.*
P aises
0.. 0.*]
M2 A i Issue A confibutes to
cites
1
B\ responds to
0. 0.* P> supports 0. 0..
Argument Alternative

0. 0.”
P objectsto (g *

Figure 3. Potts decision-oriented process metamodel
2.4. Context-oriented process metamodels

Context-oriented process metamodels allow buildimglels representing the situation and the interdfcan
actor at a given moment of the project (Rolland8)9The couple of Situation plus Intention formSantext.
The key concepts of this kind of metamodel areGbatext that is composed of a Situation and amtite. The
situation is a part of a product under design ihéte object of a decision. The intention représéme objective,
i.e. the goal that an actor wants to achieve adegitd the situation (Plihon, 1996).

The notion of context was first defined in (Grosa &olland, 1990) and finalized within the contexiented
process metamodel NATURE (Rolland et al., 19953 European project of the same name. (Rollant,et a
2000) adapted the NATURE metamodel to Enterprisevidl@dge Management. The concept of intention had
replaced the concept of decision, which has alem lbene in the NATURE metamodel. It is also wortking
that Situation and Intention are the main concep&ituational Method Engineering, as defined in
(Brinkkemper, 1996), as SME consist of building hoets “on the fly” according to the method definéd a
precise moment (Situation) and what method engineeed to add in the method (Intention).

Figure 4 shows an extract of the NATURE contexéwoted process metamodel (Rolland et al., 1995)oAtéxt
is composed of a Situation (in respect to a prgdamd an Intention (an objective in respect toptaduct).
There are three types of Context. The Plan basate&iois composed of ordered Contexts. The Choisth
Context corresponds to a Situation that requireetploration of Alternative contexts that can bedu on
arguments. Executive-based Contexts implementifeamtion into an Action that transforms a part giaduct.

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

Situation Intention

Argument

situation | 1 1| intention
A is built on A satisfies 0.* 0.*
supports

objects to

{ordered} o = Context 0.4 o0~
conhtexts Alternative
JAN
Plan based Executive based Choice based
Y s built from
0.*
¥ |executes
M2 ;
Action 1.* P> transforms [Product part

1

Figure 4. Extract of the NATURE context-orientedass metamodel.
2.5. Strategy-oriented process metamodels

Strategy-oriented process metamodels allow buildiogels representing multi-approach processes land p
different possible ways to elaborate the produstdaon the notion of intention and strategy (Rallanal.,
1999). Strategy and Intention are the main conaafpiisis kind of metamodels. An intention is a geal
objective to achieve. A strategy is a manner toeaehthe intention (Zoukar, 2005). [As far as wekn MAP
(Rolland et al., 1999) is the only strategy-oriehnpeocess metamodel published to date, althougiah g
focussed SME approach for process model construigidescribed in (Gonzalez-Perez et al., 2008)tlaed
work product pool approach of (Gonzalez-Perez aadddrson-Sellers, 2007) is also loosely relatetah
context.]

The process model of the requirement engineerirthade'CREW-I'Ecritoire” (Rolland et al., 1999) hasen
formalised using MAP. MAP has also been used toaisgnt an engineering method for matching ERP
functionalities and organisational requirementsul@ and Salinesi, 2004).

Figure 5 presents the simplified strategy-oriemeztess metamodel for the MAP approach. A Secson i
composed of a Strategy, a Source Intention andgeTtention. A MAP is composed of one or moretiBas.
It always has a Start Intention and a Stop Intentio

1 Strateqy
M2 <>
MAE | Section k> T°”r°e1 Intention
w L~ arget 1

Figure 5. Extract of the strategy-oriented progasetamodel MAP.
2.6. Synthesis

Table 1 synthesizes the concepts of the most repias/e process metamodels. We do not presetieall
concepts of every process metamodel but only the significant. [In (Henderson-Sellers and Gonz&lerez,
2005), a similar but more limited comparison wasalbetween the activity-oriented process metamaddize

5

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

SMSDM, SPEM, OOSPICE, OPF and LiveNet. Table luidek two activity oriented process metamodels,
SPEM and OPF, but also product oriented procesamuetels, decision, context and strategy orientedgss
metamodels.] It can be seen that some conceptoarmon to various process metamodels, for example
WorkDefinition, but these are frequently not at #aene granularity level, e.g. WorkDefinition and Mdnit
are very general terms whereas Step and Actiomeaseconcrete. Almost all the process metamodeds dith
the concept of Product, but only the State-Tramsithetamodel (and all the product-oriented process
metamodels) focuses on States. In contrast, theepts of Issue, Alternative and Argument are owelfireéd in
decision-oriented process metamodels.

Some concepts, such as Precondition and Goal, segnsimilar to Situation and Intention or Souroéehtion
and Target Intention as they all correspond tcsthte of the process before or after an actiopeaively;
although they would appear to be located at diffelevels of abstraction. Pre-condition and Go&.éa Post-
condition) are concrete, while Situation and Intamtare more abstract.

The concept of Context is only present in the carteiented process metamodel NATURE and the caneep
Strategy only exists in the strategy-oriented pssagaetamodel.

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

Table 1. Synthesis of the different representgtiveess metamodels and their concepts.

SPEM OPF State- Potts NATURE MAP
Transition
Work Work Step Action
Definition Unit
Work Work Product Artefact Product part
Product Product Product-
Process Producer orientec Decision
Performer .
State -orientec
Activity-oriented Transition | antext-
ssue oriente(Strategy-
Alternative orientet
Argument
Pre Situation Source
condition intention
Goal Intention Target
intention
Context
Strategy

2.7. Problems

The first problem met is the mere existence oftagsprocess metamodels, whatever the viewpoint Ean a
method engineer, easily and quickly, choose thegg® metamodel corresponding to the organisaticaess?
There is no existing framework to guide the metandineer through the selection of the most appatgri
process metamodel. There are only frameworks thideghem in the selection of concepts from thenéaork
process metamodel (OPF, 2005) for the OPF, Echpeeess Framework (EPF, 2006) for SPEM and Xome
(Gonzalez-Perez, 2005) for the SMSDM and a sudseOsSPICE. Therefore, there is a separate frameveoork
each one process metamodel.

Moreover, there is only a partial consensus orvtmabulary used in the different process metamodels
(Henderson-Sellers and Gonzalez-Perez, 2005) hagemted a synthesis of the different concepts imsed
activity-oriented process metamodels and theiresmondence. This comparison shows that the santecaor
be used to represent different concepts from ortamdel to another. For example, an “Activity” iREEM
does not correspond to an “Activity”: in OPF. Thel#erences can easily lead to difficulty in unstanding the
different process metamodels for method engineére,need operational and comprehensible process
metamodels quickly.

Furthermore, the vocabulary and concepts usedifieeethit from one organisation to another, becafdbe
enterprise culture, knowledge and practices catbolver the years. However, existing process meataetaa@re
not adaptable to the organisation’s vocabulary. iMi@ng a process metamodel, why should the orgtmis
not use its own vocabulary and concepts insteditioiy forced to use the existing process metantedmis?
The existing process metamodels only propose @wpaint and there are no correspondences between th
concepts of process metamodels of different viemtgoif the method engineer needs to represent many
viewpoints, he/she can only use each metamodéstblf,iand does not have the correspondences betiveie
concepts.

Finally, the majority of the process metamodelsidbpropose extension or adaptation mechanism éxcep
SPEM (OMG, 2005) and I1SO 24744 (Henderson-Selleds@onzalez-Perez, 2006b). The method engineers
cannot adapt the process metamodels needed togéeisational requirements.

The objective of this paper is to allow method eergrs to create:

- Unified,

- Multi-viewpoint,

- Fitted process metamodels.

The term “unified process metamodel” means thatallconcepts that the method engineers need tif\spee
grouped in only one metamodel, whatever the viemtsdhey specify. If the process metamodels arkedhi
they are multi-viewpoint. All the viewpoints coub@ represented in the same process metamodellyi-ihal

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

process metamodels will be fitted to the organiseti requirements. The method engineers will spehif
vocabulary they want to use, the concepts andgbecéations between these concepts.

To do this, we propose that method engineers bldthselves the process metamodel(s) that the cajam
needs, following a two-phase method as describéukeimext section.

3. The method

In this section, we present the two phases of athad (Hug et al., 2008) and the resources madtabiato
method engineers. The first phase, selection, stnef choosing the main required concepts fronptbeess
domain metamodel provided. The second phase, mfing allows method engineers to refine, complete a
extend the draft process metamodel obtained ifirstephase, by applying metamodelling patterns lmsiness
patterns.

3.1. The process domain metamodel

The process domain metamodel, visualized in Figummmprises the main concepts from the existinggss
metamodels of different viewpoints.

The concept WorkUnit is the main concept of anvitgtioriented process metamodel. A WorkUnit can own
Conditions and can be carried out by a Role. WaylliBiet comes from a product-oriented process metamod
however, we do not propose the concepts of Staté eamsition in the process domain metamodel becthey
are too detailed at this stage: these conceptadatiional detail to the basic concept of WorkPaidiihe
concepts of Issue, Alternative and Argument coramfthe decision-oriented process metamodels. Barséae
comparisons made in Table 1, we have easily linkede concepts to WorkUnit and WorkProduct. Context
Intention and Situation come from context-orienpedcess metamodels. The concept of Intention kedrto
the Strategy concept, which comes from strateggndeid process metamodels.

o.*
Strategy
.
-level = intentional 0.
Yoy source | 1 1] target
[Context 1.* 1 Intention
: -level =intentional . satisfies |-level = intentional
1
: T Y ishbuiton /:\
<<concretizes>> 1 |
1 1
! Situation |
1 N - 1
' -level = intentional \
1 1
1) 1
_ 0 * -4 objectsta |
Issue 1 -4 respondsto Alternative L L Argument 1
-level = aperational 0 -level = operational U--': < supports ! 0."jevel = operational :
. 1 1 * I
0.* o.* o 1] 0. [I
- . | <<concretizess> !
! ! k<concretizes>>
1 1 I
1 1 1
¥ contributeq to | Condition !
1 N p 1
+ |-level = operational ¥ cites)
1 I
Wwlaises ! 0x 1
o/ selects : ¥ concerns :
1 1
1 !
1 13 0. AR I L E !
) - Xoin
Role 1.~ B camiesout Work Unit Work Product
-level = operational 0~ -level = operational ! aut -level = operational
*
] S

P isresponsible for

Figure 6. The process domain metamodel.

Furthermore, we introduce two levels of abstractitimese levels of abstraction are not linked toathstraction
levels of the OMG but correspond to a more or teserete way by which to view the process. Thenitibaal
abstraction level represents the goals and obgsti¥ an ISE process, while the operational akistratevel
represents the actions needed to concretize thgsetives. These levels are useful if ISE proceaseslefined
in two steps: in the first step, the main objectiaee defined, and in the second step, the obgective detailed
and described with operational terms. The levetsatso be useful if two different kinds of actoegticipate in
the ISE process since any stakeholders of the ésssifield tend to think in terms of goals of thgaotisation

8

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

whilst information systems providers think in terofsactions. The abstraction levels are representéue
process domain metamodel as valued attributes#mabe either intentional or operational. Figuregresents
the concepts of the process domain metamodel plosatding to their viewpoint and abstraction level

Strategy Strategy
Intention
Context Context Situation
2
£
9 Decision Argument Alternative Issue
2
2
S
Product WorkProduct
Role
Activity Condition WorkUnit
Intentional Operational

Abstraction levels

Figure 7. Concepts, viewpoints and abstractionsléev
3.2. The selection phase

During the selection phase, the method engineeptaies a questionnaire (Table 2) — similarly to dpgroach

of (Henderson-Sellers and Nguyen, 2004) in selgctirethod fragments to build the process model. The
answers to the questionnaire will help to determitéch concepts are included in the draft procestamodel
and which excluded. For example, if the method mewyi answers “yes” to the first question, the dpaficess
metamodel will include the Intention concept. Egcdestion of the questionnaire corresponds to aeguraf the
process domain metamodel.

Table 2. The questionnaire

Question Synonyms, also known Concept
as, examples
Do you need to represent goals dbDbjective, goal, subgoal Intention

objectives of the ISEprocess?

Do you need to represent how aiactics, approach, manner Strategy|
intention is achieved?

Do you need to represent the situatio@ircumstance Situation
of an actor at a given moment of the

ISE process?

Do you need to represent both Context
intention and situation?
Do you need to describe problem®&roblem, toughness,lIssue
encountered during the ISE process? question, difficulty
Do you need to represent answers t#inswer, choice, Alternative
an issue? possibility, contingency,

option, dilemma
Do you need to represent an argumerRroof, reason Argument]
a proof to object or support an
alternative?
Do you need to represent somethingBroduct, document, Work

that is produced, used or modifiednodel, software, program product

1 Information Systems Engineering
9

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

during the ISE process?

Do you need to represent someone thattor, developer, analyst, Role
carries out an action during the ISEystem

process?

Do you need to represent actions th#{ctivity, phase, task, Work unit
are executed during the ISE process?work definition

Do you need to represent condition oRre-condition, post- Condition
the action? condition, constraint

When the method engineers have answered all thatigns, they obtain a draft process metamodel. HEawha
concept is integrated in the draft process metaimtieexisting associations of the process dommtamodel
are imported. If the method engineer chooses theequ of WorkUnit and then of WorkProduct; the
associations “in” and “out” would be automaticaityported into the draft metamodel.

Moreover, some concepts of the process domain noetalncannot be separated from other conceptsieee is
an existence dependency between two elements proicess metamodel. Table 3 presents the depender
concepts and their dependee concepts. For exaampldternative cannot exist without an issue, busaue can
exist without an alternative. Some concepts congilysdepend on more than one concept: a contexta@a
exist without a situation and an intention. Othenaepts depend on at least one concept; for examptde can
depend on a work unit, an alternative or a worldpod. The cardinalities in the process domain modety
represent these constraints.

When the method engineer chooses a dependee cotieegepender concept is automatically addedtih@o
draft process metamodel, in order to ensure thgttnstraint is met.

Table 3. The depender concepts and their depemheeots.

Depender Dependee
Strategy {Source Intentioh_ Target Intention}
Context {SituationL_ Intention}
Argument Alternative
Alternative Issue
Condition Work Unit
Role {Alternative L Work Unit [Work Product}

In order to facilitate the selection of conceplt® method proposes associated concepts to the anetigineer
when selecting one concept. For example, when #taad engineer chooses the WorkUnit concept, thbade
will propose him/her the concepts of WorkProducileR Condition, Issue, Alternative and StrategyisTdilows
the selection phase to be less irksome, notablyenirsy all the questions of the questionnaire.

Figure 8 represents the described above procdesvéal during the selection phase. It is represeasea MAP,
using the MAP formalism of (Rolland et al., 1999hdes represent Intentions and edges represetg@as A
MAP always begins with the “Start” Intention ana@ with the “stop” Intention. Each intention oétMAP
corresponds to a step of the selection phase.ifdtestrategy (“Yes answer”) is the only way toeigtate a
concept in the draft process metamodel. The “Depestrategy” has to be selected if there is a dbgeen
concept; if not the “Associated concept strategy"Association strategy” can be selected. The “Assted
concept strategy” permits integrating the concémas are linked with the previously selected coteeyhile the
“Association strategy” allows integrating the asations between the concepts in the draft procetammodel.
The “Improvement strategy” will allow method engénge to improve their draft process metamodels. The
“Completion strategy” is used when the draft preae&tamodel is complete. The strategies between the
intentions show that not every step is necessarygxXample, “Integrate dependee concepts” anddtate
associated concepts”.

10

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

Yes answer
strategy

Integrate a —
concept strategy
Integrate dependee
concepts

Associated conten
Associatechconcept strategy

Integrate associated
concepts
Import
associations

Association
strategy

Improvement
strategy

Associatio
strategy

Association
strategy

Completion
strategy

D Intention

—> Strategy

Figure 8. The selection phase.
3.3. The patterns

In this subsection, we present the resources ustekisecond phase of the method. These resoureatterns
of two types: metamodelling patterns and busines&ms.

3.3.1. Metamodelling patterns

A metamodelling pattern has the same purpose asigrdpattern, in the sense that a design patescrithes a
frequently occurring problem in a context and aegahrepeatable solution to resolve it (Alexand®79). We
seek the same characteristics, but as a contribtdgionetamodelling rather than design (Karagiaani Kuhn,
2002).

Many design patterns already exist, such as thed®@riented Patterns of Coad (Coad, 1992), the Besdtgn
Patterns (Gamma et al., 1995) etc. These patteeriatended to be reused at the modelling leveteHee seek
analogous patterns that can be used at the met#lingdevel. We begin by studying the publishedidas
patterns to determine if they can be reused in seayeat the metamodelling level. Then, they wilkkdd¢o be
adapted to metamodelling.

Some metamodelling patterns have already beenedefirhe MP workshop of the French-speaking conteren
IDM aims to define a metamodelling patterns catatogVP, 2007) although it should be noted thatehes
patterns do not concern process metamodelling.

The Powertype (Odell, 1994) can be used as a melgiimy pattern. This pattern allows the instantiatof
metaclasses into objects that also inherit progedf another metaclass. (Gonzalez-Perez and Hemder
Sellers, 2006b)’s approach is based on the Powepsgftern to build a process meta-model for softwar
development methodologies. The Powertype is thegdftted for metamodelling.

(Hug et al., 2007) present a metamodelling pattéenpurpose of which is similar to the Powertypéqrn. The
“Concept-Concept Category” pattern allows the aatiegtion of specific concepts and the instantiatd
properties at two modelling levels. This patterbased on the “Item-Description” pattern (Coad,2)2nd on
the Deep Instantiation idea of (Atkinson and KiH@)1). It is thus an adaptation of the “Item-Dgstan”
pattern to metamodelling. Figure 9 presents then&pt-Concept Category” metamodelling pattern. The
superscript “2” on the attribute name represergspthtency of the Deep Instantiation to indicate tha attribute
or association will be instantiated at the secoondetling level.

11

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

Concept 0* 2 1 Concept Category

-attr?buteCa category -attr?buteCCa
-attributeCb? -attributeCCb?

Figure 9. The “Concept-Concept Category” metamaugipattern.

Figure 10 shows the reuse of the “Concept-Conceafgdgory” pattern for the Work Unit concept. The Wor
Unit and Work Unit Category concepts are part efrieta-model. General attributes such as the nathe o
description of Work Unit and Work Unit Category d@mstantiated in the process models because tleeyadid
for all the process models defined within the oigation. Specific attributes as the date of begigrir the
manager of the phase are instantiated at the eaatththe process.

Work Unit 0.* 2 1 |_Work Unit Category
-name : String -name : String
catego
-optional : boolean gory -description : String
-duration? : int -maxDuration? : int
-status? : int -maxPers? : int
-beginDate? : Date
-endDate? : Date /N\
-/ manager? :Role :
N :
1 I
Analysis : Work Unit_|p.* 1 |_Phase : Work Unit Cateqory
-name = Analysis -name=Phase
catego
-optional=false gory -description = main constituent
-duration : int of a project life cycle that
-status : int produces a deliverable
-beginDate : Date -maxDuration : int
-endDate : Date -maxPers : int
- / manager : Role
/N\
N\ I
I I
] I
duration = 28 maxDuration = 60
status = complete maxPers =10

beginDate = 03/06/1008
endDate = 30/06/2008
manager = Bob

Figure 10. Reuse of the "Concept-Concept Categumatern for the Work Unit concept.
3.3.2. Business patterns

Business patterns represent process metamodeldragniProcess metamodel fragments are part ofrexist
process metamodels that method engineers canireasger to detail one or more concepts of the @ssc
metamodel developing secondary concepts. Theyearerig specifications to create solutions suitédne
given application problem in the field, here inf@tion systems engineering processes metamodeforg.
example, we may consider Figure 2 as a processmodt fragment called “State-transition” busineatgrn.
The major concept of this fragment is Product (egjeint to WorkProduct) of which the process metaghod
domain is comprised. If the method engineer wantietvelop the product-oriented viewpoint of themgess
metamodel, they can reuse the “State-transitiosir®ss pattern. The State and Transition concefitsev
integrated in their draft process metamodel, a$ agelhe associations between the concepts Prdsiiate and
Transition.

Any process metamodels presented in Section 2 eaedarded as a business pattern.

3.4. The refinement phase

12

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

During the refinement phase, the method engindectsethe concepts they need to enrich in ordendet the
organisational requirements. For each concept,¢haychoose to reuse an existing metamodellingpattr a
business pattern. They can choose a pattern bastheé problem it resolves, to its adequacy or teguency of
its use:

- The problem the pattern resolves is one of #mstdescribing it. The paper describes later tttenpa
formalism used.

- The adequacy corresponds to a subjective me#zatréne method engineers give for reusing a paftera
particular concept. This measure is given wherptbeess metamodels have been regularly used.

- The frequency of use is a statistical measurecdlaulates the ratio of the number of times agpatR has
been used for a conceptdivided by the number of times any pattern hasihesed for the concep§.d he
measure is represented in Equation 1.

R(R.C))
R R.C)

Equation 1. The frequency of use measure.
The process followed by the method engineer ir¢fisement phase is presented in Figure 11 as a.MAP
method engineers select the concept they wantrichethey can reuse a pattern or create a newrpatiat will
be validated later by experts so that it could & oy other method engineers. The method enginestest the
process as many times as necessary.
Adequacy \use strategy

compemet Select a concept
‘ to enrich
strategy
Improvement Problem
Use the “Create a strategy
Use the “Reuse a
pattern” pattern

Frequency of Improvement

strategy

Validation

Figure 11. The refinement phase.
4. The method representation

In order to represent metamodelling patterns arsihess patterns homogeneously, we also chooseresent
the method phases as process patterns. We useSilgenB formalism (Conte et al., 2002) to represdirthe
patterns. These patterns form a pattern system.

4.1. The P-Sigma formalism

P-Sigma is a formalism that allows the standar@inadf product and process representation. Thimédism
was introduced because of the increasing numbeattérns libraries offering product or processgrat whose
range and coverage are diversified (analysis, damigmplementation patterns, general, domain terpnise
patterns). Such libraries, although complementamy difficult to combine during application devetognt. This
is mainly because no common formalism for patteepsesentation exists. P-Sigma thus offers a way of
expressing a semantics that is common to the niyajairformalisms proposed in the literature, in@rtb make
a uniform expression of product patterns and ppeasierns, to make explicit the pattern seledtitarface and
to allow a better organization of patterns librar{€onte et al., 2002).

In other words, the representation of the metanliodgbatterns, business patterns and process psatbéithe
method is homogenous, which will ease their compmeton and selection. The P-Sigma formalism is amag
of three parts that comprise many items (cf. Tdble

13

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

Table 4. The P-Sigma formalism.
Pattern interface
Identification Defines the couple (problem, solution) that refeesnthe pattern
Classification Defines the pattern function through a collectioh dmmain
keywords (domain terms).

Context Describes the pre-condition of pattern application.
Problem Defines the problem solved by the pattern.
Force Defines the pattern contributions through a coiteciof quality

criteria associated to a technology.
Pattern realization

Process Indicates the problem solution in terms of a predesfollow. An
Solution activity diagram allows representing the process.

M odel Describes the solution in terms of expected pradyat class
Solution diagram and optionally a set of sequence diagram).
Application Describes application examples of the Model Sotutibhis item
Case is optional, but recommended in order to facilitatbe

understanding of the pattern solution.
Consequence Gives the consequence induced by the pattern apiplic
Patterns Relations
Uses, Refines, Requires, Alternative

The pattern interface part comprises the itemsttbht the selection of patterns. The pattern ratitin part
gives the model solution or the process solutidre fielation part describes the relationship witfeopatterns.
Not all the items can be filled for every pattgparticularly process solution and model solution.

4.2. The pattern system

The pattern system comprises:

- Process patterns, to represent the method phases,

- Metamodelling patterns, to represent design patior metamodelling,

- And business patterns, to represent process rd&lfragments.

All these patterns are represented in the P-Sigmmadlism.

We also use a tool, AGAP (Conte et al., 2002),\&lbpment environment that allows building and ngang
pattern formalisms and pattern systems. All théepas of our method are stored in the AGAP patsggtem.
Table 5 presents the process pattern correspotalihg selection phase of the method, using thegRxs
formalism.

Table 5. The Selection process pattern.

Identification Selection

Classification {process ” phase * metamodel}

Context This pattern does not need any pattern to be reused

Problem Helps choosing the needed concepts of the proceswid
metamodel, importing the dependee and associatecepts in
order to obtain a draft process metamodel

Force Guides the process through different strategiesder to obtain
a draft process metamodel.

Process Insert Figure8.tif near here

solution 1. The first step consists of answering a question tled

questionnaire.

2. If the answer is “yes”, the corresponding questioncept is
integrated in the draft process metamodel.

3. If the concept has a dependee concept, it is altemrated
into the draft metamodel.

4. If there is any associated concept, the methodneegs car
choose whether or not to integrate them at that emm

5. The associations between the concepts of the miettimodel

14

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

are integrated from the process domain metamodel.

6. If the draft metamodel needs to be improved, thecess
restarts.

7. When the draft process metamodel comprises allnthé
concepts required, the process terminates.

5. Example

Let us present a situation met by a method engineesmall business dedicated to information syste
engineering. The development team is used to wgnkith the eXtreme Programming method (Beck, 1999),
which is an activity-oriented approach. The teanulddike to add a strategy-oriented approach; cgusetly,
the method engineer has to build a new processmoekal representing:

- The intentions of the project and the stratetpeschieve them.

- A life cycle composed of phases, themselves caegof activities. Activities are carried out byeasr more
roles and produce and/or use one product. The plaaskthe activities are linked with guards if reseey.

- The different product categories, such as taagrdm etc.

As the method engineer already knows, more or \elsat is needed, the selection phase is easilynguished.
The questionnaire (Table 2) guides him/her thraihghselection of the concepts that correspondeo th
organisation’s requirements.

The following concepts are imported from the preagsmain metamodel into the draft process metamodel
Strategy and Intention, WorkUnit, Role and WorkRrotd The associations and the link of concretizatice
automatically imported into the draft process metdeth, see Figure 12.

[is

0. *
Strategy Intention
-level = intentional |0 source 1 | |evel = intentional
N target 1 7N
I I
I I
<<concretizes>> <<concretizes>>
I I
I I
I I
I 1
1 0 * 1
Role 1.* 0.* Work Unit = - Work Product
-level = operational » carries out -level = operational 1. In 0." |evel = operational
out Q.*

[o.x

P isresponsible for

Figure 12. The draft process metamodel obtaineldarselection phase.

As the process domain metamodel only containsdhe @oncepts of information systems engineeringgss, it
is easy and fast to understand it. Using the questire, the method engineers do not manipulaézilrthe
process domain metamodel: that facilitates thectete

However, the draft process metamodel does not get all the requirements since the following reguients
cannot be represented:

- The sequence of strategies and intentions

- Distinguishing a life cycle from a phase etc.,

- The composition of the phase and activities,

- The sequence or work units with a guard,

- Distinguishing a document from a program.

The refinement phase allows the method engineeorplete the process metamodel to meet the missing
requirements.

Firstly, to represent a sequence of strategiesrdadtions, the method engineer can reuse the MAghbss
pattern. This pattern is a fragment of the MAP pescmetamodel comprising the concepts of Strategy,
Intention, Section and MAP, which allow the reprga&ion of a comprehensive sequence of strategigs a
intentions.

Then, to represent the composition and the sequefngerk units, the method engineer can reuse the
metamodelling patterns “Add a composition” and “Aaldeflexive association” on the concept WorkUmhhe
method engineer can add the guard to the refleaggeciation using the metamodelling pattern “Add an
association class”.

15

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

To allow distinguishing, for example, a work prodtiat is a document from a work product that g@gram,
the method engineer needs to reuse the patterrcéppiConcept Category” on the WorkProduct condephe
same way, to distinguish a work unit that is a pHasm a work unit that is an activity, the patté@oncept-
Concept Category” has to be reused on the Worktdmitept.

The composition of work unit categories must alsaribdelled, to specify that activities compose asph

To distinguish a role that carries out an actifigm a role that only assists this activity, thetinoel engineer
adds the association “assists” between the conoéptsle and WorkUnit.

As all the associations will be instantiated atpihgcess execution level, the method engineer neesjsecify it
in the process meta-model. By applying deep insttom (Atkinson and Kiihne, 2001) on every assamiatthe
method engineer states the association will bamistted into links at the process execution lewvel not at the
process model lev&IThe superscripts “2” represent the deep instaatia

The final process metamodel is obtained at theoémige refinement phase (see Figure 13).

Section 0.2 , MAP
-level = intentional <> -level = intentional

2
2
. 2

Strateqy 0. 2 Intention
-level = intentional | 0-" ;source 1 [|evel = intentional
N target 1 0N
Guard ! !
<<concretizes>> <<concretizes>>
1 I
Te. 2 1 |
1 I
. follows [0.70."| precedés o i X
Role - _ Work Unit - N Work Product
. * N * 2 * .
-level = operational P> carries ouf® 0., -level = operational 1.% out 0." [level = operational
0.*Pp> assists? g * - 0.*
0“ , 2 2
2
category category
Work Unit Category Work Product Category
-level = operational -level = operational

Figure 13. The final process metamodel obtaingtiénrefinement phase.

The use of metamodelling patterns and businessrpatgive the method engineers wide possibilitfes o
extension, refinement and adaptation. At the beg@nof the refinement phase, method engineers rotaipa
small process metamodel only containing the sademtee concepts. It is easier to understand a espmcess
metamodel and to refine it than understanding arf@tamodel and removing the concepts that areewted.
The larger the metamodels are, the longer it &dyiko take to understand all their concepts. Qhegorocess
metamodel has been completed, the method engiaeénstantiate it to model the needed process miékel
and its strategy oriented viewpoint.

Figure 14 represents an extract of the process Inmstantiated from the process metamodel for tharming
phase of XP.

The intention of the developers is to plan theasés; they can explore potential solutions if Stevates are
uncertain. The intentions “Plan the releases” @xpfore potential solution” and the strategy “Uriagty
strategy” form a section; the sections togetherpisa the map.

The strategies “Uncertainty strategy” and “Certastrategy” are respectively concretized by theknarits
“Create a spike solution” and “Create a releasa”plBhese work units belong to the work unit catggo
“Activity”. These activities compose the phase ‘fiflang phase”, which is part of the XP lifecycle.eTactivities
are performed by a developer, and assisted bytaroas and produce a release plan (which concretii|es
intention “Plan the releases”) of schedule workdouai category, and a spike solution (which conzestithe
intention “Explore potential solution”) of the coderk product category.

2 A similar result is achievable using powertypegscg elements in the model domain are clabjecty; tan both represent
associations in the model and also links in thesamdur domain where the process enactment takes. pla
16

dx.doi.org/10.1016/}.jss.2009.05.020

Journal of Systems and Softwaréclume 82, Issue 1@ctober 2009, Pages 1730-1742

|euonesado = |aA3|-

|leuonelado =|an3)-

|euonelado =|an3|-

KioBag) pnpoy 1oNpoud }JOM 3|0y
oM 2 INPaYos AioBajea ‘uejd ases|ay o sanies - siaddopazqg o saues P
T
1
| o
1
' |euogelado =|3A3|-| AloBajea | |jeuonelado =|an3|- |euonesado =|3A3)- |euonelado =|3A3|- |euonelado =|3A3|-
|euogelado =|3A3)| - | |euonesado =|ana|- - - " " =
sysisse P - KioBaie) Jonpoid Pnpo.d Aiom o HUN AIOMIUONNIOS | i Hun A4om . Hun A10M
310y ~ ¥un:iomBuniued 4 IOM BP0 2 :uonnjos =1dg =j1ds e 331y :aseyd Buiuuely :3j0K0341| dX
113Woisny) ' aseajzie 3esl) T :

1 T 1
| 1 ' |
" " <<SZPIoU0>> " <<S3ZNIIAU0D 5> " AoBxes foBawes foBawa

<<SIPJR V005> | <<SIZHIIOU0D5 >, | \
| | ' AioBaies |euonesado =|aA3|- |euoneiado =|3A3|- |euonelado =|3A3|-
" " . «mo. KioBapg yun |—@@»{ £LioBaps jpun —p f10B332) pun
| ' | | JJomiAIn oy Adom (Eseyd Ao @ jako3

aainos _ /”\ /"\ T _ /"\

[EUoqUIUI = |3A3| - |BeUORUIIUI = [3A3|- [BUOUAWI =|3A3|-| |BUOUIIUI = [3A3|-
uolILE | LGEENTS uUo U g (uoN|oS i fBapiy
isases|al ayjue|d (ABaens fueps) 3%inos lenuajod aso|dxg (ABapi Auepsoun

_

0

0

[EUOQUEUI © [3A3] -

UoIpag:Zuoloeg
T

0

[BUORUEWI =[3A3]-

UoRoeS: | UoIpag

0

|BUOIUBIUI = [3A3)| -

dYW:Ld YW

Figure 14. Extract of the process model.

17

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

The process model clearly shows the correspondegteeeen the strategy-oriented and the activityrbeie
viewpoints. The method engineer could build thecpss model according to the organisation’s neldsks to
an adequate process metamodel.

The process model can also be represented in fieeddormalism, for a better understanding, indtebeing
represented as a class diagram. For example, Flgurepresents the strategy-oriented viewpoinhefarocess
model using the MAP formalism while Figure 16 regmats a part of the operational part of the prooexiel
using the use case formalism of SPEM and Figuneefiiesents the extract of the operational pat@fprocess
model using the activity diagram formalism of SPHBIO/IEC 24744 (1SO, 2007) recommends several diagr
types. For example, the phase and task informatiomvn in Figure 16 would be depicted on a lifecytilgram

(Figure 18), while a high-level overview of how greers, work units and work products are interteglaan be
shown on the new dependency diagram.

Plan strategy Iteration strategy

Plan the releases

Uncertainty
strategy

Certainty
strategy

Explore potential
solution

Figure 15. Extract of the intentional part of thegess model.

Information System Delivery

<<assist>>

<<perfarm>>

pper

Exploratjon F"féﬁﬁml&w
| Create a spike solution
|

l<<include>>
=

k<perform=>>

m==
Legend
») <<include>
<<include>>
R\
Planni hase
ig . Phase

Activity
orm>>

Iteratlonif(o il ; Run Acceptance tests <<assist>>

»)? ncldes
~ Sndudess

Production phase

<<assist>>

ok

Small releases

" Raole
<<assist>>
Customer

Figure 16. Operational part of the process model.
18

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

Create a release L
plan
R

Legend

Release plan

[Uncertain L.
estimates] Activity

Spike solution

[Confident
estimates]

Create a spike Work Product
solution
e
Figure 17. Extract of the operational part of thegess model.
Exploration
Planning Production

O Define requirement} lteration to release O Run acceptance
. release planning o
() Create a spike - (O Execute iteration
solution O Create a spike O Small releases
solution

() Choose a system
metaphor

Figure 18. Phases and activities from Figure 16esged using ISO/IEC 24744 notation.

Our method presents a number of advantages:

- The cost of maintaining the process domain methhds minimal. An expert in process engineering,
information systems engineering can maintain inksato technology watch in these domains. The reaarice

of the process domain metamodel is easy, as it@miyains a few concepts. Then, the impact of agddimew
concept in the process domain metamodel will ordpsists of adding a few associations between the ne
concept and the older one.

- The cost of maintaining the pattern system isiméh The users (method engineers) will add theino
patterns that experts will validate and the uselisnaturally enrich the catalogue of patterns. Argers can use
the validated patterns of the catalogue.

- The cost of education for the method users (ntedrgineers) is also minimal. The process domaitamedel

is small and its concepts are ordinary. The usaethmodelling patterns and business patterns mighte easy
for beginners but pattern modelling is a commorctica and it has often been shown that their usevat time
saving.

- The extension, refinement, adaptation of thetdredcess meta-model is unlimited. Method engineegsfree

to metamodel the process that the organisatiofly rezed. Our method allows flexibility and adaptiyp

6. Discussion

In this paper, we have presented a method to puidess metamodels for information systems engimger
thus supplying the “rigour” element sought by Bo¢t891) as noted earlier. In this section, we disaome
works related to the information systems enginggpirocess in terms of modelling levels, coveragenef
viewpoints, and thus flexibility and adaptabilitiytbe models.

6.1. Modelling levels

(Fiorini et al., 2001) present a Process Reuseitaature. This architecture allows storing, clagsij and

retrieving process frameworks, process patterm®wmmmon processes in order to reuse them to buildess
models. Our solution is different because we pr@ddnethod to build process metamodels.

19

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

(Tran et al., 2007) propose a similar approaclhéoRrocess Reuse Architecture. They provide prquassrns
to build or improve process models. To structueegfocess patterns, they defined a metamodel émeps
pattern, which is comparable to pattern formaliarmetamodel to represent the structural procesglnad
metamodel to represent the relations between theeps elements and a metamodel to represent theibetal
process model. Then, they can reuse process matrraxisting process models, in order to impravextend
them, or they can build new process models. Thdtrekthis approach is different from ours in timag¢thod
engineers work at the modelling level: they onlydifypprocess models without changing the process
metamodels.

Our proposed SMME approach utilizes ideas from Siv# indeed provides the metamodel that can underpin
method fragments from which a situational procesdeh(method) can be constructed. From originadsde
proposed by e.g. Bergstra et@985), Kumar and Welke (1992), Harmsen e{¥394), Harmsen (1997) and
Brinkkemper et al(1999), the SME literature has grown rapidly, sarhthe more recent papers being presented
at the IFIP Conference in 2007 (Ralyté et2007).

Overall, our approach is limited by the number mflecation instances. In other words, as notedexafbr the
majority of cases, SME using a pre-defined staridaddmetamodel will suffice and provide the orgatian
with benefits in both time and quality of the sifoaal method that they construct and utilize. Hegre the use
of metamodels is still in its infancy in softwanmegineering, although having matured rapidly overldst ten
years (as detailed, for instance, in Gonzalez-PamdzZHenderson-Sellers, 2008). Metamodels are rew as
central to a number of emerging areas in softwaggneering, including Model-Driven Engineering (Mpas
well as to agent-oriented software engineeringstasdardized metamodels themselves become apeidciat
understood and used more, some organizationsauii secognize the constraints of such pre-detertinima
much as over the last ten years developers haliee@she problems of a one-size-fits-all methodgiand
opted for the construction of a situated methodciMas SME has emerged from methodological thinking,
SMME will itself emerge from the same perceiveditations but at a higher level of abstraction -rameasing
level of abstraction over time being a generaldrienvery many aspects of computing, including infation
systems engineering.

6.2. Coverage

In the Process Reuse Architecture (Fiorini et2dlQ1) the definition of a process is restrictedto definition of
activity-oriented process. In (Tran et al., 20QfAgir process metamodel does not include the ptemhiented,
decision-oriented, context-oriented and strateggrded concepts. Thus, the process models prodarced
worked are only activity-oriented.

Henderson-Sellers and Gonzalez-Perez (2005) pragmocess metamodel for software development
methodologies and their enactment. This procesammeel comprises producers, work products, wortsuni
and stages. However, there are no explicit decisiontext and strategy viewpoints.

Although the published literature is indecisivetbe nature of the link between metamodels and ogies, they
are clearly closely affiliated (e.g. Gonzalez-Peaed Henderson-Sellers, 2006a) but not isomor .
therefore include in this discussion a recent aany interesting approach in which Leppanen (200&$@nts an
ontology for information systems development (ISDYis ontology aims to help understanding ISD, yriab
and comparing ISD artefacts and supporting thetioreaf new ISD artefacts. It is a low-level ontgioand no
method is provided to help building information tgyas using the ontology. This ontology compriséfedint
domains: action (activity-oriented), actor, objgmoduct-oriented) and purpose (decision and gaehted),
facilities, time and location. The context in 1SDthe composition of the seven domains, which diffeom
(Rolland et al., 1995). However, there is no dontaincerning strategy.

6.3. Flexibility

Working at the modelling level is much more regivie than working at the metamodelling level. Tliere,
approaches focusing on activity process models tdfes flexibility and adaptability than our methedhich
allows the construction of process metamodelsititdttde various viewpoints. The existing approacatessbe
appropriate only in the case when method engird®rot need to represent unusual concepts, for geaih
they only focus on the activity oriented viewpaoarfithe process models. Nevertheless, once methgidesrs
need to represent decisional concepts or intertamrecepts linked with operational concepts inttipeocess
models, there is no existing method. Our SMME apgareally satisfies the necessity for flexibikityd
adaptability according to the organisational armjqut context.

20

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

7. Conclusion

In this paper, we present different existing preamgetamodels and their main concepts, distinguistive
categories of process metamodels called viewpaaatszity, product, decision, context and stratéye expose
the different problems linked with their use andititapability to fulfil the organisation’s requinents.

For situations when standard metamodels are inadeqwe propose a method to build unified, mukéivwpoint
and fitted process metamodels. The two-phase matésctibed here uses a process domain metamodel and
patterns. The first phase, selection, allows ththotkengineer to select the main concepts neceBsanythe
process domain metamodel by using a questionnieesecond phase, refinement, allows the methoaesg
to refine and enrich the draft process metamodglingd in the first phase, reusing metamodellinggpas and
business patterns. The method engineer then ol#taiomplete process metamodel fulfilling the orgational
needs. This process metamodel can include allidvepoints if needed, and the correspondence betttresn
concepts. The method engineer can then instanitiaterocess metamodel to model the different reduir
process models.

To improve the resources, we need to define whisigth patterns can be useful to metamodelling lagid t
adapt them. The process domain metamodel can lrevegh by method engineer experts who are respansibl
for technology watch on methods, process modelgpamckess metamodels. If needed, they can add némw ma
concepts to the process domain metamodel.

Finally, the method could be implemented as a ovkfbased on the system pattern stored in the A@aPR
Future work includes the development of a CAME (@ater-Aided Method Engineering) tool (Tolvanen,
1998) to model the process metamodel and instantiakhe process model should be representedtigth
desired formalism. Industry evaluation will, in theure, supply more insights into the situatiomsvhich
SMME as well as SME will be beneficial to the origation.

Acknowledgment

We would like to express our special thanks toAksociation Frangaise des Femmes Diplomées des
Universités (AFFDU) of Grenoble branch, for itsdircial support.

This is contribution number 08/02 of the Centre@tject Technology Applications and Research of the
University of Technology, Sydney.

References

Alexander, C., 1979. The Timeless Way of BuildiGxford University Press.

Atkinson C., Kuihne T., 2001. The Essence of MulgleMetamodeling, UML'01, LNCS 2185, 19-33,
Springer, Berlin Heidelbergloi:10.1007/3-540-45441-1. 3

Australian Standard, 2004. Standard Metamodel édtwre Development Methodologies, AS 4651—2004.

Beck, K., 1999. Extreme Programming Explained: EanbrChange. Addison-Wesley Professional, Longman
Publishing Co., Inc. Boston, Massachusetts.

Bergstra, J., Jonkers, H., Obbink, J., 1985. Avéaft Development Model for Method Engineering. In
Roukens, J., Renuart, J., (Eds), Esprit'84: StRigysort of Ongoing Work, 85-94, Elsevier SciencelBhbrs,
Amsterdam.

Booch, G., 1991. Object Oriented Analysis and Desigh Application, Benjamin-Cummings Publishing
Co., Inc. Redwood City, California.

Brinkkemper, S., 1996. Method engineering: engiimgeof information systems development methods and
tools, Inf. Software Technol., 38(4), 275-280i:10.1016/0950-5849(95)01059-9

Brinkkemper, S., Saeki, M., Harmsen, F., 1999. Métalelling Based Assembly Techniques for Situationa
Method Engineering. Inf. Syst (24), 209-2@8i:10.1016/S0306-4379(99)00016-2

Cauvet, C., 2006. Modélisation des processus diingé des Systemes d'Information, Encyclopédie de
I'Informatique et des Systémes d'Information, 14425, Vuibert, Paris.

Coad, P., 1992. Object-Oriented Patterns, Commtiaitaf the ACM, ACM Press 35(9), 152-159.
doi:10.1145/130994.131006.

Conte, A., Fredj, M., Hassine, I., Giraudin, J.#®gu, D., 2002. A Tool and a Formalism to Desigd a
Apply Patterns, OOIS, LNCS 2425, 135-146, Springerjin Heidelberg.

Dowson, M., 1987. Iteration in the software pro¢c&esview of the 3rd International Software Process
Workshop, Proceedings of the 9th International €mrice on Software Engineering, IEEE Computer $pcie
Press, 36-41.

21

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

Eclipse Process Framework Project, 20@6://www.eclipse.org/epf

Finkelstein, A., Kramer, J., Goedicke, M., 1990eWPoint oriented software development, third
International Workshop on Software Engineering Bsd\pplications, 374-384.

Fiorini, S.T., Do Prado Leite, J.C.S., De Lucenal.E., 2001. Process Reuse Architecture. CAISE'BCS
2068, 284-298, Springer, Berlin Heidelberg.

Forrest, J., 2008. Business Process Oriented Remqeirts Modelling and Systems Fulfilment - a Metadblo
Driven Approach, ASWEC, Experience Report ProcegslifEEE Computer Society Press, Los Alamitos, CA,
USA, 88-97.

Gamma, E., Helm, R., Johnson, R., Vlissides, B51Design patterns -Elements of reusable objaetitad
software, Professional Computing Series, Addisorslée Longman Publishing Co., Inc. Boston,
Massachusetts.

Gonzalez-Perez, C., 2005. Tools for an Extende@@Mbjlodelling Environment, ICECCS, 20-23.
doi:10.1109/ICECCS.2005.80

Gonzalez-Perez, C., Giorgini, P. Henderson-Sellrs2008. Method construction by goal analysisBéamry,
C., Lang, M., Wojtkowski, W., Wojtkowski, G., WryazS., and Zupancic, J. (Eds), The Inter-Networked
World: ISD Theory, Practice, and Education, Sprinderlag, New York.

Gonzalez-Perez, C., Henderson-Sellers, B., 200680 wology for Software Development Methodologies
and Endeavours. In Calero, C., Ruiz F., Piattini(Ets), Ontologies in Software Engineering and\garfe
Technology, 123-152, Springer-Verlag, Berlin.

Gonzalez-Perez C., Henderson-Sellers B., 2006mwepype-based metamodelling framework, Software
and System Modeling 5(1), 72-90i:10.1007/s10270-005-0099-9

Gonzalez-Perez, C. Henderson-Sellers, B., 2007hddielogy enactment using a work product pool
approach, J. Systems and Softwal@:10.1016/].jss.2007.10.001

Gonzalez-Perez, C. ,Henderson-Sellers, B., 2008armtedelling for Software Engineering, J. Wiley &rSo
Chichester.

Grosz, G., Rolland, C., 1990. Using Artificial IHiigence Techniques to Formalize the InformatiostSgn
Design Process, DEXA 1990, 374-380, Springer, Betkidelberg.

Harel, D., 1987. Statecharts: A Visual FormulationComplex Systems, Science of Computer Programmin
8(3), 231-274.

Harmsen, A.F., 1997. Situational Method Engineerivigret Ernst & Young.

Harmsen, A.F., Brinkkemper, S., Oei, H., 1994. &ittnal Method Engineering for Information Systems
Projects. In Olle, T.W. , Verrijn-Stuart, A.A. (Bd$ethods and Associated Tools for the Informatsystems
Life Cycle, Proceedings of the IFIP WG8.1 Workingrierence Cris/94, 169-194, IFIP Transactions, &eb5.
Elsevier Science, New York.

Henderson-Sellers, B., Gonzalez-Perez, C., 20@mmMparison of four process metamodels and theiareat
of a new generic standard, Inf. Software Technol®765.d0i:10.1016/j.infsof.2004.06.001.

Henderson-Sellers, B. Gonzalez-Perez, C., 2006h®rase of extending a powertype-based methodology
metamodel, WoMM 2006, LNI P-96, 11-25.

Henderson-Sellers, B., Nguyen, V.P., 2004. Un algilde a l'ingénierie de méthodes reposant quprieche
OPEN, Génie Logiciel 70, 17-28.

Humphrey, W.S., Kellner, M. I. 1989. Software Pres&lodeling: Principles of Entity Process ModeGSE
1989, IEEE Computer Society / ACM Press, 331-342.10.1145/74587.74631.

Hug, C., Front, A., Rieu, D., 2007. Ingénierie gescessus: une approche a base de patrons, INFQRSID
471-486.

Hug, C., Front, A., Rieu, D., 2008. A Process Ergiing Method Based on Ontology and Patterns. IJSOF
(ISDM/ABF), 29-36.

ISO/IEC 24744, 2007. Software EngineerirgMetamodel for Development Methodologies.

Jarke, M., Mylopoulos, J., Schmidt, J.W., Vassilizuy, 1992. DAIDA: An Environment for Evolving
Information Systems, ACM Transactions on Informat8ystems 10(1), 1-500i:10.1145/128756.128757.

Karagiannis, D., Kiihn, H., 2002. Metamodelling fdams, in E-Commerce and Web Technologies, LNCS
2455, 451-464, Springer-Verlag, Berlin.

Kruchten, P., 2000. The Rational Unified Processimroduction. Addison-Wesley, Longman Publishing
Co., Inc. Boston, Massachusetts.

Kumar, K., Welke, R.J., 1992. Methodology EnginegriA Proposal for Situation-Specific Methodology
Construction. In Cotterman, W.W., Senn, J.A. (E@)allenges and Strategies for Research in Systems
Development, 257-269, John Wiley & Sons: Chichediit.

22

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

Kunz, W., Rittel, H.W.J., 1970. Issues as elemehtaformation systems. Working Paper 131, Heidedbe
Berkeley.

Leppénen, M. 2007. Towards an Ontology for InfolioraSystems Development — A Contextual Approach.
In: Siau K. (ed.) Contemporary Issues in Databassidh and Information Systems Development, I1GI
Publishing, New York, 1-36.

Mi, P., Scacchi, W. 1996. A meta-model for formirgtknowledge-based models of software development.
Decis. Support Syst. (17), Elsevier Science PubtsB. V., 313-33@0i:10.1016/0167-9236(96)00007-3

MP, Bonnes pratiques de métamodélisation et paponsla méta-modélisation, 200#tp://planet-
mde.org/idmQ7/

Odell J., 1994. Power Types. JOOP 7(2), 8-12.

OMG, 2005. Software Process Engineering MetamopletiBcation. Version 1.1.

OMG, 2007. Unified Modeling Language: Superstruetiversion 2.1.1.

OOSPICE, Software Process Improvement and Capabiéitermination for Object- Oriented/ Component-
Based Software Development, 200&vw.00spice.com

Open Process Framework, 2008p://www.opfro.org

Plihon, V., 1996. Un environnement pour I'ingéngedies méthodes. Ph.D. Thesis, University of PaRslis,
France.

Potts, C., 1989. A generic model for representiegjigh methods, ICSE '89, ACM Press, 217-226.
d0i:10.1145/74587.74616

Potts, C., Bruns, G., 1988. Recording the ReasmmBdsign Decisions, ICSE’'88, IEEE Computer Society
Press, 418-427.

Ralyté, J., Brinkkemper, S., Henderson-Seller{H8s), 2007. Situational Method Engineering:
Fundamentals and Experiences. Proceedings of tRM& 8.1 Working Conference, 12-14 September 2007,
Geneva, Switzerland, IFIP Series, Vol. 244, SprinBerlin.

Rolland, C., 1998. A comprehensive view of proaasgineering, CAISE’'98, LNCS 1413, 1-24, Springer,
Berlin Heidelberg.

Rolland, C., Nurcan, S., Grosz, G., 2000. A deaisitaking pattern for guiding the enterprise knowgked
development process, Inf. Software Technol. 4353-331.d0i:10.1016/S0950-5849(99)00089-0

Rolland, C., Prakash, N., Benjamen, A., 1999. AtMdlodel View of Process Modelling, Requirements
Engineering 4(4), 169-18d0i:10.1007/s007660050018

Rolland, C., Souveyet, C., Moreno, M., 1995. An Agach for defining ways-of-working, Information
System Journal 20(4), 337-358i:10.1016/0306-4379(95)00018-Y

Schwaber, K., Beedle, M., 2001. Agile Software Depment with SCRUM, Prentice Hall, Upper Saddle
River, New Jersey.

Tolvanen, J.-P., 1998. Incremental Method Engimeewith Modeling Tools. Dissertation, Jyvaskyla Bas
in Computer Science, Economics and Statistics, ¥6l.University of Jyvaskyla, Finland.

Tran, H. N., Coulette, B., Dong, B. T., 2007. Mddg|Process Patterns and Their Application, ICSEA'0
IEEE Computer Society, 15-280i:10.1109/ICSEA.2007.52

Zoukar, I., Salinesi, C., 2004. Using goal/stratetgps to reduce the language disparity issue in ERP
projects. In Grundspenkis, J., Kirikova, M. (Ed&howledge and Model Driven Information Systems
Engineering for Networked Organisations, Procees]iBg85-339, Vol. 2. Faculty of Computer Science and
Information Technology, Riga.

Zoukar, 1., 2005. MIBE : Méthode d’Ingénierie dessBins pour I'implantation d'un progiciel de gestio
intégré (ERP). Ph.D. Thesis, University of PariRdyis, France.

Charlotte Hug is PhD Student in Information Systetnthe Laboratory of Informatics of Grenoble (Li&)d
Joseph Fourier University (Grenoble, France) wiséeetook her master’s research degree in 2006rgdearch
areas include information systems engineering,ga®metamodelling and development methods. Shsois a
junior lecturer at Pierre Mendeés France University.

Agneés Front is an assistant professor at Pierredéefrance University since 1998. Her researcheisite
concern reuse-based information systems enginegrattgrns based approaches, components based
development methods, business process and sebadsed development methods, MDE approach. She is co-
responsible of the working group MADSI (MéthodesaAeées de Développement de Systémes d’Information)
in theme 3 of GDR 13 and member of the executivarittee of INFORSID association.

23

dx.doi.org/10.1016/}.jss.2009.05.020
Journal of Systems and Softwaréolume 82, Issue 1@ctober 2009, Pages 1730-1742

Dominique Rieu is full professor at Pierre Mendésriee University. She is joint director of Laboratof
Informatics of Grenoble (LIG) and vice-presiderfoimation System of Pierre Mendés France Universisr
research interests concern information systemsieaging (reuse, traceability and variability) amelopment
methods (process modelling, process reuse). Skespsnsible of theme 3 of GDR I3 (engineering fui By
models in information systems) and member of INFOIR&ecutive committee.

Brian Henderson-Sellers is the Director of the @efdr Object Technology Applications and Reseaath
Professor of Information Systems at the Universftfechnology, Sydney (UTS). He is author or editb27
books and is well-known for his work in object-aried and agent-oriented methodologies (MOSES, COMMA
OPEN, OOSPICE, FAME), objectoriented metrics andamedelling. More recently, he has chaired workshop
on these topics at OOPSLA and AOIS (Agent-Oriemitddrmation Systems). He is Editor of the Interoatl
Journal of Agent-Oriented Software Engineering andhe editorial board of Journal of Object Teclgyl
Software and Systems Modeling and Internationatridwf Cognitive Informatics and Natural Intelligee. In
July 2001, Professor Henderson- Sellers was awad#attor of Science (DSc) from the University @indon
for his research contributions in object-orientegtimdologies.

24

