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Abstract

Specification mutation involves mutating a specification, and for each mutation a test is
derived that distinguishes the behaviours of the mutated and original specifications. This
approach has been applied with finite state machines based models. This paper extends
mutation testing to finite state machine models that contain non-functional properties. The
paper describes several ways of mutating a finite state machine with probabilities (PFSM)
or stochastic time (PSFSM) attached to their transitions and shows how test sequences
that distinguish between them and their mutants can be generated. Testing then involves
applying each test sequence multiple times, observing the resultant output sequences and
using results from statistical sampling theory in order to compare the observed frequency
of each output sequence with that expected.
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1 Introduction

Traditionally formal methods have concentrated on the representation of the func-
tional behaviour of the systems. Such models are an effective way of representing
the required functional properties of the system under test but do not allow us to
express desired non-functional properties such as time, probabilities or resources.
Several formalisms were extended in order to deal with these kind of properties.
The new languages allow the explicit representation of the probability of perform-
ing a certain task [34,22,15,11,44] as well as the time consumed by the system
while performing tasks, being it either given by fix amounts of time [47,43] or
defined in probabilistic/stochastic terms [28,6,37,9].

The models used in this paper include probabilities and stochastic time. Many sys-
tems have real-time constraints and thus the inclusion of time is important. Prob-
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abilities are highly relevant where resources are shared and so Quality of Service
requirements can be probabilistic. In addition, many systems are probabilistic in na-
ture due to either the use of communications over an unreliable medium or through
the system consisting of several threads or parallel components and there being
different possible synchronization sequences (see, for example, [36]). There are
also a number of communications protocols, such as Bluetooth and Ethernet, that
have probabilistic requirements [18]. Finally, in order to reason about embedded
systems, which are state-based, it is often necessary to use probabilities (see, for
example, [42]).

In order to specify systems dealing with probabilities we will use Probabilistic
Finite State Machines (PFSMs) that are finite state machines with probabilities at-
tached to their transitions. Intuitively, a transition in a finite state machine indicates
that if the machine is in a state s and receives an input i then it can produce an
output o and change its state to s′. An appropriate notation for such a transition

could be s
i/o
−−→ s′. If we consider a probabilistic extension of finite state machines,

a transition s
i/o/p
−−−−→ s′ indicates that the probability with which the event happens

is p. We consider a variant of the reactive interpretation of probabilities (see for ex-
ample [34]) since it is the most suitable for our framework. Intuitively, a reactive in-
terpretation imposes a probabilistic relation among transitions labelled by the same
action but choices between different actions are not quantified. In our setting we
are able to express probabilistic relations between transitions outgoing from a state
and having the same input action (the output may vary). For example, let us sup-

pose that the transitions from state s are t1 = s
i1/o1/p1

−−−−−−−→ s1, t2 = s
i1/o2/p2

−−−−−−−→ s2,

t3 = s
i1/o3/p3

−−−−−−−→ s2, t4 = s
i2/o1/p4

−−−−−−−→ s3, and t5 = s
i2/o3/p5

−−−−−−−→ s1. If input
i1 is received then the choice between t1, t2, and t3 will be resolved according to
probabilities p1, p2, and p3. Naturally, these values must lie between 0 and 1 and
their sum should be 1. Something similar happens for t4 and t5. However, there
does not exist any probabilistic relation between transitions labelled with different
input actions (e.g. t1 and t4).

Regarding stochastic models, the main idea is that time information is incremented
with some kind of probabilistic information. There are several proposals for timed
testing (e.g. [39,14,27,54,19]). In these works time is considered to be determinis-
tic. Even though the inclusion of time allows the specifier to give a more precise
description of the system to be implemented, there are frequent situations that can-
not be accurately described by using fixed amounts of time. For example, we may
desire to specify a system where a message is expected to be received with proba-
bility 1

2
in the interval (0, 1], with probability 1

4
in (1, 2], and so on. Such properties

are more general that the usual deterministic time where we could only specify that
the message arrives at a particular time in the interval (0,∞). As we have already
mentioned, there are several stochastic extensions of classical formal models, as
process algebras and Petri Nets. However, stochastic testing techniques are very
recent. Among the works in this field we note out [5,37,41,4,40], where extensions
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of the classical theory of testing [17,23] are given.

In order to deal with stochastic time we consider a suitable extension of PFSM,
Probabilistic-Stochastic Finite State Machines (PSFSMs). In this formalism the
time consumed between the input being applied and the output being received is
given by random variables. That is, instead of having expressions such as “the ac-
tion o takes t units of time to be performed” we will have expressions such as “with
probability p the action o will be performed before t units of time”. Thus the inter-

pretation of a transition s
i/o/p
−−−−→ ξ s

′ is “if the machine is in state s and receives an
input i, then with probability p it will produce the output o and it will change its
state to s′ before an amount of time t with probability P (ξ ≤ t) ”.

After describing the formalisms to deal with these concepts we present a testing
methodology based on mutation testing. Originally mutation testing was applied
to code [30,8] but some work has looked at specification mutation [10]. Here the
specification is mutated and for each mutant a test is derived that distinguishes
the behaviours of the mutated and original specifications. The effect is to ensure
that the implementation under test (IUT) does not implement any of the incorrect
specifications. Mutations are chosen in order to simulate real faults. The belief
is that if a test suite distinguishes between the specification and mutants then it
distinguishes between the specification and any faulty IUT. We describe different
mutation operators that can be applied to a PFSM specification. Additionally, we
present approaches to finding input sequences in order to distinguish the mutants
and the specification.

This paper concerns black-box testing; if we apply an input to an IUT then we
observe an output but we cannot see the probabilities that the IUT has assigned
to the choices. Thus, even though implementations will behave according to fixed
probabilities we cannot determine their values through testing. In our approach,
we estimate the probabilities by applying a test several times. We use statistical
results to establish the number of times we need to apply the test to obtaining a
required confidence level. Some of the results appearing in this paper have appeared
in [25]. The main contribution of this paper with respect to this previous work is to
extend the formalisms and results appearing in these papers to deal with stochastic
time. It transpires that the problem of deciding whether two PFSMs or PSFSMs are
equivalent can be decided in polynomial time. This is important since the equivalent
mutant problem causes significant problems in traditional mutation testing but it
disappears for the models considered in this paper.

The rest of the paper is organized as follows. In the next section we introduce pre-
liminary concepts and the notion of a PFSM. In Section 3 we show how we can
produce input sequences that distinguish states of a PFSM. In Section 4 we intro-
duce mutation operators for PFSMs and corresponding test generation methods. In
Section 5 we describe how testing can use input sequences produced by the meth-
ods in Section 4. In Section 6 we extend the PFSM in order to deal with stochastic
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time, introducing the notion of PSFSM. In Section 7 we show how we can produce
input sequences that distinguish states of a PSFSM. An algorithm for determining
if two PSFA are equivalent is presented. In Section 8 we present a new mutation
operator for PSFSM and describe the generation of tests for distinguish the mutant
and the original machine. In Section 9 we review previous works on testing prob-
abilistic systems. Finally, in Section 10 we present our conclusions and some lines
of future work.

2 Preliminaries

2.1 Basic notation

In this paper sequences are represented by listing their elements preceded by 〈,
followed by 〉, and separated by commas. Where a variable represents a sequence its
name will have a bar above it, an example being ā. In addition, [0, 1] denotes the set
{p | 0 ≤ p ≤ 1} of numbers that could represent probabilities, (0, 1] denotes the set
{p | 0 < p ≤ 1} of numbers that could represent positive probabilities, and (0, 1)
denotes the set of values strictly between 0 and 1 and so (0, 1) = {p | 0 < p < 1}.

Definition 1 Given set X , P(X) denotes the powerset of X: the set of subsets of
X . Thus, P(X) = {X ′|X ′ ⊆ X}. Given set W of sequences, Pre(W ) = {x̄′|∃x̄ ∈
W, x̄′′ ∈ X∗.x̄ = x̄′x̄′′} denotes the set of prefixes of sequences from W . Given
sets A and B, A ↔ B denotes the set of relations between A and B. Given a
relation f of type A ↔ B and a ∈ A, a is related to b under f is denoted by
f(a, b) and f(a) denotes the set of elements of B related to a under f and so
f(a) = {b ∈ B|f(a, b)}.

2.2 Mutation testing

The idea behind mutation testing is that if a test suite distinguishes a program P
from other similar programs then it is probably good at discovering faults. The
technique introduces small changes in a program, one at a time, to generate a set
of mutants. We produce mutants by applying one or more mutation operators to a
given program. In general, P ′ is an nth order mutant if it is produced by applying
a sequence of n mutation operators. Usually only first order mutants are consid-
ered and two arguments are used to justify this. First, the competent programmer
hypothesis states that expert programmers often write almost correct programs, so
low order mutants represent most real faults. Second, if the tests find small differ-
ences generated by low order mutants, then it is likely that they find more complex
differences. This is called the coupling effect.
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After we have obtained a collection of mutants from a program, a set of tests T is
applied to distinguish each of the mutants from the original program. If the output
produced by a mutant P ′ is different to the one produced by the original program
P for test t ∈ T , then t kills P ′. If no possible test case kills P ′, then P ′ is an
equivalent mutant of P . The objective of mutation analysis is to produce test cases
that kill all non-equivalent mutants. Test suites that achieve this goal are adequate
relative to mutation.

Another strategy given in [10] is specification mutation. The specification is mu-
tated, and for each mutation a test is derived that distinguishes the behaviours of
the mutated and original specifications. The effect is to ensure that the system un-
der test does not implement any of the incorrect specifications. The mutations are
chosen in order to simulate real faults and thus the belief is that a test suite that
kills the mutants will not be passed by a faulty system. This approach has also been
applied with finite state machines based models [50,49,51,55].

2.3 Finite Automata

A Finite Automaton (FA) N is defined by a tuple (S, s0, A, δ, SF ) in which S is a
finite set of states, s0 ∈ S is the initial state, A is the finite alphabet, δ : S×A↔ S
is the state transfer relation, and SF ⊆ S is the set of final states. If N receives a ∈
A when in state s ∈ S it moves to a state s′ ∈ δ(s, a) and this defines a transition
(s, s′, a). The relation δ can be extended to take sequences from A∗, giving relation
δ∗, in the usual way. FAN is a deterministic finite automaton (DFA) if for all a ∈ A
and s ∈ S, |δ(s, a)| ≤ 1.

State s of N defines the language LN(s) = {ā ∈ A∗|δ∗(s, ā) ∩ SF 6= ∅} of words
that can take N from s to a final state. Word ā ∈ A∗ distinguishes states s and s′

of N if ā is in exactly one of LN(s) and LN(s′). If no word distinguishes s and s′

then they are equivalent. Two FA are equivalent if their initial states are equivalent.
DFA N is minimal if no DFA with fewer states is equivalent to N .

A Probabilistic Finite Automaton (PFA)N is defined by a tuple (S, s0, A, δ, SF , prob)
in which S is a finite set of states, s0 ∈ S is the initial state, A is the finite alphabet,
δ : S × A ↔ S is the state transfer relation, SF ⊆ S is the set of final states,
and prob is the transition probability function of type S × A × S → [0, 1]. If N
receives a ∈ A when in state s ∈ S it moves to a state s′ ∈ δ(s, a) with probability
prob(s, a, s′) and this defines transition (s, s′, a). The relation δ can be extended to
take sequences from A∗, giving δ∗, in the usual way.

Definition 2 Let N = (S, s0, A, δ, SF , prob) be a PFA and let s, s′ be states of N .
Then ā ∈ A∗ distinguishes states s and s′ if the string ā is accepted from states s
and s′ with different probabilities. States s and s′ are equivalent if no string from
A∗ distinguishes them.
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2.4 Probabilistic finite state machines

A non-deterministic finite state machine (NFSM) is a FA in which each transition
has an associated output. An NFSM is defined by a tuple (S, s0, X, Y, f) in which
S is a finite set of states, s0 ∈ S is the initial state, X is the finite input alphabet,
Y is the finite output alphabet, and f is the transition relation. For each state s ∈ S
and input x ∈ X , f(s, x) denotes a set of tuples of the form (s′, y) in which s′ ∈ S
and y ∈ Y . Given (s′, y) ∈ f(s, x), (s, s′, x/y) is a transition and this should be
interpreted as meaning that if we receive input x while in state s then we can move
to state s′ and produce output y. A deterministic finite state machine (DFSM) is an
NFSM in which for every state s and input x, |f(s, x)| ≤ 1. There has been much
interest in testing from a DFSM (see, for example, [13,26,3]) or an NFSM (see, for
example, [38,46,31,24]). See [35] for a survey.

A probabilistic finite state machine (PFSM) is an NFSM in which every transition
also has an associated probability.

Definition 3 A PFSM M is defined by a tuple (S, s0, X, Y, h) in which S is a finite
set of states, s0 ∈ S is the initial state, X is the finite input alphabet, Y is the
finite output alphabet, and h : S ×X ↔ S × Y × (0, 1] is the transition relation.
For each state s ∈ S and input x ∈ X , h(s, x) denotes a set of tuples of the form
(s′, y, p) in which s′ ∈ S, y ∈ Y , and p ∈ (0, 1] 1 . For all s ∈ S and x ∈ X ,
∑

(s′,y,p)∈h(s,x) p = 1.

If (s′, y, p) ∈ h(s, x) then (s, x, y, s′, p) is a transition of M with starting state s.
The probabilities should be interpreted in the following way. If (s′, y, p) ∈ h(s, x)
and M receives input x when in state s then with probability p it moves to state s′

and produces output y. For a survey on probabilistic automata see [58].

It is worth noting that there cannot exist s, x, y, s′ and two different probabilities
p1 and p2 such that (s′, y, p1) ∈ h(s, x) and (s′, y, p2) ∈ h(s, x). Naturally, any
such pair of transitions can be represented by means of a unique transition which
associated probability p1 + p2.

Example 1 Let us consider the probabilistic finite state machine depicted in Fig-
ure 1. Each transition has an associated probability. We can observe that all the
transitions from state s2 have probability 1. In contrast, for the state s1 we have
the transitions (s1, i2, o1, s2,

1
4
) and (s1, i2, o2, s3,

3
4
) with input i2; naturally their

probabilities sum to 1.

An alternative characterization of the transitions ofM is through a function pM that
provides us with the probability associated with a transition.

1 An equivalent but less compact representation would include in h(s, x) the transitions
with probability 0.
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Figure 1. A PFSM

Definition 4 Let M = (S, s0, X, Y, h) be a PFSM. We define the function pM :
S ×X × Y × S → [0, 1] as:

pM(s, x, y, s′) =















p if ∃ p : (s′, y, p) ∈ h(s, x)

0 otherwise

Given states s and s′, input x and output y, pM(s, x, y, s′) is the probability that
M moves to state s′ and produces output y if it receives input x when in state s.
Naturally h and pM fully define one another since (s′, y, p) ∈ h(s, x) ⇔ p >
0 ∧ pM(s, x, y, s′) = p.

We can extend the transition relation h to input sequences, producing relation h∗ of
type S ×X∗ ↔ S × Y ∗ × (0, 1]. It is simplest to first define p∗M and express h∗ in
terms of p∗M . A similar approach has been applied for PFA (see, for example, [58]).

Definition 5 Let M = (S, s0, X, Y, h) be a PFSM. Given input/output sequence
x̄/ȳ and state s ∈ S we define the probability of reaching state s′ from s with x̄/ȳ
as:

p∗M(s, ε, y, s′) =











1 if y = ε and s′ = s,

0 otherwise

p∗M(s, x̄x, ȳy, s′) =
∑

s′′∈S

p∗M(s, x̄, ȳ, s′′)pM(s′′, x, y, s′)

Let us note that p∗M(s, x̄, ȳ, s′) is 0 whenever |x̄| 6= |ȳ|. In a slight abuse of notation
p∗M(s, x̄, ȳ) denotes the probability thatM produces output sequence ȳ if it receives
input sequence x̄when in state s. Thus, p∗M(s, x̄, ȳ) =

∑

s′∈S p
∗
M(s, x̄, ȳ, s′). We can

now extend the transition relation h to input sequences.

h∗(s, x̄) = {(s′, ȳ, p)|p = p∗M(s, x̄, ȳ, s′) ∧ p > 0}
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PFSMM is observable, or output-complete, if for every state s, input x and output y
there is at most one transition leaving s with input x and output y. In this paper we
consider both observable PFSMs (OPFSMs) and PFSMs that are not observable.
PFSM M is completely specified if for every state s and input x, |h(s, x)| ≥ 1
holds.

Some systems have a special operation called a reset that takes the system to its
initial state irrespective of the current state. The IUT has a reliable reset if it has
a reset that is known to be correct. A reliable reset could represent some way of
resetting the IUT, such as switching it off and then on again. In this paper we
assume that the IUT has a reliable reset.

Two states of an NFSM or DFSM are equivalent if they define the same sets of
behaviours: the same set of input/output sequences. For two states of an PFSM
to be equivalent we need that they define the same sets of behaviours with the
same probabilities. Thus, states s and s′ of PFSM M are equivalent if for every
input sequence x̄ ∈ X∗ and output sequence ȳ ∈ Y ∗, we have that p∗M(s, x̄, ȳ) =
p∗M(s′, x̄, ȳ). If s and s′ are not equivalent then they are distinguishable. Two PFSMs
are equivalent if their initial states are equivalent. If there exists some ȳ ∈ Y ∗ such
that p∗M(s, x̄, ȳ) 6= p∗M(s′, x̄, ȳ) then x̄ is said to distinguish s and s′. M is minimal
if no PFSM with fewer states that M is equivalent to M .

Let us suppose that we are testing a black box that is equivalent to M and we
know that we are either in state s or in state s′. If x̄ distinguishes s and s′ then
it can be used to determine the state if we can apply it in the current state multi-
ple times since we can estimate the probability of each output sequence and the
corresponding probabilities are different for s and s′. If we have a reset then we
could repeat the following separated by resets: apply the test sequence that led to
the current state and then apply x̄. If we are to apply an input sequence x̄ once only
to distinguish two states s and s′ then we need a stronger concept: the input of x̄
must be guaranteed to lead to different output sequences from s and s′ and thus the
corresponding sets of possible output sequences must be disjoint.

When reasoning about testing it is normal to assume that the IUT behaves like an
unknown element of a fault model (see, for example [32]). Usually the fault model
contains descriptions written in the same language as the specification. Thus, for
example, when testing from a DFSM it is normal to assume that the IUT behaves
like an unknown DFSM. Conformance relations can then be formally defined. Here
we briefly review the conformance relations for testing from a (completely speci-
fied) DFSM or NFSM.

When testing from a completely specified NFSM there are two notions of correct-
ness. One notion is equivalence, but an alternative is that every behaviour of the
IUT is also a behaviour of the specification and that the IUT is completely speci-
fied. The assignment of probabilities to transitions removes the possibility of using
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the second notion of correctness for NFSMs and thus when testing from a PFSM
the IUT is correct if it behaves like an unknown PFSM N that is equivalent 2 to M .

3 Distinguishing states of a PFSM

This section shows how we can produce an input sequence that distinguishes two
states of PFSM M . We first consider the case where M is observable and show
that here the problem can be represented in terms of finding a sequence that distin-
guishes two states of a FA. We then consider the general case.

Definition 6 Let M = (S, s0, X, Y, h) be a PFSM. We define a FA F (M) =
(S, s0, A, δ, S) where A is X × Y × (0, 1] and given s ∈ S, x ∈ X , y ∈ Y ,
and p ∈ (0, 1], δ(s, (x, y, p)) = s′ if and only if (s′, y, p) ∈ h(s, x).

Given ā ∈ A∗, let in(ā) denote the corresponding input sequence. The function in
can be defined recursively in the following way. First, the base case is in(ε) = ε.
Given a = (x, y, p) ∈ A and ā ∈ A∗, in(aā) = xin(ā). The following show that
algorithms that produce sequences that distinguish states of a FA can also be used
to produce sequences that distinguish state of an OPFSM.

Proposition 1 If input sequence x̄ distinguishes states s and s′ of OPFSM M then
there is some ā ∈ A∗ such that ā distinguishes states s and s′ of F (M) and in(ā) =
x̄.

Proof :

Let us suppose that x̄ distinguishes states s and s′ of M . By definition, there exists
ȳ ∈ Y ∗ such that p∗M(s, x̄, ȳ) 6= p∗M(s′, x̄, ȳ). Without loss of generality, assume
that p = p∗M(s, x̄, ȳ) > 0.

Since M is observable, there is only one walk in M from state s with input/output
sequence x̄/ȳ. Let 〈t1, . . . , tk〉 (k = |x̄|) denote the sequence of transitions on
this walk and for each ti = (si, xi, yi, si+1, pi) let ai = (xi, yi, pi) and let ā =
〈a1, . . . , ak〉. If there is no walk from s′ in M with input/output sequence x̄/ȳ then
ā does not label a walk from state s′ of F (M) and so ā distinguishes states s and s′

of F (M) as required. Alternatively, if there is a walk from s′ inM with input/output
sequence x̄/ȳ then there is only one such walk so since p∗M(s, x̄, ȳ) 6= p∗M(s′, x̄, ȳ),
ā does not label a walk from state s′ of F (M) and so ā distinguishes states s and s′

of F (M) as required.

2 A richer set of conformance relations have been defined for general probabilistic state
machines (see, for example, [52,59]).
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Proposition 2 Given an OPFSM M and ā ∈ A∗ such that ā distinguishes states s
and s′ of F (M), if no proper prefix of ā distinguishes s and s′ and in(ā) = x̄ then
x̄ distinguishes states s and s′ of M .

Proof :

Let us suppose that ā distinguishes states s and s′ of F (M) and no proper prefix of
ā distinguishes s and s′. Let ā = 〈a1, . . . , ak〉, ai = (xi, yi, pi), x̄ = 〈x1, . . . xk〉 and
ȳ = 〈y1, . . . , yk〉. Without loss of generality, ā labels a walk from state s of F (M)
and does not label a walk from state s′ of F (M).

Since M is observable, there is only one walk in M from state s with input/output
sequence x̄/ȳ. If x̄/ȳ does not label a walk from state s′ of M then by definition
x̄ distinguishes states s and s′ of M as required. We thus assume that x̄/ȳ labels
a walk from state s′ of M and that this walk consists of the sequence 〈t′1, . . . , t

′
k〉

of transitions. Let p′i denote the probability associated with transition t′i. Since no
proper prefix of ā distinguishes s and s′ and so 〈a1, . . . , ak−1〉 labels a walk from s′

in F (M) we have that pi = p′i for 1 ≤ i < k. Since ā does not label a walk from s′

in F (M), pk 6= p′k. Thus, p∗M(s, x̄, ȳ) = p1 . . . pk 6= p′1 . . . p
′
k = p∗M(s′, x̄, ȳ) and so

x̄ distinguishes states s and s′ of M as required.

Note the condition that no proper prefix of ā distinguishes s and s′. To see why we
require this suppose that ā = (x1, y1, 0.5)(x2, y2, 0.5), ā labels a walk from s, and
there is a walk with label (x1, y1, 1)(x2, y2, 0.25) from state s′. Then ā distinguishes
states s and s′ of F (M), since ā labels a walk from s but not s′. However, the input
sequence x1x2 might not distinguish between states s and s′ of M since both states
have a probability of 0.25 of producing y1y2. Naturally, if we consider the minimal
prefix of ā that distinguishes states s and s′ of F (M) then the corresponding input
sequence x1 does distinguish between states s and s′ of M .

Proposition 3 There is an algorithm running in time O(n2) that takes two states
s1 and s2 of OPFSM M and determines whether they are equivalent, where n is the
number of states of M . If s1 and s2 are distinguishable then the algorithm returns
a minimal input/output sequence of length no more than n − 1 that distinguishes
them.

Proof :

Since F (M) is a minimal FA, there exists a set of sequences of length at most n−1
that pairwise distinguish the states of F (M) and such a set can be found in O(n2)
time (see, for example, [21]). The result thus follows from Proposition 2.
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More general results have been proved for probabilistic FA that are not determin-
istic and thus for PFSM that are not observable 3 . The following has been proved
[56].

Theorem 1 There is an algorithm running in time O((n1 + n2)
4) that takes two

probabilistic automata U1 and U2 and determines whether U1 and U2 are equiva-
lent, where n1 and n2 are the number of states of U1 and U2 respectively. Further-
more, if U1 and U2 are not equivalent then the algorithm outputs the lexicograph-
ically minimum string that is accepted by U1 and U2 with different probabilities.
This string will always be of length at most n1 + n2 − 1.

We now show how this result can be applied to PFSMs.

Definition 7 Given PFSM M = (S, s0, X, Y, h) we can define a PFA FP (M) =
(SE, s0, A, δ, S, prob) in which

(1) SE = S ∪ {sE} where sE 6∈ S.
(2) The alphabet A is X × Y .
(3) Given s ∈ S , x ∈ X , y ∈ Y , and p ∈ (0, 1], δ(s, (x, y)) = s′ and

prob(s, (x, y), s′) = p if and only if (s′, y, p) ∈ h(s, x).
(4) Given s ∈ S , x ∈ X , and y ∈ Y we have δ(s, (x, y)) = sE and prob(s, (x, y), sE) =

p if and only if p > 0 and p = 1−
∑

(s′′,y,q)∈h(s,x) q.

It is worth to note that we need to adjust probabilities when we define the associ-
ated PFA. In our framework, the probabilities attached to the transitions outgoing
from a state and labelled with the same input action sum up to 1. If we only trans-
late the transitions with the associated probabilities and actions to the automaton,
it may happen the sum is less than 1 for a label (x, y). Let us consider a machine
with three transitions outgoing from a state s: (s, i1, o1, s1,

1
4
), (s, i1, o1, s2,

1
2
), and

(s, i1, o2, s3,
1
4
). Then, in the associated automaton we would have that, for exam-

ple, the probabilities of the transitions labelled with action (i1, o1) sum up to 3
4
. We

adjust it when we define the associated automaton, including a new state sE , an
“error state”, and creating a new transition from each state and action outgoing
from it, whose probabilities do not add up to 1. Each such transition has sE as its
final state, has a label with the corresponding action, and has attached a probabil-
ity equal to the amount required to reach probability 1. In our example, we create
three transitions in the automaton outgoing from the state s for the label (i1, o1):
(s, i1, o1, s1,

1
4
) and (s, i1, o1, s2,

1
2
), corresponding to the ones in the PFSM and

an additional transition (s, i1, o1, sE,
1
4
). In this way, the probabilities of the tran-

sitions outgoing from state s1 and labelled with (x, y) sum to 1. Let us point out
that the new error state is not a final state. The following results are an immediate
consequence of Definitions 2 and 7.

3 A PFSM is observable if and only if the corresponding FA is deterministic.
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Proposition 4 If input sequence x̄ distinguishes states s and s′ of PFSM M then
there is some ā ∈ A∗ such that ā distinguishes states s and s′ of PFA FP (M) and
in(ā) = x̄.

Proposition 5 Given PFSM M and input sequence x̄, if there is some ā ∈ A∗ such
that ā distinguishes states s and s′ of FP (M), no proper prefix of ā distinguishes s
and s′, and in(ā) = x̄ then x̄ distinguishes states s and s′ of M .

Proposition 6 There is an algorithm running in time O((n1 + n2)
4) that takes as

input two PFSMs M1 and M2 and determines whether M1 and M2 are equivalent,
where n1 and n2 are the number of states of M1 and M2 respectively. If M1 and
M2 are not equivalent then the algorithm outputs the lexicographically minimum
input/output sequence for which M1 and M2 have different probabilities. This in-
put/output sequence will always be of length at most n1 + n2 + 1.

Proof :

This follows by applying Theorem 1 to FP (M) and FP (M ′).

Since our PFSM M is minimal, and so its states are pairwise distinguishable, we
can define a set of input sequences that distinguish between the states of M .

Definition 8 A set W of input sequences is a characterization set for PFSM M if
for every pair (s, s′) of states of M with s 6= s′ there exists some input sequence
x̄ ∈ W that distinguishes s and s′.

The proof of the following is similar to that for the equivalent result for DFSMs
(see, for example, [13]).

Proposition 7 Let us suppose that M is a minimal OPFSM with n states. Then
there exists a characterization set W for M with at most n − 1 input sequences
where each sequence has length at most n− 1.

The more general case, where M need not be observable, is similar.

Proposition 8 Let us suppose that M is a minimal PFSM with n states. Then there
exists a characterization set W for M with at most n − 1 input sequences where
each sequence has length at most 2n+ 1.

Proof :

States s and s′ of M are distinguished by an input sequence x̄ if and only if x̄
distinguishes between the PFSM formed by changing the initial state of M to s and
the PFSM formed by changing the initial state of M to s′. Thus, by Proposition 6,

12



there is a sequence of length at most 2n+ 1 that distinguishes between any pair of
distinct states of M .

LetW = {x̄1, . . . x̄k} denote a characterization set forM such that no proper subset
of W is a characterization set for M . Let ∼i (0 ≤ i ≤ k) denote the equivalence
relation on the states of M such that: s ∼i s

′ if for all 1 ≤ j ≤ i we have that
x̄j does not distinguish between s and s′. Clearly ∼1 has at least two equivalence
classes and by the minimality of W we must have that for all 1 ≤ i < k, ∼i+1 has
more equivalence classes than ∼i. Thus, the number of equivalence classes for ∼i

(1 ≤ i ≤ k) must be at least i + 1. However, the number of equivalence classes is
bounded above by n and thus k + 1 ≤ n and so k ≤ n− 1 as required.

Similar to testing from a DFSM [20], when identifying a given state si of M it
may be sufficient to use a set of prefixes of sequences in W . Such a set is called an
identification set.

Definition 9 Given state si of minimal PFSM M and characterization set W , a set
Wi ⊆ Pre(W ) is an identification set if for every state sj of M with si 6= sj , there
is some input sequence x̄ ∈Wi that distinguishes si and sj .

4 Mutation operators

This section describes mutation operators for PFSMs and approaches to finding
input sequences to distinguish the resultant mutants. Section 5 explains how testing
can proceed on the basis of this. Throughout this section M = (S, s0, X, Y, h)
denotes the PFSM being mutated and M ′ denotes a mutant. Proposition 6 tell us
that we can decide whether M and M ′ are equivalent in time O(n4) and, if they are
not equivalent, produce a sequence of length at most 2n+ 1 to distinguish them. In
this section we consider conditions under which we can improve on this.

4.1 Changing the initial state

We can form a mutant of M by making some state s ∈ S \ {s0} of M the initial
state and this gives n − 1 different mutants. Let Ms = (S, s,X, Y, h) (s 6= s0) be
such a mutant. Then we want to find a sequence that distinguishes the initial states
ofM andMs. This is equivalent to the problem of finding a sequence to distinguish
states s0 and s of M . The following result is thus clear.

Proposition 9 Let M = (S, s0, X, Y, h) be a PFSM and let Ms = (S, s,X, Y, h)
for some state s 6= s0. If W0 is an identification set for the initial state of M then
there exists an input sequence x̄ ∈W0 that distinguishes M and Ms.

13



Thus, any identification setW0 for the initial state ofM distinguishesM from every
mutant of the form Ms for s 6= s0. As shown in Section 3, |W0| ≤ n− 1 and if M
is observable then the elements of W0 have length at most n−1 and otherwise they
have length at most 2n+ 1.

4.2 Altering probabilities

Suppose that t = (s, x, y, s′, p) is a transition of M and let ∆ be a (possibly nega-
tive) value such that 0 ≤ p+∆ ≤ 1. We can mutate M by changing the probability
associated with t to p + ∆. Naturally, we must change the probability of at least
one other transition from s with input x so that the sum of the probabilities is still
1. Let M ′ be a PFSM formed by altering the probability of t to p′ 6= p.

Let us suppose that the probability of producing output y from state s of M in
response to x is different from the probability of producing output y from state s of
M ′ in response to x (this must be the case if M is observable). Then to distinguish
M and M ′ it is sufficient to devise a sequence ā in the following way. First, find a
shortest path ā1 in F (M) from s0 to s. Then we set ā = ā1(x, y, p).

Proposition 10 Let M(t,∆) be an PFSM formed by altering the probability of
transition t = (s, x, y, s′, p) of PFSM M to 0 ≤ p + ∆ ≤ 1 and suppose that the
probability of producing output y from state s of M in response to x is different
from the probability of producing output y from state s of M ′ in response to x (i.e.
pM(s, x, y) 6= pM(t,∆)(s, x, y)). Let ā1 be a shortest path in F (M) from s0 to s. If
ā = ā1(x, y, p) then in(ā) distinguishes M and M ′ and has length at most n.

Proof :

Let x̄1 and ȳ1 be the input and output sequences from ā1 respectively. By the mini-
mality of ā1, no path in F (M) from s0 with label ā1 contains the transition t. Thus,
p∗M(s0, x̄1, ȳ1) = p∗M(t,∆)(s0, x̄1, ȳ1). Thus, since pM(s, x, y) 6= pM(t,∆)(s, x, y) and
for every state s′ 6= s we have that pM(s′, x, y) = pM(t,∆)(s

′, x, y) we have that
p∗M(s0, x̄x, ȳy) 6= p∗M(t,∆)(s0, x̄1x, ȳ1y) as required. Finally, since ā1 is a shortest
path from s0 to s it has length at most n− 1 (since there are no repeated states) and
so ā has length at most n.

If the probabilities of producing output y in response to x from state s of M and
M(t,∆) are the same then by Proposition 6 we can decide in O(n4) whether M
and M(t,∆) are equivalent and, if they are not, find a sequence of length at most
2n+ 1 that distinguishes them.
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4.3 Changing the target state of a transition

Suppose t = (s, x, y, s′, p) is a transition of M and let s′′ denote a state of M
(s′ 6= s′′). We can create a new PFSM called M(t, s′′), by changing the ending
state of t to s′′. The following are clear.

Proposition 11 Let t denote a transition (s, x, y, s′, p) of PFSM M and let s′′ be a
state of M with s′ 6= s′′. If M is observable then M(t, s′′) is observable.

Proposition 12 If M is observable then there is an O(n2) time algorithm that de-
cides whether M(t, s′′) and M are equivalent and, if they are not equivalent, re-
turns an input sequence of length at most 2n+ 1 that distinguishes them.

Naturally, if M is not observable and M and M(t, s′′) are not equivalent then in
O(n4) we can produce an input sequence x̄, of length at most 2n + 1, that distin-
guishes them.

4.4 Creating a new transition

Let us suppose that t = (s, x, y, s′, p) is a transition of M , let s′′ denote a state of
M , let y′ denote an output and let p′ < p denote a probability. We can create a new
PFSM M(t, s′′, y′, p′), by reducing the probability associated with t to p − p′ and
creating a new transition (s, x, y′, s′′, p′). If M has a transition from s to s′′ with
input x and output y′ then we have simply altered probabilities and simulated a
mutation operator already discussed in Subsection 4.2. Since this case is redundant
we do not consider it here.

If y′ 6= y then we have reduced the probability of producing output y in response to
x from s. Thus, we can distinguish M and M(t, s′′, y′, p′) by choosing a minimum
length sequence ā1 ∈ A∗ that labels a path in F (M) from s0 to s and use in(ā1)x.
This input sequence has length at most n. Otherwise we can refer to the result that
we can decide in O(n4) time whether M and M(t, s′′, y′, p′) are equivalent and, if
they are not, produce an input sequence of length at most 2n+ 1 that distinguishes
them.

Example 2 Figure 2 shows two mutants of the PFSM from Figure 1. The first is
formed by changing the probability associated with transition (s3, i1, o1, s3,

1
2
) to

1
4
. Since the sum of probabilities of the transitions from s3 with input i1 must be

1, we also alter the probability attached to transition (s3, i1, o3, s2,
1
2
) to 3

4
. The

second mutant is obtained from by adding a new transition (s2, i3, o3, s3,
2
5
). This

forces us to decrease the probability associated to the transition (s2, i3, o1, s2, 1) to
3
5
.
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Figure 2. Two mutants

5 Applying the test sequences

Let M denote the specification PFSM, M ′ a mutant of M , and x̄/ȳ an input/output
sequence such that p∗M(s0, x̄, ȳ) 6= p∗M ′(s′0, x̄, ȳ) and so x̄ distinguishes between
M and M ′. Let ps denote p∗M(s0, x̄, ȳ) and let pm denote p∗M ′(s′0, x̄, ȳ). If we can
determine the probability p of observing ȳ in response to x̄ in the IUT then we
have two cases: if p = ps then the IUT is distinguished from the mutant M ′ and
otherwise the IUT is faulty. However, we cannot determine p through testing; the
best we can do is to produce an estimate p̂ of p.

If we test the IUT with x̄ a total of r times and in k of these tests we observe ȳ then
our estimate is p̂ = k

r
. Naturally, the greater the value of r the higher our confidence

in p̂ being close to the true value p. We now show how statistical results regarding
confidence intervals can be used in order to determine the required value of r.

Suppose that we fix a confidence level c ∈ (0, 1) and we have this confidence of
p̂ being within e of p. The confidence denotes the probability that our estimate p̂
satisfies p−e < p̂ < p+e. We want the estimate to either provide evidence that the
IUT is faulty or that the IUT is not equivalent to M ′. We are guaranteed to achieve
this if we cannot have both ps and pm in the interval (p̂−e, p̂+e). This is the case if
2e ≤ |ps− pm| and thus we can set e = |ps−pm|

2
. Naturally, we can choose a smaller

value of e if we wish to have an estimate p̂ with a smaller confidence interval.

Each application of x̄ has two possible results: either the output sequence is ȳ or it
is some ȳ′ 6= ȳ. We thus have a binomial distribution. We now discuss two sets of
standard statistical results for binomial distributions that show how we can choose
r given e and c.

Note that an alternative approach is to use hypothesis testing, with the null hypoth-
esis either being that the true probability is the same as the probability in the mutant
(p = pm) or that the true probability is either pm or ‘on the other side of pm from
ps’ (i.e. if pm > ps then the null hypothesis is p − ps ≥ pm − ps). However, here
we focus on the use of confidence intervals since they have the additional benefit of
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allowing us to state the confidence we have of the true probability p being within e
of the sample probability p̂.

5.1 Estimating with a small sample

Since we have a binomial distribution with probability p, the probability of observ-
ing ȳ in response to x̄ a total of k times in r trials is

P (k, p, r) =







r

k





 pk(1− p)(r−k)

where






r

k





 =
r!

k!(r − k)!

Based on this we get the following likelihood function L(p′, k, r), which represents
the probability that p′ is the true probability if we have observed ȳ a total of k times
out of r tests with x̄.

L(p′, k, r) =







r

k





 p′k(1− p′)(r−k)

Given k and r it is possible to calculate a value e such that we have confidence
of at least c that p̂ is within e of p and thus to determine whether we have tested
a sufficient number of times. However, this computation becomes increasingly ex-
pensive as r increases and this motivates an interest in alternative approaches for
large samples.

5.2 Estimating with a large sample

We can treat the mean p̄ as a normally distributed random variable if rp > 5 and
r(1− p) > 5 and this distribution has mean p and the following standard deviation
(see, for example, [29]).

√

p(1− p)

r
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While we do not know p, we can check that rp̂ > 5 and r(1 − p̂) > 5 once the
estimate has been produced. Here we consider this case.

Given a normal distribution with standard deviation σ, true mean µ and confidence
value c there is a value z such that the proportion of the distribution that is within
the region (µ− zσ, µ+ zσ) is c. For a confidence of 0.95 we can choose the value
z0 = 1.96 (see, for example, [29]). Clearly, we should choose r such that z0σ ≤ e.
Since σ =

√

p(1−p)
r

we choose r such that

√

p(1− p)

r
z0 ≤ e

This can be rewritten to:

r ≥
z2
0p(1− p)

e2

Thus, we apply x̄ a total of r times for some r that satisfies the above equation.
While we do not know p in advance, we know that the worst case is with p = 1

2

giving:

r ≥
z2
0

4e2

If we require a value of c = 0.95, z0 is slightly less than 2 and so it is sufficient to
choose r such that:

r ≥
1

e2

If p̂ is within e of the specified value ps then we have the required confidence that
the IUT is not equivalent to mutant M ′; otherwise we have confidence that the IUT
is faulty. Naturally, at this point we may wish to test the IUT further with x̄ to gain
an estimate with a narrower associated confidence interval.

6 Probabilistic-Stochastic Finite State Machines

In this section we extend the PFSM formalism in order to deal with stochastic time.
We use random variables to model the (stochastic) time outputs take to be executed.
We will consider that the sample space, that is, the domain of random variables, is a
set of numeric time values T ime. Since this is a generic time domain, the specifier
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can choose whether the system will use a discrete/continuous time domain. We
simply assume that 0 ∈ T ime.

Definition 10 We denote by V the set of random variables (ξ, ψ, . . . range over V).
Let ξ be a random variable. We define its probability distribution function as the
function Fξ : T ime −→ [0, 1] such that Fξ(x) = P (ξ ≤ x), where P (ξ ≤ x) is the
probability that ξ assumes values less than or equal to x. Let ξ, ξ ′ ∈ V be random
variables. We write ξ ≈ ξ ′ if for all x ∈ T ime we have Fξ(x) = Fξ′(x), that is, the
random variables are equally distributed. We will denote by θ the random variable
which probability distribution function is defined by Fθ(x) = 1 for all x ∈ T ime.

Given two random variables ξ and ψ we consider that ξ + ψ denotes a random
variable distributed as the addition of the two random variables ξ and ψ.

We will use the projection function πi such that given a tuple q = (q1, . . . , qn), for
all 1 ≤ i ≤ n we have πi(q) = qi.

A Probabilistic-Stochastic Finite State Machine is a NFSM in which every transi-
tion has associated both a probability and a random variable. As we said before, the
latter represents the expected distribution of times to execute the transition.

Definition 11 A Probabilistic Stochastic Finite State Machine, in short PSFSM, is
a tuple M = (S, s0, X, Y, h) where S is a finite set of states, with s0 ∈ S being the
initial state,X and Y denote the finite input and output alphabets, respectively, and
h : S×X ↔ S×Y × (0, 1]×V is the transition relation. For each state s ∈ S and
input x ∈ X , h(s, x) denotes a set of tuples of the form (s′, y, p, ξ) where s′ ∈ S,
y ∈ Y , p ∈ (0, 1], and ξ ∈ V . For all s ∈ S and x ∈ X ,

∑

(s′,y,p,ξ)∈h(s,x) p = 1.

A tuple (s, x, y, p, ξ, s′) is a transition of the machine if (s′, y, p, ξ) ∈ h(s, x), where
s, s′ ∈ S are the initial and final states, x ∈ X and y ∈ Y are the input and
output, p is the probability associated to the transition and ξ ∈ V is the random
variable defining the time associated with the transition. Intuitively, a transition
(s, x, y, p, ξ, s′) indicates that if the machine is in state s and receives the input
x then with probability p the machine emits the output y and it moves to state s′

before time t with probability Fξ(t).

As we did when we defined PFSMs we do not allow a PSFSM to have two tran-
sitions (s, x, y, p1, ξ1, s

′), (s, x, y, p2, ξ2, s
′), that is, two transitions with the same

initial and final states s, s′ and the same input/output x/y. This constraint simpli-
fies some computations, while it does not restrict the expressivity of our formalism.
In fact, this condition does not limit the behaviours that we can define since the two
previous transitions they have the same meaning as the one provided by a unique
transition (s, x, y, p, ξ, s′) where p = p1 + p2 and ξ = p1

p
· ξ1 + p2

p
· ξ2. We will

explain later the meaning of the previous normalization of probabilities.
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Figure 3. Probabilistic-Stochastic Finite State Machine.

Let us remark that non-deterministic choices will be resolved before the timers
indicated by random variables start counting, that is, we follow a pre-selection pol-
icy. Thus, if we have several transitions, outgoing from a state s, associated with
the same input x, and the system receives this input, then the system at time 0 will
choose which one of them to perform according to the probabilities. So, we do not
have a race between the different timers to decide which one is faster. In order to
avoid side-effects, we will assume that all the random variables appearing in the
definition of a PSFSM are independent. Let us note that this condition does not
restrict the distributions to be used. In particular, there can be random variables
identically distributed even though they are independent.

Example 3 Let us consider the machine depicted in Figure 3. Each transition has
an associated random variable. In the following we explain how these random vari-
ables are distributed. Let us consider that the random variables ξ1i are uniformly
distributed in the interval [0, 5]. Uniform distributions assign equal probability to
all the times in the interval. The random variable ξ2i follow a Dirac distribution in
4. The idea is that the corresponding delay will be equal to 4 time units. Finally, ξ3i

are exponentially distributed with parameter 2.
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Fξ1i
(x) =



























0 if x ≤ 0

x
5

if 0 < x < 5

1 if x ≥ 5

for all 1 ≤ i ≤ 5.

Fξ2i
(x) =











0 if x < 4

1 if x ≥ 4

for all 1 ≤ i ≤ 4.

Fξ3i
(x) =











1− e−2·x if x ≥ 0

0 if x < 0

for all 1 ≤ i ≤ 5.

Let us consider the transition (s3, i2, o3, 1, ξ12, s1). Intuitively, if the machine is in
state s3 and receives the input i2 then it will produce the output o3 after a time
given by ξ12. For example, we know that this time will be less than 1 time unit with
probability 1

5
, it will be less than 3 time units with probability 3

5
, and so on. Finally,

once 5 time units have passed we know that the output has been performed (that is,
we have probability 1).

In the same way as the transitions of a PFSM can be characterized through a func-
tion pM , an alternative characterization of a PSFSM M can be given by means of a
suitable function providing the probability and the random variable associated to a
transition.

Definition 12 Let M = (S, s0, X, Y, h) be a PSFSM. We define the function χM :
S ×X × Y × S → [0, 1]× V as:

χM(s, x, y, s′) =















(p, ξ) if ∃ p, ξ : (s′, y, p, ξ) ∈ h(s, x)

(0, θ) otherwise

Intuitively, χM(s, x, y, s′) returns a pair (p, ξ) where p represents the probability
that M moves to state s′ and produces output y if it receives input x when in state s
(that is, pM(s, x, y, s′)) and ξ corresponds to the random variable defining the time
the system spends to perform the output y. If there does not exist such a transition
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then we return probability 0. In this case, the returned random variable can be dis-
carded; we simply return the identity element θ. The relation between χM and h is
given by (s′, y, p, ξ) ∈ h(s, x) if and only if p > 0 ∧ χM(s, x, y, s′) = (p, ξ).

Next, we extend χM to sequences by means of a similar approach to the one intro-
duced for extending pM . First we give some additional notation.

Definition 13 Given ξ, ψ ∈ V and p, q ∈ [0, 1] we define the combination of the
pairs (p, ξ) and (q, ψ), denoted by (p, ξ)� (q, ψ), as the pair (p · q, ξ + ψ).

Given ξi ∈ V and pi ∈ [0, 1], for all 1 ≤ i ≤ n, we define the weighted addition of
the pairs (pi, ξi), denoted by

⊕

1≤j≤n(pj, ξj), as the pair
(

p,
∑

1≤j≤n
pj

p
· ξj

)

where
p =

∑

1≤j≤n pj > 0; if
∑

1≤j≤n pj = 0 then we simply return (0, θ).

Let M = (S, s0, X, Y, h) be a PSFSM. We inductively define the function χ∗
M :

S ×X∗ × Y ∗ × S −→ [0, 1]× V as

χ∗
M(s, ε, y, s′) =











(1, θ) if y = ε and s′ = s,

(0, θ) otherwise

χ∗
M(s, x̄x, ȳy, s′) =

⊕

s′′∈S

χ∗
M(s, x̄, ȳ, s′′)� χM(s′′, x, y, s′)

Let us note that χM(s, x̄, ȳ, s′) is (0, θ) whenever |x̄| 6= |ȳ|. Regarding the defini-
tion of

⊕

, the second component of the pair represents the normalization of the
random variables associated with the transitions of the sequences. Let us consider
the machine depicted in Figure 3. Let us suppose the machine is in the initial state
s1 and it receives the input i2. There are three transitions outgoing from s1 with
input i2. So, as we explained, the machine will choose which one to perform ac-
cording to the associated probabilities. Now, let us assume the output o1 is the one
selected. Then, we have two possible transitions labelled with i2/o1 and attached
random variables ξ13 and ξ22. The random variable that define the expected time
the machine will spend to perform i2/o1 is given by

1

2
1

2
+ 1

4

· ξ22 +
1

4
1

2
+ 1

4

· ξ13. In this
way, we are normalizing the probabilities associated with the transitions that could
be performed, since the other transition labelled with i2 has been excluded in the
pre-selection.

We will denote by χ∗
M(s, x̄, ȳ) the pair (p, ξ) where p represents the probability that

M produces output sequence ȳ if it receives input sequence x̄ when in state s and ξ
the random variable that define the time the system spends in performing it. Thus,
χ∗

M(s, x̄, ȳ) =
∑

s′∈S χ
∗
M(s, x̄, ȳ, s′). We can now extend the transition relation h to

input sequences.

h∗(s, x̄) = {(s′, ȳ, p, ξ)|χ∗
M (s, x̄, ȳ, s′) = (p, ξ) ∧ p > 0}
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During the rest of the paper, we assume that PSFSMs are completely specified. We
consider both observable PSFSMs (OPSFSMs) and PSFSMs that are not observ-
able as in the case of PFSMs. The concept of observability for PSFSM matches the
definition presented in the previous formalism.

Regarding equivalence of states, we need to consider the stochastic component
of our new model, so we extend the definition of equivalence of states given for
PFSM. For two states of an PSFSM to be equivalent we need that they define the
same sets of behaviours with the same probabilities and random variables. Thus,
states s and s′ of PSFSM M are equivalent if for every input/output sequence x̄/ȳ,
we have that χ∗

M(s, x̄, ȳ) = χ∗
M(s′, x̄, ȳ). If s and s′ are not equivalent then they are

distinguishable.

7 Distinguishing states of a PSFSM

In this section we show how we can adapt and apply results from automata theory to
produce sequences that allow us to distinguish two states of PSFSM M . Following
the same structure applied to the previous formalism, PFSMs, we first consider the
case where M is observable and then consider the general case where M may not
be observable.

Definition 14 Let M = (S, s0, X, Y, h) be a PSFSM. We define a FA Fχ(M) =
(S, s0, A, δ, S) where A is X ×Y × (0, 1]×V and given s ∈ S, x ∈ X , y ∈ Y , p ∈
(0, 1], and ξ ∈ V we have δ(s, (x, y, p, ξ)) = s′ if and only if (s′, y, p, ξ) ∈ h(s, x).

The following result shows that algorithms producing sequences that distinguish
states of a FA can also be used to produce sequences that distinguish states of an
OPSFSM.

Proposition 13 If input sequence x̄ distinguishes states s and s′ of OPSFSM M
then there is some ā ∈ A∗ such that ā distinguishes states s and s′ of Fχ(M) and
in(ā) = x̄.

Proposition 14 Given an OPSFSM M and ā ∈ A∗ such that ā distinguishes states
s and s′ of Fχ(M), if no proper prefix of ā distinguishes s and s′ and in(ā) = x̄
then x̄ distinguishes states s and s′ of M .

The proof of the previous results is similar to the one corresponding to respectively,
considering the definition of distinguishable states for PSFSMs the function χ∗

M ,
and the associated automata Fχ(M).

Proposition 15 There is an algorithm running in time O(n2) that takes two states
s1 and s2 of an OPSFSM M and determines whether they are equivalent, where n
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is the number of states of M . If s1 and s2 are distinguishable then the algorithm
returns a minimal input/output sequence of length less than n that distinguishes
them.

Proof : Since Fχ(M) is a minimal FA, there exists a set of sequences of length at
most n−1 that pairwise distinguish the states of Fχ(M) and such a set can be found
inO(n2) time (see, for example, [21]). The result thus follows from Proposition 14.

Next, we present an algorithm for determining if two probabilistic-stochastic finite
automata, either observable or not, are equivalent and if they are not then the al-
gorithm will output the lexicographically minimum string which the two automata
will accept with different random variables. This algorithm is an adaptation of the
result proved for probabilistic FA [56] and that was presented in Theorem 1. Next,
we introduce the notation that will be used.

Definition 15 A Probabilistic-Stochastic Finite Automaton (PSFA) N is defined by
a tuple (S, s0, A, δ, SF , ps) in which S is a finite set of states, s0 ∈ S is the initial
state, A is the finite alphabet, δ : S ×A↔ S is the state transfer relation, SF ⊆ S
is the set of final states, and ps is the transition probability-stochastic relation of
type S × A× S ↔ [0, 1]× V . If N receives a ∈ A when in state s ∈ S it moves to
a state s′ ∈ δ(s, a) with probability π1(ps(s, a, s

′)) and the time the system spends
to perform the action is given by π2(ps(s, a, s

′)). The relation δ can be extended to
take sequences from A∗, in the usual way.

Let Tr = {(s, a, s′) | δ(s, a) = s′} be the finite set of transitions of N and K =
{1, 2, ..., |Tr|}. We consider that any bijection f : K −→ Tr is an enumeration of
Tr. We denote by ΨN the |Tr| + 1-dimensional vector defined as ΨN [1] = θ and
ΨN [i+ 1] = π2(ps(f(i))) for all 1 ≤ i ≤ |Tr|.

We say that (p, (q1 . . . , qr)) is an r-stochastic pair if p ∈ [0, 1] and for all 1 ≤ i ≤ r
we have qi ∈ [0, 1]. We denote by (0, 0r) the pair where 0r is the r-dimensional zero
vector. We say that a matrix is stochastic if all its entries are r-stochastic pairs. Let
M(i, j) be the set of all (i × j)-dimensional stochastic matrices. We define the
stochastic distribution function of N , DN : A −→ M(n, n), as DN(a)[i, j] =
(p, (q1, . . . , qm+1)) for all a ∈ A, where n = |S|, m = |Tr|, p =

∑m+1
k=1 qk, q1 = 0,

and for all 1 ≤ k ≤ m we have qk+1 = π1(ps(f(k))) with f(k) = (si, a, sj).

Intuitively, a stochastic distribution function provides us with a stochastic matrix
for each action in A. Each entry DN(a)[i, j] in the matrix corresponds to a stochas-
tic pair that represents, on the one hand, the probability that the machine goes from
state si to sj with the corresponding action, that is, the probability associated to the
transition (si, a, sj), and in the other hand, the time the machine needs for perform-
ing the action from state si to state sj . This time is defined by a random variable
represented by a tuple (q1, q2, . . . , qm). Each position, but the first one, represents
a random variable that appears in the automaton, that is, the position i corresponds
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s1

s2

b, 1
2
, ξ2a, 1, ξ1

b, 1
2
, ξ3

f(1) = (s1, a, s2)

f(2) = (s1, b, s2)

f(3) = (s1, b, s1)

DN (a) =





(0, (0, 0, 0)) (1, (1, 0, 0))

(0, (0, 0, 0)) (0, (0, 0, 0))





DN (b) =





(1
2 , (0, 0, 1

2)) (1
2 , (0, 1

2 , 0))

(0, (0, 0, 0)) (0, (0, 0, 0))





Figure 4. Example of Stochastic Matrices.

to the random variable labelling the transition f(i−1); the first position is reserved
to θ. Regarding the values, only one position, corresponding to the random vari-
able attached to the transition (si, a, sj), has a value different to 0 and equals to the
probability associated to it.

Example 4 Let us consider the PSFA depicted in Figure 4 and the stochastic ma-
trices DN(a) and DN(b) corresponding to each of the actions belonging to the
alphabet of the machine, that is, a and b. The matrices tell us if the machine
can go from a state to another by performing the corresponding action. For ex-
ample, on one the hand DN(b)[2, 1] = DN(b)[2, 2] = (0, (0, 0, 0)) denotes that
the machine cannot perform the action b when in state s2. On the other hand,
DN(b)[1, 1] = ( 1

2
, (0, 0, 1

2
)) means that the machine can move from state s1 to s1 by

performing b. In addition, these matrices provide the random variables that define
the time that the system spends in performing the corresponding action.

Next, we extend the function DN to sequences. First we introduce additional nota-
tion we require in order to define it.

Definition 16 Given two stochastic pairs v = (p, (v1, . . . , vr)) and u = (q, (u1, . . . , ur))
we define the combination of v and u as:
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v ./ u =















(0, 0r) if u = (0, 0r) ∨ v = (0, 0r)

(p · q, q · (v1, . . . , vr) + p · (u1, . . . , ur)) otherwise

Given Q1 ∈ M(p, q) and Q2 ∈ M(q, r) we define the combination of these
stochastic matrices, denoted by Q1⊗Q2, as the matrix where for all 1 ≤ i ≤ p and
all 1 ≤ j ≤ r we have

Q1 ⊗Q2[i, j] =
q

∑

k=1

Q1[i, k] ./ Q2[k, j]

Let N = (S, s0, A, δ, S, ps) be a PSFA, ā ∈ A∗, and a ∈ A, we define the function
D∗

N : A∗ −→M(n, n) in the following way:

D∗
N(ε) = En

D∗
N(āa) = D∗

N(ā)⊗DN(a)

where En is an n-dimensional stochastic matrix defined as:

En[i, j] =















(1, 0m) if i = j

(0, 0m) if i 6= j

where m = |Tr|+ 1.

In order to establish the equivalence of two PSFAs we need to determine the equiv-
alence of their initial states. Thus, we will deal with the sequences outgoing from
the initial states of the automata whose random variables appear in the first row of
the corresponding stochastic matrices. In addition, we only consider those entries
of the matrix corresponding to a final state.

Definition 17 Let N = (S, s0, A, δ, SF , ps) be a PSFA having n states. We de-
fine the vector U(ā) = λN ⊗ DN(ā), where λN is an n-dimensional vector of
m-stochastic pairs, with λN(1) = (1, 0m) and for all 2 ≤ i ≤ n λN(i) = (0, 0m),
with m = |Tr|+ 1.

The vector of accepting probabilities and random variables of a sequence ā by N ,
denoted by P (ā), is given by U(ā)⊗Fn, where Fn is the n×n-dimensional matrix
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defined as:

Fn[i, j] =















(1, 0m) if si ∈ SF ∧ i = j

(0, 0m) otherwise

LetX = ((p1, (q11, . . . , q1m)), . . . , (pn, (qn1, . . . , qnm))) be a vector ofm-stochastic
pairs. We denote by XΨN

the vector defined as XΨN
[i] = (π1(X[i]), π2(X[i]) ·

(ΨN)T ) for all 1 ≤ i ≤ n

The vector U(ā) represents the probabilities and random variables associated to the
performance of the sequence ā from the initial state. The matrix Fn allows us to
consider only the probabilities and random variables when the automaton reaches
a final state. Intuitively, the vector XΨN

is a transformation of the vector X where
the second component of the stochastic pairs are replaced by the random variable
that they represent. That is, given the stochastic pair X[i] = (pi, (qi1, . . . , qim)) we
will obtain XΨN

[i] = (pi, qi1 · θ + qi2 · ξ1 . . . + qim · ξm−1), where m − 1 is the
number of transitions.

Next, we introduce the notion of equivalent PSFAs. Two PSFAs are equivalent if
their initial states accept the same sequences with the same probability and the
associated random variables are equally distributed.

Definition 18 Let N1 = (S1, s
1
0, A, δ1, SF1

, ps1) and N2 = (S2, s
2
0, A, δ2, SF2

, ps2)
be two PSFAs with n1 and n2 states respectively. Then, N1 and N2 are equivalent
if for all ā ∈ A∗, N1 and N2 accept ā with equal probabilities and equal random
variables, that is,

• Π1(
⊕n1

i=1 P
1
ΨN1

(ā)[i]) = Π1(
⊕n2

i=1 P
2
ΨN2

(ā)[i]) and
• Π2(

⊕n1

i=1 P
1
ΨN1

(ā)[i]) ≈ Π2(
⊕n2

i=1 P
2
ΨN2

(ā)[i]).

The operator
⊕

provides us the normalization of the random variables that define
the time the automaton would spend to perform the sequence from the initial state
and the probability of performing the sequence.

Next, we introduce the notation that we will use in order to establish the equivalence
of two PSFAs. We extend the definition of the matrices DN ,D∗

N , and U .

Definition 19 Let N1 = (S1, s
1
0, A, δ1, SF1

, ps1) and N2 = (S2, s
2
0, A, δ2, SF2

, ps2)
be two PSFAs with n1 and n2 states respectively. For all a ∈ A we define

DN1?N2
(a) =







D∗
N1

(a) 0n1×n2

0n2×n1
D∗

N2
(a)






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where 0r×s is the (r× s)-dimensional zero matrix. Then, for all a ∈ A and ā ∈ A∗,
we have D∗

N1?N2
(āa) = D∗

N1?N2
(ā) ⊗ DN1?N2

(a). We also define, for all ā ∈ A∗,
the vector UN1?N2

(ā) = [λN1
, λN2

]⊗D∗
N1?N2

(ā).

The multi-projection function Πs
r is such that for all tuple q = (q1, . . . , qn), we have

Πs
r(q) = (qr, . . . , qs), for all 1 ≤ r ≤ s ≤ n. Finally, let span be the function that

maps a set of vectors to the vector space generated by the vectors in the set. Then,
we define the set H(N1, N2) = {UN1?N2

(ā)|ā ∈ A∗}.

Lemma 1 Let N1 and N2 be two PSFAs where n1 and n2 are the number of states
of N1 and N2 respectively. If V is a basis for span(H(N1, N2)) then N1 and N2

are equivalent if and only if ∀~v ∈ V we have

• Π1(
⊕n1

i=1(~v
1 ⊗ Fn1)ΨN1

) = Π1(
⊕n2

i=1(~v
2 ⊗ Fn2)ΨN2

) and
• Π2(

⊕n1

i=1(~v
1
⊗Fn1)ΨN1

) ≈ Π2(
⊕n2

i=1(~v
2 ⊗ Fn2)ΨN2

)

where ~v 1 = Πn1

1 (~v) and ~v 2 = Πn2+n1
n1+1 (~v).

The proof of this result, taking into account that the notion of equivalence of two
PSFAs N1 and N2 fits with the imposed requirements to the vectors in the basis, is
straightforward.

Theorem 2 There is an algorithm that takes two PSFAsN1 andN2 and determines
whether N1 and N2 are equivalent, where n1 and n2 are the number of states of N1

and N2 respectively. If N1 and N2 are not equivalent then the algorithm outputs
the lexicographically minimum string that is accepted by N1 and N2 with different
probability or/and random variables. This string will always be of length at most
n1 · (|Tr1|+ 1) + n2 · (|Tr2|+ 1)− 1.

First, we present an algorithm that allows us to establish the equivalence of two
PSFAs. The basic idea is to find a basis V ⊆ H(N1, N2) for the vector space
span(H(N1, N2)). Since the dimension of the vector space span(H(N1, N2)) is
at most n1 · (|Tr1| + 1) + n2 · (|Tr2| + 1), where Tr1 and Tr2 are the sets of
transitions of N1 and N2, respectively, the number of elements in V is at most
n1 · (|Tr1|+ 1) + n2 · (|Tr2|+ 1).

Let us explain how the algorithm depicted in Figure 5 works. We define a tree T
which has a node for every ā ∈ A∗. The root of T is node(ε). Every node(ā) in
the tree T has |A| children. Let UN1?N2

(ā) be the vector associated with node(ā).
The vector associated to node(āa), UN1?N2

(āa), can be computed as UN1?N2
(ā) ⊗

DN1?N2
(a).

The method applied to determine whether N1 and N2 are equivalent is to prune
the tree T. Initially, V is assigned the empty set. The nodes of the tree are visited
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Input:

N1 = (S1, s
1
0, A, δ1, SF1

, ps1)
N2 = (S2, s

2
0, A, δ2, SF2

, ps2).

Initialization:
• Nodes := ∅;V := ∅;notEq := ∅.
• queue← node(ε).
• equival := true; seq := ε
(1) While queue is not empty do

(a) queue→ node(ā)
(b) If UN1?N2

(ā) 6∈ span(V ) then
(i) For all a ∈ A: queue← node(āa)

(ii) V := V ∪ {UN1?N2
(ā)}

(iii) Nodes := Nodes ∪ node(ā)
(c) For all ~v = UN1?N2

(ā) ∈ V :
(i) ~v 1 = Πn1

1 (~v);
(ii) ~v 2 = Πn2+n1

n1+1 (~v);
(iii) if Π1(

⊕n1

i=1(~v
1 ⊗ Fn1)ΨN1

) 6= Π1(
⊕n2

i=1(~v
2 ⊗ Fn2)ΨN2

) ∨
Π2(

⊕n1

i=1(~v
1
⊗Fn1)ΨN1

) 6≈ Π2(
⊕n2

i=1(~v
2 ⊗ Fn2)ΨN2

) then
• equival := false;
• notEq := notEq ∪ {ā};

(d) if not equival then seq := min{ā ∈ notEq}
(e) return(equival, seq)

Figure 5. Algorithm of equivalence of automata.

in breadth-first order. At each node node(ā), we check whether its associated vec-
tor, UN1?N2

(ā), is linearly independent with respect to the ones in V . If it is, the
vector is included in the set V ; otherwise, we prune the subtree rooted at node(ā).
Additionally, we will use another set Nodes where we add the nodes whose asso-
ciated vector is selected and included in V . We stop traversing the tree when every
node is either visited or pruned. The vectors in the resulting set V will be linearly
independent and they are a basis for span(H(N1, N2)).

Finally, the algorithm finishes the inspection of the nodes, it verifies if the automata
are equivalent. Otherwise, the algorithm returns the lexicographically minimum
string in the set {ā | node(ā) ∈ Nodes} which is accepted by N1 and N2 with
different random variables or probabilities.

Proof : Let TN1?N2
be the tree formed by the nodes in Nodes ∪ {node(āa) | ā ∈

Nodes ∧ a ∈ A}, that is, the set of nodes that have been visited. Because the
vectors in V are (n1 ·(|Tr1|+1)+n2 ·(|Tr2|+1))-dimensional, TN1?N2

has at most
n1 · (|Tr1|+ 1) + n2 · (|Tr2|+ 1) internal nodes (|Nodes|). The set V consists of
the vectors associated with the internal nodes of TN1?N2

. Since we prune tree T at
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node(ā) if UN1?N2
(ā) ∈ span(V ), the vectors associated with the leaves of TN1?N2

will be linearly dependent to the vectors in V .

We will prove that the vectors in the resulting set V form a basis for the vector space
span(H(N1, N2)). For i ≥ 0, let Vi = {UN1?N2

(āb̄) | node(ā) is a leaf of TN1?N2
∧

|b̄| = i}. The set V0 contains the vectors associated with the leaves of TN1?N2
and

the set Vi, i ≥ 1, is the set of the vectors associated with the unvisited nodes of T
which are of distance i from a leaf. It can be seen that

span(V ∪
∞
⋃

i=0

Vi) = span({UN1?N2
(ā) : ā ∈ A∗}) = span(H(N1, N2))

Lemma 2 For all i ≥ 0 we have Vi ⊆ span(V ).

Proof : Let V = {~v1, . . . , ~vr} where r ≤ n1 · (|Tr1| + 1) + n2 · (|Tr2| + 1). We
prove this lemma by induction on i.

The base case V0 ⊆ {~v⊗DN1?N2
(a) : ~v ∈ V ∧ a ∈ A} ⊆ span(V ) follows from the

algorithm. Let us assume that Vi ⊆ span(V ). Then, for all ā, b̄ ∈ A∗ and c ∈ A such
that node(ā) is a leaf and |b̄| = iwe haveUN1?N2

(āb̄c) = UN1?N2
(āb̄)⊗DN1?N2

(c) =
(
∑r

i=1mi~vi)⊗DN1?N2
(c) =

∑r
i=1mi(~vi⊗DN1?N2

(c)) ∈ span(V ∪V0) = span(V ).

Thus, the vectors in V form a basis for span(H(N1, N2)). By Lemma 1, the algo-
rithm can determine whether N1 and N2 are equivalent.

Lemma 3 Let N1 and N2 be two PSFAs with n1 and n2 states respectively. If N1

and N2 are not equivalent then the algorithm depicted in Figure 5 outputs the
lexicographically minimum string which is accepted by N1 and N2 with differ-
ent probabilities or/and random variables. This string will be of length at most
n1 · (|Tr1|+ 1) + n2 · (|Tr2|+ 1)− 1.

Proof : Let str be the function that maps a string to its lexicographic order in
A∗. Let ā be the string returned by the algorithm. Let us assume that the result
does not hold. Let b̄ ∈ A∗ be the lexicographically minimum string such that
str(b̄) < str(ā) and fulfills either Π1(

⊕n1

i=1 P
1
ΨN1

(b̄)[i]) 6= Π1(
⊕n2

i=1 P
2
ΨN2

(b̄)[i]) or
Π2(

⊕n1

i=1 P
1
ΨN1

(b̄)[i]) 6≈ Π2(
⊕n2

i=1 P
2
ΨN2

(b̄)[i]). Since node(b̄) 6∈ Nodes, there must
exist a leaf node(x̄) such that b̄ = x̄ȳ for some ȳ ∈ A∗. Since we used a breadth-first
transversal in the algorithm, the vectorUN1?N2

(x̄) will be in span({UN1?N2
(ū) | ū ∈

A∗∧ str(ū) < str(x̄)}). If we consider the assumption regarding random variables
we have
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Π2(
⊕n1

i=1 P
1
ΨN1

(b̄)[i]) 6≈ Π2(
⊕n2

i=1 P
2
ΨN2

(b̄)[i])

m

Π2(
⊕n1

i=1(PN1
(x̄)⊗D∗

N1
(ȳ))ΨN1

)[i]) 6≈ Π2(
⊕n2

i=1(PN2
(x̄)⊗D∗

N2
(ȳ))ΨN2

)[i])

m

Π2(
⊕n1

i=1(
∑

str(ū)<str(x̄)mū · PN1
(ū)⊗D∗

N1
(ȳ))ΨN1

)[i])

6≈ Π2(
⊕n2

i=1(
∑

str(ū)<str(x̄)mū · PN2
(ū)⊗D∗

N2
(ȳ))ΨN2

)[i])

m

Π2(
⊕n1

i=1(
∑

str(ū)<str(x̄)mū · PN1
(ūȳ)ΨN1

)[i]) 6≈ Π2(
⊕n2

i=1(
∑

str(ū)<str(x̄)mū · PN2
(ūȳ)ΨN2

)[i])

m

Π2(
⊕n1

i=1(
∑

str(ū)<str(x̄)mū · P 1
ΨN1

(ūȳ))[i]) 6≈ Π2(
⊕n2

i=1(
∑

str(ū)<str(x̄)mū · P 2
ΨN2

(ūȳ))[i])

Since str(ūȳ) < str(x̄ȳ) = str(b̄) for all str(ū) < str(x̄), the last inequality is
false. It contradicts the assumption Π2(

⊕n1

i=1 P
1
ΨN1

(b̄)[i]) 6≈ Π2(
⊕n2

i=1 P
2
ΨN2

(b̄)[i]).
The same reasoning is applied if we consider the assumption about the proba-
bilities. Therefore the sequence ā returned by the algorithm will be the lexico-
graphically minimum string whose accepting random variables by N1 and N2 are
different. Since no node in Nodes is labelled by a sequence of length > n1 ·
(|Tr1| + 1) + n2 · (|Tr2| + 1) − 1, the length of sequence ā will be at most
n1 · (|Tr1|+ 1) + n2 · (|Tr2|+ 1)− 1.

We now show how this result can be applied to PSFSMs. First, we introduce the
definition of the PSFA associated with a PSFSM.

Definition 20 Given PSFSM M = (S, s0, X, Y, h) we can define the associated
PSFA FS(M) = (S, s0, A, δ, S, ps) in which

(1) SE = S ∪ {sE} where sE 6∈ S
(2) The alphabet A is X × Y .
(3) Given s ∈ S, x ∈ X , y ∈ Y , and p ∈ (0, 1], δ(s, (x, y)) = s′ and ps(s, (x, y), s′) =

(p, ξ) if and only if (s′, y, p, ξ) ∈ h(s, x)
(4) Given s ∈ S, x ∈ X , and y ∈ Y we have δ(s, (x, y)) = sE and ps(s, (x, y), sE) =

(p, θ) if and only if p > 0 and p = 1−
∑

(s′′,y,q,ξ)∈h(s,x) q.

As in the previous formalism, we need to adjust the probabilities when we define
the associated PFA. In order to do it, we extend the set of states with a new one
called sE , and include new transition for reaching probability 1 for each state and
label in the PSFA. In this case, we associate to these new transitions the random
variable θ. We denote by ExM the set of transitions ending up in the state sE .
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Proposition 16 There is an algorithm that takes as input two PSFSMs M1 and M2

and determines whether M1 and M2 are equivalent, where n1 and n2 are the num-
ber of states of M1 and M2, respectively. If M1 and M2 are not equivalent then the
algorithm outputs the lexicographically minimum input/output sequence for which
M1 and M2 have different probabilities or random variables. This input/output se-
quence will always be of length at most n1 · (|Tr1| + |ExM1

| + 1) + n2 · (|Tr2| +
|ExM2

|+ 1) + 1.

Proof : The result follows by applying Theorem 2 to FP (M) and FP (M ′). Let
us note that we need to consider the number of transitions that are added to the
associated automata that end up in the error state. This affects the length of the
input/output sequence produced by the algorithm, in case that M1 and M2 are not
equivalent.

8 Mutation operators for PSFSM

This section describes a mutation operator for PSFSMs and approaches to finding
input sequences to distinguish the resultant mutants. Since PSFSMs include prob-
abilities we could apply the mutation operators described for PFSMs in Section 4
for obtaining mutants. We only need to apply the results presented in the previous
section for the new formalism. The adaptation will be redundant and we do not
consider it here. Proposition 16 tell us that we can decide whether M and M ′ are
equivalent and, if they are not equivalent, produce a sequence to distinguish them.
In this section we consider conditions under which we can improve this.

Let us consider a transition t = (s, x, y, s′, p, ξ) of M . We can mutate M by chang-
ing the random variable associated with t to ψ. Let M ′ be a PSFSM formed by
altering the random variable of t to ψ.

Let us suppose that the random variable for performing output y from state s of M
in response to x is different from the random variable for performing output y from
state s of M ′ in response to x (this must be the case if M is observable). Then to
distinguish M and M ′ it is sufficient to devise a sequence ā in the following way.
First, find a shortest path ā1 in F (M) from s0 to s. Then, we set ā = ā1(x, y, p, ξ).

Proposition 17 Let Mξ be a PSFSM formed by replacing the random variable of a
transition t = (s, x, y, s′, p, ξ) of PSFSM M by ψ and suppose that ξ and ψ are not
equally distributed, that is, ξ 6≈ ψ. Let ā1 be a shortest path in F (M) from s0 to s.
If ā = ā1(x, y, p, ξ) then in(ā) distinguishes M and Mξ and has length at most n.

Proof : Let x̄1 and ȳ1 be the input and output sequences from ā1 respectively. By
the minimality of ā1, no path in F (M) from s0 with label ā1 contains the transi-
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tion t. Thus, χ∗
M(s0, x̄1, ȳ1) = χ∗

Mξ
(s0, x̄1, ȳ1). Since χM(s, x, y) 6= χMξ

(s, x, y)

and for every state s′ 6= s we have χM(s′, x, y) = χMξ
(s′, x, y) we conclude

χ∗
M(s0, x̄x, ȳy) 6= χ∗

Mξ
(s0, x̄1x, ȳ1y), as required. Finally, since ā1 is a shortest

path from s0 to s, it has length at most n−1 (since there are no repeated states) and
so ā has length at most n.

If M is not observable, by Proposition 16 we can decide whether M and Mξ are
equivalent and, if they are not, find a sequence of length at most 2 · n+ 2 · (|Tr|+
|ExM |) + 3 that distinguishes them.

9 Related work

This section describes previous work on testing probabilistic systems. Interestingly,
there has been relatively little work on this but there has been a considerable amount
of work on model checking PFSMs (see for example [2,57,16,33,53]).

It has been noted that we can consider the testing of a stateless system to be a
process of sampling its behaviour. If the test suite used is randomly generated,
possibly based on a distribution (operational profile) that reflects expected usage
then the result of testing can be used to estimate the reliability of the IUT [12,7].
Further, we can place a confidence in the observed reliability reflecting the true
reliability of the IUT within some margin.

Researchers have tackled the problem of testing from an observable NFSM when
each transition introduces a random delay and the expected delay for a transition is
represented by a probability distribution [45]. The problem is to test to determine
whether the distribution for each transition in the IUT is correct, where correctness
is represented by a range of conformance relations. Testing is used to check that the
IUT satisfies the conformance relation, relative to the specification, within a given
degree of confidence.

It is sometimes desirable to have a process that can be applied once in order to
take a conforming IUT to a given state or (strongly) distinguish two states of the
specification and thus of a conforming IUT. Naturally, there need not exist single
sequences that are guaranteed to achieve this and thus it is normal to apply an
adaptive process. Alur et al. [1] show that it is PSPACE-complete to determine
whether there is a single input sequence that strongly distinguishes two states of a
PFSM and that it is EXPTIME-complete to determine whether there is an adaptive
process that strongly distinguishes two states of a PFSM. Zhang and Zheung show
how policies (adaptive processes) can be generated to move an OPFSM from state s
to another state s′ and how a policy can be found to (strongly) distinguish two states
of an OPFSM [60]. Note that the work of Alur et al. [1] and Zhang and Zheung [60]
refer to producing a single sequence or policy that will achieve the desired results
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through one application only. In contrast, we assume that there is a reliable reset
operation and thus that we can repeatedly apply an input sequence or policy.

A related problem is machine identification; we wish to model the IUT rather than
test to check that the IUT conforms to a given model. This problem has been con-
sidered in the context of probabilistic state machines [48]. In this approach, the set
of observed traces is used to induce a FA in the classical way. The probabilities on
each transition are then estimated by determining the ratios of the labels (from each
state) observed in testing.

10 Conclusions

This paper developed mutation testing techniques for probabilistic finite state ma-
chines (PFSMs) and probabilistic-stochastic finite state machines (PSFSMs). It de-
fined several mutation operators and adapted results from the theory of probabilistic
finite automata in order to produce test sequences that distinguish a PFSM M from
a mutant M ′. An important property of PFSMs and PSFSMs is that given two PF-
SMs or PSFSMs M and M ′ we can decide in polynomial time whether M and M ′

are equivalent. As a result, mutation testing for PFSMs and PSFSMs does not suffer
from the equivalent mutant problem.

An input sequence x̄ kills a mutant M ′ if there is some output sequence ȳ such
that the probabilities of observing x̄/ȳ in M and M ′ are different. When x̄ is used
in testing we observe resultant input/output sequences and ideally we would like to
compare the probabilities of each of these with those expected. However, we cannot
determine the true probabilities through testing and so this paper has shown how
results from statistic sampling theory can be used to estimate the probabilities with
sufficient precision, up to a required level of confidence.

It is interesting to consider what faults the mutations represent and to thus define the
corresponding fault model. Since we are assuming that the coupling effect holds,
the fault model is the set of models that can be produced from our original modelM
using a sequence of zero or more mutations. The first observation is that if we have
probabilities and not time then the fault model is all PFSM with the same input and
output sets as M and no more states than M . When we include stochastic time, the
fault model allows the distribution used to change. Naturally, there are a number
of ways of introducing additional mutation operators that extend this fault model.
For example, we might allow a mutation to change the end state of a transition to
be a new state, although we would then have to define transitions from this new
state. A natural way of doing this, for a transition t with end state s, is to produce
a new state s′ equivalent to s, change the end state of t to s′, and then mutate
one or more transition that having starting state s′ using the mutation operators
already defined. We could also allow a mutation operator to replace a distribution
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by another distribution, but to make this useful it would be important to make sure
that the two distributions were ‘similar’ in important ways, such as having almost
identical means.

We have shown how an input sequence can be efficiently generated to kill a mu-
tant M ′ of M . However, in applying the resultant input sequences the number of
repetitions depends on the probabilities of the corresponding input/output sequence
in M and M ′. There thus remains the following question: how can we produce an
input sequence x̄ that kills M ′ and minimizes the test execution effort for a given
required confidence interval c?
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