

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Journal of Systems and Software 83.2 (2010): 283–302

DOI: http://dx.doi.org/10.1016/j.jss.2009.08.012

Copyright: © 2010 Elsevier B.V.

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1016/j.jss.2009.08.012

Verification and Validation of Declarative

Model-to-Model Transformations Through Invariants

Jordi Cabot∗,a, Robert Clarisóa, Esther Guerrab, Juan de Larac

aEstudis d’Informàtica, Multimèdia i Telecomunicació, Univ. Oberta Catalunya (Spain)
bComputer Science Department, Universidad Carlos III de Madrid (Spain)

cPolytechnic School, Universidad Autónoma de Madrid (Spain)

Abstract

In this paper we propose a method to derive OCL invariants from declar-
ative model-to-model transformations in order to enable their verification
and analysis. For this purpose we have defined a number of invariant-based
verification properties which provide increasing degrees of confidence about
transformation correctness, such as whether a rule (or the whole transfor-
mation) is satisfiable by some model, executable or total. We also provide
some heuristics for generating meaningful scenarios that can be used to semi-
automatically validate the transformations.

As a proof of concept, the method is instantiated for two prominent
model-to-model transformation languages: Triple Graph Grammars and QVT.

Key words: Model-to-Model Transformation, Model-Driven Development,
OCL, Verification and Validation, Triple Graph Grammars, QVT

1. Introduction

Model-Driven Development (MDD) is a software engineering paradigm
where models are the core asset [45]. They are used to specify, simulate,
test, verify and generate code for the application to be built. Many of these
activities include the specification and execution of model-to-model (M2M)
transformations, that is, the transformation of a model conformant to a meta-
model into another one conformant to a different meta-model.

∗Rbla. del Poblenou 156, E-08018 Barcelona, Spain
Email addresses: jcabot@uoc.edu (Jordi Cabot), rclariso@uoc.edu (Robert

Clarisó), eguerra@inf.uc3m.es (Esther Guerra), Juan.deLara@uam.es (Juan de Lara)

Preprint submitted to Journal of Systems and Software August 15, 2009

There are two main approaches to M2M transformation: operational and
declarative. The former is based on rules or instructions that explicitly state
how and when creating the elements of the target model from elements of the
source one. Instead, in declarative approaches, some kind of visual or tex-
tual patterns describing the relations between the source and target models
are provided, from which operational mechanisms are derived e.g. to per-
form forward and backward transformations. These declarative patterns are
complemented with additional information to express relations between at-
tributes in source and target elements, as well as to constrain when a certain
relation should hold. The Object Constraint Language (OCL) standard [32]
is frequently used for this purpose [33].

The increasing complexity of modelling languages, models and transfor-
mations makes urgent the development of techniques and tools that help
designers to assure transformation correctness. Whereas several notations
have been proposed for specifying M2M transformations in a declarative
way [1, 24, 33, 38], there is a lack of methods for analysing their correct-
ness in an integral way, taking into account the relations expressed by the
transformation, as well as the meta-models and their well-formedness rules.

In this paper we propose verification and validation techniques for M2M
transformations based on the analysis of a set of OCL invariants automati-
cally derived from the declarative description of the transformations. These
invariants state the conditions that must hold between a source and a target
model in order to satisfy the transformation definition, i.e. in order to rep-
resent a valid mapping. We call these invariants, together with the source
and target meta-models, a transformation model [7]. To show the wide appli-
cability of the technique, we study how to create this transformation model
from two prominent M2M transformation languages: Triple Graph Gram-
mars (TGGs) [38] and QVT [33].

Once the transformation model is synthesized, we can determine sev-
eral correctness properties of the transformation by analysing the generated
transformation model with any available tool for the verification of static
UML/OCL class diagrams (see [2, 9, 35, 12, 42]). In particular, we have pre-
defined a number of verification properties in terms of the extracted invari-
ants, which provide increasing confidence on the transformation correctness.
For example, we can check whether a relation or the whole transformation
is applicable in the forward direction (i.e., whether there is a source model
enabling a relation), forward weak executable (if we can find a pair of source
and target models satisfying the relation and the meta-model constraints),

2

forward strong executable (if a relation is satisfied whenever it is enabled), or
total (whether all valid source models can be transformed). In order to illus-
trate this analysis, we show the use of the UMLtoCSP tool [12] to perform
the verification. The tool translates the transformation model into a con-
straint satisfaction problem, which is then processed with constraint solvers
to check different aspects of the model.

The transformation model can also be used for validation purposes. Given
the transformation model, tools like UMLtoCSP can be used to automati-
cally generate valid pairs of source and target models, or a valid target model
for a given or partially specified source model. These generated pairs help
designers in deciding whether the defined transformation reflects their inten-
tion, thus helping to uncover transformation defects. Additionally, we have
devised heuristics to partially automate the validation process by means of
generating potentially relevant scenarios (representing corner cases of the
transformation) that the designer may be specially interested in reviewing.

This paper extends our preliminary work in [11]. Here, we propose a new
way of handling OCL attribute conditions in TGGs which avoids algebraic
manipulations; provide a new way of generating invariants, so as to make
the resulting TGG and QVT invariants more uniform, easing its portability
to other languages; present a detailed formalization of the extraction of in-
variants from QVT; provide a comprehensive list of formalized verification
properties; and present a semi-automatic method for validation.
Paper organization. Section 2 introduces TGGs and our proposal for han-
dling OCL attribute conditions. Section 3 presents the method for extracting
invariants from TGGs. Sections 4 and 5 present such method for QVT. Sec-
tion 6 shows the use of the invariants and UML/OCL analysis tools for the
verification and validation of transformations. Section 7 compares with re-
lated work and Section 8 draws the conclusions. As running example we use
a transformation between class diagrams and relational schemas [33]. The
appendix includes all the invariants for the example.

2. Triple Graph Grammars

Triple Graph Grammars (TGGs) [38] were proposed by A. Schürr as a
formal means to specify transformations between two languages in a declar-
ative way. TGGs are founded on the notion of graph grammar [37]. A graph
grammar is made of rules having graphs in their left and right hand sides
(LHS and RHS), plus the initial graph to be transformed. Applying a rule

3

to a graph is only possible if an occurrence of the LHS (a match) is found in
it. Once such occurrence is found, it is replaced by the RHS graph. This is
called direct derivation. It may be possible to find several matches for a rule,
and then one is chosen at random. The execution of a grammar is also non-
deterministic: at each step, one rule is randomly chosen and its application
is tried. The execution ends when no rule can be applied.

Even though graph grammar rules rely on pre- and post-conditions, and
on pattern matching, when used for model-to-model transformation, they
have an operational, unidirectional style, as the rules specify how to build the
target model assuming the source already exists. On the contrary TGGs are
declarative and bidirectional since, starting from a unique TGG specifying
the synchronized evolution of two graphs, it is possible to generate forward
and backward transformations as well as operational mechanisms for other
scenarios [25].

TGGs are made of rules working on triple graphs. These are made of
two graphs called source and target, related through a correspondence graph.
Any kind of graph can be used for these three components, from standard
unattributed graphs (V ; E; s, t : E → V) to more complex attributed graphs
(e.g., E-graphs [16]). The nodes in the correspondence graph (the map-
pings) have morphisms1 to the nodes in the source and target graphs. Triple
morphisms are defined as three graph morphisms that preserve the corre-
spondence functions. They are used to relate the LHS and RHS of a TGG
rule, to identify a match of the LHS in a graph, and to type a triple graph.

Definition 1 (Triple Graph and Morphism). A triple graph TrG = (Gs,
Gc, Gt, cs : VGc → VGs , ct : VGc → VGt) is made of two graphs Gs and Gt called
source and target, related through the nodes of the correspondence graph Gc.

A triple graph morphism f = (fs, fc, ft) : TrG1 → TrG2 is made of three
graph morphisms fx : G1

x → G2
x (with x = {s, c, t}) such that the correspon-

dence functions are preserved.

In the previous definition, VGx is the set of nodes of graph Gx. Morphisms
cs and ct relate two nodes x and y in the source and target graphs iff ∃n ∈ VGc

with cs(n) = x and ct(n) = y. We often depict a triple graph by 〈Gs, Gc, Gt〉,

1A morphism corresponds to the mathematical notion of total function between two
sets, or in general between two structures (graphs, triple graphs, etc.)

4

and use TrGx (for x = {s, c, t}) to refer to the x component of TrG. In this
way, 〈Gs, Gc, Gt〉s = Gs.

Fig. 1 shows a triple graph, taken from the class-to-relational transfor-
mation [33], which we use as a running example. The source graph is a class
diagram with a package and a class, the target one is a relational schema
model with one schema node, and the correspondence includes a mapping
between the package and the schema. Note that “source” and “target” are
relative terms, as we could also use source for the relational schema and
target for the class diagram.

c1: Class

name= “Person”
is_persistent= true

p1: Package

name= “Company”

s1: Schema

name= “Company”

m1:P2SUML

(source)

RDBMS

(target)

Figure 1: A triple graph example.

A triple graph is typed by a meta-model triple [20] or TGG schema, which
contains the source and target meta-models and declares allowed mappings
between both. Fig. 2 shows the meta-model triple for our running example.
The correspondence meta-model declares five classes: P2S maps packages and
schemas, A2Co maps attributes and columns, and CT and its specializations
C2T and C2TCh relate classes and tables. In particular C2TCh is used to
relate a children class with the table associated to its parent class. The
dotted arrows specify the allowed morphisms from the correspondence to the
source and target models, and can be treated as normal associations with
cardinality 1 on the side of the source/target class. The meta-model includes
OCL constraints ensuring uniqueness of attribute names for each class and
table, as well as same persistence for a class and its children. As an example,
the triple graph in Fig. 1 conforms to the meta-model in Fig. 2.

A typed triple graph is formally represented as (TrG, type : TrG →
MM), where the first element is a triple graph and the second a morphism to
the meta-model triple. Morphisms between typed triple graphs must respect
the typing morphism and can take inheritance into account, as in [20]. For
simplicity of presentation, we omit the typing in the following definitions.

Besides a meta-model triple, a M2M transformation by TGGs consists
of a set of declarative rules that describe the synchronized evolution of two
models. Rules have triple graphs in their LHS and RHS and may include

5

Class
+ name: String
+ is_persistent: bool

0..1

*

parent

child

Parent

Attribute
+ name: String

1

*

Attrs

Table
+ name: String

Column
+ name: String

1

1..*

Cols

CT

A2Co

context Class
inv: self.attribute->isUnique(x | x.name)

and self.child->forAll(c |
c.is_persistent = self.is_persistent)

context Table
inv: self.column->isUnique(x | x.name)

1

1

1

1

0..1

0..1

*

0..1

C2T

C2TCh

Package
+ name: String

Schema
+ name: String

P2S
1 10..1 0..1

1

*

1

*

UML

(source)

RDBMS

(target)

0..1

1

Figure 2: Example meta-model triple.

OCL attribute conditions. This contrasts with the usual approach of using
attribute computations in the rules instead of conditions [16]. We use the
latter as it poses some benefits that will be shown later on when operational-
ising the rules. Declarative rules are non-deleting because they describe how
models are created, hence they are defined by an injective triple morphism.

Definition 2 (Declarative TGG Rule). A declarative TGG rule p = (r : L →
R, ATTCOND) is made of two triple graphs, L = 〈Ls, Lc, Lt〉 and R = 〈Rs, Rc, Rt〉,
an injective triple morphism r between L and R, and a set ATTCOND of OCL
constraints over R, expressing attribute conditions.

Fig. 3 shows four example TGG declarative rules using a compact no-
tation that presents together L and R. The elements created by the rules
(R-L) are marked as {new}, and the preserved elements are untagged. As an
example, rule Class-Table is shown in the upper row first in extended and
then in compact notation.

Rule Package-Schema declares that every time a package is created, a
schema with the same name is created simultaneously, and vice versa. Rule
Class-Table specifies that creating a persistent class in a package already
related to a schema should create a table with the same name in that schema,
and vice versa. In this case the attribute condition demands the class to have
no parent. Note that we do not demand the LHS/RHS of rules to satisfy
the integrity constraints of the meta-model. For example the RHS of the
rule Class-Table is not a valid model because, according to the meta-model
in Fig. 2, each table should be connected to at least one column. When

6

Figure 3: Some declarative TGG rules for the class-to-relational transformation.

executing a transformation it is acceptable to go through some intermediate
models that are inconsistent with respect to the meta-model’s constraints.
What is important is that the final models are consistent.

For non top-level classes, the rule ChClass-Table is used instead of rule
Class-Table. This rule specifies that creating a child class of a class already
related to a table should map the child class to the same table. Finally,
Attribute-Column synchronously creates attributes and columns for classes
related to tables.

A TGG is bidirectional as rules do not specify any direction, but syn-
chronously create and relate source and target elements. A TGG defines
the language of all triple graphs that satisfy the meta-model constraints and
that can be derived using zero or more applications of the grammar rules.
Please note that some derived graphs may not conform to the meta-model,
and hence are not part of the language.

In practice, one does not use declarative TGG rules to create source and
target models at the same time, as it would require a synchronous coupling
of both models. Instead, so-called operational rules are derived for different
tasks, e.g. to perform forward (source-to-target) and backward (target-to-
source) transformations. A forward transformation creates a set of target
elements that correspond to a given set of initial source model elements, and
conversely with a backward transformation. The algorithm to derive such
rules was proposed in [38] (see also [25] for the description of operational
rules for other purposes). Next we present an extension of the algorithm
that handles OCL attribute conditions. We will use this definition in order

7

to derive the OCL invariants in the next section.

Definition 3 (Operational TGG Rule). Given the declarative TGG rule
p = (r : 〈Ls, Lc, Lt〉 → 〈Rs, Rc, Rt〉, ATTCOND), the following operational
rules can be derived:

• Forward: −→p = (r′ : 〈Rs, Lc, Lt〉 → 〈Rs, Rc, Rt〉,−−−→ATTLHS,
−−−→
ATTRHS).

• Backward: ←−p = (r′ : 〈Ls, Lc, Rt〉 → 〈Rs, Rc, Rt〉,←−−−ATTLHS,
←−−−
ATTRHS).

where
−−−→
ATTLHS (resp.

←−−−
ATTLHS) contains the part of the ATTCOND OCL ex-

pression concerning elements of the LHS of the forward (resp. backwards) op-

erational rule only.
−−−→
ATTRHS (resp.

←−−−
ATTRHS) contains the part of ATTCOND

not included in
−−−→
ATTLHS (resp.

←−−−
ATTLHS).

The operational rules enforce the pattern given by the declarative rule,
thus their RHS is equal to the RHS of the declarative rule. In the forward
case, the LHS assumes that the source graph already exists, whereas in the
backward case the existence of the target graph is assumed. In the rest of the
paper, we use LF and LB to refer to the LHS of the forward and backward
rules. The conditions in ATTCOND are split in those to be checked on the

LHS before rule application (
←−−−
ATTLHS and

−−−→
ATTLHS) and those to be checked

after rule application (
←−−−
ATTRHS and

−−−→
ATTRHS).

As an example, the upper row of Fig. 4 shows the operational forward rule
derived from the declarative rule Class-Table. The forward rule assumes
that the package p has a class c and is related to a schema s, and then
creates a new table. The figure shows the application of the rule to the
graph of Fig. 1 resulting in a triple graph H that contains a newly created
table in its target. Note that this resulting target graph does not satisfy the
meta-model constraints because each table needs to have at least one column.
Thus, one can infer that the transformation is not total, as classes without
attributes cannot be transformed into a valid model. This simple example
shows the necessity of providing automatic means to check properties of rules
and transformations.

Our definition of declarative rule does not use attribute computations as
usual in the literature [16], but declarative attribute conditions ATTCOND.
The advantage is that no algebraic manipulation is needed when generating
the operational rules, but just to split the original conditions in those to be

8

Figure 4: Derivation by operational TGG forward rule.

checked in the LHS (
←−−−
ATTLHS,

−−−→
ATTLHS) and the RHS (

←−−−
ATTRHS,

−−−→
ATTRHS).

When this is implemented in practice, we can use a constraint solver to re-
solve attribute values. Previous approaches perform algebraic manipulation
so that the attribute values for the created objects could be calculated from
the ones in the LHS. For instance, in the presented example, we would have
had to assign the name of the class to the name of the newly created ta-
ble. Although in this case it is just an assignment, in general such algebraic
manipulations present practical problems because they are difficult to auto-
mate. Note however that relying purely on constraint solving at the opera-
tional level may present computational efficiency problems in some cases. Of
course, there are several tools and approaches that allow embedding OCL in
normal graph grammar rules (i.e., not in TGG rules), like VMTS [28] and
Fujaba [41], to express attribute conditions and computations.

Next section shows how we avoid algebraic manipulation of attribute
expressions by compiling the declarative TGG rules into OCL invariants (in-
stead of into operational rules) and using a constraint solver to actually
perform and analyse the transformation. For this purpose, rules are inter-
preted as constraints (similar to [14]) or invariants that a pair of models
should satisfy.

3. Extracting OCL Invariants from Declarative TGG Rules

Our verification method (see Section 6) is based on the analysis of the
transformation model [7] derived from the transformation specification. The
transformation model is made of the source and target meta-models plus the

9

set of invariants that must hold between the source and target models in order
to satisfy the transformation definition. These invariants must guarantee that
the target model is a valid transformation of the source according to the set
of TGG rules, and similar for the target.

In this section we present a procedure that creates invariants capturing
the semantics of the TGG rules. This procedure can be regarded as a M2M
transformation itself between the TGG and UML/OCL metamodels.

The invariants must ensure that each rule p is satisfied in the model.
Hence, we introduce two concepts: rule enabledness and rule satisfaction.
Intuitively, a declarative rule is source-enabled (resp. target-enabled) in a
given graph if there exists some match of the LHS of its associated forward
operational rule (resp. backward rule) in the graph.

Definition 4 (Enabledness of Rule). Given the declarative TGG rule p =
(r : 〈Ls, Lc, Lt〉 → 〈Rs, Rc, Rt〉, ATTCOND) and a triple graph G:

• p is source-enabled if ∃m : LF → G, and m(LF) satisfies
−−−→
ATTLHS

assuming the identification of objects and links induced by m and using
G as context. Given a morphism m, we write G `m,F p if m enables p
source-to-target in G.

• p is target-enabled if ∃m : LB → G, and m(LB) satisfies
←−−−
ATTLHS as-

suming the identification of objects and links induced by m and using
G as context. Given a morphism m, we write G `m,B p if m enables p
target-to-source in G.

As an example, the declarative rule Class-Table in Fig. 4 is source-
enabled in triple graph G because there is an occurrence of the LHS of its
operational forward rule in G. On the contrary, the rule is not target-enabled
because the LHS of the operational backward rule would have needed a table
in the target graph to be matched. Hence we have G `m,F Class-Table and
G 0m,B Class-Table. However the rule is source- and target-enabled in H.

Satisfaction of a rule involves checking both forward and backward sat-
isfaction and is useful to ensure that two models are actually synchronized
according to the rule. Intuitively, forward (resp. backward) satisfaction re-
quires that the target (source) model satisfies the RHS of the rule for each
match where the rule is source- (target-) enabled. We will use the notion of
satisfaction in our algorithm to generate invariants.

10

Definition 5 (Satisfaction of Rule). Given the declarative TGG rule p =
(r : 〈Ls, Lc, Lt〉 → 〈Rs, Rc, Rt〉, ATTCOND) and a triple graph G:

• p is forward-satisfied in G, written G |=F p, if ∀m : LF → G s.t.
G `m,F p, then ∃m′ : R → G with m = m′ ◦ r s.t. m′(G) satisfies
ATTCOND assuming the identification of objects and links induced by
m and using G as context.

• p is backward-satisfied in G, written G |=B p, if ∀m : LB → G s.t.
G `m,B p, then ∃m′ : R → G with m = m′ ◦ r s.t. m′(G) satisfies
ATTCOND assuming the identification of objects and links induced by
m and using G as context.

• p is satisfied in G, written G |= p, if G |=F p ∧G |=B p

Thus, a rule is forward-satisfied, if for each morphism where the rule
is source-enabled, there is an occurrence m′ of the RHS which preserves
the identification of objects and links (m = m′ ◦ r) and satisfies the OCL
constraints in ATTCOND. As an example, rule Class-Table in Fig. 4 is not
forward-satisfied in G, but it is in H. The rule is backward-satisfied in both
G and H, in the first case trivially because the rule is not target-enabled.
As we have that H |=F Class-Table and H |=B Class-Table then we have
H |= Class-Table, or in other words, H contains two synchronized models
according to Class-Table.

In terms of the previous definitions, the invariants to be extracted for
each rule p are responsible for:

a) Locating each occurrence where p is source-enabled (see Definition 4).

b) Locating each occurrence where p is target-enabled (see Definition 4).

c) Ensuring that the elements of each occurrence found in a) and b) are
connected to mapping objects according to the RHS of p.

d) Ensuring that the mapping objects connect elements that satisfy p (see
Definition 5).

Next we describe our extraction procedure and the structure of the gen-
erated invariants. Our procedure makes two assumptions: (i) all rules create
at least one element in the correspondence graph and (ii) each type of map-
ping is created by at most one rule. Given a rule, the first two steps in the

11

procedure (see next definition) add invariants to every node n in the source
or target graphs of the RHS that is connected to a newly created correspon-
dence node m. This corresponds to the items a), b) and c) in the previous
list. Step 3 in the procedure adds the invariant to every correspondence node
m created by the rule (item d)).

Definition 6 (Invariant Extraction). Given a declarative TGG rule p =
(r : 〈Ls, Lc, Lt〉 → 〈Rs, Rc, Rt〉, ATTCOND):

1. ∀n ∈ VRs s.t. ∃m ∈ VRc − r(VLc) with cs(m) = n, add an invariant
named p to type(n).

2. ∀n ∈ VRt s.t. ∃m ∈ VRc − r(VLc) with ct(m) = n, add an invariant
named p to type(n).

3. ∀m ∈ VRc − r(VLc), add an invariant named p to type(m).

Invariant p in the source checks that for each occurrence where the rule
is source-enabled, the rule is satisfied. According to Definition 4, the rule is
source-enabled it there exists an occurrence of the LHS of the forward rule
LF satisfying the terms in

−−−→
ATTLHS. This is actually checked by a helper

query operation named p-enabled(. . .). If such query operation returns
true, then the invariant p ensures that this occurrence is connected to all
required objects needed to satisfy the rule. This is performed by a helper
operation p-mapping(. . .) placed in the created correspondence node. This
operation checks the object graph satisfies the structure of the RHS and the
OCL constraints in ATTCOND, similar to Definition 5. Symmetrically, the
invariant in the target ensures that each occurrence where p is target-enabled
satisfies the rule. As both invariants are similar, we only show the structure
of p for the source elements.

Definition 7 (Invariant for Source Elements). Given a declarative TGG
rule p = (r : 〈Ls, Lc, Lt〉 → 〈Rs, Rc, Rt〉, ATTCOND), then ∀n ∈ VRs s.t.
∃m ∈ VRc − r(VLc) with cs(m) = n, the following invariant is generated:

context type(n) inv p:
type(ni) :: allInstances()−>forAll(ni|

type(nj) :: allInstances()−>forAll(nj |...
}
∀nk ∈ VLF

− {n}
if self.p-enabled(ni, nj , ...) then

type(nu) :: allInstances()− > exists(nu|
type(nv) :: allInstances()− > exists(nv|...

}
∀nw ∈ VR − r(VLF

)

type(m) :: allInstances()− > exists(m|...
m.p-mapping(ni, nj , ..., nu, nv, ...) endif...))...))

12

context type(n)::p-enabled(ni : type(ni), nj : type(nj), . . .)
body: ni.rolej−>includes(nj)

and...

}
∀e ∈ ELF

s.t. ni
s← e

t→ nj

...and
−−−→
ATTLHS

where ELF
is the set of edges in LF , rolej is the role in the meta-model that

allows navigating from ni to nj. If some edge has n as source or target we
use the reserved word self to refer to n in the expression.

Note that the query operation p-enabled receives as parameters the ob-
jects in LF , and then checks that they are connected according to LF and

that they satisfy
−−−→
ATTLHS. If association end rolej has cardinality 1, then

we do not use ni.rolej−>includes(nj) but simply ni.rolej = nj. The invari-
ant for the target elements is generated in the same way, but considering
nodes n ∈ VRt and then traversing the graph LB. For nodes created in the
correspondence graph, invariants are generated as follows.

Definition 8 (Invariant for Mappings). Given p = (r : 〈Ls, Lc, Lt〉 →
〈Rs, Rc, Rt〉, ATTCOND), then ∀n ∈ VRc − r(VLc) the following invariant is
generated:
context type(n) inv p:

type(ni) :: allInstances()−>exists(ni|
type(nj) :: allInstances()−>exists(nj |...

}
∀nk ∈ VR − {n}

ni.rolej−>includes(nj) and...
}∀e ∈ r(EL) s.t. ni

s← e
t→ nj

...and self.p-mapping(ni, nj , ...)...)...)

context type(n)::p-mapping(ni : type(ni), nj : type(nj), . . .)
body: ni.rolej−>includes(nj)

and...

}
∀e ∈ ER − r(EL) s.t. ni

s← e
t→ nj

...and ATTCOND

Note that the main body of the invariant checks the existence of the node
in the RHS and the edges in the LHS. Then, the query operation checks the
existence of the remaining edges in the RHS and the conditions in ATTCOND.

Let us consider the example rules in Fig. 3. From rule Class-Table we
generate invariants for the class, the table and the C2T mapping, because the
latter is created and connected to the class and the table. Source-enabledness
is checked by the class’s Class-Table-enabled operation, whereas actual
satisfaction is checked by the Class-Table-mapping operation in the corre-
spondence node. A similar invariant for the table ensures that whenever the
rule is target-enabled, it is actually satisfied.

13

context Class inv Class-Table:
Package :: allInstances()−>forAll(p|

P2S :: allInstances()−>forAll(m1|
Schema :: allInstances()−>forAll(s|
if self .Class-Table-enabled(p,m1, s) then

Table :: allInstances()−>exists(t|
C2T :: allInstances()−>exists(m2|

m2.Class-Table-mapping(p,m1, s, self, t))) endif)))

context Class::Class-Table-enabled(p:Package, m1:P2S, s:Schema)
body: self.package = p and m1.package = p and m1.schema = s

and self.is persistent and self.parent−>isEmpty()
context C2T inv Class-Table:
Package :: allInstances()−>exists(p|

P2S :: allInstances()−>exists(m1|
Schema :: allInstances()−>exists(s|

Table :: allInstances()−>exists(t|
Class :: allInstances()−>exists(c|
m1.package = p and m1.schema = s
and self.Class-Table-mapping(p,m1, s, c, t))))))

context C2T::Class-Table-mapping(p:Package, m1:P2S, s:Schema,
c:Class, t:Table)

body: c.name = t.name and t.schema = s and c.package = p and self.class = c
and self.table = t and c.is persistent and c.parent−>isEmpty()

context Table inv Class-Table:
Package :: allInstances()−>forAll(p|

P2S :: allInstances()−>forAll(m1|
Schema :: allInstances()−>forAll(s|
if self .Class-Table-enabled(p,m1, s) then

Class :: allInstances()−>exists(c|
C2T :: allInstances()−>exists(m2|

m2.Class-Table-mapping(p,m1, s, c, self))) endif)))

context Table::Class-Table-enabled(p:Package, m1:P2S, s:Schema)
body: self.schema = s and m1.package = p and m1.schema = s

The generated invariant in the Class checks that if there is an occurrence
of LF , then there must exist a table such that the rule conditions are satisfied.
The occurrence of LF is sought by the three first nested forAll, which iterate
to look for a package p, a schema s and a correspondence node m1. These
elements should be connected according to LF , and satisfy the constraints

14

in
−−−→
ATTLHS, what is checked by the operation Class-Table-enabled. If such

operation returns true, the invariant looks for a table t and a mapping m2

connected as specified by the RHS of the rule and satisfying ATTCOND,
what is checked by operation Class-Table-mapping in the mapping class C2T.
Symmetrically, the invariant in the Table checks that if there is an occurrence
of LB, there is a class satisfying the rule. The invariants extracted from the
other rules are shown in the Appendix.

Note that, using invariants, it is difficult to express the fact that a new
table has to be created for each occurrence of LF . Instead, we just say that a
table should exist, and rely on the mapping cardinalities to ensure that indeed
one is created for each class. Should we have assigned a wrong cardinality ∗
(instead of 0..1) between C2T and Table, the generated invariants would allow
two classes with the same name to be related to the same table. However this
is not what rule Class-Table expresses, which demands two different tables.
By defining the right cardinality 0..1 we implement a correct translation, as
each table is related to at most one C2T mapping, and this to exactly one
class, thus ensuring that each class is related to at most one table.

We would like to remark that, both, the number of extracted invariants
and the internal complexity of each invariant, are linear with respect to the
number of TGG rules. Therefore, the extraction process can deal with TGGs
of any size.

4. QVT-Relations

QVT-Relations is a declarative M2M transformation language part of the
OMG QVT standard [33]. In this language, a bidirectional transformation
consists of a set of relations between two models2. There are two types of
relations: top-level and non-top-level. The execution of a transformation
requires that all its top-level relations hold, whereas non-top-level ones only
need to hold when invoked directly or transitively from another relation.

Each relation defines two domain patterns, one for each model, and a pair
of optional when and where OCL predicates. These optional predicates define
the link with other relations in the transformation: the when clause indicates
the constraints under which the relation needs to hold and the where clause
provides additional conditions, apart from the ones expressed by the relation
itself, that must be satisfied by all model elements in the relation.

2Although not common, a QVT transformation could involve more than two models.

15

Domain patterns can be viewed as graph patterns that must be matched
to a set of model elements of the appropriate type, i.e. similar to the
LHS/RHS of TGGs. There are differences in the matching process, though.
In TGG rules, the mappings between source and target models are explic-
itly represented with correspondence nodes linking elements of both models.
Instead, QVT patterns may contain variables which can be free or bound.
Bound variables and constant expressions restrict the possible matches for
the pattern. Free variables become bound to the elements matching the pat-
tern (in the execution direction of the transformation). Then, their values
may be used afterwards to constrain the value of further pattern expressions.
The invariants we generate will simulate this variable binding process.

Among all nodes in a domain pattern, one is marked as a root element
(the one tagged with the <<domain>> stereotype). Definition of root nodes
is purely for the sake of clarity (to understand a rule it is sometimes useful
to pinpoint the main element in the pattern), it does not affect the semantics
of the matching process. When referring to other relations in when or where
clauses, parameters can be specified, and thus it is possible to pass bound
variables from one relation to another. Note that the bound objects received
as parameters play a similar role to the LHS of a declarative TGG rule: both
are necessary preconditions to enforce the pattern.

p:Package s:Schema

name = n
name =n

uml rdbms

<<domain>> <<domain>>

(a) Package-Schema top-level relation.

c:Class t:Table
name = n

is_persistent = true
name = n

uml rdbms

when

c.parent->isEmpty() and Package-Schema(p,s)

Attribute-Column(c,t) and ChClass-Table(c, t)

where

p:Package s:Schema

<<domain>> <<domain>>

(b) Class-Table top-level relation.

Figure 5: Top relations of the transformation.

We illustrate these concepts using the same example as in previous sec-
tions. Fig. 5(a) shows the transformation between packages and schemas.
When executed in the UML→RDBMS direction, the relation states that for
each package we must find a schema with the same name. Every package is
a match for the source domain pattern (the pattern consists of a single node
of type Package with no required additional links or constraints). Given a

16

matching package p, the variable n becomes bound to the name of the pack-
age and it is used in the target domain pattern to ensure that a schema node
named n exists. Likewise, when executed in the RDBMS→UML direction,
the relation states that for each schema we must find a package with the
same name (now n is bound to the name of the schema and restricts the
packages that may satisfy the relation).

Relation Class-Table (Fig. 5(b)) describes the transformation between
classes and tables. For each persistent class (condition is persistent = true),
we need a table with the same name. The when clause imposes two additional
constraints that restrict its application: to be a match, the class must be
a root class (c.parent → isEmpty()) and the package and schema of the
matching class and table must satisfy the previous Package-Schema relation.
Finally, the where clause imposes additional conditions to each pair of class
c and table t satisfying the patterns and the when clause: all attributes of c
must match the columns in t as expressed in the relation Attribute-Column

(Fig. 6(b)) and children classes of c must also be mapped to t. This latter
condition is defined by means of the recursive relation ChClass-Table (Fig.
6(a)). When executing this relation, variables c and t are bound to the
argument values passed on when calling this relation from Class-Table.
For each child class c1 of c, attributes of c1 are mapped to columns of t
and, recursively, the process continues with the children classes of c1. This
recursion stops when a class without children is reached.

Finally, relation Attribute-Column defines the mappings between at-
tributes and columns. Again, variables c and t are bound to the arguments
used when calling the relation from the Class-Table or ChClass-Table re-
lations. For each attribute of c the relation requires t to have a column with
the same name in the UML→RDBMS direction. When following the oppo-
site direction, c is required to have an attribute for each column in t, with
the same name.

Optionally, we can define keys (i.e. unique identifiers) for the model
elements participating in a relation. For instance, key Table {schema, name};
declares that we cannot have two tables with the same name within the same
schema. Keys are used to avoid unnecessary object creations during the
transformation. Before creating a new object in the target model, the key is
used to locate an existing matching object. The new object is only created
if a match is not found.

17

c:Class

t:Tableuml rdbms

Attribute-Column(c1,t) and ChClass-Table(c1, t)

where

<<domain>>

<<domain>>

c1:Class

parent

child

(a) ChClass-Table relation.

c:Class t:Tableuml rdbms

a:Attribute co:Column

<<domain>> <<domain>>

name = n name = n

(b) Attribute-Column relation.

Figure 6: Non-top-level relations of the transformation.

5. Extracting OCL Invariants from QVT-Relations

Many QVT concepts resemble the elements appearing in TGG rules (see
[19] for a comparison). Therefore, the procedure for extracting the implicit in-
variants in a QVT-Relations transformation is very similar to that explained
in Section 3 for TGGs. Note that it is also similar to the formalization of the
QVT-Relations language in terms of the QVT-Core language defined in the
QVT standard. For both TGGs and QVT, we have to check that if a rule
is source-enabled (or target-enabled) the mapping conditions of the relation
are satisfied. The difference is that now these mapping conditions are not
specified in the correspondence nodes (since they do not exist) but must be
integrated in the invariants defined for the source and target elements. A sec-
ond difference is the existence of the when and where clauses in QVT. When
translating the rules, the when clause will be part of the enabling conditions
whereas the where clause will be added to the mapping conditions.

Definition 9 (Top-relation Invariant). Let p be a top-relation with do-
main patterns S = {roots, s1, . . . , sn} and T = {roott, t1, . . . , tm}, and let
Twhen ⊆ T be the set of elements of T referenced in p’s “when” section.
Then, the following invariant is generated for the S → T direction:

context type(roots) inv p:
type(xi) :: allInstances()−>forAll(xi|

type(xj) :: allInstances()−>forAll(xj | . . .
}
∀xk ∈ (S \ {roots}) ∪ Twhen

if self.p-enabled(xi, xj , ...) then
type(xu) :: allInstances()− > exists(xu|

type(xv) :: allInstances()− > exists(xv|...
}
∀xw ∈ T \ Twhen

self.p-mapping(xi, xj , . . . , xu, xv, . . .) . . .)) endif . . .))

18

context type(roots)::p-enabled(xi : type(x1), . . .)
body: when and enabling-conditions

context type(roots)::p-mapping(xi : type(xi), . . .)
body: where and mapping-conditions

where the OCL expressions corresponding to the enabling and mapping con-
ditions (i.e. the expressions ensuring that the links among the pattern objects
and the attribute conditions are satisfied) are derived following the same pro-
cedure described for TGG rules.

As in the case of TGG rules, notice the distinction between nodes univer-
sally quantified (firsts part of the rule) and nodes with an existential quan-
tifier in the template (second part). Nodes with the universal one (including
the implicit one represented by the self variable) are used when checking
matches for the rule since, for every match, we must verify that the relation
holds. This is done by checking if there exists a set of nodes in the target
pattern satisfying the mapping conditions (i.e. we do not need all possible
nodes in the target pattern to satisfy the conditions, only one, that is why
we use existential quantifiers for those nodes). Therefore, we add one uni-
versal quantifier for each node in S plus for each node in T referenced in
the when clause. We use an existential quantifier for the rest of nodes in
T . The if clause separating both sets of nodes ensures that the existence of
the mapping nodes in the target pattern is only enforced when the relation
is enabled.

Applying this definition on the Class-Table QVT relation in Fig. 5(b)
generates the following invariants and auxiliary query operations:
context Class inv Class-Table:

Package :: allInstances()−>forAll(p|
Schema :: allInstances()−>forAll(s|
if self.Class-Table-enabled(p, s) then

Table :: allInstances()−>exists(t|
self.Class-Table-mapping(p, t, s)) endif))

context Class::Class-Table-enabled(p:Package, s:Schema)
body: self.package = p and self.parent−>isEmpty()

and self.is persistent = true and p.Package-Schema-mapping(s)

context Class::Class-Table-mapping(p:Package, t:Table, s:Schema)
body: self.name = t.name and t.schema = s and

self.Attribute-Column(t) and self.ChClass-Table(t)

19

context Table inv Class-Table:
Package :: allInstances()−>forAll(p|

Schema :: allInstances()−>forAll(s|
if self.Class-Table-enabled(p, s) then

Class :: allInstances()−>exists(c|
self.Class-Table-mapping(c, p, s)) endif))

context Table::Class-Table-enabled(p:Package, s:Schema)
body: self.schema = s and s.Package-Schema-mapping(p)

context Table::Class-Table-mapping(c:Class, p:Package, s:Schema)
body: self.name = c.name and c.package = p and

c.is persistent = true and c.parent− > isEmpty() and
self.Attribute-Column(c) and self.ChClass-Table(c)

In the UML → RDBMS direction, Class-Table checks that for ev-
ery package-schema combination that enables the relation source-to-target
there exists a table that satisfies the class mapping conditions. Note that,
for this invariant, the Schema class is universally quantified since it is
needed to evaluate the when clause of the rule. In fact, for this rule, the
Class-Table-enabled operation must check not only whether the class ob-
ject represented by the self root variable enables the relation but also that
the when clause evaluates to true on it. Therefore, Class-Table-enabled
checks that the class is persistent, has no parents and is related to a pack-
age satisfying the Package-Schema relation. The latter is checked by means
of a call to the Package-Schema-mapping operation defined as part of the
translation of the Package-Schema relation (see the appendix).

If a class object satisfies all these conditions then the invariants require,
as stated by the Class-Table-mapping operation, the existence of a ta-
ble t with the same name as the class (and under the schema related to
the class package) and that the non-top relations Attribute-Column and
ChClass-Table hold between the class and the table. The if-then condition
in the invariant ensures that this is only required for matches enabling the
relation source-to-target.

Non-top relations are processed similarly to top relations with two main
differences: (i) non-top relations are translated as boolean operations instead
of invariants, because non-top relations only need to hold when called from
a top relation, and (ii) nodes passed as parameters are not quantified. For
simplicity, we make the assumption that if some relation p is called from the
when clause of two different relations, it receives the same parameters. Oth-

20

erwise, for each different call, we would have to generate a different operation
for p with different parameters.

Definition 10 (Non-top Relation Invariant). Let p be a non-top rela-
tion with domain patterns S = {roots, s1, . . . , sn} and T = {roott, t1, . . . , tm}.
Let Twhen ⊆ T be the set of elements of T referenced in p’s “when” section
and P = {a1, ..., ak} ⊆ S ∪ T the set of elements passed as parameters in the
call to p from other relations. The following boolean operation for the S → T
transformation direction is generated:

context type(roots)::p(a1 : type(a1), . . . , ak : type(ak))
type(xi) :: allInstances()−>forAll(xi|

type(xj) :: allInstances()−>forAll(xj | . . .
}
∀xk ∈ (S \{roots}\P)∪Twhen

if self.p-enabled(xi, xj , ...) then
type(xu) :: allInstances()− > exists(xu|

type(xv) :: allInstances()− > exists(xv|...
}
∀xw ∈ T \ Twhen \ P

self.p-mapping(xi, xj , . . . , a1, . . . , ak, xu, xv, . . .) . . .)) endif . . .))

Notice that the operation has the same structure as the top-level invari-
ant, but we eliminate from the body the variables passed as parameters. As
an example, we provide the translation of non-top relations Attribute-Column
and ChClass-Table in the appendix.

Finally, for each key defined in a relation, we generate an additional
constraint ensuring that no two objects with the same key exist in the model.

Definition 11 (Key Invariant). Given key k defined as Key X{prop1,
. . . , propn} where X is the type of one of the model elements participating in
the relation and propi is a property (attribute or association end) of X the
following invariant is generated :

context X inv k:
X :: allInstances()−>forAll(x1, x2|x1 <> x2 implies

(x1.prop1 <> x2.prop1 or . . . or x1.propn <> x2.propn))

The invariant forces two different objects to have at least a different value
in one of the properties that are part of the key. Notice that we do not
generate such invariant if it is already part of the meta-model constraints.

6. Analysing the Extracted Invariants

The analysis of the OCL invariants extracted from a transformation spec-
ification can reveal insightful information regarding its correctness. In this

21

section, we show how this analysis can be applied to two problems: (i) Ver-
ification of correctness properties of transformations, that is, finding defects
in it, e.g. whether it is underspecified; and (ii) Validation of transforma-
tions, that is, identifying transformations whose definition does not match
the designer intent.

A key notion in our analysis will be the transformation model : the union
of the source and target meta-models, including their integrity constraints,
together with the extracted OCL transformation invariants. The goal of this
representation is leveraging existing UML/OCL verification and validation
tools for the analysis of model transformations. For example, there are sev-
eral tools addressing the consistency or satisfiability problem for UML/OCL
models [2, 9, 12, 42]: given a UML class diagram annotated with OCL con-
straints, decide whether there exists a legal instance of the model, satisfying
all graphical and OCL constraints. Several approaches to this problem pro-
ceed constructively by automatically computing the legal instance, which is
provided to designers as output of the tool. As we will discuss in this sec-
tion, many interesting problems on transformations can be reformulated as
consistency problems on the transformation model.

6.1. Tool support

The verification and validation of M2M transformations can be performed
using existing tools for the analysis, reasoning, verification and validation
of UML/OCL specifications. Candidate tools should be able to manipulate
UML class diagrams, admit the definition of OCL queries and invariants, and
provide some support for checking the OCL invariants (either interactively
or automatically through a formal analysis or proof). There are several ap-
proaches in the literature meeting these requirements [2, 9, 12, 35]. Each tool
relies on a different approach for the analysis of OCL constraints, e.g. theo-
rem proving, SAT solving and constraint programming. No “best” approach
exists as each one achieves a different trade-off in terms of expressiveness
(set of supported UML/OCL constructs), efficiency (time and memory re-
quired to compute the result), decidability (termination of the method for
any input), completeness (whether there are inputs for which the output is
inconclusive) and automation (without user intervention).

In order to use any of these tools, the designer needs to define the trans-
formation model in an input format supported by the tool. Depending on
the tool, the meta-models are provided as input either in a textual notation,
through a GUI for drawing the model, or an XMI file which can be exported

22

from a UML case tool. Meanwhile, OCL invariants are described in a text
file. Then, all these tools are capable of analysing a UML class diagram
annotated with OCL constraints and deciding whether it is consistent, i.e.
whether there is a set of objects from the classes in the diagram which sat-
isfy the cardinality and integrity constraints. Tools based on SAT solvers
(UML2Alloy [2]) or constraint solvers (UMLtoCSP [12]) prove consistency
by finding a specific instance which satisfies all constraints. Meanwhile,
methods based on theorem provers (HOL-OCL [9], CQC [35], Description
Logics [42]) combine deduction rules of logics to construct a proof. In case
the proof exists, it can also lead back to a satisfying instance. Other tools,
such as the USE validation environment [18], allow defining and validating
UML/OCL specifications. In USE, designers can define a (meta-)model, an
instantiation of it and check whether the invariants hold on that particu-
lar instance. This testing helps the designer to detect if the meta-model
is overconstrained (valid states in the domain are forbidden by the invari-
ants) or underconstrained (invalid states are allowed by the invariants). This
approach exchanges automation for interactivity.

With these inputs, verification tools provide mechanisms to automatically
check the consistency of the transformation model without user intervention.
Checking consistency allows the verification of the executability of the trans-
formation and the use of all validation scenarios. Other properties checked
automatically by UML/OCL analysis tools (e.g. redundancy of an invariant)
lead to the verification of other properties in section 6.2 (verification).

The set of OCL expressions supported by these tools varies, e.g. some
tools do not support arithmetic operations in OCL. Therefore, choosing the
right tool will depend, for instance, in the type of expressions used in at-
tribute conditions.

A problem shared by all these tools is that the analysis of UML/OCL
diagrams has a high computational complexity. Reasoning on UML class
diagrams is already EXP-complete without considering OCL constraints [6],
and undecidable when arbitrary OCL constraints are included in the prob-
lem. Decision procedures which can support complex OCL invariants like
the transformation invariants from Sections 3 and 5 have at least an expo-
nential worst-case execution time (and also they may be undecidable and/or
incomplete). This complexity places a limit on the scalability of the proposed
approach, i.e. the size of the transformations that can be analyzed.

From this portfolio of tools, the examples shown in this section use the
tool UMLtoCSP, which is based on a constraint logic programming solver.

23

However, the other tools could be used instead with a different trade-off.
The figures in this section will alternatively depict examples of our TGG

and QVT running examples. As both describe the same transformation,
TGGs and QVT examples will be equal with the only difference that mapping
nodes are explicit in TGGs. For the sake of brevity, in some cases we will
refer only to TGGs or QVT, even though the verification and validation
techniques can be applied to both languages: it is only a matter of whether
we consider the OCL invariants from TGGs or QVT, as they rely in the same
transformation model concept.

6.2. Verification of Model-to-Model Transformations

The verification of transformations answers the question “is the trans-
formation right?”, i.e. are there any defects in the transformation? This
verification problem can be expressed in terms of the transformation model
because, like any other model, it is expected to satisfy several reasonable
assumptions. For instance, it should be possible to instantiate the model in
some way that does not violate any integrity constraint, including the OCL
invariants of the meta-models and the transformation rules. Failing to satisfy
these criteria may be a symptom of an incomplete, over-constrained or incor-
rect model, reflecting potential defects in the original M2M transformation.

In this section we formalize some properties that can be used to study
quality notions of M2M transformations. These quality notions capture static
properties of the M2M transformation, that is, they consider the application
of the transformation to specific source and target models rather than study-
ing the evolution of the model (e.g. incremental transformation or model
synchronization).

We introduce a particular notation in order to keep the formalization
independent of the language employed for the transformation specification
and the approach used for analysis. However, the predicates that we will
define have a direct correspondence with the invariants extracted in Sections 3
and 5 for TGGs and QVT.

• S and T denote a source and a target model respectively.

• 〈S, T 〉 is used for a pair of related source and target models.

• r denotes a rule or relation3, where we write PREFwd
r , PREBwd

r to de-

3In the following, we use rule and relation interchangeably.

24

note its forward and backward pre-conditions, and POSTr its post-
conditions. In our transformation model, PREFwd

r and PREBwd
r corre-

spond to the generated OCL queries p-enabled presented in Defini-
tions 7 and 9 for TGGs and QVT respectively, whereas POSTr corre-
sponds to the complete generated invariant.

• TS denotes a M2M specification made of a set of rules or relations.

We also use the auxiliary function OCC(,) that returns all occurrences
of the first argument (a pair of related models with a set of constraints) into
the second (a pair of related models). The following predicates will be used
to define verification properties, where graphs G and H used as examples
can be found in Fig. 7:

• INV[S] holds if S is conformant to its meta-model. Similarly, INV[T]
holds if T is conformant to its meta-model.

• INV[〈S, T 〉] def
= INV[S] ∧ INV[T].

• 〈S, T 〉 ⊆ 〈S ′, T ′〉 holds if 〈S, T 〉 is a submodel of 〈S ′, T ′〉.
• 〈S, T 〉 = 〈S ′, T ′〉 holds if 〈S, T 〉 is isomorphic to 〈S ′, T ′〉, i.e. both

models are equal up to equality of object identifiers.

Figure 7: Example triple graphs for the verification of rule properties: (1) G is an example
of forward applicability for rule Class-Table; (2) H is an example of forward weak exe-
cutability for rule Class-Table; (3) I is an example of executability for rule Class-Table;
(4) J is a counterexample of strong executability for rule Attribute-Column.

25

• ENFwd
r [〈S, T 〉] def

= OCC(PREFwd
r , 〈S, T 〉) 6= ∅, i.e. r is source-enabled if

there is some occurrence of its forward pre-condition. For TGG rules,
this predicate corresponds to Definition 4. For example, ENFwd

Class−Table[G]

holds because there is one occurrence of PREFwd
Class−Table in G.

• ENBwd
r [〈S, T 〉] def

= OCC(PREBwd
r , 〈S, T 〉) 6= ∅. For example, ENBwd

Class−Table[G]

does not hold because there is no occurrence of PREBwd
Class−Table in G, but

ENBwd
Class−Table[H] holds.

• SAT∗r[〈S, T 〉] def
= (∀〈S ′, T ′〉 ∈ OCC(PREFwd

r , 〈S, T 〉)∪OCC(PREBwd
r , 〈S, T 〉) :

∃〈S ′′, T ′′〉 ∈ OCC(POSTr , 〈S, T 〉) : 〈S ′, T ′〉 ⊆ 〈S ′′, T ′′〉). This predicate
holds when a pair of models satisfies the post-conditions of a rule in all
occurrences of its pre-conditions, which may be zero (trivial satisfac-
tion). In such a case we say that the models satisfy the rule, which cor-
responds to Definition 5 for TGG rules. For example, SAT∗Class−Table[H]
holds because the only occurrences of PREFwd

Class−Table and PREBwd
Class−Table

are satisfied (i.e. included in an occurrence of POSTClass−Table). For
QVT it is similar, but in addition the when and where clauses may
imply the satisfaction of other relations.

• SAT∗TS[〈S, T 〉] def
= (∀r ∈ TS : SAT∗r[〈S, T 〉]). This predicate holds if

〈S, T 〉 satisfies (even trivially) all rules in the specification TS.

• SATr[〈S, T 〉] def
= SAT∗r[〈S, T 〉] ∧ (ENFwd

r [〈S, T 〉] ∨ ENBwd
r [〈S, T 〉]). This

predicate holds when a pair of models satisfies r’s post-conditions,
but not trivially (i.e. at least one occurrence exists). For example,
SATClass−Table[H] holds.

• SATTS[〈S, T 〉] def
= (∀r ∈ TS : SATr[〈S, T 〉]).

Once established the notation and necessary predicates, we are ready
to define the list of quality properties of M2M transformations at two levels:
considering the role of individual rules within a transformation, or considering
the transformation model as a whole. In addition, some properties can be
studied at both levels. We start with properties applicable to the level of
rules. We assume the forward direction, but it should be clear that the same
properties can be easily defined for the backward direction. Each property
contains a description, its formula in terms of the previous notation, and an

26

example. The graphs used as examples can be found in Fig. 7 (for QVT the
examples would be similar but assuming an empty correspondence graph).

Applicable: r is forward applicable if there is a pair of models where r
is source-enabled and the source model satisfies its meta-model con-
straints. We do not ask the target model to satisfy its meta-model
constraints, as they may be violated during the transformation (e.g.
lower cardinality constraints in associations).

Formula: ∃〈S, T 〉 : INV[S] ∧ ENFwd
r [〈S, T 〉].

Example. Rule Class-Table is forward applicable in G because there
is one occurrence of PREFwd

Class−Table and the source graph is a valid model.

Weak Executable: r is forward weak executable if there exists a pair of
models that satisfy r, and the source is a valid model.

Formula: ∃〈S, T 〉 : INV[S] ∧ SATr[〈S, T 〉].
Example. Rule Class-Table is forward weak executable because H
contains one occurrence of POSTClass−Table. Please note that the target
graph of H is not a valid model, as tables need at least one column.
However this condition is not demanded by the property.

Executable: r is executable if there exists a valid pair of models that satisfy
it. Note that this property is independent of the direction.

Formula: ∃〈S, T 〉 : INV[〈S, T 〉] ∧ SATr[〈S, T 〉].
Example. Rule Class-Table is executable because graph I contains
one occurrence of POSTClass−Table and its source and target graphs are
valid models.

Strong Executable: r is forward strong executable if the target of every
source model where r is source-enabled can be completed to satisfy r.

Formula: ∀〈S, T 〉 : INV[〈S, T 〉] ∧ ENFwd
r [〈S, T 〉] ⇒ ∃T ′ : (SATr[〈S, T 〉]∨

(INV[〈S, T ′〉] ∧ SATr[〈S, T ′〉] ∧ 〈S, T 〉 ⊆ 〈S, T ′〉)).
Example. Rule Attribute-Column is not forward strong executable
because, as the counterexample triple graph J shows, a class diagram
where two classes related through inheritance define two attributes with
same name cannot be translated into a valid target model. On the other
hand Package-Schema is strong executable.

27

Remark. These three forms of executability demand increasing levels
of satisfiability for a given rule. While for weak executability and exe-
cutability r has to be existentially satisfied (in the latter by some valid
target model), in the strong version it must be universally satisfied in
all cases where it can be source-enabled. Note that a rule is executable
if and only if it is weak executable both forward and backwards.

Total: r is total if it is not trivially satisfiable in every valid source model.
This is equivalent to ask r to be forward weak executable in each valid
source model.

Formula: ∀S : INV[S] ⇒ ∃T : SATr[〈S, T 〉].
Example. Rule Package-Schema is not total, because the empty model
satisfies the source meta-model constraints, but there is no target model
that together with it satisfies the rule. The rule would be total should
we add to the meta-model a constraint asking each model to have at
least one package.

Deterministic: r is deterministic if each valid source model can be correctly
transformed in a unique way using r.

Formula: ∀S, T, T ′ : INV[S] ⇒ (ENFwd
r [〈S, T 〉] ∧ ENFwd

r [〈S, T ′〉]∧
SAT∗TS[〈S, T 〉] ∧ SAT∗TS[〈S, T ′〉] ⇒

T = T ′).

Example. All rules in our example are deterministic. In general, this
property can be used to detect under-constrained transformation mod-
els. For example, should we change the cardinality of the mapping
between C2T and Table from 0..1 to ∗, then rule Class-Table would
be non-deterministic because two classes with the same name could be
mapped to the same table or to two tables with the same name. A
rule could also fail to be deterministic due to attribute computation
(e.g. if an attribute value is set to be the square root of another),
or because the target model contains elements not mentioned in the
transformation. For instance, if the relational schema meta-model had
e.g. foreign key nodes, as these are not considered by any rule, there
could be target models with and without foreign keys associated to a
unique source model.

Finally note that the formula demands 〈S, T 〉 and 〈S, T ′〉 to satisfy
(even trivially) the whole transformation specification TS. Otherwise

28

no rule in our example would be deterministic. See for example H and
I which satisfy Package-Schema and have the same source model.

Functional: r is functional if it is total and deterministic.

Formula: Total(r) ∧Deterministic(r).

Example. No rule in our example is functional. Rule Package-Schema

would be functional if we demand at least one package in each UML
model.

Exhaustive: r is exhaustive if it is satisfiable in each target model. This
property is the dual of property total, and is equivalent to ask r to be
weak executable in each valid target model.

Formula: ∀T : INV[T] ⇒ ∃S : SATr[〈S, T 〉].
Example: No rule in the example is exhaustive. Rule Package-Schema

is not exhaustive because there is no source model that together with
an empty target model satisfies the rule. The rule would be exhaustive
should we add a constraint to the target meta-model asking for at least
one schema in each RDBMS model.

Injective: r is injective if each valid target model is a correct transformation
of a unique source model. This property is the dual of deterministic
for the source model.

Formula: ∀T, S, S ′ : INV[T] ⇒ (ENFwd
r [〈S, T 〉] ∧ ENFwd

r [〈S ′, T 〉]∧
SAT∗TS[〈S, T 〉] ∧ SAT∗TS[〈S ′, T 〉] ⇒

S = S ′).

Example: Rule Class-Table is not injective. We can find the coun-
terexample graphs K and L shown in Fig. 8 which have the same target,
and one is produced from a class with two attributes, and the other
from two classes related through inheritance with one attribute each.
On the contrary, rule Package-Schema is injective.

Bijective: r is bijective if it is exhaustive and injective.

Formula: Exhaustive(r) ∧ Injective(r).

Example. No rule in the example is bijective. Rule Package-Schema

would be bijective should we forbid empty source and target models.

29

Figure 8: Example triple graphs for the verification of transformation properties: our TGG
is executable but non-injective (we find two source models for the same target model).

Redundant: r is redundant in a specification TS if the set of pairs of models
satisfying TS is exactly the same as those satisfying TS \ {r}.
Formula: ∀〈S, T 〉 : INV[〈S, T 〉] ⇒ (SAT∗TS\{r}[〈S, T 〉] ⇔ SAT∗TS[〈S, T 〉]).
Example. None of the rules in the example specification are redundant.
An example of redundant rule would be one like Attribute-Column,
but applicable only to persistent classes.

Enabledness Subsumption: Given two rules r1 and r2, r1 forward sub-
sumes r2, written r1 ≤F r2, if whenever r2 is source-enabled so is r1.
That is, the forward pre-conditions of r1 are weaker than those of r2.

Formula: ∀〈S, T 〉 : INV[S] ∧ ENFwd
r2 [〈S, T 〉] ⇒ ENFwd

r1 [〈S, T 〉].
Example. We have that Package-Schema ≤F Class-Table, as when-
ever the latter is source-enabled, so is the former. Note that if a QVT
relation r calls relations r1, ..., rn in the where clause, we should have
r ≤F r1 ∧ ... ∧ r ≤F rn if the relation is to be enforced in the forward
direction. Similarly, if relation r calls relations r1, ..., rn in the when
clause, we should have r1 ≤F r ∧ ... ∧ rn ≤F r if the relation is to be
enforced in the forward direction. Note that if the relation is meant to
be bi-directional, we would have backward subsumption too.

Next, we generalize some of the presented properties to the level of trans-
formation. In this case all properties are independent of the direction.

30

Executable: TS is executable if there is a valid pair of models satisfying it.

Formula: ∃〈S, T 〉 : INV[〈S, T 〉] ∧ SAT∗TS[〈S, T 〉].
Example. Our example TGG transformation is executable because, e.g.
graphs K and L satisfy (trivially or not) all rules. Note that we use
the SAT∗TS[. . .] predicate instead of SATTS[. . .] because otherwise we
would be requiring at least one explicit occurrence of each rule.

Total: TS is total if for each valid source model there is a valid target model
satisfying it.

Formula: ∀S : INV[S] ⇒ ∃T : SAT∗TS[〈S, T 〉] ∧ INV[T].

Example. Our TGG is not total as e.g. there is no valid target model
such that together with the source model of graph G satisfies the spec-
ification (tables without columns are not allowed).

Deterministic: TS is deterministic if each valid source model can be cor-
rectly transformed in a unique way.

Formula: ∀S, T, T ′ : INV[S] ⇒ (SAT∗TS[〈S, T 〉] ∧ SAT∗TS[〈S, T ′〉]∧
INV[T] ∧ INV[T ′] ⇒ T = T ′).

Example. Our TGG is deterministic because its rules are deterministic.

Functional: TS is functional if it is total and deterministic.

Formula: Total(TS) ∧Deterministic(TS).

Example. Our specification is not functional because it is not total.

Exhaustive: TS is exhaustive if each target model can be produced from
some source model. This property is the reciprocal of property total.

Formula: ∀T : INV[T] ⇒ ∃S : SAT∗TS[〈S, T 〉] ∧ INV[S].

Example: Our TGG is exhaustive as each valid relational schema can
be generated from some class diagram.

Injective: TS is injective if each target model satisfies TS together with
just one single source model. This property is the reciprocal of deter-
ministic.

Formula: ∀T, S, S ′ : INV[T] ⇒ (SAT∗TS[〈S, T 〉] ∧ SAT∗TS[〈S ′, T 〉]
INV[S] ∧ INV[S ′] ⇒ S = S ′).

Example: Our TGG is not injective as graphs K and L show.

31

Bijective: TS is bijective if it is exhaustive and injective.

Formula: Exhaustive(TS) ∧ Injective(TS).

Example. Our specification is not bijective because it is not injective.

All these properties can be encoded as UML/OCL consistency problems
on the transformation model. For example, executability of the transforma-
tion is directly equivalent to the consistency problem, i.e. a transformation
is executable iff its transformation model is executable. As an example, Fig.
9 illustrates the verification of the executability property on our running
example for QVT, using the tool UMLtoCSP [12] for UML/OCL model con-
sistency. The tool automatically proves the property by finding a legal pair
of source and target models satisfying the transformation model. Any other
tool among those mentioned in Section 6.1 could be used instead.

Figure 9: Verification of executability of the QVT transformation, using UMLtoCSP.

To compute this result, we proceed in the following way. First, the trans-
formation model is modelled using a UML CASE tool capable of exporting
UML class diagrams in XMI format (XML Metadata Interchange), for exam-
ple Argo UML4). Then, the OCL transformation invariants are written in a
text file. Both the XMI file and the text file are provided as the input to the
UMLtoCSP tool. Next, UMLtoCSP requires the selection of the property
that will be verified on the UML/OCL class diagram. In the case of exe-
cutability, we are interested in checking whether there is a pair of source and
target models which satisfy all meta-model and transformation invariants.
Furthermore, we are probably interested in non-empty source and target

4http://argouml.tigris.org/

32

models. This property, i.e. ensuring that there exists a non-empty instance
satisfying all the invariants of the model, is called weak satisfiability of the
class diagram [12]. Weak satisfiability can be proved by computing an in-
stance of the model which satisfies all the invariants, e.g. an example of the
property. Given the input model and the invariants, the tool UMLtoCSP is
able to find this legal instance (both the source and target models) completely
automatically and without any user intervention. The output provided by
UMLtoCSP is a graphical representation of the instance expressed as a UML
object diagram like that of Figure 9.

Other verification properties have to be decomposed into two or more
consistency problems affecting either only the source model, only the target
model, or the entire transformation model. For example, we can prove that a
transformation is not total if we find a counterexample, i.e. a legal instance
of the source model with no corresponding instance in the target model. To
find the counterexample, first we generate a legal instance x of the source
model. Then, we check if the entire transformation model is consistent when
an additional invariant is added: the source model must be instantiated to
x. If it is inconsistent, we have found our counterexample, otherwise, we
keep generating new instances for x until we find our counterexample or we
conclude no counterexample exists. A similar procedure can be used to check
the other properties.

If we are using a bounded verification tool like UMLtoCSP to generate
legal instances, the search for counterexamples is limited to a bounded space.
The designer defines this space by establishing the set of possible values for
attributes and upper bounds to the number of objects and links to be consid-
ered. Bounding the search space ensures that the approach terminates (the
tool always provides some answer) but as a consequence it becomes incom-
plete (when no counterexample is found, the result is inconclusive: there may
be a counterexample outside the bounded search space). An advantage of this
approach is that there is no restriction on the constructs and operators that
can be used in meta-model invariants and attribute conditions. For example,
an attribute condition of a rule might require factoring a number into its
list of prime factors. This type of complex attribute conditions is supported
by UMLtoCSP, even though its analysis might be inefficient. UMLtoCSP
does not reason on the invariants or attribute conditions directly: instead, it
attempts to build an instance which satisfies all the invariants and attribute
conditions. In the worst case, finding this instance might require trying all
possible values for attributes in the transformation model and checking the

33

invariants and attribute conditions for each of them.
On the other hand, there are other UML/OCL verification approaches

which are complete, like the theorem prover HOL-OCL [9], but may not ter-
minate so they may require user assistance to complete proofs. As discussed
in Section 6.1, designers can select the tool which better fits their needs
according to this (and other) trade-offs.

6.3. Validation of Model-to-Model Transformations

Validation tools clarify the question “is this the right transformation?”
by allowing designers to test if the transformation behaves as expected.

Intuitively, the validation of a transformation consists in exercising the
transformation in several scenarios and comparing the result with the ex-
pected outcome. Contrary to many verification approaches, validation can-
not be fully automated: at some point, the intervention of the designer may
be required to select relevant scenarios, to define the expected outcome or to
compare between the real and expected results. However tools can provide
support to designers during the validation process. In this section, we illus-
trate how the transformation model can be used to validate a transformation
and the degree of tool support that can be achieved.

The most basic level of validation for transformations is the ability to
“execute” the transformation in one direction: given a source (target) model
provided by the designer, generate the corresponding target (source) model.
At this level, we consider that the designer inspects the result himself and
determines whether it is correct or not. This execution is not trivial because
declarative transformations define what is the target model corresponding
to a source model, without focusing on how it is computed. Some relevant
information like the order in which individual transformation rules should be
applied is generally omitted.

Thanks to the extracted invariants, it is possible to provide partial sup-
port to the execution of transformations without converting them into an
imperative form beforehand. However, in order to execute the transforma-
tion, all the implicit information has to be completed by an execution engine.
This means that the execution engine (i) spends execution time deciding how
the computation will be performed and (ii) may follow unsuccessful branches
of computation which require backtracks. Therefore, the execution of declar-
ative transformations may be inefficient compared to the execution of imper-
ative transformations.

34

Anyhow, we can use a UML/OCL consistency checking tool as our exe-
cution engine. It can find an instance of the transformation model satisfying
the source and target meta-model well-formedness rules, plus the transfor-
mation invariants, plus an additional constraint: that the instantiated source
model is equal to the one provided by the designer. This way, we obtain a
legal instantiation of the transformation model containing the initial source
model plus a valid corresponding target model.

The input model can be described as an OCL invariant that restricts the
possible set of legal instances to just one, the corresponding to that specific
model provided by the designer. For instance, if the designer wants to exe-
cute our transformation example using a source model with a single package
called “Education” and no classes, our validation process would generate this
additional invariant:
context Package inv:
Package::allInstances()−>size() = 1 and Class::allInstances()−>isEmpty() and
Package::allInstances()−>exists (p | p.name = “Education”)

This invariant is passed to the solver along with the rest of invariants
of the transformation model. Note that with this alternative, current tools
do not need to be extended to cope with the automatic execution of model
transformations. Computing an instance that satisfies both the source model
invariant and the transformation invariants will yield the corresponding tar-
get model automatically. In a similar way, designers can check which source
model/s would generate a specific target model.

A second validation level is the ability to transform partially specified
models. For instance, in our running example a designer might want to know
whether it is possible to generate a table with three columns without having
to fully define an example model, a tedious and time-consuming task [39].
To help in this matter, we can use a similar approach to the one presented
so far, but using a weaker invariant to specify the designer-provided input
model. In this case, the UML/OCL consistency solver is free to add new
elements to the input source model when searching for a legal target model.

In addition, this validation process can be enriched to provide a descrip-
tion of the expected outcome of a transformation using an OCL expression.
Like the input model, the outcome can be partially specified, e.g. “the tar-
get model should have at least two columns” or “the package should have
as many classes as tables appear in the schema”. By adding the negation
of this OCL expression as an invariant to our transformation model, any

35

instance found by the UML/OCL consistency solver becomes a counterex-
ample: a scenario where the outcome of the transformation does not match
the expected result.

For instance, a typical expected outcome of a transformation is that both
source and target models satisfy the meta-model invariants. In order to
validate the transformation in the forward direction, we would modify the
transformation model by negating the invariants of the target meta-model:
if the target meta-model has invariants inv1, . . . , invN we would instead
impose the invariant not(inv1 and . . . and invN). Any instance satisfying the
transformation invariants and this new target meta-model invariant would
be an example of transformation on an input model producing an incorrect
target model. In our running example, this technique would attempt to
compute a target model where column names are not unique within the
scope of one table (the negation of the OCL constraints in Fig. 2). Using
UMLtoCSP we have validated the transformation in this way to produce
the counterexample from Fig. 10. Notice that the designer no longer needs
to compare the real and expected outcomes, as the tool directly provides a
counterexample if it can find one.

Another activity where tools can assist in the validation process is in
selecting relevant scenarios. In software systems, non-trivial errors usually
appear in corner cases which were not properly considered. In the context of
M2M transformations, it makes sense to consider validation scenarios which
stress the relationship between the different rules (TGG) or relations (QVT)
of a transformation. For example, it might be interesting to consider scenar-
ios where one rule is not enabled for some reason, e.g. a RDBMS model with
one schema and no tables (so only Package-Schema is enabled) or a UML
model without inheritance (so ChClass-Table is not enabled). This method
can be used as a heuristic to generate potentially “interesting” scenarios
which the designer can review to select the significant ones.

Using the transformation invariants and a tool like UMLtoCSP, it is pos-
sible to automate the generation of such relevant scenarios. Given a set of N
invariants, first we compute instances that satisfy all transformation invari-
ants, but where rule 1 is not enabled. To this end, two additional invariants
are added to the transformation model: one in the source model ensuring
that the model is not source-enabled and similarly for target-enabledness.
The structure of these new invariants is very similar to that of the transfor-
mation invariants, but instead of enforcing the mapping whenever the rule is
enabled, they require the rule to be disabled:

36

Figure 10: Scenario proving that the TGG transformation is not total, i.e. the source
model cannot be transformed into a valid target model (in the target RDBMS model,
column names are not unique which violates the meta-model constraints).

Transformation: ∀X : if p-enabled(X) then ∃Y : p-mapping(X, Y) endif
New invariant: ∀X : not p-enabled(X)

Similarly, we would proceed for the rest of the N rules, one by one. Then,
all these scenarios can be presented to the designer, who decides which ones
should be validated. As an example, Fig. 11 shows some relevant scenarios
generated automatically using UMLtoCSP. Notice how they depict interest-
ing corner cases from the point of view of the validation of the transformation:
the empty model (1), an empty package/schema (2), a non-persistent class
without attributes (3), a non-persistent class with attributes (4), a hierarchy
of non-persistent classes (5) and a package with classes but no inheritance
hierarchies (6). Some of them are generated multiple times when we con-
sider different rules, e.g. no rule is source-enabled in the empty model. The
same approach can be applied to QVT transformations, focusing on relations
instead of rules.

37

(Empty model)
(1)

(2)

(3)

(4)

(5)

(6)

Figure 11: Sample TGG validation scenarios generated automatically, where the following
rules are not source-enabled: Package-Schema (scenario 1), Class-Table (scenarios 1-5),
ChClass-Table (scenarios 1-6) and Attribute-Column (scenarios 1-5).

38

(1)

(2)

(3)

Figure 12: Sample QVT validation scenarios generated automatically, where a rule
is applied exactly once: Package-Schema (scenarios 1-3), Class-Table (scenario 2),
ChClass-Table (scenario 3), Attribute-Column (scenarios 2-3).

This is just one heuristic which can be used to identify interesting corner
cases of the transformation, but other heuristics may be used to guide the
generation of scenarios. For instance, it is possible to modify the OCL in-
variants in order to compute instances where a rule can only be applied once.
The change consists in changing the quantifiers in the invariant, from forAll

and exists to one, which enforces that the rule is only applied once. If the
previous heuristic was aimed towards the generation of extreme cases of the
transformation, this one computes the base cases, e.g. models with a single
table, with a single package, with a single attribute, with a single inheritance
relationship, etc. Fig. 12 depicts some sample scenarios generated with this
heuristic in the QVT transformation (again, the same heuristic can be ap-
plied to TGGs by considering rules instead of relations). These scenarios
highlight, for instance, that a model having tables without columns is not
valid according to the meta-model invariants.

Notice that these strategies are just heuristics: there may be other in-
teresting scenarios which are not generated using these heuristics and the
tool may generate “redundant” scenarios for a given rule or relation. For

39

instance, once we have validated the transformation of a package with three
classes, the tool may suggest the validation of a package with four classes.
In this sense, user intervention is still required to select interesting scenarios
from the ones generated by a tool.

These automatically generated scenarios can be used in two ways. First,
generating the scenarios as instances of the transformation model yields both
the source of the target of the transformation. The designer can review the
outcome of the transformation manually and validate that it meets his expec-
tations. On the other hand, we can consider only the source (or the target)
model of the scenario. The designer can then describe the corresponding
target for that source using an invariant and rely on the tool to assess the
behavior of the transformation. This second approach can be useful, for
instance, if the models are too large to be reviewed by hand or if the trans-
formation is not deterministic and there may be several possible targets for
each source.

In short, combining the different techniques from this subsection, we pro-
pose the validation flow presented in Fig. 13. First, the tool suggests some
validation scenarios to the designer, who selects some of them and either
(a) reviews them manually or (b) defines the expected outcome using OCL
invariants. Then, the tool attempts to find counterexamples which do not
match the designer intent. Even though complete automation cannot be
achieved, this validation flow provides tool support through all the valida-
tion steps: selection of scenarios, expressing the designer’s intentions and
identifying scenarios which do not correspond to these goals.

Figure 13: Validation flow for M2M transformations using any UML/OCL analysis tool.

Any of the tools presented in Section 6.1 can be used to perform activities

40

1 and 4 in this validation flow. The only requirements for such tools are being
able to receive a UML/OCL model as input in some format and to check the
consistency of that model. Activity 1 requires checking the consistency of a
transformation model where invariants have been modified according to one
of the three heuristics presented in this section: (a) failure of a meta-model
invariant, (b) a rule is not enabled and (c) a rule is enabled exactly once.
Then, activity 4 checks the consistency of the transformation model plus an
invariant modelling the source model (defined by the designer in step 2) and
an invariant modelling the expected output (the product of step 3). Thus, in
activities 1 and 4, the role of the designer is providing the meta-models and
invariants in a suitable input format for that tool and using the consistency
checking command of the UML/OCL analysis tools.

6.4. Experimental results

In this section, we discuss the experimental results for the examples de-
scribed in this paper, using the tool UMLtoCSP to perform the analysis of
the transformation model.

Three uses of the OCL invariants will be considered: (a) the execution of
the transformation source-to-target from a given source model or target-to-
source from a given target; (b) the verification of a property defined in Section
6.2; and (c) the validation of the transformation using the heuristics from
Section 6.3. Table 1 displays the execution time for each of the examples used
in the paper. These results have been measured on an Intel Core 2 Duo 2.53
Ghz with 2 Gb RAM. The examples in Figure 14 have been used to illustrate
the execution of source-to-target and target-to-source transformations.

UMLtoCSP is a bounded verification tool and the results have been com-
puted within a bounded search space: each class of the model can be pop-
ulated with at most two objects, and each attribute has a domain with at
most three distinct values. It is important to establish what the search space
is because it has a large impact in the verification time: the solver used by
UMLtoCSP is backtracking-based, so increasing the search space may cause
an exponential blowup in the worst-case execution time. However, a helpful
observation that alleviates this problem in bounded verification tools is the
“small scope hypothesis” [22], i.e. a large proportion of errors in a system
can be identified by considering only instances within a small scope.

In the analysis performed by UMLtoCSP, the critical resource from a
complexity point of view is execution time: memory usage is not a concern.
This happens because, during the search, the solver only stores in memory

41

(a)

(b)

Figure 14: Sample models used to test the execution of the transformation source-to-target
and target-to-source.

42

Execution Formalism Example Time
Source-to-target TGG Fig. 14 (a) 1.84s
Target-to-source TGG Fig. 14 (a) 0.66s
Source-to-target TGG Fig. 14 (b) 0.31s
Target-to-source TGG Fig. 14 (b) 0.22s
Source-to-target QVT Fig. 14 (a) 0.19s
Target-to-source QVT Fig. 14 (a) 0.35s
Source-to-target QVT Fig. 14 (b) 0.21s
Target-to-source QVT Fig. 14 (b) 0.39s
Verification Formalism Example Time
Satisfiability TGG Fig. 9 0.16s
Satisfiability QVT Fig. 9 0.02s
Totality TGG Fig. 10 2.41s
Validation Formalism Example Time
Package-Schema is not applicable TGG Fig. 11-1 0.00s
Class-Table is not applicable TGG Fig. 11-2 0.05s
Class-Table is not applicable TGG Fig. 11-3 0.00s
Class-Table is not applicable TGG Fig. 11-4 0.00s
Class-Table is not applicable TGG Fig. 11-5 0.00s
ChClass-Table is not applicable TGG Fig. 11-6 0.16s
Package-Schema is applicable once QVT Fig. 12-1 0.00s
Class-Table is applicable once QVT Fig. 12-2 0.05s
ChClass-Table is applicable once QVT Fig. 12-3 0.02s

Table 1: Experimental results for the examples used in this paper.

the system of constraints and one instance of the transformation model (the
candidate solution). The number of constraints is linear in terms of the size
of the OCL invariants, where by “size” we mean “number of nodes of the
abstract syntax tree”. Moreover, before the size of the instance can become
a problem (i.e. being too large to fit into physical memory), execution time
would become a major issue, as the solver would have to check all smaller
instances previously.

7. Related Work

The term transformation model was coined in [7] where the authors de-
scribe its benefits in terms of the uniformity and completeness of the trans-
formation definition, its executability and its direction freeness. The work of

43

[1] presents a similar approach based on the mathematical concept of relation
between source and target models. In both works, transformation models are
supposed to be manually specified by the designers. Our work can be seen
as a continuation of these approaches, as we derive transformation models
automatically from declarative M2M transformations, and show the feasibil-
ity of such transformation models and which kinds of analysis can be done,
in particular by using a constraint solver.

With respect to the analysis of transformations, our work offers new verifi-
cation techniques. Current analysis techniques (especially for graph transfor-
mations [10, 21, 37, 30]) were developed for standard operational rules aimed
to in-place transformations, and not for declarative TGG rules aimed at M2M
transformation. Although some of these techniques can be adapted to op-
erational TGG rules, declarative TGG rules cannot be analysed with them.
Besides, our method opens the door to the verification of QVT-Relational
transformations. Other related approaches, such as [47], characterize proper-
ties like stability or preservation of the underlying operational mechanism. In
our case, we focus on properties of the declarative specification. In [40] the
author states some requirements to determine whether a QVT-Relational
transformation is bidirectional (though not necessarily bijective) but does
not discuss other properties nor provides a method to automatically check
bidirectionality of a given transformation. A similar work for TGG rules is
described in [15].

In [34], the authors present a technique for specifying and verifying spe-
cial kinds of transformations based on OCL and techniques similar to con-
straint solving. However, this only works for transformations that express
refinements of UML class diagrams (like object decomposition or operation
refinement), and hence it cannot be used with general M2M transformations.

It is also worth mentioning the approach of [23], which has been imple-
mented in the FORMULA tool. Their approach is based on concepts from
algebraic specification and logic programming. Transformations are defined
by a source and a target signature, and a set of formulas, expressing the
transformation constraints. The FORMULA tool implements a model find-
ing procedure that combines abduction and techniques from SAT Modulo
Theories. Hence, they can formalize for example whether a transformation
is structure preserving. Except for the OCL support, we believe that such
tool could be used to implement some of the analysis techniques we have
presented in this paper, especially those for validation.

Our analysis approach, consisting in the translation of the M2M transfor-

44

mation to a formal domain is similar to other approaches: [3, 5] transform the
rules into Alloy, [4] translates them into Petri graphs, and [43] into Promela
for model-checking. However, again, these approaches are targeted to opera-
tional rules and/or present limitations with respect to the expressivity of the
meta-models (e.g. specification of well-formedness rules as part of the meta-
models definition is not allowed) and the input transformation language.
In [36], we presented an approach to model-check in-place rule-based trans-
formation based on their transformation into Maude. Again, note that this
approach was for in-place transformations and that we did not take integrity
constraints into account.

The emphasis of MDD in model transformation is revealing an urgent
need to develop validation and verification techniques especially tailored for
M2M transformations. For example, the work in [46] analyses meta-model
coverage (i.e. which parts of the source/target model are not transformed)
similar to our analysis of total/surjective transformations. In [31] the au-
thors present a method to check whether the semantics of the input model
is preserved in the output model of a transformation. That is, they do not
try to prove the correctness of the transformation but check if the output
and input model are similar in behaviour. In [17] a method is proposed to
check semantical equivalence between the initial model and the generated
code. In [44], the authors verify transformation correctness with respect to
semantic properties by model checking the transition system of the source
and target models. Hence, the approach is fully automatic, but the verifica-
tion has to be done for each input model. Our techniques do not automate
behaviour conformance checking, but rely on user intervention to do so.

Even though our work is not especially targeted to testing, it is also worth
mentioning that there are some works aimed at developing frameworks for
transformation testing [8, 29]. For example, in [8] an algorithm is presented
which takes as input the meta-model of the source language and fragments of
input models, and it generates appropriate source test models. In addition,
our heuristics take into account the invariants extracted from the transfor-
mation, which we think can provide more suitable test models for the specific
transformation under validation.

Overall, we believe that our work can be regarded as a complementary
contribution to the model transformation community effort.

45

8. Conclusions and Future Work

We have presented a new method for the analysis of declarative M2M
transformations based on the automatic extraction of OCL invariants implicit
in the transformation definition. These invariants together with the definition
of the source and target meta-models comprise a transformation model. Since
this transformation model can be regarded as a standard UML/OCL class
diagram, it can be processed with all kinds of methods and tools designed
for managing class diagrams, spawning from direct application execution, to
verification/validation analysis, to metrics measurement and to automatic
code generation. The obtained results can then be interpreted in terms of
the original transformation specification.

In particular, we have formalized a number of verification properties, both
at the rule and transformation levels, and shown how the transformation
model can be effectively used for its verification using our UMLtoCSP tool.
This approach has the advantage that the M2M specification does not need
to be operationalized for its analysis or execution. We have also presented
some validation heuristics, proposed a validation process and showed how
UMLtoCSP can be used to partially automate this validation process.

In this paper we have focused on TGG and QVT declarative transforma-
tions but we believe it is feasible to extend our method to cope with other
similar transformation languages as ATL [24] or Tefkat [27]. Note that in this
way the extraction of invariants may also serve as a means for the integration
of different declarative M2M transformation languages at the lower level.

In our future work, we will evaluate techniques to improve performance
in the verification of complex transformations. We are also interested in
developing and adapting new techniques for transformation models that help
us to perform an incremental execution of the model transformation (the
analysis of the invariants helps to detect the rules that need to be reexecuted
after changes on the model [13]) and to detect and resolve inconsistencies
due to simultaneous changes to both models. Finally, we plan to improve
our validation process by means of extending our list of heuristics for snapshot
generation, reusing some ideas from the more mature area of test generation
in object-oriented programming.

Acknowledgements. We thank the referees for their useful comments,
which helped us to improve the paper. This work is sponsored by the Spanish
Ministry of Science and Innovation, under projects “MODUWEB” (TIN2006-
09678), “METEORIC” (TIN2008-02081) and “Design and construction of

46

a Conceptual Modeling Assistant” (TIN2008-00444/TIN - Grupo Consoli-
dado), and UOC-IN3 research grant.

References

[1] D. H. Akehurst, S. Kent, and O. Patrascoiu. A relational approach to
defining and implementing transformations between metamodels. Jour-
nal on Software and System Modeling, 2(4):215–239, 2003.

[2] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: A
challenging model transformation. In Proc. MoDELS’07, volume 4735
of LNCS, pages 436–450. Springer, 2007.

[3] K. Anastasakis, B. Bordbar, and J. M. Kuster. Analysis of model trans-
formations via Alloy. In ModeVVa’07, pages 47–56, 2007.

[4] P. Baldan, A. Corradini, and B. König. A static analysis technique for
graph transformation systems. In Proc. CONCUR’01, volume 2154 of
LNCS, pages 381–395. Springer, 2001.

[5] L. Baresi and P. Spoletini. On the use of Alloy to analyze graph trans-
formation systems. In Proc. ICGT’06, volume 4178 of LNCS, pages
306–320. Springer, 2006.

[6] D. Berardi, D. Calvanese, and G. D. Giacomo. Reasoning on UML class
diagrams. Artificial Intelligence, 168:70–118, 2005.

[7] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lin-
dow. Model transformations? Transformation models! In Proc. MoD-
ELS’06, volume 4199 of LNCS, pages 440–453. Springer, 2006.

[8] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. L. Traon.
Metamodel-based test generation for model transformations: an algo-
rithm and a tool. In ISSRE, pages 85–94. IEEE Computer Society,
2006.

[9] A. D. Brucker and B. Wolff. The HOL-OCL book. Technical Report
525, ETH Zurich, 2006.

[10] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. Analysing graph trans-
formation rules through OCL. In Proc. ICMT’08, volume 5063 of LNCS,
pages 225–239. Springer, 2008.

47

[11] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. An invariant-based
method for the analysis of declarative model-to-model transformations.
In Proc. MoDELS’08, volume 5301 of LNCS, pages 37–52. Springer,
2008.

[12] J. Cabot, R. Clarisó, and D. Riera. Verification of UML/OCL class dia-
grams using constraint programming. In MoDeVVa 2008. ICST Work-
shop, pages 73–80, 2008.

[13] J. Cabot and E. Teniente. Incremental integrity checking of uml/ocl
conceptual schemas. Journal of Systems and Software, In press, 2009.

[14] J. de Lara and E. Guerra. Pattern-based model-to-model transforma-
tion. In Proc. ICGT’08, volume 5214 of LNCS, pages 426–441. Springer,
2008.

[15] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer. Informa-
tion preserving bidirectional model transformations. In Proc. FASE’07,
volume 4422 of LNCS, pages 72–86. Springer, 2007.

[16] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of alge-
braic graph transformation. Springer-Verlag, 2006.

[17] H. Giese, S. Glesner, J. Leitner, W. Schfer, and R. Wagner. Towards
verified model transformations. In ModeVVa’06, 2006.

[18] M. Gogolla, J. Bohling, and M. Richters. Validating UML and OCL
models in USE by automatic snapshot generation. Journal on Software
and System Modeling, 4(4):386–398, 2005. .

[19] J. Greenyer and E. Kindler. Reconciling TGGs with QVT. In Proc.
MoDELS’07, volume 4735 of LNCS, pages 16–30. Springer, 2007.

[20] E. Guerra and J. de Lara. Event-driven grammars: Relating abstract
and concrete levels of visual languages. Journal on Software and System
Modeling, special section on ICGT’04, pages 317–347, 2007.

[21] R. Heckel, J. M. Küster, and G. Taentzer. Confluence of typed attributed
graph transformation systems. In Proc. ICGT’02, volume 2505 of LNCS,
pages 161–176. Springer, 2002.

48

[22] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2006.

[23] E. Jackson and J. Sztipanovits. Formalizing the structural semantics of
domain-specific modeling languages. Softw. Syst. Model., In press, 2009.

[24] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. ATL:
a QVT-like transformation language. In OOPSLA Companion, pages
719–720. ACM, 2006.

[25] A. Königs and A. Schürr. Tool integration with triple graph grammars
- a survey. ENTCS, 148(1):113–150, 2006.

[26] J. M. Küster. Definition and validation of model transformations. Jour-
nal on Software and System Modeling, 5(3):233–259, 2006.

[27] M. Lawley and J. Steel. Practical declarative model transformation with
Tefkat. In MTiP’02, LNCS, pages 139–150. Springer, 2005.

[28] L. Lengyel, T. Levendovszky, and H. Charaf. Constraint validation in
model compilers. Journal of Object Technology, 5(4):107–127, 2006.

[29] Y. Lin, J. Zhang, and J. Gray. A framework for testing model trans-
formations. In Model-driven Software Development, pages 219–236.
Springer, 2005.

[30] T. Mens, G. Kniesel, and O. Runge. Transformation dependency analy-
sis - a comparison of two approaches. In Proc. LMO’06, pages 167–184,
2006.

[31] A. Narayanan and G. Karsai. Towards verifying model transformations.
ENTCS, 211:191–200, 2008.

[32] Object Management Group. UML 2.0 OCL Specification, 2003.

[33] OMG. MOF 2.0 Query/View/Transformation specification, 2007.

[34] C. Pons and D. Garćıa. An OCL-based technique for specifying and
verifying refinement-oriented transformations in MDE. In Proc. MoD-
ELS’06, volume 4199 of LNCS. Springer, 2006.

49

[35] A. Queralt and E. Teniente. Reasoning on UML class diagrams with
OCL constraints. In ER, volume 4215 of LNCS, pages 497–512. Springer,
2006.

[36] J. E. Rivera, E. Guerra, J. de Lara, and A. Vallecillo. Analyzing rule-
based behavioural semantics of visual modeling languages with maude.
In Proc. SLE’08, volume 5452 of LNCS, pages 54–73. Springer, 2008.

[37] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

[38] A. Schürr. Specification of graph translators with triple graph grammars.
In WG’94, volume 903 of LNCS, pages 151–163. Springer, 1994.

[39] S. Sen, B. Baudry, and D. Precup. Partial model completion in
model driven engineering using constraint logic programming. In Proc.
INAP’07, 2007.

[40] P. Stevens. Bidirectional model transformations in QVT: Semantic is-
sues and open questions. In MoDELS, volume 4735 of LNCS, pages
1–15. Springer, 2007.

[41] M. Stölzel, S. Zschaler, and L. Geiger. Integrating ocl and model trans-
formations in fujaba. ECEASST, 5, 2006.

[42] R. V. D. Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using
description logic to maintain consistency between UML models. In Proc.
UML’03, volume 2863 of LNCS, pages 326–340. Springer, 2003.

[43] D. Varró. Automated formal verification of visual modeling languages by
model checking. Journal on Software and System Modeling, 3(2):85–113,
2004.

[44] D. Varró and A. Pataricza. Automated formal verification of model
transformations. In J. Jürjens, B. Rumpe, R. France, and E. B. Fernan-
dez, editors, CSDUML 2003: Critical Systems Development in UML;
Proceedings of the UML’03 Workshop, number TUM-I0323 in Technical
Report, pages 63–78. Technische Universität München, September 2003.

[45] M. Völter and T. Stahl. Model-driven software development. Wiley,
2006.

50

[46] J. Wang, S.-K. Kim, and D. A. Carrington. Verifying metamodel cov-
erage of model transformations. In Proc. ASWEC’06, pages 270–282.
IEEE Computer Society, 2006.

[47] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei. Towards
automatic model synchronization from model transformations. In Proc.
ASE’07, pages 164–173. ACM, 2007.

Appendix

A. TGG

The invariants generated from Package-Schema are the following.
context Package inv Package-Schema:

if self.Package-Schema-enabled() then
Schema :: allInstances()−>exists(s|

P2S :: allInstances()−>exists(m|
m.Package-Schema-mapping(self, s))) endif

context Package::Package-Schema-enabled()
body: true

context P2S inv Package-Schema:
Package :: allInstances()−>exists(p|

Schema :: allInstances()−>exists(s|
self.Package-Schema-mapping(p, s)))

context P2S::Package-Schema-mapping(p:Package, s:Schema)
body: p.name = s.name and self.package = p and self.schema = s

context Schema inv Package-Schema:
if self.Package-Schema-enabled() then

Package :: allInstances()−>exists(p|
P2S :: allInstances()−>exists(m|

m.Package-Schema-mapping(p, self))) endif

context Schema::Package-Schema-enabled()
body: true

Note that the p-enabled operations for this rule simply return true since
as long as a package (resp. schema) exists, the rule is enabled. The invariants
generated from ChClass-Table are the following.

51

context Class inv ChClass-Table:
Package :: allInstances()−>forAll(p|

Class :: allInstances()−>forAll(c|
CT :: allInstances()−>forAll(m1|

Table :: allInstances()−>forAll(t|
if self.ChClass-Table-enabled(p, c, m1, t) then

C2TCh :: allInstances()−>exists(m2|
m2.ChClass-Table-mapping(p, c, m1, t, self)) endif))))

context Class::ChClass-Table-enabled(p:Package, c:Class, m1:CT, t:Table)
body: self.parent = c and self.package = p and c.package = p and

m1.class = c and m1.table = t

context C2TCh inv ChClass-Table:
Package :: allInstances()−>exists(p|

Class :: allInstances()−>exists(c|
CT :: allInstances()−>exists(m1|

Table :: allInstances()−>exists(t|
Class :: allInstances()−>exists(ch|

c.package = p and m1.class = c and m1.table = t and
self.ChClass-Table-mapping(p, c,m1, t, ch)))

context C2TCh::ChClass-Table-mapping(p:Package, c:Class, m1:CT, t:Table,
ch:Class)
body: self.class = ch and self.table = t and ch.parent = c

and ch.package = p

context Table inv ChClass-Table:
Package :: allInstances()−>forAll(p|

Class :: allInstances()−>forAll(c|
CT :: allInstances()−>forAll(m1|
if self.ChClass-Table-enabled(p, c,m1) then

C2TCh :: allInstances()−>exists(m2|
Class :: allInstances()−>exists(ch|

m2.ChClass-Table-mapping(p, c, m1, self, ch))) endif)))

context Table::ChClass-Table-enabled(p:Package, c:Class, m1:CT)
body: c.package = p and m1.class = c and m1.table = self

The invariants generated from Attribute-Column are the following.

52

context Attribute inv Attribute-Column:
Class :: allInstances()−>forAll(c|

CT :: allInstances()−>forAll(m1|
Table :: allInstances()−>forAll(t|
if self.Attribute-Column-enabled(c,m1, t) then

Column :: allInstances()−>exists(co|
A2Co :: allInstances()−>exists(m2|

m2.Attribute-Column-mapping(c,m1, t, self, co))) endif)))

context Attribute::Attribute-Column-enabled(c:Class, m1:CT, t:Table)
body: self.class = c and m1.class = c and m1.table = t

context A2Co inv Attribute-Column:
Class :: allInstances()−>exists(c|

CT :: allInstances()−>exists(m1|
Table :: allInstances()−>exists(t|

Attribute :: allInstances()−>exists(a|
Column :: allInstances()−>exists(co|

m1.class = c and m1.table = t and
self.Attribute-Column-mapping(c, m1, t, a, co))))))

context A2Co::Attribute-Column-mapping(c:Class, m1:CT, t:Table,
a:Attribute, co:Column)
body: a.name = co.name and a.class = c and co.table = t and

self.attribute = a and self.column = co

context Column inv Attribute-Column:
Class :: allInstances()−>forAll(c|

CT :: allInstances()−>forAll(m1|
Table :: allInstances()−>forAll(t|
if self.Attribute-Column-enabled(c,m1, t) then

Attribute :: allInstances()−>exists(a|
A2Co :: allInstances()−>exists(m2|

m2.Attribute-Column-mapping(c,m1, t, a, self))) endif)))

context Column::Attribute-Column-enabled(c:Class, m1:CT, t:Table)
body: self.table = t and m1.class = c and m1.table = t

B. QVT

The invariants generated from Package-Schema are the following.

53

context Package inv Package-Schema:
if (self.Package-Schema-enabled()) then

Schema :: allInstances()−>exists(s|
self.Package-Schema-mapping(s)) endif

context Package::Package-Schema-enabled()
body: true

context Package::Package-Schema-mapping(s:Schema)
body: self.name = s.name

context Schema inv Package-Schema:
if (self.Package-Schema-enabled()) then

Package :: allInstances()−>exists(p|
self.Package-Schema-mapping(p)) endif

context Schema::Package-Schema-enabled()
body: true

context Schema::Package-Schema-mapping(p:Package)
body: self.name = p.name

The invariants generated from ChClass-Table are the following.
context Class::ChClass-Table(t:Table)
body: Class :: allInstances()−>forAll(c1|

if (self.ChClass-Table-enabled(c1, t)) then
self.ChClass-Table-mapping(c1, t) endif)

context Class::ChClass-Table-enabled(c1:Class, t:Table)
body: self.child−>includes(c1)

context Class::ChClass-Table-mapping(c1:Class, t:Table)
body: c1.Attribute-Column(t) and c1.ChClass-Table(t)

context Table::ChClass-Table(c:Class)
body: if (self.ChClass-Table-enabled(c)) then

Class :: allInstances()−>exists(c1|
self.ChClass-Table-mapping(c, c1) endif)

context Table::ChClass-Table-enabled(c:Class)
body: true

context Table::ChClass-Table-mapping(c:Class, c1:Class)
body: c.child−>includes(c1) and self.Attribute-Column(c1)

and self.ChClass-Table(c1)

The invariants generated from Attribute-Column are the following.

54

context Class::Attribute-Column(t:Table)
body: Attribute :: allInstances()−>forAll(a|

if (self.Attribute-Column-enabled(a, t)) then
Column :: allInstances()−>exists(co|
self.Attribute-Column-mapping(a, t, co)) endif)

context Class::Attribute-Column-enabled(a:Attribute, t:Table)
body: self.attribute−>includes(a)

context Class::Attribute-Column-mapping(a:Attribute, t:Table, co:Column)
body: co.name = a.name and t.column−>includes(co)

context Table::Attribute-Column(c:Class)
body: Column :: allInstances()−>forAll(co|

if (self.Attribute-Column-enabled(a, co)) then
Attribute :: allInstances()−>exists(a|
self.Attribute-Column-mapping(c, a, co)) endif)

context Table::Attribute-Column-enabled(a:Attribute, co:Column)
body: self.column−>includes(co)

context Table::Attribute-Column-mapping(c:Class, a:Attribute, co:Column)
body: co.name = a.name and c.attribute−>includes(a)

55

