
This item is the archived preprint of:

Toward architecture-based context-aware deployment and adaptation

Reference:
Gui Ning, De Florio Vincenzo, Sun Hong, Blondia Christian.- Toward architecture-based context-aware
deployment and adaptation
Journal of systems and software - ISSN 0164-1212 - 84:2(2011), p. 185-197 
DOI: http://dx.doi.org/doi:10.1016/j.jss.2010.09.017 
Handle: http://hdl.handle.net/10067/889830151162165141 

Institutional repository IRUA

http://dx.doi.org/doi:10.1016/j.jss.2010.09.017
http://hdl.handle.net/10067/889830151162165141
http://anet.uantwerpen.be/irua


Toward Architecture-based Context-Aware
Deployment and Adaptation

Ning Guia,b,∗, Vincenzo De Florioa,∗, Hong Suna, Chris Blondiaa

aPATS group, University of Antwerp, Belgium
and IBBT, Ghent-Ledeberg, Belgium

bCentral South University, Changsha, China

Abstract

Software systems are increasingly expected to dynamically self-adapt to the
changing environments. One of the main adaptation mechanisms is dynamic
recomposition of application components. This paper addresses the key issues
that arise when context knowledge is used to steer the run-time (re)composition
process so as to match the new environmental conditions. In order to integrate
such knowledge into this process, A Continuous Context-Aware Deployment and
Adaptation (ACCADA) framework is proposed. To support run-time compo-
nent composition, the essential runtime abstractions of the underlying compo-
nent model are studied. By using a layered modeling approach, our framework
gradually incorporates design-time as well as run-time knowledge into the com-
ponent composition process. Service orientation is employed to facilitate the
changes of adaptation policy. Results show that our framework has significant
advantages over traditional approaches in light of flexibility, resource usage and
lines of code. Although our experience was based on the OSGi middleware, we
believe our findings to be general to architecture-based management systems
using reflective component models.

Keywords: Adaptive middleware, context-specific knowledge, run-time
composition, Service-oriented architecture.

1. INTRODUCTION

Software systems today are increasingly expected to dynamically self-adapt
to accommodate for changing environments-resource variability, changing user
needs, and system faults. However, mechanisms that support self-adaptation

∗Corresponding author
Email addresses: ning.gui@ua.ac.be (Ning Gui), vincenzo.deflorio@ua.ac.be

(Vincenzo De Florio)

Preprint submitted to Journal of Systems and Software September 9, 2010



currently are hard-wired within each application. These approaches are of-
ten highly application-specific, static in nature, and tightly bound to the code.
Furthermore, the localized treatments of application adaptation could not effec-
tively deal with those complex environments in which many multi- influencing
applications coexist.

In order to deal with the adaptation problem outside the single application
scope, architecture-based adaptation frameworks are proposed in (Oreizy et al.,
1999; Garlan et al., 2004) to handle cross system adaptation. Rather than scat-
tering the adaptation logics in different applications and representing them as
low-level binary code, architecture-based adaptation uses external models and
mechanisms in a closed-loop control fashion to achieve various goals by monitor-
ing and adapting system behavior across application domains. A well-accepted
design principle in architecture-based management includes using component-
based technologies to develop management system and application structure
(Kon et al., 2005; Anderson et al., 2003; Sicard et al., 2008).

However, in traditional approaches, applications are constructed well before run-
time. Design-time knowledge for an application in the structure is largely lost
after this off-line application constructing process. Without this knowledge, it
is nearly impossible for external engines to effectively change run-time applica-
tions’ structure with the assurance that the new configuration would perform
as intended. On the other hand, this off-line approach makes it very hard to
integrate possible external context1 knowledge into the application adaptation
process as that knowledge can only be available well after an application was
built.

During our research on run-time adaptation, we observed that in order to achieve
effective architecture-based adaptation frameworks, three important prerequi-
sites must be fulfilled. First, when building application, those practices of rigid
location and binding between component instances should be replaced with
run-time, context-specific composition. Second, selected design-time informa-
tion must be exposed in some form and those constraints in building applica-
tion must be made explicitly verifiable during run-time. Third, since differ-
ent contexts have radically different properties of interest and require dynamic
modification strategies, it is critical that the architectural control model and
modification strategies could be easily tailored to various system contexts.

Our framework tackles these problems from different perspectives. A run-time
application construction methodology is proposed to provide a continuum be-
tween the design and run-time process. An architecture-based management
framework structure is designed to facilitate the integration of context-specific
adaptation knowledge. In order to support run-time component composition,
a declarative component model with uniform management interface and meta-

1By context, we refer to (Dey et al., 2001) and define it as “any information that character-
izes a situation related to the interaction between humans, applications and the surrounding
environment.”

2



data based reflection is proposed. By adopting a service-oriented architecture-
based implementation, our framework provides efficient mechanisms for adapt-
ing to specific context requirements. The effectiveness of our architecture is
demonstrated from both a qualitative and a quantitative point of view. Sim-
ulation results show the soundness of our implementation in term of lines of
code, memory usage and adaptation capabilities. Compared to our previous
work (Gui et al., 2009), apart from extending considerably the contents and en-
hancing simulation use cases, this paper introduces explicit conflicts resolution
management and provides reflective service that exposes the system adapta-
tion process. These improvements enable our platform to synthesize a coherent
global adaptation plan from possible conflicting solutions.

The rest of the paper is organized as follows. Section 2 exposes our design
methodology and a context-specific management framework as well as those
challenges we faced in realizing this framework. Section 3 presents the structure
of our management framework as well as the component model and construction
process. Section 4 focuses on two scenarios on how context knowledge can be
used for adaptation and to resolve composition ambiguity. The ideas exposed
in this paper have been validated from different viewpoints in Section 5. We
discuss related work in Section 6, and we conclude in Section 7.

2. Architecture-based Adaptation

Architecture-based adaptation was introduced to deal with cross system adap-
tation. In principle, such external control mechanisms provide a more effective
engineering solution with respect to internal mechanisms for self-adaptation be-
cause they abstract the concerns of problem detection and resolution into separa-
ble system modules (Garlan et al., 2004). However, they still lack of systematic
support for multi-context knowledge integration. An important contribution of
this paper is the design and development of architectural principles and design
patterns to integrate different context-specific knowledge into architecture-based
adaption framework.

In order to better support run-time component composition, firstly, we need to
re-consider the design methodology in application composition.

2.1. Context-specific application construction methodology

Traditional approaches treat components only as design-time artifacts. Intensive
studies have been carried out on designing languages to specify properties of a
component, e.g. OMG IDL (OMG Committee, 2007) and Architecture Analysis
and Design Language (AADL) (Feiler et al., 2006). Those languages are used
to design and verify the application construction plan. Model-driven design
tools are used to parse such descriptions and automatically generate auxiliary
glue code. Later, that glue code, together with component implementations,

3



Figure 1: Context-specific application construction flow.

is compiled into a static entity and deployed with little capability of further
changes.

The current trend on component model is rather towards making components
as run-time manageable entities (Kasten and McKinley, 2004; Coulson et al.,
2008; Hall and Cervantes, 2004). However, such approaches maintain little
design-time knowledge on the run-time entities. Lack of such knowledge makes
it hard to have accurate and correct run-time adaptation.

The methodology. In order to more effectively deal with run-time component
composition, we propose a new methodology to explicitly incorporate context-
specific knowledge into the software composition & adaptation process. The
new architecture design & composition flow, depicted in Fig. 1, represents a
procedure that tries to incorporate the functional design information with con-
text concerns in composing the run-time software architecture. Depending on
the employed design languages and corresponding tools, the compliance with
the functional interface is enforced during the design process. However, un-
like the traditional approaches, in which a component’s functional knowledge is
lost during this compiling process, in this case the design time information is
explicitly exposed and maintained.

As an application is constructed during run-time, in order to achieve correct and
accurate adaptation, a set of constraints must be maintained. In this process,
constraints from three main aspects should be evaluated: 1) The functional
dependence constraints must be satisfied. 2) A component’s non-functional
constraints must be guaranteed: this information includes, for instance, re-
quirements for CPU speed, screen size or that some property value fall a certain
range. 3) Context-specific knowledge, which specifies the domain related infor-
mation and adaptation strategy should also hold valid after adaptation process.

The dashed arrow between run-time architecture and context knowledge blocks

4



Figure 2: QoE adaptation demonstration.

shows that managed applications are continuously restructured and evolved ac-
cording to context knowledge and adaptation strategy. The combined knowl-
edge enables automatically run-time verification for constraints from various
aspects—functional dependence, non-functional constraints and context spe-
cific considerations. This allows the system to change the software structure
according to its hosting environment and without violating constraints from
these three aspects.

Service-oriented Approach. According to the Mazeir Salehie’s recent re-
view (Salehie and Tahvildari, 2009) of 12 projects on self-adaptive systems, all
of the projects use certain level of external control approach, which supports
separation of the adaptation mechanism from the application logic. However,
many of their implementation designs lack of systematic support for a dynam-
ically changing context. The source of this problem lies partially within their
approaches in implementation—the adaptation modules are finely designed and
statically linked with system run-time. As the adaptation module is tightly cou-
pled with other system run-time services, it is very hard to change the system
adaptation strategy.

In order to achieve more re-usability and flexibility, our framework is designed
according to the Service-oriented model. Each module is designed and imple-
mented as a service provider. Modules implement and register their interfaces
into the system service registry. Thanks to such loosely coupled structure, can-
didate adaptation modules can be easily interchanged during system run-time.
By doing so, many existing and/or future more sophisticated context adaptation
policies can be plugged into our framework.

5



2.2. Motivating Example

To better illustrate all the complexities in introducing the context knowledge
into the application composition process, we make use of an example scenario
that will be revisited several times throughout the course of this paper.

Today we are surrounded by an ever increasing number of networked equipment
that is reachable anywhere. These smart devices are equipped with open systems
that can be harnessed to do something for you for temporal or long-term basis.
The open-system approach implies that a set of new applications will be installed
into the host devices without a thorough system analysis.

As an example, let us consider a set-top box device with open platform support.
The basic application of such device is TV processing. In brief, this application
will received streaming video data from a remote server, decode this data and
send the output it to the TV port. As an open system, the set-top box can also
install certain applications to enhance its usability. For example, a user can
install a new application which transcodes recorded High Definition TV stream
to iPhone format for later display on his/her mobile devices. Figure 2 shows
the simplified component graph for those two applications, which will be further
studied in later sections.

As a typical multi-task system, if a user starts those two applications, a set-top
box will try to execute the two applications simultaneously no matter whether
the set-top device has enough resources. If that is not the case, this may even-
tually lead to transient timing problems of TV decoding task including missing
frames, data overflows etc. These kinds of time breaches can result in poor
video quality and bad user experience.

Context-specific knowledge, however, can help the architecture automatically
determine which actions should be taken according to the current context. One
possible strategy is to disable the computationally intensive transcoding com-
ponent and reserve enough system resources for the TV application. This is
because a user normally prefers to give highest priority to those applications
that matter their experience most. Figure 2 shows the snapshot of component
states after such adaptation. When the user turns off the TV application, the
architecture senses the change and enables the stopped transcoding application.

Let us suppose there are two transcoder components to provide transcoding ser-
vice with different CPU usage and transcoding quality as shown in Fig. 3. Such
ambiguity cannot be solved by the functional dependence as the two compo-
nents provide the same service interface. With context knowledge, the system
can determine when to choose the best component to use. For instance, when
the TV application is enabled and the system is lacking adequate resources,
making use of this context knowledge, one adaptation strategy is to replace the
transcoder with lower execution time (high CPU usage) with a low CPU usage
component. Context knowledge can effectively determine which combination is
the best for the current context.

6



Figure 3: Using context knowledge in solving composition ambiguity.

2.3. Challenges in system design

The above case study shows that, without context specific knowledge, it is
very hard for application-based adaptation to effectively deal with conflicts
across application domains. Architectural-based context-specific adaptation al-
lows system-wide adaptation to be orchestrated according to the current con-
text knowledge. By using such an approach, context knowledge is explicitly
expressed and plays an indispensable role for adaptations across different appli-
cations.

While attractive in principle, this raises a number of research and engineering
challenges.

First, the ability to handle a wide variety of systems and changing contexts
must be addressed. Since different systems and different contexts may have
radically different properties of interest, as well as strategies for adaptation, the
architectural control model and modification strategies should be easily changed
to the specific environment.

Second, the complexity to cope with the dynamic availability of the components
needs to be solved with minimal cost. Each application is composed by managed
components during run-time, thus it is very important to provide services such
as components’ state monitoring, life-cycle control and reference management
between components. Application developers should be rid of the burden to code
for component dynamicity support, for instance, manually coding to support
component departure or arrival.

Third, in architecture-based adaptation, applications are composed, configured,
and reconfigured during system run-time. While flexible in nature, two types of
problems appear: how to determine the composability between two components
and how to deal with the composition ambiguity when more than one candidate

7



component exists. Many approaches, such as Seinturier et al. (2006) and Hall
and Cervantes (2004), focus on solving the composability problem. In fact,
the validity of composability can be effectively solved by matching a language
based interface type with tagged information. However, as for the ambiguity
problem, so far there is no effective solution, for much of such ambiguity can
only be clarified with run-time context knowledge. For instance, video player
applications for mobile devices should be composed with those components that
match the target mobile phone’s characteristics such as screen size, CPU, and
available memory.

In order to cope with such challenges, A framework for Continuous Context-
Aware Deployment and Adaptation (ACCADA) is proposed here. Its key mod-
ules are designed and introduced in the following section.

3. ARCHITECTURAL FRAMEWORK

We adopt a standard view of software architecture that is typically used today
at design time to characterize an application to be built. Specifically, an appli-
cation is represented as a graph of interacting computational elements. Nodes
in the graph, called components, represent the system’s principal computational
elements (software or hardware) and data stores. The connections represent the
pathways for interaction between the components. Additionally, the compo-
nent may be annotated with various properties, such as expected throughputs,
latencies, and protocols of interaction.

Rather than treating components only as design-time artifacts, in our frame-
work, applications are run-time composed from a set of managed component in-
stances. Context-specific adaptation can be achieved by dynamic (re)composing
application components according to context knowledge.

3.1. Architecture-based management framework

Figure 4 shows our ACCADA architecture for adaptation. As illustrated in
the figure, our approach makes use of an extended control loop, consisting of
five basic modules : Event Monitor, Adaptation Actuator, Structural Modeler,
Context-Specific Modeler and Context Reasoner. ACCADA uses an abstract
architectural model to monitor a running system’s run-time properties, evalu-
ate the model for (functional as well as context-specific) violations, and—if a
problem occurs—performs global and component-level adaptations on the run-
ning system. The Event Monitor module observes and measures various system
states.In our current implementation, the system is provided with Event Mon-
itors for the most popular of basic monitoring information: adding/removing
components, registering/modifying/unregistering services from the service reg-
istry, memory footprint and CPU usage monitoring, etc. The user can also
provide their own customized Event Monitor to collect specific events of inter-
est. When a significant event takes place, the corresponding Event Monitor
sends notifications to trigger a new round of the adaptation process

8



Figure 4: ACCADA framework: Management Layer (upper layer) and managed application
components (lower layer).

The Adaptation Actuator carries out the actual system modification. The actual
action set is tightly related to the component implementation. From our de-
veloping experience, in order to achieve effective architecture-based adaptation,
the basic set of actions should include component life-cycle control, attribute
configuration, and component reference manipulation.

The above two modules provide an interface to manage the installed component
instances and form the ACCADA Management Layer (discussed in Section 3.4).
The other three modules constitute what we call the Modeling Layer which is
in charge of building the system architectural model according to the changing
context (discussed in Section 3.3).

As discussed in Section 2.1, building a software system architecture model is
not a trivial endeavor — it includes handling design-time knowledge such as
interfaces or constraints as well as run-time aspects on environmental changes.
We assign the management of these two aspects to two different modules, using
the Divide and Conquer principle so as to more effectively deal with different
requirements—software architecture management and context-specific knowl-
edge integration. One module, the Structural Modeler, manages functional de-
pendencies between installed components—checking whether the required and
provided interfaces are compatible—and maintains the application’s software
architecture. This module is comparably stable as it is only determined by the
component implementation model and will not change with context. So, it is
designed as the core module in our system. In addition to such functional de-
pendency management, it also provides reflection service(Section 3.4) to expose
system internal status and adaptation steps performed for the validation and

9



verification of system modelers.

The other set of modules constitute the Context-specific Modeler. As our system
needs to cope with dynamically changing environments, rather than going for
the traditional approach of “one modeler for all possible contexts”, our frame-
work supports more than one Context-specific Modeler specifically designed for
different contexts in the system. However, in order to avoid conflicting policies,
at any specific time, only one such modeler will be utilized. By reasoning upon
various system metrics, Context Reasoner is designed to determine the most
appropriate Context-specific Modeler to date.

3.2. Requirements for Component Model

In ACCADA, a component represents a single unit of functionality and deploy-
ment. In order to achieve architecture-based run-time composition, a component
model with the following attributes is needed:

Uniform management interface. As components are individually installed and
configured by the system service, it is very important that a component could
be managed through a uniform management interface. With this interface,
components are reified in a uniform way for configuration, state monitoring and
management. This approach enables system management services such as Event
Monitor and the Adaptation Actuator to be designed in a generic way and used
across multiple application domains. The following interface:

interface GeneralManagement {

void instantiate(ComponentContext context);

void destroy(ComponentContext context);

void setProperty(String name, Property a);

Property getProperty(String name);

Enumeration < Property > getProperties();

};

supports life-cycle control and get/set component properties. It can be accessed
via two different approaches—either accessing directly or mediated through an
architectural layer which, apart from performing the requested actions, also
coherently updates the status of the global software architecture. The first
method is typical of application-based approaches to building software architec-
tures, while the later characterizes architecture-based application constructions.
In order to maintain a coherent and accurate global configuration, it is vital that
this uniform management interface can only be accessed through architecture-
exposed methods.

Component description and introspection. In order to support different types of
components, a component model should be able to describe the component’s dis-
tinguished stable characteristics. These features include a component’s provided

10



Figure 5: Sample component configuration.

and required interfaces, component’s properties as well as other constraints, for
example, the type of CPU that is required. In order to expose this informa-
tion, interface-based introspection and reflection are used in Fractal (Salehie and
Tahvildari, 2009) and OpenCom (Michael et al., 2001; Coulson et al., 2008).In
the latter, a general interface is designed for such knowledge discovery.

Instead of following these approaches, we use a concise management interface
to control and capture the components’ run-time state, while meta-data is ap-
plied to expose component-specific knowledge. Compared to interface-based
introspection, meta-data based approach provides designers with a more light-
weight and explicit solution. Interface-based component knowledge discovery
means that a component’s feature can only be known when it is initialized.
As compared, meta-data approach enables components to be identified prior to
their initialization; furthermore, this reduces the burden of component develop-
ers to implement those introspection interfaces, as meta-data already provides
much design-time structural information. Those meta-data can be naturally ab-
stracted from application design, validated in the verification process, and then
reused during the run-time composition process. In this approach, a component
design knowledge actually winds through its whole life-cycle. The ACCADA
framework can dynamically discover and retrieve a component’s structural char-
acteristics as soon as they are installed into the system.

Figure 5 shows an excerpt of such meta-data. This component model is based
on our previous work in the Declarative Real-time component model (DRCom)
(Gui et al., 2008a). Due to page limits, we will not introduce the definition of
each element.

3.3. Modeling Layer

As already mentioned, modeling the whole system architecture and making ac-
curate adaptation decisions is a very complex process. That is especially true in

11



our framework, as not only functional dependencies but also the context knowl-
edge are considered in the composition process. These two aspects have been
kept separated and assigned to what we call Structural Modeler and Context-
specific Modeler, described in what follows.

3.3.1. Structural Modeler

As the application is constructed, configured and reconstructed during system
run-time, how to derive the functional and structural dependency among com-
ponents becomes one of the key problems in run-time component composition.

The Structural Modeler consists of several processes, the most important of
which are:

Dependence Compatibility Check. This component first checks all the installed
components dependence relationships. We say that a component is “structure-
satisfied” when all its required interfaces (Receptacles) have corresponding pro-
vided interfaces. A component can only be initialized when it is structure-
satisfied. This also guarantees component initialization orders. Depending on
the adopted component model, different policies may be employed, such as the
interface based matching(method call oritened) —used in the model of Declar-
ative Service and Fractal model—or port-based matching(data communication
oriented) as it is the case in DRCom model.

Specifically, in DRCom model, meta-data is used to describe the communication
port between real-time tasks. Figure 5 shows a component that needs a data
port called “compressimage”.

Such a function is quite important for run-time composition as it provides a
general matching service for possible functionally compatible components. This
functions is indispensable in maintaining application architecture during system
configuration changes.

Maintenance of application architecture (Reference update). As components will
be installed and uninstalled during run-time, the issue of reference update dur-
ing component exchange must be addressed. When one component is exchanged
for another it is necessary to update the references that point to the old compo-
nent such that they refer to the new one. Doing so is necessary to ensure that
the program continues to execute correctly. For example, when a component
is disabled, the modeler will first check whether another component with the
same functional attributes exists. If such a candidate is successfully found, the
modeler will repair the references between components to change the old refer-
ences with the new one, and then destroy the invalid connections. Otherwise,
all components which depend on this disabled component will also be disabled.
All of these adaptations are performed during run-time without disabling the
whole application. By having the system managing the run-time reference up-
date, an application’s architecture integrity can be preserved even in the face of

12



configuration changes. This also facilitates the adaptation developers, as they
do not need to maintain the applications’ structure.

The Structural Modeler offers the following interface to provide its computation
results of structure-satisfied components.

public interface StructureModelerResolver

{ public List<ComponentConfiguration>

resolveSatisfied(List ManagedComponentConfigurations);

}

Such an interface takes a list containing all managed component configura-
tions. Each time the Structural Modeler is inquired, it will check whether all
the required interfaces from one managed component have their corresponding
service provided. After this process, the modeler returns a list of all the compo-
nents that satisfied functional constraints, denoted as satisfiedComponentCon-
figurations. All these components will be tagged by the Structural Modeler as
“enabled”. The rest of disabled component configurations will be computed
by removing the satisfied components from the list of all managed compo-
nents. This is done by executing enabledComponentConfigurations.remo-

veall(satisfiedComponentConfigurations).

In order to minimize overhead, the Structural Modeler does not propose all
possible configuration — which normally includes components states as well as
all connections between components, to the Context-Specific Modeler because
the number of configurations will grow very fast with the number of managed
components. Instead, it only sends a list of all structure-satisfied components to
the Context-Specific Modeler. After Context-Specific Modeler and Structural
Modeler collectively determine the status of each managed component, Struc-
tural Modeler repairs the reference after adaptation. This can effectively reduce
adaptation execution time

Many run-time composition approaches, such as Servicebinder (Cervantes and
Hall, 2004) and Perimorph (Kasten and McKinley, 2004), provide a similar
layer to manage the references between components. However, lacking context
information integration, this functional layer itself could not solve conflicts when
several functional configurations are available. Indeed, different configurations
could match different environmental conditions or platform characteristics. Such
kind of ambiguity can only be handled with context knowledge.

3.3.2. Context-specific Modeler

As the Structural Modeler deals with the functional related constraints in build-
ing and maintaining the software architecture, the Context-specific Modeler
deals with constraints related to the knowledge of context. All components that
satisfy functional requirements will be further evaluated by context knowledge.
As a result, the modeler will build a context-specific architecture model using
its knowledge and adaptation strategy. This model will be checked periodically

13



and/or upon request. If a constraints violation occurs, it determines the course
of action and delegates such actions to the adaptations execution module.

public interface ContextResolver {

public List<ComponentConfigurations>

resolveSatisfied(List structuralenabledCC);

public List<ComponentProperty>

resolveProperties (List enabledComponentConfigurations);

}

Each Context Modeler will need to implement the ContextResolver interface
which has two methods: A) resolveSatisfied takes all structure-satisfied compo-
nents that were computed by the Structural Modeler and returns all the enabled
components resolved by this modeler; all the components not in this list are set
to “disabled”; B) resolveProperties returns a list of Properties and their new
value. System run-time will invoke these two methods to get adaptation plans
from selected modeler and send results to the Model Fusion module. This inter-
face will be registered in the OSGi service registry together with their attributes
which specify their target application domains. Here, structuralenabledCC is a
list of all structure-satisfied component configurations, which provides a snap-
shot of current system global state. A component configuration contains infor-
mation such as component description, reference cache, and instance references,
therefore a Context Modeler can use that knowledge to track system changes
such as the addition/removal of components or changes in properties.

In ACCADA, several context modelers with different context adaptation knowl-
edge can be installed simultaneously. They must implement the same context
modeler service interface with different attributes describing their target con-
cerns. Such concerns could be for instance prolonging the mission life in case
of low batteries, or maximizing the user experience when watching movies on
a given mobile device. Service orientation enables the architecture to support
different or future unpremeditated adaptation strategies. Another benefit from
this approach is that one modeler instance just needs to deal with a fraction of
all possible adaptation concerns. Compared to “one size fits all” approaches,
our solution makes the modeler very concise, easy to implement and consuming
fewer resources. By switching the context-specific modeler, the system architec-
ture model as well as the adaptation behavior can be easily altered, which could
be beneficial in matching different environmental conditions. For any Context-
specific modeler, three adaptation actions can be taken: enable, disable, and
setProperty. This design choice of using simple atomic actions simplifies the
model fusion rule set (described in Section 3.3.4). At the same time, these
adaptation actions can be used as a “base” to compose more complex adap-
tation actions (for instance, replacing a component can be realized by ”enable
new one” and ” disable old one”. Here, which Context-specific Modeler is to be
used is determined by the Context Reasoner.

14



3.3.3. Context Reasoner

As several Context-specific modelers may co-exist at the same time, only one of
them will be selected according to current system context. Context Reasoner
and Context-specific modelers are implemented through the Sponsor-Selector
pattern (Riehle et al., 1998). Context Reasoner selects the best match from a
dynamically changing set of candidate Context-specific Modelers.

One simple interface is designed to return the best matched reference:

public interface Contextreasoner

{ public Resolver findCurrentAdaptor();

}

According to different system requirements, the reasoning logic may be as simple
as e.g. using CPU status as decision logics, or as complex as using a semantic
reasoning engine or some other artificial intelligence approach. By separat-
ing three kinds of responsibilities—knowing when a modeler is useful, selecting
among different modelers, and using a modeler—it enables the software system
to integrate new modelers, and new knowledge about modelers, at run-time in a
way that is transparent to the user. In current implementation, a simple rating
strategy based on context matching constraints as in (Fujii and Suda, 2009) is
used to check the similarity of the current context with system resource con-
straints tagged with each Context-specific modeler, such as CPU, memory, disk
space and user’s preference. Such a rating based scheme is by no means the
only selection strategy that our framework allows. Benefited from our service-
oriented architecture, a third party developer can install their own implemen-
tation of Context Reasoners. Existing context-aware technologies, e.g., CroCo
(Pietschmann et al., 2008), SOCAM (Gu et al., 2005) can be utilized to develop
a customized Discovery service.

As Structural Modeler and Context-specific Modeler collectively build the sys-
tem global architecture model, Context Reasoner helps the software system to
adjust architecture model according to context switch. However, these two mod-
elers may come out with different adaptation plans which need to be handled
in the Model Fusion modules.

3.3.4. Model Fusion

In our framework, system architecture models are divided into different aspects
to avoid possible conflicts. In fact the Structural Modeler only deals with func-
tional parts while Context-Specific Modeler deals with the ambiguity that can
only be solved by context knowledge. However, although they capture different
features of a system, these two modeling processes may conflict with each other’s
structure or behavior, thus, the process of combining these two models is vital
for system correctness. We call this process Model Fusion. The following rules
are used:

15



a. A component can only be enabled when it satisfies both modelers’ constraints.
If so, it is marked as “enabled”.

b. If a component is set to “disabled” by any of these two modelers, the final
action will be “disabled”.

c. A component’s property will be set when it is in “enabled” state.

d. Then, the Structural Modeler proceeds to building the software architecture
by using the remaining active components.

As it can be seen, model fusion module plays a key role in the system correctness.
The rule-set specified here is built by the guideline of guarantying application
functional dependence as first priority. It is by no means the only rule set.
Some ill-designed Context-Specific Modeler can also create inconsistency during
adaptation. In order to check the system’s correctness and effectiveness, certain
reflection service is supported in the design of our system run-time.

3.4. Reflective adaptation service

As our system supports future contextual modelers to be added into the adap-
tation process, some of them may give invalid tactics and strategies which may
lead the system into an adverse state. In the model fusion module, a set of rules
are provided to explicitly fuse two modeler solutions into one modeler; however,
there is no guarantee that the fused modeler will perform as intended. How to
evaluate the effectiveness and efficiency of the adaptation route computed by
one fused modeler is still one of the major issues in our system design.

As system performance can only be evaluated according to the system’s current
context optimization goal, it is very unlikely to have a general policy to deal
with so many domain/context-specific requirements. Rather than providing
a solution for one specific context, our software system provides services to
exposing a snapshot of the system internal state. For instance, the enabled
components list, currently used Context-Specific Modeler, and the adaptation
actions proposed by each modeler can be exposed and e.g. logged for future
analyses. The system will also send asynchronous events to the external listeners
when certain adaptation actions are taken. Third party programs can selectively
register these interfaces and listen to those actions that might be important to
them. Such information can help system users evaluate the effectiveness of
various modelers as well as the Context Reasoner. For instance, a “Ping-Pong”
effect among several Context Modelers in a short time might indicate an ill-
designed Context Reasoner.

3.5. Management Layer

This layer provides an abstract interface to manage the interactions between
modeling layer and component instances. It consists of two main elements:
Event Monitor and Adaptation Actuator. Event Monitor tracks installed com-
ponents’ state changes as well as probes the measured attributes across different

16



system components. The value of a managed component’s attribute can be re-
trieved via the getProperty() methods. Depending on the particular system,
Event Monitor can be tailored to specific attributes. For instance, in the DR-
Com model—whose service scenario is embedded real-time applications—it is
important to get real-time task information such as the components’ execution
time, number of overruns, etc.

The Adaptation Actuator implements the atomic adaptation actions that the
system can take. This can include actions that manage a component’s life-
cycle state—start, stop, pause, resume—as well as property manipulations via
function setProperty(...), for example, changing the computation task’s priority,
period, etc. The uniform management interface simplifies the design of the
actuator as the actions can be taken in a general way. It can be easily reused in
different component models. To avoid synchronization problems, a queue based
task dispatch mechanism is designed to perform such atomic adaptation actions.

3.6. General adaptation process

The above six key modules residing in the modeling and management layers are
orchestrated so as to form an external control loop across different application
domain. When a significant change has been detected, the modeling layer is
notified to check whether existing constraints are being violated. Algorithm 1
describes the general adaptation process.

Algorithm 1: General adaptation process

Requires: An architecture-based management system
with context-specific adaptation logic

Ensure: Keep constraints satisfied in the face of changes, both
functional as non-functional, through Context-specific knowledge

1. A system change triggers adaptation process
2. Structural Modeler gets the set of satisfied

components in terms of functional dependence
3. Context reasoner returns Context-specific modeler’s reference
4. The selected Context-specific Modeler builds an adaptation plan
5. Structural modeler merges two adaptation plans
6. The Adaptation Actuator executes the adaptation plan

In our framework, adaptation is carried out step-wise. The adaptation process
showed here is only one round of adaptation for the whole adaptation process.
Any adaptation actions taken by different modelers might change other compo-
nent status. For instance, in Fig. 2, after the Transcoder is disabled, the system
will raise a Service.Unregistered event for Transcoding service. This event will
raise another round of adaptation. In Section 4.2, a practical example will be
given to demonstrate a whole application constructing process.

17



4. CASE STUDIES

This section describes a case study addressing Quality of Experience (QoE)
based adaption (Alben, 1996). The basis of this case study is the system de-
scribed in Section 2.2. The goal of an automatic adaptation is in this case
to maximize user’s QoE by always protecting those applications with highest
impact on the user experience. We examine this context knowledge aided adap-
tation and the process to execute the adaptation plan.

4.1. QoE based adaptation strategy

As we discussed in Section 2.2, applications may interfere with each other while
competing for system resources—in this case, the TV and transcoding applica-
tions could not run simultaneously due to lack of system resources. In order to
maximize user’s TV watching experience, the resources demanded by the TV
application should be guaranteed. Thus, the context tactics can be expressed
as the following invariant: at any time, enough resources must be available to
the TV application.

When these two applications run simultaneously, the Event Monitor notices
that decoder module’s overruns are increasing. It notifies the Modeling Layer
for possible changes. In this case, the Structural Modeler will not find any
structural violation as both applications are functionally well constructed. Thus
the satisfied functional model is sent to the Context-Specific Modeler.

As described in Alg. 2, the Context-Specific Modeler checks any violation in
terms of context-specific constraints. In this case the number of overruns is
checked and the violations of such constraint are detected. Then, the Context-
Specific Modeler tries to disable the most costly components (except those re-
lated to the TV application) until TV decoding task overruns stop increasing.

Algorithm 2: Guarantee Quality of TV application

Requires: Installed components’ CPU usage information with
context-specific adaptation logic

Ensure: Allocate enough CPU time to the TV application
1. If Decoder.getProperty(overrun) increase ≥ Max threshold
2. for all cmp in SatisfiedComponents do
3. if component not from TV application
4. cmp.getProperty(CPUconsumption) from cmp attributes
5. record the cmp with highest CPU usage.
6. end if
7. end for
8. remove cmp from enabled component list(ecl)
9. end if

10. send ecl back to Structural Modeler

After this adaptation process, other actions may also be triggered as a conse-
quence of these adaptation actions. Here, after Transcoder is disabled, the File

18



writer will be disabled by the Structural Modeler, as it functionally depends on
the Transcoder components. After these state changes, the reference between
enabled components will also be updated by the Structural Modeler as described
in Section 3.3.1. The component state after adaptation is shown in Fig. 2, in
which different colors correspond to different component states.

4.2. Context-aware application composition

In this section, we will show how the Context-Specific Modeler helps to select
the most appropriate components by using the application shown in Fig. 3. In
order to install such an application, the system will operate as follows:

1. Install all 5 components.

2. Structural Modeler will find that File Reader is structure-satisfied, thus
Context-Specific Modeler will set it to “enabled”. Then “File Reader”
will be enabled and will register its provided service interface into system
registry via system run-time;

3. As the File Reader registers its functional interface, it triggers a service.regis-
tered event. The Structural Modeler now finds two structure-satisfied
Transcoders and proposes them to the Context-Specific Modeler. De-
pending on current context adaption rules, the Context-specific modeler
will select the Transcoder with high quality and set it to “enabled”. Then
its service interface (TranscodedStream) will be registered in the registry.

4. Registration of new service will trigger another round of adaptation. Two
File writer components which both require the transcoding component
provided service will then become “structure-satisfied”, so the Context-
Specific Modeler can now determine which one of them is to be enabled.

5. After the selected File writer is enabled, no new component state change
will be issued by either Structural Modeler or Context-specific modeler.
This round of Adaptation finishes.

This scenario shows how the Context-Specific Modeler is used to reduce the
composition ambiguities. Our stepwise based adaptation can also effectively
reduce the composition complexities compared with approaches from Fujii and
Suda, T. (Fujii and Suda, 2009). In this approach, a modeler proposes all the
possible combinations (connections and components status) to the system run-
time and select one configuration using its customized learning or rule-based
algorithms. This approach will have scalability problems as all possible combi-
nation might grow exponentially with the number of managed components. For
instance, for this application, 4 different combinations need to be verified while
only two steps of selection are needed for selection in our approach.

5. IMPLEMENTATION and SIMULATION

In this section, we will discuss our implementation to achieve a context-specific
architecture-based adaptation. This framework has been validated both from a

19



qualitative and a quantitative point of view including such concerns as imple-
mentation complexity, adaptation flexibility, memory usage, etc.

5.1. System implementation

Our implementation2 uses the OSGi framework as our underlying development
platform. OSGi (OSGi Committee, 2008) technology serves as the platform for
universal middleware ranging from embedded devices to server environments.
Equinox, a popular, free, open source OSGi Platform developed by the Eclipse
organization, is used as our basic development platform. In the current state,
our implementation focused on providing a light-weight implementation for local
applications managements. In principle, our framework can be extended to
distributed adaptation environments by using e.g. R-OSGi (Remote OSGi)
support. However, issues related to that extension, such as coordination between
modelers, data ordering, synchronization etc. are still to be tackled and are the
matter for our future work.

Modules Sub-modules Lines of
code

Binary
size (bytes)

Monitoring Reflections of code 142 2353
Monitoring 354 7407

Structural Modeler Functional constraints 200 15230
Reference management 249 5328

Adaptation actua-
tor

Dispose management 459 11782

Instance management 280 6714
Context-specific
Modeler

Simple CPU constraint
adaptor

108 3798

Context Reasoner Simple context match 90 2620
Parsing Model classes 1329 2353

Parser class 1450 36000
Auxiliary code 500+

Table 1: Lines of code for key architectual modules.

For the component model, we use the DRCom model proposed in our previous
work (Gui et al., 2008a,b). DRCom was originally designed for the construction
of dynamically configurable & reflective real-time systems.

The DRCom model has a basic management interface enabling a uniform and
coherent way to control a component’s life-cycle and attributes. Each compo-
nent is associated with a meta-data file which enlists its abstractions—for in-
stance, interface for communication, attributes as well as reference constraints.

2Source code can be download at https://sourceforge.net/projects/s-transformer/

20



Each component is tagged with task related information for configuration and
validation.

As discussed in Section 3.1, this system is implemented via five key modules.
The lines of code of each of the implemented modules are shown in Table 1. Our
framework also provides such mechanisms as deployment support and version
control by simply reusing the OSGi system service, which leads to a lean and
quite concise implementation.

One of the basic services in our system is Meta-data Parsing. This module
parses the meta-data and stores it in the form of meta-data objects. A simple
component meta-data language is defined to describe component characteristics.
This component model designs an extensible XML format that supports future
more complex description languages: Due to page limits, here we will not go
into details. Clearly the complexity of Context Reasoner and Context-Specific
Modeler is highly implementation specific, thus the lines of code listed here are
just the simple implementations for our TV scenario described in Section 4.

5.2. Adaptation to different context

In the traditional approach towards application-based adaptation, in order to
achieve adaptation matching different context requirements, developers nor-
mally need to reprogram the whole adaptation architecture. There are, to name
but a few, modules for detection, modules for component management, adap-
tation logic as well as the execution modules.

Application
adaptation

ACCADA

Adaptation logic Prefixed Change in run-
time

Context knowledge inte-
gration

Static/Internal Flexible/
Architectural

Implementation complex-
ity

High Low

Multi-context support NA or static Yes and flexible
Context-specific adaptor
implementation

Complex Concise

Separation of design con-
cern

Mixed Yes

Level of adaptation Inside specific
application

Across several
applications

Table 2: Application-based vs. Architecture-based Adaptation.

However, during context changes, only the adaptation strategy should be altered
to express the context-specific knowledge and all the remaining modules can be
kept largely unchanged. Without the burden to implement software mainte-
nance tasks, a context-specific adaptor can be implemented very concisely. For

21



instance, our adaptation to guarantee the QoE of the TV application can be
implemented in less than 120 lines of codes. On the other hand, an ad-hoc
approach would require re-implementing a new version of a basic component
management run-time (in our case, about 2000 lines). Thus, programmers can
focus on adaptation logic rather than having to take care of those low level
details. Table 2 shows the comparison between application specific adaptation
approaches and our framework.

Certain component frameworks provide tools to help programmers to automat-
ically generate auxiliary codes. Examples include Juliac3 —a Fractal toolchain
backend, which generates Java source code corresponding to the application ar-
chitecture specified by the designer. Such code includes membrane source code,
a framework glue code and a bootstrapping code. In the following section, we
compare our approach with Juliac’s.

5.3. Comparison with Juliac

In the Juliac approach, ADL language is used to generate the glue code and
the codes for introspection. The simplest “hello world” example uses two com-
ponents, Client and Server. The Client will try to invoke the service exposed
interface to print the “hello world” string. The reason for selecting Juliac for
comparison is that it is a typical application based development platform. It is
readily available and well documented and also based on the Java language.

Application size Lines of code
(business)

Lines of code
(generated)

Juliac 95.7 KB 100 3500
ACCADA 4.7 KB 140 0

Table 3: Comparing ACCADA with Juliac (Lines of code).

Table 3 shows that, for such simple application with only two functional com-
ponents, the business code is about 100 lines, including import and interface
definitions. With Juliac, about 3500 lines of Java codes will be generated. Such
code mainly contains the glue code and basic system run-time. In compari-
son, in ACCADA, no process for off-line auxiliary code generation is needed,
as it dynamically manages component’s reference together at run-time. In our
framework, an application mainly contains its business code, simple and easy
to manage.

5.4. Architecture performance

To evaluate the performance of our implementation, we instrumented a test to
measure the time for fetching, parsing, reference management, and configuring.

3Available at http://fractal.ow2.org/

22



Figure 6: Framework performance on adding one component.

We focused on the time for installing a single component as we vary the number
of components managed by the framework. Here, each component has one “in
port”, one “out port”, and one attribute. The size of each component is the
same—20.6 KB.

Here, as we manage almost 100 components, we use a different Context Modeler
with respect to the one described in Section 4. The modeler performs a simple
admission control policy:∑ Execution time

Execution period
< 1 for all enabled components. (1)

The arrival component will only be enabled when (1) holds true. In order to
best test framework’s performance, all these component execution tasks remain
disabled during the experiment. Here, as we are only interested in the framework
performance, in the newly installed component, the component initialization
time is not counted as it may vary with the implementations.

For the hardware platform, we use a HP NC6400 laptop with 1.66 GHz dual
core T5500 CPU, 3GB RAM and 80 GB 7200RPM HDD. The JVM we adopted
is Sun JAVA 1.6.0.2 SDK on Windows.

Installing a new component normally consists of five main steps: component
loading, meta-data processing, structural modeling, context modeling, and model
fusion. Figure 6 shows the absolute times spent in each step of the process. Each
value is the arithmetic mean of 300 runs of the experiment. In order to better
illustrate the trend of different steps, we use two Y direction axes in expressing
data. Values in stacked column use the main Y axis (left) and those values in
marked lines use the secondary Y axis (right). The time scale used in both axes
is microseconds (µs).

23



As we can see from Fig. 6, component installation time grows with n, the num-
ber of system managed components. This is mainly due to the fact that two
key elements—component loading time and meta-data processing time, which
counting for more than 60% of the total processing time—keep comparably sta-
ble when n grows. In contrast, the other three key elements, the structural mod-
eling, context modeling and actuation will increase approximately linearly with
n. The structure modeling process mainly deals with matching composability
between installed components, which has computational complexity O(n). The
context modeling process will check whether the new component can satisfy the
resource requirements. This process is also O(n) (stateless implementation, no
optimization). Here, the model fusion process includes time for post-processing
the modeling results from two modeling processes.

These operations, implemented by using the set operations from the Java Vec-
tor class, grow gradually with the number of managed components (n). For
instance, the average execution time of the “addall” operation is O(n log n)
while the worst execution time is O(n2).

As most of the installation time results from the large meta-data processing task,
we optimized the installation process by parsing a component’s meta-data prior
to its usage (without initiating the component). We call this a “warm-start”.
Compared to normal “cold” installation process, this approach can greatly re-
duce a component’s response time—about 2000µs meta-data processing time
can be spared. Of course, this comes at the cost of memory usage. Each installed
component will need about 4K memory to store component’s information.

Simulation results show that our framework scales well when the number of
managed components grows to a hundred of components. However, the context
modeling time confines to the simple algorithm described here. Other more
complex reasoning policies may not perform well when the number of reasoned
components grows. This is highly policy dependent which is out of the scope of
this paper. The Context Reasoner also exhibits similar characteristics.

5.5. Simulation results

In order to validate this framework from both a qualitative and a quantitative
point of view, we implemented the scenario described in Section 2.2 and the
adaptation algorithm as described in Section 4. Hardware and software config-
uration is the same as in the previous section. In order to support real-time task,
the software system is run on the Fedora 7 kernel 2.6.23 with Real-Time Ap-
plication Interface (RTAI) version 3.6—a real-time patch for Linux (E. Bianchi,
2006).

As shown in Fig. 2, all six modules’ execution parts are implemented as periodic
tasks. The Decoding component of TV application is implemented with a real-
time task with period 33.37ms with priority 2 (the smaller the value, the higher
the priority), execution time of about 8ms and deadline of 12ms. The execution
part of Transcoder module is implemented as a real-time task with period 50ms,

24



priority 1, execution time of approximately 10ms and a deadline of 30ms. The
schedule policy used by the underlying RTAI system is FIFO. In order to show
the interference between these two components only, all other components use
priority 6 and make use of asynchronous communication only, so that we can
focus on the performance of the two coding modules.

As the video decoding execution time may vary according to the contents of
video streams, in order to more clearly demonstrate the mutual influence among
applications, we substituted the decoding function with a mock function using
comparably constant CPU time for each round of calculation.

We performed 6000 observations for the execution time of Decoding Module
after system enters a stable state. Figure 7 shows the execution time distribution
with and without the Context-Specific Modeler. The time scale for execution
is µs. In the former case, the execution time of the decoder is typically around
8000µs, while the longest execution time is about 8180µs when the context
knowledge is used (as this disables the transcode module). In contrast, if no
context-specific knowledge is available, the system will try to run these two
applications simultaneously.

Figure 7: Execution time (Adaptation vs. no-Adaptation).

The standard deviation of the execution time is in this case 3410.9µs, much
higher than 4.15µs—the one with adaptation. The jitter of decoder task’s ex-
ecution time is very big, as about 31.3% (1880/6000) of the runs exceed the
deadline specified in the component’s meta-data (12ms). This can result in a
large number of lost frames.

As can be seen from Fig. 7, with context-specific adaptation knowledge, the de-
coding modules can achieve much better performance in term of mean execution
time and standard deviation.

25



6. RELATED WORK

Our ACCADA framework builds on our earlier work on the DRCom component
model. Compared to this earlier work, our framework exhibits a richer and more
coherent set of features to support context-specific knowledge. Towards the
requirements of context-specific run-time component composition, a complete
new modeling layer is introduced and implemented.

JMX (Sun Microsystems, 2008) is a Java technology that supplies tools for man-
aging and monitoring applications, system objects, devices (e.g. printers) and
service-oriented networks, in which the lower layer is composed of components,
called MBeans, representing the Java objects to manage. According to the re-
quirements presented in this paper, the main limitation of JMX is that it does
not have a complete component model. In particular, the dependencies between
the managed objects are not exposed and managed. Thus an application can
only be constructed via its own property methods.

SmartFrog (Anderson et al., 2003) is a framework for the management of confi-
guration-driven systems. It defines a system as a collection of software compo-
nents with certain properties (i.e., attributes). The framework provides mech-
anisms for describing these component collections and for deploying and man-
aging their life cycle. The SmartFrog component model defines the interfaces
that a software component should implement (or that can be provided by a
management adapter). However, the approach lacks support on how to manage
the context-specific adaptation. Furthermore, the description of components is
static and cannot support non-functional properties and constraints.

Sicard et al. (2008) identify novel requirements for reflective component models
for architecture-based management systems. The construct layer is designed for
meta-data checkpoint and replication. Interfaces and processes for self-repairing
are defined, e.g. life-cycle management, setter/getter interface as well as meta-
data based configuration. A faulty component can be repaired by restoring
its state and all the meta-data information outside of the component instance.
However, this approach does not have a clear definition and separation between
system services. Its hardwired architecture makes it difficult to reuse the frame-
work across different contexts.

Garlan et al. (2004) propose a general architecture-based self-adaptation frame-
work. The Rainbow framework uses software architectures and a reusable in-
frastructure to support self-adaptation of software systems. The use of external
adaptation mechanisms allows the explicit specification of adaptation strategies
for multiple system concerns and domains. However, their approach lacks of
component composition support which is also important in building applica-
tions.

In order to deal with component dynamicity, Cervantes and Hall (2004) pro-
pose a service-oriented component based framework for constructing adaptive
component-based applications. The key part of their framework is the Service
Binder which automatically controls the relationships between components. Our

26



approach mimics theirs in dealing with component’s dynamicity. However, the
static nature of their adaptation policy and resolving process limits the usage
in changing environments.

Kasten et al. propose the Perimorph framework to achieve run-time composition
and state management for an adaptive system (Kasten and McKinley, 2004). It
enables an application designer to quantify and verify collateral changes in terms
of factor sets. However, due to lack of a clearly defined component model, it is
hard to extend their approach to cross applications adaptation. Their approach
also does not consider how to integrate the context adaptation knowledge.

In order to handle complex dependencies between components, Kon et al. (2005)
propose an integrated architecture for managing dependencies in distributed
component-based systems. Their architecture supports automatic configuration
and dynamic resource management in distributed heterogeneous environments.
Their approach provides the explicit context-knowledge support in dealing with
component dependence. However, how to support the context changes is not
specified in their approach.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have described our approach to continuous context-aware
deployment and adaptation. We have shown in particular how to integrate
context-specific knowledge in run-time component composition. By designing
a uniform management interface, our architecture provides a unified program-
ming model over a wide range of components. The design time knowledge is
maintained as meta-data and reused during run-time component composition.
A service-oriented model is used in implementing architecture basic modules
thus achieving a more flexible system architecture. This framework is easily
configured to fit with different contexts. Furthermore, our approach has been
compared with other application-based adaptation frameworks with respect to
aspects such as lines of code and memory usage. Although our experience was
done based on the OSGi middleware, we believe our findings to be general to
architecture-based management systems using reflective component models.

Although we showed an integrated approach to providing context-specific run-
time composition, areas remain open for further research:

Firstly, the application is globally constructed, which means that when the num-
ber of installed components increases, the performance of adaptation decreases
accordingly. In order to optimize the reasoning process, we are working to add
“scopes” in component description. By partitioning component instances into
blocks, component searching and reason scope can be greatly reduced.

Second, as our system enables future context-specific reasoners to be added into
adaptation process, some of them may give invalid tactics and strategies which
may bring the system into adverse state. How to prevent our framework from
indiscriminately accepting this plan is a part for our current research. We are

27



working on designing an auditing module which tests and evaluates the possible
effects of the outcome and prevents spiteful actions from being taken.

Acknowledgment

We express our gratitude to the anonymous reviewers, whose suggestions and
remarks greatly enhanced the quality of our article.

Alben, L., 1996. Quality of Experience. ACM Interactions 3, 11–15.

Anderson, P., Goldsack, P., Paterson, J., 2003. Smartfrog meets lcfg: Au-
tonomous reconfiguration with central policy control. Usenix Association Pro-
ceedings of the Seventeenth Large Installation Systems Administration Con-
ference, 213–222.

Cervantes, H., Hall, R. S., 2004. A framework for constructing adaptive
component-based applications: Concepts and experiences. Component-Based
Software Engineering 3054, 130–137.

Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama,
J., Sivaharan, T., 2008. A generic component model for building systems
software. ACM Transactions on Computer Systems 26 (1).

Dey, A. K., Abowd, G. D., Salber, D., 2001. A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applications.
Human-Computer Interaction 16 (2-4), 97–+.

E. Bianchi, L. Dozio, P. M., 2006. RTAI programming guide.

Feiler, P. H., Lewis, B. A., Vestal, S., 2006. The SAE architecture analysis
and design language (AADL) a standard for engineering performance critical
systems. 2006 IEEE Conference on Computer-Aided Control System Design,
Vols 1 and 2, 302–307.

Fujii, K., Suda, T., 2009. Semantics-based context-aware dynamic service com-
position. ACM Transactions on Autonomous and Adaptive Systems 4 (2).

Garlan, D., Cheng, S. W., Huang, A. C., Schmerl, B., Steenkiste, P., 2004. Rain-
bow: Architecture-based self-adaptation with reusable infrastructure. Com-
puter 37 (10), 46–+.

Gu, T., Pung, H. K., Zhang, D. Q., 2005. A service-oriented middleware for
building context-aware services. Journal of Network and Computer Applica-
tions 28 (1), 1–18.

Gui, N., De Florio, V., Sun, H., Blondia, C., 2008a. A framework for adap-
tive real-time applications: the declarative real-time OSGi component model.
In: The 7th Workshop on Adaptive and Reflective Middleware (ARM 2008).
Leuven, Belgium.

28



Gui, N., De Florio, V., Sun, H., Blondia, C., 2008b. A hybrid real-time com-
ponent model for reconfigurable embedded systems. In: ACM symposium on
Applied computing. Fortaleza, Ceara, Brazil, pp. 1590–1596.

Gui, N., Florio, V. D., H.Sun, C.Blondia, 2009. Accada: A framework for con-
tinuous context-aware deployment and adaptation. The 11th International
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS
2009) Volume 5873/2009, 325–340.

Hall, R. S., Cervantes, H., 2004. Challenges in building service-oriented appli-
cations for OSGi. IEEE Communications Magazine 42 (5), 144–149.

Kasten, E. P., McKinley, P. K., 2004. Perimorph: Run-time composition and
state management for adaptive systems. 24th International Conference on
Distributed Computing Systems Workshops, Proceedings, 332–337.

Kon, F., Marques, J. R., Yamane, T., Campbell, R. H., Mickunas, M. D.,
2005. Design, implementation, and performance of an automatic configuration
service for distributed component systems. Software-Practice & Experience
35 (7), 667–703.

Michael, C., Gordon, S. B., Geoff, C., Nikos, P., 2001. An efficient component
model for the construction of adaptive middleware.

OMG Committee, 2007. CORBA component model v.4.0.

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D., Johnson, G., Medvi-
dovic, N., Quilici, A., Rosenblum, D. S., Wolf, A. L., 1999. An architecture-
based approach to self-adaptive software. IEEE Intelligent Systems & Their
Applications 14 (3), 54–62.

OSGi Committee, 2008. OSGi service platform, release 4.1.

Pietschmann, S., Mitschick, A., Winkler, R., Meissner, K., 2008. CroCo:
Ontology-based, cross-application context management. Third International
Workshop on Semantic Media Adaptation and Personalization, Proceedings,
88–93.

Riehle, D., Buschmann, F., Martin, R. C., 1998. Pattern languages of program
design 3. Software patterns series. Addison-Wesley, Reading, Mass.

Salehie, M., Tahvildari, L., 2009. Self-adaptive software: Landscape and re-
search challenges. ACM Transactions on Autonomous and Adaptive Systems
4 (2).

Seinturier, L., Pessemier, N., Duchien, L., Coupaye, T., 2006. A component
model engineered with components and aspects. Component-Based Software
Engineering, Proceedings 4063, 139–153.

29



Sicard, S., Boyer, F., De Palma, N., 2008. Using components for architecture-
based management. 2008 30th International Conference on Software Engi-
neering: (ICSE), Vols 1 and 2, 101–110.

Sun Microsystems, 2008. Java(TM) Management Extensions (JMX TM).

30


