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Abstract

The emerging accelerator-based heterogeneous clusters, comprising specialized processors such as the IBM Cell and

GPUs, have exhibited excellent price to performance ratio as well as high energy-efficiency. However, developing and

maintaining software for such systems is fraught with challenges, especially for modern high-performance computing

(HPC) applications that can benefit the most from leveraging accelerators. If accelerator-based clusters are to deliver

on their initial promise to provide a viable and cost-effective HPC solution to researchers and practitioners, one must

find a software solution to lower the barrier to entry for the average user. In this paper, we investigate how a software

component based approach can be used to provide a reusable and adaptable architecture for executing HPC tasks on

accelerator-based clusters. In our implementation, we leverage the lessons from the software engineering research

for component-based layered architectures. Our results indicate that the complexity of developing and maintaining

accelerator-based cluster software can be as effectively tamed by solid software engineering approaches as that of

software in more traditional domains. Specifically, we were able to reuse 83.6% of our implementation code across

different architectures and resource configurations, while achieving the overall execution performance only 1.5% off

that of an optimally hand-tuned, albeit non-reusable version.

Keywords: Accelerator-based systems, heterogeneous clusters, reusable software components, mixin-layers,

high-performance computing

∗Corresponding author

Email addresses: mustafa@cs.vt.edu (M. Mustafa Rafique), butta@cs.vt.edu (Ali R. Butt), Tilevich@cs.vt.edu (Eli

Tilevich)

Preprint submitted to Elsevier March 26, 2011



Reusable Software Components for

Accelerator-based Clusters

M. Mustafa Rafique∗, Ali R. Butt, Eli Tilevich

Department of Computer Science, Virginia Tech

2202 Kraft Drive

Blacksburg, VA 24061

Phone: +1-540-231-0489

Fax: +1-540-231-9218

1. Introduction

Heterogeneous accelerator-based clusters (ABCs) are no longer a research curiosity. The impressive performance

advantages provided by such clusters make them desirable computing facilities for researchers and enterprises alike [1,

2]. The heterogeneity of the hardware units of ABCs, the complexity of their API, and the ad-hoc nature of their

communication interfaces confine the use of these powerful and power-efficient computing facilities to all but advanced

computer users. Researchers in other fields — whose simulations and computer-models for investigating a myriad of

fields, e.g., medicine, high-speed physics, etc., can benefit from such resources — are simply left out. The current

state-of-the-art is such that one literally needs to be a seasoned computer scientist to be simply able to set up and use

an ABC, let alone optimize and derive peak performance from one.

The combination of low-cost and performance acceleration comparable to that of a small supercomputer, but

without the associated extra highmaintenance and power costs [3], makes an ABC a viable and economical solution for

a large class of performance intensive tasks [4]. The main obstacle to using an ABC is the complexity of programming

and maintaining its software.

In this paper, we present an approach to lowering the barrier to entry for users and organizations that need to take

advantage of the computing power and energy efficiency offered by ABCs. Our solution leverages the advances in

component-based software engineering, in which complex software systems are constructed from reusable and adapt-

able components. In particular, we explore how layered software architectures can alleviate many of the difficulties of

building and maintaining component-based systems on ABCs.

Layered architectures are a proven approach for expressing the logic of complex computer systems [5, 6, 7, 8], with

several implementation techniques. Some of these techniques require specialized languages or language extensions.

We have chosen an approach called mixin-layers [9], which provides all the benefits of layered architectures within the

confines of standard C++ [10]. This design choice is influenced by the unique requirements of our target environment.

A typical ABC requires coordination of the execution of multiple heterogeneous devices connected to each other

through a high-speed interconnect. Due to the ubiquity of C++, one can find a standards-compliant C++ compiler

almost on any computing device and operating system. One of the advantages of C++ is its natural interoperability

with C. Thus, even if a C++ compiler is not available on some esoteric device, it is always possible to write a module

in C and link it with the encompassing C++ component.

We aim at demonstrating how solid software engineering principles can help address some of the biggest chal-

lenges of advanced system construction, without sacrificing high performance. To this end, we started with an op-

timized implementation described in prior research projects concerned with optimizing ABCs [11, 12, 13]. As is

commonly the case, our initial point was an hand-coded implementation for particular deployment environment, with

the resulting code not easily reusable or adaptable. We report on the results of rearchitecting this initial code into a

mixin-layer-based implementation that has subsequently undergone three modifications. These modifications involved

both changes to the hardware units used and their corresponding software environments.
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Our results show that the layered architecture helped reduce the amount of code that had to be changed to support

each modification: the majority of components (83.6% lines of code on average) could be reused as is. We were able

to effectively encapsulate both reusable and custom feature implementations within separate components. Custom

implementations—both heterogeneous and platform-specific—were introduced as new components, which were then

plugged-into our component architecture to take advantage of the available resources of a given ABC configuration.

Based on the results of our evaluation, this work streamlines the construction and maintenance of ABCs by making

the following contributions:

• A reusable and adaptable software component framework for setting up accelerator-based heterogeneous sys-

tems; our framework provides both ease-of-use and extensibility advantages.

• A prototype implementation of the framework that we have evaluated using three realistic setups with different

constituent hardware devices.

• An empirical evaluation that includes both performance and software engineering metrics to confirm that our

solution can harmoniously combine high performance and solid software engineering.

The rest of this paper is organized as follows. Section 2 provides the background and related work of this research.

Section 3 describes the design of our framework. Section 4 illustrates an example of how the framework can be

utilized. Section 5 presents our evaluations. Section 6 discusses the applicability of the developed framework. Finally,

Section 7 concludes the paper.

2. Background

In this section, we discuss key enablers of our study, namely: commodity accelerators that serve as the computa-

tional platform for our research; and techniques for designing layered software architectures.

2.1. Commodity Accelerators

It is a common practice in large-scale systems, e.g., Google’s infrastructure [14], Amazon’s EC2 [2], etc., to

leverage off-the-shelf hardware components for obtaining cheap and energy-efficient computational power. Tradition-

ally, mostly general-purpose processors were used. However, recent commoditization of asymmetric accelerator-type

processors — for example in Cell-based Sony PlayStation 3 (PS3) [15, 16] and NVIDIA GPU-based graphics en-

gines [17, 18] — is popularizing the use of accelerators in mainstream enterprise-scale setups as well. Thus, we focus

on using such accelerators in this investigation.

The major draw of accelerator engines is that they provide a much higher performance-to-cost ratio than con-

ventional processors. Because accelerator engines are special purpose processors, their designs trade versatility for

performance. As a result, an asymmetric cluster of accelerators can provide the required performance at a fraction of

the setup and maintenance cost of a traditional symmetric cluster.

Unfortunately, accelerator engines are notoriously hard to program due to the complexity of their resource man-

agement [19, 20]. In particular, building an accelerator-based system requires coordinating multiple Instruction Set

Architectures (ISAs), which constitute different compilation targets. Mixing accelerator engines with conventional

processors is also problematic: accelerators typically have higher compute density and raw performance than con-

ventional processors, which can lead to a performance imbalance in mixed setups. Being special-purpose processors,

accelerators typically have limited on-board storage and limited – if any – support for system services such as I/O. As

a result, the programmer needs to carefully orchestrate data transfer and processing between heterogeneous hardware

architectures.

Other Software Engineering innovations share our goals to streamline parallel processing with computational ac-

celerators by providing abstractions for programming heterogeneous platforms. One such example is OpenCL [21] that

extends the C language with a domain-specific extension for writing compute kernels on attached devices. OpenCL

facilitates the implementation of low-level accelerator functionality by providing ready-to-use subroutines that the

programmer can incorporate. The goals of OpenCL are nevertheless orthogonal to ours. While our approach aims at

increasing reusability by imposing a component-based methodology, OpenCL focuses on raising the abstraction level

for programming accelerators. In fact, OpenCL can be used to implement the functionality of some of our reusable

components.
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In terms of the specific differences between OpenCL and our approach, OpenCL extends a subset of ISO C99,

which does not provide any support for object-oriented programming or generic programming with templates. By

contrast, our approach heavily relies on the object-oriented and generic features of C++. It is these features that enable

the high levels of reusability and adaptability in our approach. Furthermore, OpenCL focuses on managing the intra-

node heterogeneity by providing a unified API for multiple accelerators within the same node. Our approach focuses

more on managing the inter-node heterogeneity and coordination. Specifically, we provide components to execute

computational logic on heterogeneous nodes and also to coordinate their execution across the cluster.

The specific accelerator engines that we use in this study are the Cell processor [22, 23, 24] on commodity Sony

PS3 nodes, and the Compute Unified Device Architecture (CUDA) [25] enabledNVIDIAGeForece 9600MGTGraph-

ical Processing Unit (GPU) [26]. These devices are readily available at a low-cost and are representative of common

industry trends, thus making the results of our investigations broadly applicable.

The Cell is a heterogeneous multi-processor chip with one general-purpose PowerPC SMT core (PPE) that serves

as a front-end manager, and eight vector processors (SPEs) that are specialized for data-parallel computations, all

connected via a very fast interconnect. In contrast, the GPUs do not have an internal front-end manager and the

systems main processor performs that job.

The common practice for programming accelerators, especially GPUs, is to use CUDA. To facilitate program-

ming, CUDA exposes three special language abstractions: a hierarchy of thread groups, shared memories, and barrier

synchronization. The use of these abstractions is conducive to the programmer dividing her program into coarse-grain

sub-problems that can be executed independently in parallel. As an additional advantage, individual sub-problems are

amenable to be further divided into finer-grain slices, which can also be solved cooperatively in parallel. This arrange-

ment leverages one of the key benefits of threads: enabling them to cooperate with each other while solving individual

sub-problems. Finally, the assignment of slices to the physical processors is done by the underlying runtime, enabling

flexible parallel designs in which the exact number of physical processors need not to be known until the runtime.

Despite all the above useful features of the CUDA programming abstractions, they lack the degree of modularity

and encapsulation that would enable their seamless reuse in multiple programming scenarios across different appli-

cations. The goal of our work is to explore how these low-level programming abstractions can be utilized to create

higher-level abstractions, which could be exposed as reusable components. Equipped with such reusable components,

a programmer would be able to create accelerator-based solutions at a fraction of the current development time and

costs.

2.2. Feature-Oriented Programming and Mixin-Layers

Feature-oriented programming (FOP) is a software development methodology in which features are first-class

citizens in the software architecture [27, 28]. FOP decomposes applications into a set of features that together provide

the requisite functionality. Composing multiple objects from a single set of features separates the core functionality of

an object from its refinements making the resulting software more reusable and robust.

In addition, FOP allows easy mix-and-match composition of features in a modular fashion, as an application is

built using step-wise refinement. A common implementation strategy in FOP is to use a layered architecture, in which

layers correspond to features. The resulting “feature stack” is composed of many layers with each layer (1) providing

a single feature, and (2) refining existing features in the stack [29].

To incrementally refine and flexibly compose features of an ABCs, we use mixin-layers, a novel layered architec-

tures’ implementation that uses advanced C++ programming techniques. Mixin-layers model different collaborating

roles within each layer by means of inner classes [30]. Inner classes mirror the inheritance relationships of their enclos-

ing classes in the layer above. With mixin-layers, the programmer can add functionality flexibly but systematically:

each added layer supplies those inner classes that provide the required functionality.

Mixin-layers fits the design goals of this work: it implements features as collaborations of smaller, encapsulated

units, each of which can be refined step-wise. As our experimental infrastructure matures, new research issues may

warrant switching to another implementation strategy that better satisfies the newly-discovered set of requirements.

For example, domain-specific languages have been shown to be effective for flexibly composing features [31, 32, 33].

Following a different implementation strategy, however, would still leverage the key conceptual contributions of our

approach: demonstrating how a reusable and adaptable software component framework can streamline the process of

composing heterogeneous ABCs.
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Figure 1: Resource configurations for Cell and GPU based heterogeneous clusters.

3. Design

To the best of our knowledge, this work is the first to explore how the functionality of an ABC can be effectively

broken into reusable components, so that the required custom functionality can be clearly identified. In this section, we

first present several realistic hardware accelerator configurations, and then explain how mixin-layers can effectively

encapsulate reusable and custom features. Strong encapsulation promotes reuse and increases separation of concerns,

both of which improve programmer productivity.

3.1. Resource Configurations

Figure 1 shows different resource configurations of heterogeneous clusters that we have considered in this work.

Although not exhaustive, we believe these configurations cover most of the cases encountered in ABC design. We

have used accelerators of various capabilities as the computing devices (or compute nodes) in different configurations.

Our first configuration, Conf I (Figure 1(a)), consists of four Cell-based accelerator nodes connected directly with

the manager node via high-speed interconnect network (1 Gbps Ethernet in our case). Our second configuration, Conf

II (Figure 1(b)), is a generalization of Conf I to n Cell-based accelerators. In these configurations, any workload

assigned to the manager is dynamically divided among the attached accelerator nodes by the manager node.

Our third and fourth configurations, i.e. Conf III (Figure 1(c)) and Conf IV (Figure 1(d)), are similar to Conf 1 and

Conf II, respectively, but instead of Cell-based accelerators, use GPU-based computational accelerators.

The fifth configuration, Conf V (Figure 1(e)), employs a mix of Cell-based and GPU-based computational accel-

erators in a hierarchical settings. Both the Cell-based and GPU-based compute nodes are connected with the manager

node through a driver node, which acts as a ‘local manager’ for the attached accelerator nodes. Here, any workload

assigned to the manager is dynamically divided between the attached driver nodes that further divide the assigned tasks

to the attached computational accelerators based on the accelerators’ capabilities. In this configuration, the manager

node has to interact with only two driver nodes instead of all the accelerator-based compute nodes of the cluster, thus

the driver nodes alleviate from the manager node the pressure of fine-grained computational resource management and

scheduling.

3.2. Design Overview

A major challenge in designing a component-based system is to decide what functionality should be included into

which software components. Among the major criteria to be considered is the intuitiveness of the client interfaces and

ease-of-reuse. Other criteria tend to bemore domain-specific, defined by the constraints of a given computing platform.

In this case, our major objective is to encapsulate reusable functionality that can serve as convenient building blocks

for constructing ABCs. We aim at hiding much of the low-level implementation details from those programmers who

simply want to use these software components to quickly put together a cluster of accelerator engines. In the following

discussion, we outline the main software components that we chose to make available as part of our infrastructure.

We support our decision to expose this particular set of functionality as software components by describing their

functionality and client interfaces.

The software components are divided between manager and compute node roles. Figure 2 shows different manager

and compute nodes software components that provide the execution logic of our design, and their corresponding

interactions with each other. In the following we explain the functionality of these components.
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Figure 2: Manager and compute node components and their interactions.

3.3. Manager Components

We now describe the main components of our manager layer.

3.3.1. Communicator

The Communicator component encapsulates the methods required to communicate between different heteroge-

neous resources of the cluster. This component also implements communication and computation overlapping op-

portunities by implementing techniques such as double-buffering for each end of the communicating device. The

Communicator is an extensible module, which can also be used to introduce hardware-component-specific optimiza-

tions such as hiding communication latency and improving bandwidth utilization.

3.3.2. Data Reader

This component prefetches the user specified input data and stores it in the framework according to the application

requirement. The data is read in large chunks from the storage device — to amortize access costs such as disk seek

times— and further divided and arranged based on application-desired layout. The newly arranged data is then passed

to the Node Scheduler for streaming to available compute nodes. The Data Reader provides interfaces to manipulate

the prefetched data and to change the layout as desired.

3.3.3. Node Scheduler

The Node Scheduler component manages a compute node. For each compute node available to the cluster, the

manager initiates one instance of theNode Scheduler. EachNode Scheduler receives a chunk of unprocessed data from

theData Reader, and further optimally streams it to the corresponding accelerator-based compute node. The streaming

is attuned to the compute node’s data handling capabilities, and can be specified by the user in this component. The

streaming process is continued until the entire input data is consumed and processed by the compute node.

The Node Scheduler also retrieves the results from the compute nodes, and sends the partial-results to the compute

nodes for final merging, as explained next.

3.3.4. Result Merger

The Result Merger exposes the interfaces to the programmer for including application-specific mechanisms for

merging partial results from individual compute nodes into a combined result set, and the global merging criteria

for producing the final results at the manager node. The Node Scheduler retrieves and passes on the partial results

from compute nodes to the Result Merger as the results become available. The Result Merger combines the partial

results based on the application-specific criteria, e.g., in-order sort, and perform the specified global-merge function to

produce the final results. Note that, if needed, the Result Mergermay also use the Node Scheduler again for offloading

the combining and merging operations to the accelerator-based compute nodes to improve performance.
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3.4. Compute Node Components

We now describe the main components of the compute nodes layer as shown in Figure 2, and how data is manipu-

lated between the different components at the compute nodes.

3.4.1. Input Reader

The Input Reader at the compute node prefetches blocks of data from the manager, and passes it to the Accelerator

Scheduler component. We have used multiple buffers for reading the data from the manager to overlap the commu-

nication and computational latency, as well as provided support for specifying more optimizations as necessary. If

an empty buffer is available, the Input Reader initiates a request for another block of data. If no empty buffers are

available for the input data, Input Reader simply waits until some buffers become free.

3.4.2. Accelerator Scheduler

The Accelerator Scheduler component schedules the data read from the Input Reader for execution on the attached

computational accelerator of the node. This component is specific to the kind of attached accelerator of the node,

and provides the opportunity to implement any device specific optimization. The input buffer from the Input Reader

is further divided into small slices suitable to fit into the available memory of the corresponding accelerator. These

small slices of data are then scheduled to be streamed to the Accelerator Offloader component for execution on the

accelerator.

3.4.3. Accelerator Offloader

The Accelerator Offloader component provides an interface to execute the device specific offload routines, such

as application specific data processing and merging functions. This component provides abstractions for the methods

required to integrate device-specific programming languages, such as C for CUDA, and C for PS3, with a general-

purpose language such as C++. The application and accelerator specific compute routines can be specified in separate

files to maintain the modularity of the framework.

The Accelerator Offloader reads the input data from the Accelerator Scheduler and processes it on the attached

Accelerator Core. The Accelerator Core represents the specific accelerator device, such as Cell or GPU, which ex-

ecutes application specific task on the given data and produces the result. The results are then returned back to the

Accelerator Scheduler that passes them to the Result Writer component.

3.4.4. Result Writer

The Result Writer component receives the results from the Accelerator Scheduler, and sends them to the manager.

Once a block of result data is sent to the manager, its associated buffer is marked as free and can be reused by the

Input Reader. Note that the result from the Accelerator Offloader can not be sent directly to the Result Writer

component without involving the Accelerator Scheduler component. The Accelerator Scheduler component should

be notified when the processing of a particular data slice is completed at the Accelerator Offloader component so that

the next data slice can be scheduled. If results are sent directly to the Result Writer component without involving the

Accelerator Scheduler component, then some signaling mechanism needs to be implemented to notify the Accelerator

Scheduler component that the processing of a particular data slice has been completed, which would increase the

synchronization overhead between components.

3.4.5. Summary

In this section, we have shown how the functionality of ABC can be decomposed into distinct software components.

The goal is to design a component for each of the manager and client functions, such that the resulting components

are easy-to-use and modify, thus yielding a modular and flexible design. These software components are reusable

and can be maintained with minimal effort. Furthermore, the components can be used to design heterogeneous ABCs

comprising different types of accelerators.

4. Illustrative Example

In this section, we present an illustrative example of a real cluster to describe how different components of our

design operate and interact with each other. By describing each component’s functionality, this example illustrates

how our framework orchestrates pre-existing software components to complete a concrete computational task. In
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particular, we discuss a Word Count application, and show how the computationally-intensive problem of counting

word frequencies in text files can be naturally decomposed for efficient execution on an ABC.

Figure 3 shows our heterogeneous cluster used for this example, which consists of two PS3 compute nodes, two

GPU-based compute nodes, and a manager, all connected via a high-speed network.

4.1. Synthesizing the Application

First, we discuss the software components needed for the Word Count application. Programming-wise, the entire

functionality of each cluster node is encapsulated in a template instantiation of the required components for the node.

For our example application, the template instantiation for the manager node is as follows:

t ypede f Manager<WordCount> manager ;

# de f in e NUM PS3 2

# de f in e NUMGPU 2

manager : : DataReader da tReade r ;

manager : : NodeScheduler<PS3> PS3Schedule [NUM PS3 ] ;

manager : : NodeScheduler<GPU> GPUSchedule [NUM GPU] ;

manager : : Resu l tMerge r r e sMerge r ;

vo id main ( ) {
da tReade r . s t a r tR e ad i n gT h r e a d ( ) ;

f o r ( i n t i = 0 ; i < NUM PS3 ; ++ i ) {
PS3Schedule [ i ] . s t a r t S c h e d u l i n g T h r e a d ( ) ;

}
f o r ( i n t j = 0 ; j < NUMGPU; ++ j ) {

GPUSchedule [ j ] . s t a r t S c h e d u l i n g T h r e a d ( ) ;

}
r e sMerge r . doMerging ( ) ;

}

The corresponding template instantiation for a PS3 compute node is as follows:

t ypede f PS3<ComputeNode<WordCount>> cNode ;

cNode : : I npu tReade r i npReade r ;

cNode : : A c c e l e r a t o r S c h e d u l e r a ccSchedu l e ;

cNode : : A c c e l e r a t o rO f f l o a d e r a c cO f f l o a d e r ;

cNode : : R e s u l tW r i t e r r e sW r i t e r ;

vo id main ( ) {
i npReade r . s t a r tR e ad i n gT h r e a d ( ) ;

a ccSchedu l e . s t a r t S c h e d u l i n g T h r e a d ( ) ;

a c cO f f l o a d e r . s t a r t O f f l o a d i n g T h r e a d ( ) ;

r e sW r i t e r . doWr i t i ng ( ) ;

}

Finally, a GPU-based compute node’s template instantiation is as follows:

8



t ypede f GPU<ComputeNode<WordCount>> cNode ;

cNode : : I npu tReade r i npReade r ;

cNode : : A c c e l e r a t o r S c h e d u l e r a ccSchedu l e ;

cNode : : A c c e l e r a t o rO f f l o a d e r a c cO f f l o a d e r ;

cNode : : R e s u l tW r i t e r r e sW r i t e r ;

vo id main ( ) {
i npReade r . s t a r tR e ad i n gT h r e a d ( ) ;

a ccSchedu l e . s t a r t S c h e d u l i n g T h r e a d ( ) ;

a c cO f f l o a d e r . s t a r t O f f l o a d i n g T h r e a d ( ) ;

r e sW r i t e r . doWr i t i ng ( ) ;

}

Note the functionality of each component as described in Section 3, e.g., Input/Data Reader, is expressed as an

inner class in each of the above template instantiations.

Figure 4 illustrates how different software components are represented as mixin-layers, both for the manager node

as well as for the Cell and GPU-based compute nodes. Each layer represents a component, defined as a unit of func-

tionality with multiple roles. For example, the ComputeNode component defines the InputReader, Scheduler,

Offloader, and ResultWriter roles. These roles define the distinct operations that are used during the execution

of a generic ComputeNode. Each layer is added to the composition to either refine or extend the existing compo-

nents. For example, the GPU or PS3 components add the functionality in their roles that are specific to their respective

architectures.

Implementation-wise, each layer is implemented as a template C++ class, whose inner template classes comprise

the layer’s roles. Both the main component classes and their roles participate in the inheritance relationship with the

corresponding classes in the layer above. Thus, to reuse a component, with all its roles, the programmer only has to

include that component into a template instantiation. As long as the component has the needed roles (which can be

ensured by following careful design practices), its functionality becomes immediately available for constructing any

application.

For the Word Count application whose code listings appear above, two out of three components for the compute

nodes can be reused out-of-the-box. In the figure, the reused components are colored (shaded) identically. Even

though the reusable componentswill need to be recompiled for different hardware architectures, their functionality will

remain the same. This small but realistic example demonstrates how a layered software architecture can be leveraged

to provide easy-to-use-and-reuse software components, which can be both architecture independent or device specific.

This observation leads us to believe that following this software construction paradigm has the potential to alleviate

many implementation complexities for the average programmer.

4.2. Runtime Interactions

Next, we describe how the components we have described above are used at runtime. The execution control flow

steps in this discussion are illustrated in Figure 2 as numbers along the arrows.

The cluster receives a request to start computing the frequencies of each word in a set of disk files. This causes the

Data Reader component, located at the manager node, to be invoked (Step 1). TheData Reader prefetches and divides

the input text file in small chunks. As chunks are read into memory, a separate Node Scheduler component for each

compute node is instantiated at the manager node, a total of four in this example. Each Node Scheduler component

reads the next available chunk from the Data Reader (2), and divides it into smaller blocks: 4 MB blocks for PS3

nodes, 12 MB blocks for our GPU nodes. Then, the Communicator transmits the scheduled data blocks to their target

compute nodes (3, 4). This process is repeated until the computation is complete.

Once a compute node is done with counting different word frequencies in its assigned block, the result is sent

back (11, 12) to the manager via the node’s associated Result Writer. At the manager node, the Result Merger combines

all the received word lists by sorting them as required for Word Count (13). When the Result Merger is done with

sorting, the combined word lists must be processed for combining repeated word counts to determine final word

frequencies. Since the counting of repetitions is computationally intensive, the work must be once again distributed

among the compute nodes (14). As before, this distribution task is accomplished by the Node Scheduler. The final

consolidated result is then computed by the Result Merger component after all the compute nodes have finished their

computations (13).
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Manager
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WordCount

DataReader ResultMergerNodeScheduler

(a) Mixin-layers for manager node.
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(b) Mixin-layers for Cell-based compute node.
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Offloader

Offloader

ResultWriter

ResultWriter

WordCount

InputReader Scheduler Offloader ResultWriter

(c) Mixin-layers for GPU-based compute node.

Figure 4: Manager and compute nodes mixin-layers and the defined roles.

On the compute node, the Input Reader is responsible for retrieving the assigned blocks from the manager (5).

The received blocks are then passed to the Accelerator Scheduler (6) in a loop. The Accelerator Scheduler is unique

to each accelerator engine. Specifically, these components encode the logic required to divide the assigned blocks into

slices that can be processed by the underlying architecture — 32 KB for PS3 and 256 KB for our GPUs. Each slice

is then passed to the Accelerator Offloader component (7), which then either counts the different word frequencies in

the assigned slice initially, or counts repeated words in a list for merging repetitions later (8).

Once the Accelerator Scheduler has received all the results computed for each data slice, they are passed to the

Result Writer (9), which in turn sends them back to the manager node by means of the Communicator (10). The results

are then reported to the user (15), completing the application run.

Finally, if the hardware configuration is changed, the programmer can easily reuse many of the software compo-

nents, thus saving time and reducing time-to-solution.

5. Evaluation

In this section, we first briefly describe our prototype implementation, followed by the description of our exper-

imentation testbed and the benchmarks that we have used to evaluate our designed components for reusability and

performance, and then give the results.

5.1. Implementation

We have implemented a prototype of our design as lightweight libraries for each of the platforms, i.e., x86 on the

manager and driver, PowerPC and SPE on the Cell-based PS3 compute nodes, and GPU-based x86 compute nodes
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using only about 1650 lines of C/C++ and CUDA code. The libraries provide the application programmers with

necessary constructs for using different components of the framework.

In our implementation for Conf V, we leverage the reusability of the components to build a hierarchical ABC. For

instance, the driver node is primarily composed of components reused from the manager and the compute nodes, i.e.,

the driver instantiates the same InputReader as that used for the compute node in the remaining configurations

for reading the data from the manager. Moreover, the NodeScheduler and ResultMerger on the driver are in-

stances of code designed for the manager in the other configurations and is used to manage the attached computational

accelerators and merge the partial results. Finally, the ResultWriter is similar to that of the compute nodes, and

is used to return the results back to the manager.

5.2. Experimental Setup

Our testbed consists of several Sony PS3s and GPU enabled Toshiba Qosmio laptop computers, a manager node,

and an 2-node standard multi-core cluster to serve as drivers. All components are connected via 1 Gbps Ethernet. The

manager has two quad-core Intel Xeon 3 GHz processors, 16 GB main memory, 650 GB hard disk, and runs Linux

Fedora Core 8. The driver nodes are identical to the manager except that they have 8 GB of main memory. The PS3

is a hypervisor-controlled platform, and has 256 MB of main memory (of which only about 200 MB is available for

applications), and a 60 GB hard disk. Of the 8 SPEs of the Cell, only 6 SPEs are visible to the programmer [34, 35] in

the PS3. Moreover, each PS3 node has a swap space of 512 MB, and runs Linux Fedora Core 7. Each GPU enabled

Toshiba Qosmio laptop computers has Intel Dual-Core 2 GHz processor, and 4 GB of main memory installed in it.

Moreover, each of the laptops has one GeForce 9600MGT CUDA enabled GPU device, with 32 cores and 512 MB of

memory, and uses CUDA toolkit 2.2.

For our experiments, we distribute the resources as described in section 3.1. For Conf II and Conf IV we set

n=10. In Conf V the two drivers have four PS3s and four GPUs connected to them, respectively, and are connected

with the manager node. Our goal is to determine the effect of different heterogeneous environments in our prototype

implementation, specifically, varying the number, type, and hierarchy of the accelerators.

5.3. Methodology

We conducted the experiments using our prototype implementation that uses the mixin-layers for building high-

performance ABCs. The focus is on evaluating our design decisions and to investigate how well we can reuse the

mixin-based components in different benchmarks applications, and how well it performs as compared to a hand-tuned

implementation of the benchmark applications.

We have used a number of well-known parallel applications in this study. Each of these applications has different

computation to communication densities. These applications are commonly used in scientific computing environ-

ments, including image segmentation, epidemiology, statistical analysis, and environmental science [36, 37, 38] and

have characteristics that are representative of many parallel applications. Specifically, these applications include the

following:

• Linear Regression: This application takes as input a large set of 2D points, and determines a line of best fit for

them.

• Word Count: This application counts the frequency of each unique word in a given input file. The output is a

list of unique words found in the input along with their corresponding occurrence counts.

• Histogram: This application takes as input a bitmap image, and produces the frequency count of each color

composition in the image.

• K-Means: This application takes a set of points in an N-dimensional space and groups them into a set number

of clusters with approximately an equal number of points in each cluster.

5.3.1. Mixin-Layer Components Reusability

We evaluate the effectiveness of our framework in reducing the amount of software-engineering effort for designing

applications for the targeted asymmetric hardware resources. One potentially confusing issue is the meaning of the

term component. In a mixin-layer composition, a component is a template class whose functionality is defined by its

inner classes. What is more important for this evaluation is our unit of reusability. Even though the unit of reusability

is an entire mixin-layer component, any instantiation can use only the needed roles by simply creating objects of
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Component (Class)

Linear Code reuse (in %)

Regression Word
Histogram K-Means

LOC Count

Communicator 360 100 100 100

DataReader 42 14.2 11.9 42.8

NodeScheduler 423 100 100 100

ResultMerger 38 38.9 40.1 27.1

Table 1: Manager classes and corresponding reusable LOC (wrt. Linear Regression) for benchmark applications in Conf I.

Component (Class)

Linear Code reuse (in %)

Regression Word
Histogram K-Means

LOC Count

InputReader 92 100 100 100

AcceleratorScheduler 78 100 100 100

AcceleratorOffloader 148 15.4 19.5 35.8

ResultWriter 102 100 100 100

Table 2: Compute node classes and corresponding reusable LOC (wrt. Linear Regression) for benchmark applications in Conf I.

the appropriate inner classes. Therefore, each role can be reused independently of the other roles in the same layer.

Therefore, while our implementation is component-based, our measurements are specific to the software engineering

metrics (e.g., lines of code) of the inner classes.

Code reusability for different applications. In this set of experiments, we evaluated how well we can reuse the

mixin-layer components across our benchmark applications while keeping the cluster hardware configurations and

resources fixed. Table 1 shows the total number of lines of codes (LOC) of the major classes at the manager node for

Linear Regression alongwith the percentage of LOC that wewere able to reuse across different applications, all inConf

I. Note that except for the DataReader and ResultMerger classes that are unique to different applications, all the

other classes, i.e., NodeScheduler and Communicator are reused by the benchmarks without any modifications.

Nonetheless, since we have used modular programming in our implementation, we were able to use some parts of our

code in the application-specific user-defined classes as well. Overall 90.7% of the code of the classes at the manager

node is reused between different applications in Conf I of our implementation.

Table 2 shows the total number of LOC of the major classes at the compute nodes for Linear Regression in

Conf I. Here, except for the AcceleratorOffloader class, which contains the application specific routines ex-

ecuted on the computational accelerators of the compute nodes, all the other major classes, i.e., InputReader,

AcceleratorScheduler, and ResultWriter are reused without any modifications. Our evaluation shows

that overall 64.7% of the code of the classes at compute nodes can be used across different applications. However, the

AcceleratorOffloader class can not be reused as a whole since it is unique for each application, even so by

using the mixin-layers abstractions we are able to use 23.6% on average across all benchmark applications.

Code reusability for different configurations. In this set of experiments, we fix the application (Linear Regression)

and vary the hardware configuration to determine how well the mixin-layer components can be reused across different

hardware. Table 3 shows the total number of LOC of the major classes at the manager node in Conf I along with

the percentage of the LOC that we were able to reuse for Conf II, Conf III, Conf IV, and Conf V, respectively. As

observed from the table, we were able to use all of the classes of the manager except the NodeScheduler class.

This is because NodeScheduler interacts with the attached accelerator-based compute nodes that change across the

configurations. However, we were still able to reuse 52.2% of our code because of our component-based development

approach. Note that in Conf V, we have reused 99.3% of the overall code since the driver node is composed of some of

the roles of the manager and the compute nodes. The node scheduler component in Conf V is exactly the same as the

manager node, since the driver node manages the attached nodes in the same fashion as the manager node manages the

compute node. The difference in Conf V comes in the DataReader component, where the driver node reads the data

either from the manager, or from a distributed storage. In the case of reading the input from a distributed storage, the

driver reads only the part of input that is assigned to it by the manager node. Another difference in the driver comes

in ResultMerger component, where in addition to merging the results, it sends the merged results to the manager

node.

Table 4 shows the total number of LOC of the major classes at the compute nodes in Conf I for Linear Regression

benchmark, and the LOC that we were able to reuse across different hardware configurations. Here, we have reused
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Component (Class)
Conf I Code reuse (in %)

LOC Conf II Conf III Conf IV Conf V wrt. I and III

Communicator 360 100 100 100 100

DataReader 42 100 100 100 90.4

NodeScheduler 423 100 52.2 52.2 100

ResultMerger 38 100 100 100 94.7

Table 3: Manager components and corresponding reusable LOC for Linear Regression benchmark in different configurations.

Component (Class)
Conf I Code reuse (in %)

LOC Conf II Conf III Conf IV Conf V wrt. I and III

InputReader 92 100 62.5 62.5 98.1

AcceleratorScheduler 78 100 71.5 71.5 99.1

AcceleratorOffloader 148 100 20.5 20.5 100

ResultWriter 102 100 85.2 85.2 98.6

Table 4: Compute node components and corresponding reusable LOC for Linear Regression benchmark in different configurations.

100% of our code while moving from Conf I to Conf II, and also from Conf III to Conf IV, as the only difference here

is the number of compute nodes. Interestingly, we reused 54.9% of our overall compute node code while transforming

our code fromConf I toConf III. This is because different type of accelerators offer different optimization opportunities

for the corresponding type of attached accelerator, and we have to modify our accelerator code base for the new

accelerator to exploit the specific optimization opportunities available. Note that most of the source code that has to

be modified for supporting a new accelerator is in the platform specific AcceleratorOffloader class, which as

discussed earlier, contains the application-specific functions that are executed on the accelerator of the compute node.

Also, note that while reporting the code reusability for Conf V, we compare it with the Conf I and Conf III since the

compute nodes in Conf V are the combination of the two configurations.

5.3.2. Benchmark Performance

In this set of experiments, we focus on the performance of the mixin-layers based code generated for our studied

ABC configurations. First, we compare our code with available hand-tuned implementations [12, 13] of the bench-

marks. We have extended our hand-tuned implementations [12, 13] from Cell-based compute nodes to GPU-based

compute nodes. We have implemented several optimizations in our hand-tuned implementations. These optimiza-

tions include implementing locality-aware data distribution between compute nodes, implementing optimal offload-

ing workload size for Cell and GPU based nodes, and implementing double buffering at each communication layer

(manager-to-driver and driver-to-compute node) to overlap computation with communication.

Table 5 shows the comparison of the execution time for both implementations using Conf V. Note that the hand-

tuned implementation is unique for each benchmark application, and is not reusable across different applications. The

result shows that the performance of our prototype implementation is comparable to the performance of the hand-

tuned implementation. Overall, our mixin-layer based implementation has an average overhead of 1.5% across all the

benchmark applications as compared to the hand-tuned optimized implementation, which is a reasonable overhead

considering the ease-of-reuse and adaptation advantages provided by our approach.

Next, we study how our implementation performs across our studied configurations. Table 6 shows the execution

time of our benchmark applications under different resource configurations. We have used the input size of 512 MB

for our benchmark applications for each of the resource configurations. The result of executing different applica-

tions of various computational densities shows that our implementation scales well with increasing the same kind of

accelerator-based compute nodes, as well as using them in a highly heterogeneous environment. Note that between

Conf 1 and II (and Conf III and IV), only the number of accelerator-based compute nodes are increased. In both these

scenarios, we increase the number of compute nodes by a factor of (10/4 =)2.5, and observe the average speedup by
a factor of 2.2 in our prototype implementation. We also observe an increase in the manager workload in distributing

the given input and merging the received results from the compute nodes, when we increase the number of compute

nodes in Conf II and IV as compared to Conf I and III, respectively. Similarly, we observe a linear increase in execution

time for the benchmark applications in Conf V as compared to Conf I and III.

In summary, our evaluation reveals that our mixin-layer based implementation of the software components can

be reused with minimal modifications across all the studied heterogeneous ABCs and benchmark applications. Fur-

thermore, the performance of the component-based implementation is reasonable, as it has little overhead (1.5% on

average) compared to the hand-tuned and optimized implementations, which are nontrivial to achieve and maintain.
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Application
Execution Time (sec.)

Overhead (%)
Hand-Tuned Mixin-Layer

Linear Regression 10.1 10.4 2.0

Word Count 65.3 66.4 1.5

Histogram 22.1 22.9 1.8

K-Means 93.4 94.2 0.8

Table 5: Execution time and overhead for hand-tuned and mixin-layer implementations for benchmark applications using Conf V.

Application
Execution Time (sec.)

Conf I Conf II Conf III Conf IV Conf V

Linear Regression 10.4 4.7 39.8 16.5 18.0

Word Count 66.4 28.2 238.8 97.2 110.3

Histogram 22.9 11.0 86.8 36.5 39.8

K-Means 94.2 50.5 329.4 144.5 159.4

Table 6: Benchmark execution time with different resource configurations.

6. Applicability of the Approach

Our approach effectively addresses the challenges of constructing ABC-based applications in an important HPC

domain. Next we outline the characteristics of this domain and the types of applications that can benefit from our

approach. We also describe the types of applications that are unlikely to derive any reusability benefits if they choose

to adopt our component methodology.

Our approach puts forward a framework that can be followed to represent the functionality of an HPC application

as reusable and customizable components. A key characteristic for an HPC algorithm that determines whether it is

amenable to our approach is whether the algorithm can be naturally divided into self-encapsulated units of function-

ality. These units correspond to the distinct algorithm’s phases that map naturally to software layers. The strong

encapsulation provided by our approach is conducive to representing the phases as plug-in replaceable components.

That is, if a superior implementation of any component becomes available, it can be easily integrated into the existing

components stack.

An example domain that can benefit from our approach are task-farm setups. In such a setup, the manager accepts

input tasks and places them into a global FIFO queue. The distributed clients then retrieve the tasks, execute them

locally, and send the results back to the manager. Task-farm setups are widely used for computationally intensive

applications including video transcoding, encryption/decryption, and image processing. Another example domain are

applications that tend to follow strict Master Worker communication patterns. Specifically, Workers communicate and

interact with each other infrequently, relegating all the coordination and merging tasks to the Master. Such setups have

been widely used for distributed searching and sorting.

Obviously our approach is not a solution to all the challenges of ABC-based computing. There are some HPC

algorithms that are unlikely to achieve significant levels of reusability if they follow our component methodology.

They are likely still to enjoy other Software Engineering benefits of component-based construction such as a clear

separation between interfaces and implementations, but the resulting components would have to be constructed for

each ABC-based application.

In particular, if an HPC algorithm requires that distributed nodes extensively communicate and synchronize their

execution, they are unlikely to follow well-defined computational phases, and as such would not be amenable to be

modeled as standalone components. HPC algorithms whose implementation tend to follow these patterns include

matrix multiplication and prime factorization.

These applicability preconditions can be easily discerned by examining only a high-level description of an HPC

algorithm. From such a description, the programmer can immediately ascertain whether following a component-based

implementation imposed by our frameworkwill yield the expected Software Engineering benefits. This clarity is likely

to further reduce the implementation effort by precluding the programmer from having to explore the effectiveness of

our methodology through trial and error.

7. Conclusion

Nowadays, when choosing an HPC platform for the majority of computations, one must take into consideration

multiple factors, including not only the platform’s price-to-performance ratio and energy efficiency, but also the com-

plexity of its implementation process. The salient metrics for choosing an HPC platform is its time-to-solution, the
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total time it takes from posing a problem to arriving at a solution. The ability to systematically reuse and adapt existing

code rather than writing it from scratch can significantly lower time-to-discovery.

This paper presents a layered approach to building software for the emerging accelerator-based heterogeneous

clusters. Our approach adopts the well-established layered software architecture implemented as mixin-layers. Ap-

plying this approach not only achieves the required high performance, but as our evaluation shows, makes it possible

to reuse the majority of the code, when types, number, or hierarchy of accelerators is changed. These results indicate

that our approach enables effective reuse at the software component granularity, which can reduce the time-to-solution

metrics for creating ABCs. Currently, leveraging these resources for HPC requires the effort and expertise commensu-

rate to that of a seasoned computer scientist. However, the ability to build software for these resources from reusable

components has the potential to lower the barrier-to-entry for ABCs, making them accessible to researchers from a

myriad of scientific and engineering fields.
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