
Postprint of article in the Journal of Systems and Software 84 (6): 885–905 (2011)

Non-parametric statistical fault localizationI,II

Zhenyu Zhanga, W.K. Chanb,∗, T.H. Tsec, Y.T. Yub, Peifeng Hud

aState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China.
bDepartment of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.
cDepartment of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong.
dChina Merchants Bank, Central, Hong Kong.

Abstract

Fault localization is a major activity in program debugging. To automate this time-consuming task, many existing

fault-localization techniques compare passed executions and failed executions, and suggest suspicious program

elements, such as predicates or statements, to facilitate the identification of faults. To do that, these techniques

propose statistical models and use hypothesis testing methods to test the similarity or dissimilarity of proposed

program features between passed and failed executions. Furthermore, when applying their models, these techniques

presume that the feature spectra come from populations with specific distributions. The accuracy of using a model to

describe feature spectra is related to and may be affected by the underlying distribution of the feature spectra, and the

use of a (sound) model on inapplicable circumstances to describe real-life feature spectra may lower the effectiveness

of these fault-localization techniques. In this paper, we make use of hypothesis testing methods as the core concept

in developing a predicate-based fault-localization framework. We report a controlled experiment to compare, within

our framework, the efficacy, scalability, and efficiency of applying three categories of hypothesis testing methods,

namely, standard non-parametric hypothesis testing methods, standard parametric hypothesis testing methods, and

debugging-specific parametric testing methods. We also conduct a case study to compare the effectiveness of the

winner of these three categories with the effectiveness of 33 existing statement-level fault-localization techniques.

The experimental results show that the use of non-parametric hypothesis testing methods in our proposed predicate-

based fault-localization model is the most promising.

Key words:

Fault localization, hypothesis testing, parametric method, non-parametric method

I c© 2011 Elsevier. This material is presented to ensure

timely dissemination of scholarly and technical work.

Personal use of this material is permitted. Copyright and all

rights therein are retained by authors or by other copyright

holders. All persons copying this information are expected to

adhere to the terms and constraints invoked by each author’s

copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

Permission to reprint/republish this material for advertising

or promotional purposes or for creating new collective works

for resale or redistribution to servers or lists, or to reuse any

copyrighted component of this work in other works must be

obtained from Elsevier.
IIThe research is supported in part by grants of the National Natural

Science Foundations of China (project nos. 61003027 and 61073006),

the Research Grants Council of Hong Kong (project nos. 111410,

123206, 123207 and 716507), and City University of Hong Kong

(project no. 7002464).
∗Corresponding author: Tel.: +852 3442 9684; fax: +852 3442

8614. E-mail address: wkchan@cs.cityu.edu.hk (W.K. Chan).

1. Introduction

1.1. Background

Program debugging is a process to locate faults

in faulty programs, repair the programs, and confirm

that the repairs effectively remove the identified faults

(Vessey, 1986). It cannot be avoided in any typical

software development project. In practice, program

debugging (including fault localization as one of the

three activities) often takes a lengthy and manual

procedure. Automated or semi-automated techniques

that accurately locate the faults help improve the

debugging process. Traditionally, a developer may

iteratively and repetitively set up breakpoints through an

integrated development environment, execute a faulty

program over inputs, monitor how different slices of

the program states change with the executions, and

identify suspicious program elements. To help identify

the suspicious program elements more effectively, a

Postprint of article in Journal of Systems and Software

Administrator
 HKU CS Tech Report TR-2011-01

class of statistical fault-localization techniques has been

proposed. Examples include Tarantula (Jones et al.,

2002; Jones and Harrold, 2005), SOBER (Liu et al.,

2005, 2006), CBI (Liblit et al., 2003, 2005), DES

(Zhang et al., 2008, 2010), CP (Zhang et al., 2009b),

and Ochiai (Abreu et al., 2009).

The basic intuition behind this class of techniques

is that, if certain static or dynamic program features

correlate the root cause (that is, the fault) with the

observed failures, a technique may use a statistical

analysis approach to reveal the correlations. The

strengths of correlations between such program features

and the presence (as well as absence) of the observed

failures can be used as indicators of the degree

to which some (suspicious) program features may

explain the observed failures. Furthermore, since

the selected program features can be mapped back to

certain program elements, various indicators essentially

provide different ways to assess the fault suspiciousness

of various program elements. In DES (Zhang et al.,

2008, 2010), for instance, we use an evaluation

sequence of a predicate (Liblit et al., 2003) as a program

element and its distribution (Liu et al., 2006) of decision

outcomes (Lau and Yu, 2005) as a program feature.

Moreover, using the correlation formula of SOBER

(Liu et al., 2005), DES estimates the strengths of

correlations between these program features and the

observed failures in the dataset. DES further maps

each evaluation sequence to the corresponding program

predicate, and hence the fault-suspiciousness estimate

of each program feature is translated linearly back to

a fault-suspiciousness estimate of the mapped program

predicate.

Many previous fault localization studies propose

their own ways to determine the strengths of the

above correlations. Typically, such techniques compare

the program features obtained from a set of failed

executions with the same program features obtained

from a set of passed (or passed and failed) executions,

and measure the correlation strengths accordingly.

Some use this basic information to derive other

heuristics to locate faults. In other words, in

the core part, a technique typically looks for high

contrasts between the program features obtained from

the former set and those from the latter set (Jones et al.,

2002; Jones and Harrold, 2005; Liu et al., 2005, 2006;

Liblit et al., 2003, 2005; Zhang et al., 2008, 2010;

Masri, 2009). In this contrast step, the model of the

technique assumes that there are plenty of samples

available. Thus, a technique of this class characterizes

each sample set approximately by a pre-supposed

distribution (say, a normal distribution by applying the

law of large numbers). Such a distribution can be

characterized by certain parameters (such as the mean

and standard deviation for a normal distribution). For

example, Tarantula compares the mean percentages of

passed executions and failed executions that go through

a particular statement as building blocks of its ranking

formula to estimate the fault suspiciousness of the

statement. Another example is that DES uses the

distributions of evaluation biases (Liu et al., 2005) of

evaluation sequences, and in its experiment, DES takes

both the means and standard deviations as parameters in

the ranking formula when integrated with SOBER.

The model of an existing technique in this class

thus depends on a number of parameters, including

the selection of sensitive program features to gauge

the presence and absence of observed failures, the

characterization of the distribution of each program

feature, and the maximum number of executions

to conduct the contrast step above. For ease of

presentation, we will collectively refer to such existing

techniques in this class as parametric statistical fault

localization techniques.

Many previous studies, including Jones and Harrold

(2005), Liu et al. (2005), and Zhang et al. (2009b), have

asserted that the dynamic program features related

to statements and predicates can be sensitive to the

presence and absence of observed failures. Moreover,

the maximum number of executions may noticeably

affect the effectiveness (Liu et al., 2006). In the

experiment presented in Zhang et al. (2009a), we have

discovered that the distributions of evaluation biases

for many program predicates are far from normal. In

the subject programs of that experiment, for instance,

the distributions of evaluation biases of almost 45%

of the predicates on or closest to faulty statements,

which are usually referred to as the most fault-relevant

predicates, do not exhibit normal distributions with

adequate confidence even though we may wish to lower

our standard to accept it to be a normal distribution

at a significance level of 50%. Our previous result

thus implies that a technique which uses the parameters

of pre-supposed distributions of program features in

the contrast step to assess the fault suspiciousness of

program subjects can be non-scientific.

1.2. Our work

The above discussion thus poses a series of

interesting research questions. For instance, are some

techniques of this class independent of the distributions

of the selected program features so that they can be

more reliably applied to a larger class of programs in

general and scenarios encountered in the above contrast

2

step in particular? Is such a distribution-independent

technique effective? Is it efficient with respect to the

state-of-the-art debugging-specific techniques, such as

those mentioned above? We will answer these questions

in the present paper.

We have proposed on the preliminary work (Hu et al.,

2008) of this paper that a predicate-based statistical

fault-localization technique can adopt a non-parametric

hypothesis testing method as the procedure to determine

the extent of differences in the contrast step mentioned

above. For ease of presentation, we refer to such a

procedure as the core of the fault-localization tech-

nique, and refer to a predicate-based fault-localization

technique that uses a non-parametric hypothesis testing

method as its core as a non-parametric predicate-based

fault-localization technique.

In particular, in Hu et al. (2008), we use SOBER

(Liu et al., 2005, 2006) as an example fault-localization

technique but replaces SOBER’s core by a standard

non-parametric hypothesis testing method — the

Mann-Whitney test (Mann and Whitney, 1947). The

preliminary results of Hu et al. (2008) show that

this non-parametric version of SOBER is more

effective than the original SOBER in terms of T-score

(Renieris and Reiss, 2003).

In this paper, we extend our preliminary work on

studying whether non-parametric techniques can be

superior to their parametric counterparts and propose

a predicate-based fault-localization framework, which

formulates the use of various hypothesis testing

methods to compare the differences of program spectra

in passed executions and failed executions. In our

framework, we include three categories of hypothesis

testing methods, namely, two non-parametric hypoth-

esis testing methods — the Wilcoxon signed-rank

test (Wilcoxon, 1945) and the Mann-Whitney test

(Mann and Whitney, 1947), two parametric hypothesis

testing methods — the Student’s t-test (Devore, 2008)

and the F-test (Devore, 2008), and two debugging-

specific hypothesis testing methods taken from existing

predicate-based fault-localization techniques — CBI

(Liblit et al., 2003, 2005) and SOBER (Liu et al., 2006).

We use the names “TC1”, “TC2”, and “TC3” to refer

to these three categories of techniques. We apply

the three categories of hypothesis testing methods in

our framework to synthesize six predicate-based fault-

localization techniques, and investigate their efficacy,

scalability, and efficiency issues. Further in the

paper, we will also include an additional category

“TC4” to represent 33 statement-level fault-localization

techniques, for comparisons with the winner among

TC1, TC2, and TC3 on fault-localization effectiveness.

We further introduce our motivation of the above

comparison setting as follows. The Wilcoxon signed-

rank test is frequently cited in pair with the Mann-

Whitney test in statistics. Moreover, the Wilcoxon

signed-rank test is popularly used in statistics as an

alternative to Student’s t-test (Devore, 2008) when

the population cannot be assumed to be normally

distributed (Lomax, 2007), and we therefore include

also Student’s t-test in our investigation. We further note

that F-test (Devore, 2008) is a parametric alternative

when the variances are equal, while Student’s t-

test does not have this restriction (Lomax, 2007).

Hence, we also include F-test in our investigation.

Lastly, we include two representative debugging-

specific techniques, namely, CBI and SOBER, so that

we can determine how well the standard parametric and

non-parametric fault-localization techniques perform.

A set of 33 statement-level techniques have first been

summarized in Naish et al. (2011). We choose to

compare with them because of inadequate previous

research reported in comparisons between predicate-

level fault-localization techniques and statement-level

fault-localization techniques.

We first set up a controlled experiment to evaluate

and compare the six techniques in TC1, TC2, and

TC3 in multiple dimensions, including effectiveness,

scalability, and efficiency. Following previous

studies including SOBER (Liu et al., 2006) and DES

(Zhang et al., 2009a), we use the Siemens suite as

subject programs. Originally, we planned to include

more subjects. However, because we have included

six techniques and target to evaluate these techniques

in much wider aspects than most previous experiments,

we estimate that our experiment would require much

time and effort to conduct and the resulting data

would be hard to analyze. To balance between our

resource constraints and the scale of the experiment,

we finally settle with the use of the Siemens suite as

subjects. After that, we use a median-sized program

space that has a set of real-life faults as an additional

program subject to evaluate the effectiveness of the

winner techniques among TC1, TC2, and TC3 with 33

statement-level fault-localization techniques (TC4). We

include many TC4 techniques in this case study because

latest research in statistical fault localization almost

exclusively uses statement-level techniques. However,

since we include so many TC4 techniques in the case

study, we are unable to compare all the techniques

in terms of scalability, efficiency, or other practical

scenarios owing to effort and resource constraints.

We have four conclusions from the experimental

results: (i) A predicate-based fault-localization tech-

3

nique using a non-parametric core is more effective

than one that uses a parametric or debugging-specific

core. (ii) When increasing the maximum number

of executions in fault-localization techniques, the

advantage of using a non-parametric core becomes more

significant. (iii) A predicate-based fault-localization

technique using a non-parametric core is more efficient

than one that uses a debugging-specific core. (iv) A

predicate-based fault-localization technique using a

non-parametric core is more effective than existing

statement-level fault-localization techniques.

The main contribution of this paper is fourfold. First,

it proposes a framework for statistical predicate-based

fault-localization techniques, which uses hypothesis

testing as the core concept. This is the first time that

such a framework is proposed. It also differs from our

previous work. Second, it proposes to characterize a

predicate-based such technique (under our framework)

based on whether their hypothesis testing methods

are parametric, non-parametric, or debugging-specific.

Our empirical study shows that the techniques among

various categories differ very much from one another

in efficacy and scalability. Third, it reports the first

empirical study to validate whether a predicate-based

fault-localization technique using a non-parametric core

is more effective and scalable than a technique using a

parametric or debugging-specific core. The empirical

results show that the use of a non-parametric core

for predicate-based statistical fault localization can be

promising and outperforms the latter two kinds of cores

in terms of effectiveness. In addition, if we deem

existing debugging-specific methods to be efficient, the

use of a non-parametric core is found to be comparable

in efficiency. Fourth, it reports the first case study

to compare the effectiveness of predicate-based fault-

localization technique using a non-parametric core

with statement-level fault-localization techniques. The

empirical results interestingly show that the use of

a non-parametric core for predicate-based statistical

fault localization can be promising and outperforms the

evaluated statement-level fault-localization techniques.

The remainder of the paper is organized as follows:

We first review related work in Section 2. Then, in

Section 3, we discuss our approach and formally present

the research questions to be studied. Next, we report

our empirical evaluation in Section 4, followed by a

conclusion in Section 5.

2. Related work

In this section, we review related work on fault

localization research.

2.1. Program slicing

Program slicing (Weiser, 1984) is a code-based

technique widely used in program debugging research

(Tip, 1995). A slice refers to a set of statements

in a program that may affect the computed values

at some location, such as particular occurrences

of a variable. Slicing techniques can be static

(Weiser, 1984) or dynamic (Agrawal and Horgan, 1990;

Korel and Laski, 1988). Statistical fault localization

provides assessments of individual program features,

which may annotate the slices to make debugging more

effective. Ottenstein and Ottenstein (1984) develop

a program dependence graph (PDG) to reduce the

computation of static slices of a sequential program

to a reachability problem in PDG. Horwitz et al.

(1990) extend the technique to inter-procedural slicing.

However, the typical size of a static slice for a

program can be one-third of the program (Binkley et al.,

2007). It may not be useful to present such a

large piece of code for developers to look for faulty

statements. To address this problem, researchers

study dynamic analysis techniques to reduce the

size of a slice. Chen and Cheung. (1993) propose

dynamic dicing and the related strategies to construct

dynamic dices. Gupta et al. (2005) propose to use

forward dynamic slicing to narrow down slices.

They further integrate forward dynamic slicing with

backward one (Zhang et al., 2006) to prune irrelevant

statements. Slicing techniques can also be integrated

with statistical fault localization so that only those

program statements that exist in a set of slices will be

examined to locate faults. The main difference between

our non-parametric predicate-based fault-localization

techniques and program slicing techniques is that the

former is based on coverage information of program

executions while the latter may need additional program

execution context information about any possible

statement.

2.2. Predicate-based statistical fault-localization tech-

niques

Another approach to debugging is to use the

statistics collected from test case executions.

Collofello and Cousins (1987) pioneer the use of

test cases for fault localization. Earlier research

(Agrawal et al., 1991; Korel, 1988; Korel and Laski,

1988), however, only utilizes failed test cases.

Later research such as Jones et al. (2002) evaluates

this approach as ineffective. Subsequent research

such as Liu et al. (2005) switches to use both the

passed and failed test cases in localizing faults.

4

Harrold et al. (2000) evaluate nine kinds of program

features, including path count, data-dependency count,

and execution trace. Among them, the execution

trace spectrum is most widely used in debugging.

Their study surprisingly shows that the use of data-

dependency count is less effective than many other

program features. A later study (Yu et al., 2008) shows,

however, that by applying a proper contrast step, the use

of data-dependency counts can be more effective than

that of control-dependency counts. CBI (Liblit et al.,

2003, 2005) and SOBER (Liu et al., 2005, 2006) are

two representative techniques that relate to control-

dependency information. More specifically, they make

use of the execution spectra information of program

predicates set in branch statements and so on, and

hence we call them “predicate-based statistical fault-

localization techniques”. CBI compares the probability

that a program fails when a predicate is ever evaluated

to be true with the probability that the program fails

when the predicate is ever evaluated. The technique

uses this difference as the primary program feature to

identify the positions of the predicates related to faults.

SOBER further proposes to use the actual probability

that a predicate is evaluated to be true, which they call

the evaluation bias, as the program feature. It contrasts

the evaluation biases of each predicate in passed and

failed executions to locate predicates that are related

to faults. After locating suspicious predicates, these

methods recommend programmers to search for faults

around the located suspicious predicates in the program.

Based on the proposed framework of predicate-

based fault-localization techniques in this paper, both

parametric/non-parametric hypothesis testing methods

and the debugging-specific hypothesis testing methods

in CBI and SOBER can be described. The

main difference between parametric/non-parametric

hypothesis testing methods and debugging-specific

hypothesis testing methods is that the former uses

mature standard mathematical methods while the

latter uses self-proposed methods that are specifically

designed for fault localization.

2.3. Statement-level statistical fault-localization tech-

niques

Rather than locating suspicious predicates, some

techniques directly assess the suspiciousness of

statements and target at locating faulty statements.

They are so called “statement-level fault-localization

techniques”. Jones et al. (2002) and Jones and Harrold

(2005) propose Tarantula to rank every statement

according to its fault suspiciousness. As mentioned

in Section 1, Tarantula uses the mean values of the

execution count statistics as building blocks. It then

uses these building blocks to compose a formula

to assess fault suspiciousness. Baudry et al. (2006)

observe that some statements are always executed by

the same set of executions. They use an evolutionary

approach to select a subset of the given execution set,

aiming to achieve better diversity in terms of dynamic

basic blocks. Applying the algorithm developed in

Jones et al. (2002) to rank statements, Baudry et al.

(2006) empirically show that their approaches require

fewer test cases to achieve the same fault-localization

effectiveness. Abreu et al. (2009) further show

empirically that a technique can achieve almost the

same fault-localization accuracy by using a few failed

executions. Several more advanced approaches use

statistical measures for behaviors related to program

failures. Jones et al. (2007) further extend Tarantula

so that it can be applied when multiple developers are

available to debug the program independently. Our

present work provides another dimension to optimize

the use of test executions. Observing that individual

executions of the same statements may have different

contributions to indicate faulty statements when they

are used together, Wong et al. (2007) propose to use

a utility function to calibrate the contribution of each

passed execution when computing the fault relevance

of executed statements. Their techniques are shown

empirically to outperform Tarantula. They further

define a series of heuristics based on different marginal

contributions of additional failed executions and passed

executions (Wong et al., 2010).

Naish et al. (2011) have given a summary of the

following statement-level fault-localization techniques:

Tarantula (Jones et al., 2002) has been introduced in

the last paragraph. Anderberg (1973), Sørensen-

Dice (Duarte et al., 1999), Dice (1945), Russell &

Rao (1940), Simple Matching (da Silva Meyer et al.,

2004), Rogers & Tanimoto (1960), Ochiai (1957),

and Ochiai2 (da Silva Meyer et al., 2004) are originally

used for classifications in the botany domain. Overlap

(Krause, 1973) is a general version of Ochiai (1957).

Others include Jaccard (1901) (originally used in the

botany domain and later used in data clustering),

Kulczynski1 and Kulczynski2 (Lourenc̨o et al., 2004),

(which are used in data clustering), Hamann and

Sokal (Lourenc̨o et al., 2004), M1 and M2 (Everitt,

1978) (where the names M1 and M2 are pro-

posed by (Naish et al., 2011)), Goodman & Kruskal

(1954), Hamming (1950) (originally used for error

detection codes), Euclid (Krause, 1973), Zoltar

(González Sánchez, 2007), Ample (Dallmeier et al.,

2005) (originally used for fault localization; following

5

(Naish et al., 2011), the Ample technique used in our

paper is taken from their modified version (Abreu et al.,

2007)), Wong1, Wong2, and Wong3 (Wong et al.,

2007) (originally used for fault localization), Geometric

Mean (Maxwell and Pilliner, 1968), Harmonic Mean

and Arithmetic Mean (Rogot and Goldberg, 1966),

Cohen (1960), Scott (1955), Fleiss (1965), and Rogot1

and Rogot2 (originally used as biometrics metrics).

Interested readers may follow Table 1 to obtain the

exact formulas. A similarity among all these techniques

is that they share the same input format and generate

outputs of the same format. An essential difference

among them lies in the ranking formulas they use to

assess the suspiciousness of a statement related to faults.

The study on whether their models have any non-

parametric property is outside the scope of this paper.

In this paper, we design non-parametric predicate-

based fault-localization techniques and compare them

empirically with these statement-level techniques

to gauge whether predicate-based techniques may

have comparable effectiveness with statement-level

techniques in terms of fault localization.

2.4. Other fault-localization techniques

Renieris and Reiss (2003) observe that it may be

more useful to compare failed executions with “similar”

ones, where the “similarity” of a pair of execution

is measured by the edit distance between the two

execution sequences. Their approach, however, does

not use statistical methods to pinpoint faulty positions

from the results of a pair of similar executions.

Apart from using statistics, some proposals adopt an

iterative elimination approach. For instance, delta

debugging simplifies the failed test cases and yet

preserves the failures (Zeller and Hildebrandt, 2002),

producing cause-effect chains (Zeller, 2002) and

linking them to suspicious statements (Cleve and Zeller,

2005). Other heuristics have also been studied,

such as the use of Jaccard distance (Abreu et al.,

2009). Debroy and Wong (2009) and Wong et al.

(2008) propose a crosstab method to compute the fault

suspiciousness of statements and focus on programs

having multiple faults.

Arumuga Nainar et al. (2007) further extend CBI

to address compound Boolean expressions. They

show that the accuracy of CBI changes significantly

when compound Boolean expressions are involved.

Zhang et al. (2008) conduct an empirical study to

show that the short-circuit rules in evaluating Boolean

expressions in predicates affect the effectiveness of

fault-localization techniques, and that the results of

CBI can be improved using short-circuit information

in the form of evaluation sequences. Chilimbi et al.

(2009) propose Holmes, which uses fragments of

paths rather than individual predicates to locate

faults iteratively. Our previous paper (Zhang et al.,

2009a) finds empirically that the evaluation biases of

many predicates are not distributed normally. Our

preliminary work (Hu et al., 2008) of the present paper

proposes to use the Mann-Whitney non-parametric

hypothesis testing method to replace the debugging-

specific hypothesis testing method in SOBER, and

conducts experiments to compare its effectiveness with

SOBER and CBI. The empirical results show that such

a technique is promising. In this paper, we propose a

generic framework of predicate-based fault-localization

techniques, apply many non-parametric, parametric, or

debugging-specific hypothesis testing methods to it to

generate predicate-based fault-localization techniques,

and empirically evaluate them. Our framework is

general, and its application is not limited to the

techniques presented in this paper.

Based on the suspiciousness estimation obtained

from a contrast step, CP (Zhang et al., 2009b) constructs

a probabilistic control flow graph and a propagation

model for the faulty program with a view to capturing

the propagation of infected and abstract states extracted

from the given set of program executions to locate

faults. Besides, a few studies (Hao et al., 2010, 2006;

Jiang et al., 2009) focus on optimizing the sizes of input

test data to facilitate effective fault localization. For

example, Jiang et al. (2009) investigate the effect of test

case prioritization techniques on effectiveness of fault-

localization techniques. Many other methodologies,

such as training a neural network (Wong and Qi, 2009)

and integrating with model checking (Griesmayer et al.,

2010), have also been proposed to improve the

effectiveness of fault localization.

3. Our study

In this section, we first review the basic terminology

used in our study and then present a model to assess the

fault relevance of predicates to facilitate the localization

of faults, before posing the research questions to be

addressed by this paper.

3.1. Preliminaries

Here, we revisit the notion of program predi-

cates (Liblit et al., 2003, 2005) and evaluation biases

(Liu et al., 2005, 2006). In predicate-based statistical

fault localization, predicates are the program element in

focus. Liblit et al. (2003, 2005) address three types of

6

Table 1: The 33 statement-level fault-localization techniques listed in Naish et al. (2011).

Name Formula

Jaccard (1901) aef/(aef +anf +aep)

Anderberg (1973) aef/(aef +2(anf +aep))

Sørensen-Dice (Duarte et al., 1999) aef/(aef +anf +aep)

Dice (1945) 2aef/(aef +anf +aep)

Kulczynski1 (Lourenc̨o et al., 2004) aef/(anf +aep)

Kulczynski2 (Lourenc̨o et al., 2004) 1
2

(

aef

aef+anf
+

aef

aef+aep

)

Russell & Rao (1940) aef/(aef +anf +aep +anp)

Hamann (Lourenc̨o et al., 2004) (aef +anp −anf −aep)/(aef +anf +aep +anp)

Simple Matching (da Silva Meyer et al., 2004) (aef +anp)/(aef +anf +aep +anp)

Sokal (Lourenc̨o et al., 2004) 2(aef +anp)/(2aef +2anp +anf +aep)

M1 (Everitt, 1978) (aef +anp)/(anf +aep)

M2 (Everitt, 1978) aef/(aef +anp +2anf +2aep)

Rogers and Tanimoto (1960) (aef +anp)/(aef +anf +2anf +2aep)

Goodman & Kruskal (1954) (2aef −anf −aep)/(2aef +anf +aep)

Hamming (1950) aef +anp

Euclid (Krause, 1973)
√

aef +anp

Ochiai (1957)
aef

sqrt(aef+anf)(aef+aep)

Overlap (Krause, 1973) aef/min(aef,anf,aep)

Tarantula (Jones et al., 2002)
aef/(aef+anf)

aef/(aef+anf)+aep/(aep+anp)

Zoltar (González Sánchez, 2007)
aef

aef+anf+aep+
10000anfaep

aef

Ample (Dallmeier et al., 2005) | aef

aef+anf
− aep

aep+anp
|

Wong1 (Wong et al., 2007) aef

Wong2 (Wong et al., 2007) aef −aep

Wong3 (Wong et al., 2007) aef −







aep aep ≤ 2

2+0.1(aep −2) 2 ≤ aep ≤ 10

2.8+0.001(aep −10) aep ≥ 10

Ochiai2 (da Silva Meyer et al., 2004)
aefanp√

(aef+aep)(anp+anf)(aef+anf)(aep+anp)

Geometric Mean (Maxwell and Pilliner, 1968)
aefanp−anfaep√

(aef+aep)(anp+anf)(aef+anf)(aep+anp)

Harmonic Mean (Rogot and Goldberg, 1966)
(aefanp−anfaep)((aef+aep)(anp+anf)+(aef+anf)(aep+anp))

(aef+aep)(anp+anf)(aef+anf)(aep+anp)

Arithmetic Mean (Rogot and Goldberg, 1966)
2aefanp−2anfaep

(aef+aep)(anp+anf)+(aef+anf)(aep+anp)

Cohen (1960)
2aefanp−2anfaep

(aef+aep)(anp+anf)+(aef+anf)(aep+anp)

Scott (1955)
4aefanp−4anfaep−(anf−aep)

2

(2aef+anf+aep)(2anp+anf+aep)

Fleiss (1965)
4aefanp−4anfaep−(anf−aep)

2

(2aef+anf+aep)+(2anp+anf+aep)

Rogot1 (Rogot and Goldberg, 1966) 1
2

(

aef

2aef+anf+aep
+

anp

2anp+anf+aep

)

Rogot2 (Rogot and Goldberg, 1966) 1
4

(

aef

aef+aep
+

aef

aef+anf
+

anp

anp+aep
+

anp

anp+anf

)

7

program locations and the associated set of predicates

as follows:

1. Branches: At each decision statement (such as an

“if” or “while” statement), CBI tracks, via a pair of

program predicates, whether the conditional “true”

and “false” branches have been taken. SOBER

(Liu et al., 2006) further collects the execution

frequency of the branches.

2. Returns: At each return statement (of a function

module), six predicates are tracked to find whether

the returned value r satisfies r < 0, r <= 0, r > 0,

r >= 0, r == 0, or r! = 0. Both CBI and SOBER

collect evaluations of these predicates.

3. Scalar-pairs: To monitor the relationship of a

variable to another variable or to a constant in

each assignment statement, six predicates (similar

to those for return statements above) are tracked

by CBI. For example, for an assignment statement

x = y, the following six predicates are tracked:

x > y, x >= y, x < y, x <= y, x == y, and x! = y.

SOBER, however, experimentally verifies and con-

cludes that not tracking these predicates will not

degrade the quality of fault localization when using the

Siemens suite. We will exclude scalar-pairs from our

experiment with a view to a fair comparison.

Given a predicate, a technique may sample

the outcomes of its component conditions at each

execution. One may further use the differences among

the sampled outcomes to facilitate fault localization.

Liu et al. (2005) define the concept of evaluation bias

to support the description of such differences.

Definition 1 (Evaluation bias (Liu et al., 2005)).

Let nt be the number of times that a predicate P has

been evaluated to be “true” in an execution, and n f

the number of times that it has been evaluated to be

“false” in the same execution. π(P) = nt
nt+n f

is called

the evaluation bias of predicate P in this particular

execution.

3.2. Predicate-based statistical fault-localization

framework

First, we present the conceptual model behind our

statistical fault-localization framework. In this way,

the framework can be initialized by using different

hypothesis testing methods to synthesize different

predicate-based fault-localization techniques.

We first model a faulty program by a set of predicates

{P1, P2, . . . , Pm}, and use Tp and Tf to denote the set

of successful test cases and the set of failed test cases,

respectively. We use E i(r) to denote the evaluation bias

of predicate pi in a program execution over test case

r. Based on this information, our target is to assess

the fault suspiciousness of predicate Pi being related

to fault by analyzing E i(r). Once we obtain these

fault-suspiciousness values for different predicates,

debuggers may use such information to assist them to

locate faults. Different executions may give different

evaluation bias values for the same predicate. Hence,

we use a random variable X i to represent the evaluation

bias E i(r), and use f (X i|Tp) to represent the probability

density function of X i for the set Tp of successful test

cases and f (X i|Tf) to represent that for the set Tf of

failed test cases.

Many previous studies (Hu et al., 2008; Liblit et al.,

2003, 2005; Liu et al., 2005, 2006; Zhang et al., 2008,

2009a, 2010) observe that the stronger the correlation

between a predicate Pi and a fault, the larger will be

the difference between f (X i|Tp) and f (X i|Tf). Our

methodology will, therefore, use the difference between

f (X i|Tp) and f (X i|Tf) to assess the suspiciousness of

predicate Pi, expressed as follows:

R(Pi) = Diff
(

f (X i|Tp), f (X i|Tf)
)

We then review our predicate-based statistical fault-

localization model. Following our previous work

(Hu et al., 2008; Zhang et al., 2009a), we measure

the difference between the two probability density

functions f (X i|Tp) and f (X i|Tf) by conducting a

hypothesis testing method to test the following null

hypothesis:

H0 The evaluation biases of predicate Pi for the set Tp

of successful test cases and those for the set Tf of

failed test cases come from the same population.

The p-value of a hypothesis testing method is the

probability of that the population is at least as extreme

as the observed result. Thus,

Diff
(

f (X i|Tp), f (X i|Tf)
)

= p-value of hypothesisH0

(1)

For the program feature spectra in failed executions

and passed executions, there is unfortunately no

scientific support for the mapping between the

similarity of their distributions and the magnitudes

of the p-values for the hypothesis testing of their

distributions. However, the smaller the p-value, the less

confident are we that the two sets of samples come from

the same population. We choose to use our confidence

on whether the two sets of sample come from the same

8

population as a measurement of fault suspiciousness.

A fault-localization technique may sort the predicates

in ascending order of p-values. Such an ordered

predicate list is helpful for developers to locate faults

in programs (Liblit et al., 2003, 2005; Liu et al., 2005,

2006; Renieris and Reiss, 2003; Zhang et al., 2008; ?).

3.3. Research questions

To measure the difference between two sample

sets H and H ′, parametric hypothesis testing can be

meaningfully applied only if the following assumptions

(Lowry, 2006) hold:

N1: The two sample sets are randomly and indepen-

dently drawn from the source population.

N2: The measurements in both sample sets have the

same interval scales.

N3: The source population(s) can reasonably be

assumed to have a known distribution.

When any of these three assumptions does not hold, a

non-parametric testing method should be used instead.

As shown by our previous work in Zhang et al. (2009a),

the source populations of evaluation bias of predicates

are indeed far from being normally distributed (as often

implicitly assumed). The property of non-parametric

hypothesis testing also frees us from the need to

use artificial configuration parameters and allows a

technique to use fewer samples than their parametric

counterpart to assess the difference.

We now present the details of our framework

to facilitate further elucidation. First, we classify

statistical fault-localization techniques into several

categories, as shown in Table 2. The first category TC1

refers to predicate-based techniques that use debugging-

specific parametric testing methods (such as those used

in CBI and SOBER). The second category TC2 refers to

predicate-based techniques that use standard parametric

hypothesis testing methods, such as F-test and Student’s

t-test (or t-test for short). The third category TC3

refers to predicate-based techniques that use standard

non-parametric hypothesis testing methods, such as the

Mann-Whitney test and Wilcoxon Signed-rank test. The

fourth category TC4 refers to statement-level techniques

such as Tarantula and Jaccard.

We design the following research questions to find the

properties of TC1, TC2, and TC3, compare the effects

of using them in our framework, and compare with TC4.

Q1: Compared with TC1, is TC2 more effective?

Q2: Compared with TC2, is TC3 more effective?

Q3: Compared with TC1, is TC3 more effective?

Research question Q1 essentially asks, when

parametric testing methods are used, whether a standard

one (TC2) is better than a debugging-specific one

(TC1). Research question Q2 asks, when standard

statistical testing methods are used, is a non-parametric

one (TC3) better than a parametric one (TC2)?

Research question Q3 is similarly posed to directly

compare TC3 techniques with TC1.

We further study the research question Q4 to compare

the effectiveness of the winner among TC1, TC2,

and TC3 with existing statement-level fault-localization

techniques.

Q4: How does the winner among TC1, TC2, and TC3

compare with TC4 in terms of effectiveness?

Next, we study the scalability issue. There seems

to be a common belief that, with increasingly more

data, the population can be more closely approximated

by a normal distribution (Liu et al., 2005), and hence

the adoption of parametric tests is better justified.

Should this be the case, according to statistics theories,

parametric tests (if applicable) will provide more

accurate results than non-parametric ones. Hence, we

are also interested in the effect of a larger number of

test cases on the relative effectiveness of the techniques.

We state this as research question Q5 below. Finally, we

study the efficiency of the three classes of techniques, as

stated in research question Q6.

Q5: When the number of test cases increases, are TC2

and TC3 techniques more effective than TC1 in

localizing faults?

Q6: Are TC1, TC2, and TC3 techniques comparable in

efficiency?

4. Experiment

This experiment consists of three parts: (a) An

effectiveness comparison among TC1, TC2, and

TC3. This part is to study which of parametric,

non-parametric, and debugging-specific hypothesis

testing methods gives predicate-based fault-localization

techniques the best effectiveness in locating faults in

programs. (b) An effectiveness comparison between

TC4 and the winner among TC1, TC2, and TC3.

This part is to study whether a good predicate-based

fault-localization technique can be as effective as or

9

Table 2: Classification of statistical fault-localization techniques.

Type (predicate-based)

Category Parametric or Standard or Example Tests (References)

Non-Parametric Debugging-Specific

TC1 parametric* debugging-specific tests used in CBI (Liblit et al., 2003, 2005)

and SOBER (Liu et al., 2005, 2006)

TC2 parametric standard F-test (Devore, 2008) and

t-test (Devore, 2008)

TC3 non-parametric standard Mann-Whitney test (Mann and Whitney, 1947) and

Wilcoxon Signed-rank test (Wilcoxon, 1945)

Category Type Examples (References)

TC4 Statement-level Tarantula (Jones et al., 2002)

and Jaccard (1901)

*: It is not clear whether the tests used in CBI and SOBER should be categorized as parametric. However, we tend to consider

the tests in CBI and SOBER as parametric because they use parametric numerical methods without knowing the distribution of the

execution spectra of the predicates. For example,

i) CBI uses harmonic means in its computation.

ii) CBI approximates the frequency of a predicate being exercised in a program run in terms of a 0/1 status (depending on whether

it has been exercised in a program run).

iii) SOBER sets the evaluation bias of a predicate to a theoretical mean value 0.5 (by taking the mean value of 0 and 1) if it is never

evaluated.

iv) SOBER assumes a normal distribution in one of its computation steps.

more effective than statement-level fault-localization

techniques in locating faults in programs. (c) Scalability

and efficiency analysis of TC1, TC2, and TC3. This

part is to investigate the scalability and efficiency issues

of predicate-based fault-localization techniques. We do

not include TC4 techniques in this part because previous

work has studied these issues on TC4 and we are limited

by our resources to repeat them.

4.1. Subject programs

Our experiment uses the seven programs in

the Siemens suite, namely, tcas, tot_info, replace,

print_tokens, print_tokens2, schedule, and schedule2,

as well as one real-life program space, all downloaded

from the Software-artifact Infrastructure Repository

(SIR) (Do et al., 2005).

Each subject program in the Siemens suite has 7–41

faulty versions, each version being hand-seeded with

one fault. Table 3 shows the descriptive statistics of

each subject program, including the number of faulty

versions, number of executable lines of code (LOC),

number of test cases in the pool, and percentage of

failed test cases among all test cases. The table also

shows the minimum, maximum, and median perceived

failure rates of the faulty versions of each subject

program over the test pool, together with their fault

types and code excerpts. For example, tcas has 41

faulty versions, each version consisting of 133–137

LOCs. For this program, 1608 test cases are available,

of which 2.4% are failed test cases. Faulty version v12,

which contains a “wrong logic or relational operators”

fault, has a minimum perceived failure rate of (0.001). 1

In other words, among all the faults in the 41 faulty

versions, the one in version v12 has the minimum

failure rate of 0.001. According to orthogonal defect

classification (Durães and Madeira, 2006), this fault

occurs frequently in real-life programs. It belongs to

the Check class (see Table 4), which constitutes 36.1%

of occurrences among all classes of faults in the subject

programs. The fault can further be classified under the

fault type C2 (see Table 4), which represents 52.9% of

all fault occurrences within the Check class of faults in

the Siemens suite.

The space program is an interpreter for an array

definition language (ADL). It reads an ADL file,

parses it, checks the consistency according to ADL

grammar, and outputs a list of array elements (or error

messages). According to the original version in the

SIR repository (Do et al., 2005), the program consists of

1 A failing rate is defined as the number of failed test cases in a test

pool over the total number of test cases in the same pool.

10

Table 3: Descriptive statistics of subject programs.

Programs
No. of Executable

Faulty Versions

No. of

LOC

No. of

Test Cases

Percentage of

Failed Test Cases

print_tokens & print_tokens2 17 341–354 4115 - 4130 1.7%, 5.4%

minimum failure rate = 0.001 print_tokens v1 /* Wrong branching around statements */

 /* case 16 : ch=get_char(…); case 25 : case 32 : token_ptr->token_id=special(next_st); */

224: case 16 : case 32 : ch=get_char(…); case 25 : token_ptr->token_id=special(next_st);

maximum failure rate = 0.125 print_tokens2 v6 /* Wrong logic or relational operands */

358: if(isdigit(*(str+i+1))) /* i+1 should be i */

median failure rate = 0.042 print_tokens2 v10 /* Wrong logic or relational operands */

380: { while (*(str /* str should be str+i */)!='\0')

replace 32 508–515 5542 2.0%

minimum failure rate = 0.0001 replace v15 /* Wrong logic or relational operands */

241: result = i + 1; /* i+1 should be i */

maximum failure rate = 0.035 replace v19 /* Missing assignment */

514: /* result = */ getline(line, MAXSTR, &result);

median failure rate = 0.006 replace v14 /* Missing OR-term/AND-term */

370: if ((lin[*i] != NEWLINE) /* && (!locate(lin[*i], pat, j+1)) */)

schedule & schedule2 19 261–294 2650 - 2710 2.4%, 3.2%

minimum failure rate = 0.001 schedule2 v5 /* Missing the whole if statement */

111: /* if(prio < 1) return(BADPRIO); */

maximum failure rate = 0.116 schedule v7 /* Missing the whole if statement */

210: /* if(ratio == 1.0) n--; */

median failure rate = 0.011 schedule v4 /* Wrong logic or relational operands */

207: if (count > 1) /* 1 should be 0 */ {

tcas 41 133–137 1608 2.4%

minimum failure rate = 0.001 tcas v12 /* Wrong logic or relational operators */

118: enabled = High_Confidence || /* || should be && */ (Own_Tracked_Alt_Rate <= OLEV)

&& (Cur_Vertical_Sep > MAXALTDIFF);

maximum failure rate = 0.182 tcas v27 /* Missing OR-term/AND-term */

118: enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) /* &&

(Cur_Vertical_Sep > MAXALTDIFF) */;

median failure rate = 0.021 tcas v10 /* Wrong logic or relational operators */

105: return (Own_Tracked_Alt <= /* <= should be < */ Other_Tracked_Alt);

tot_info 23 272–274 1052 5.6%

minimum failure rate = 0.001 tot_info v23 /* Wrong logic or relational operands */

215: for (n = 0 /* 0 should be 1 */; n <= ITMAX; ++n)

maximum failure rate = 0.087 tot_info v7 /* Wrong logic or relational operators */

378: if (pi >= /* >= should be > */ 0.0)

median failure rate = 0.017 tot_info v2 /* Wrong logic or relational operators */

85: if (scanf(" %ld", &x(i,j)) == /* == should be != */ 0)

space 28 6218 13496 14.8%

minimum failure rate = 0.0005 space v22 /* Missing “if” statement */

7368: /* a block may cause infinite loop */

maximum failure rate = 0.937 space v29 /* Wrong assignment */

4879: strcpy(Keywords[84], "P1_VAL"); /* should be P1_ET

median failure rate = 0.052 space v14 /* Missing assignment */

8805: /*error = */ (GetKeyword(Keywords[88], curr_ptr));

11

6218 executable lines of code. It is attached with a test

suite containing 13496 test cases and 38 faulty versions,

each of which contains a real fault. The explanations for

the corresponding data section in Table 3 is similar to

those of the last paragraph.

Table 4 shows the frequencies of various classes

of faults for these subject programs according to the

orthogonal defect classification (Durães and Madeira,

2006).

4.2. Alternative hypothesis testing methods for TC1,

TC2, and TC3 techniques

Six statistical testing methods are studied in this

paper, two from each category, shown under “Example

Tests” in Table 2. They are:

(TC1) Methods used in CBI (Liblit et al., 2003) and

SOBER (Liu et al., 2006), which will simply be

referred to as CBI and SOBER, respectively,

(TC2) F-test and Student’s t-test (which will simply be

called t-test), and

(TC3) Mann-Whitney test and Wilcoxon signed-rank test

(Lowry, 2006), which will be abbreviated as

Mann-Whitney and Wilcoxon, respectively.

The procedures of CBI and SOBER have been briefly

discussed in Section 1 and are not repeated here. Details

can be found in Liblit et al. (2003, 2005) and Liu et al.

(2005, 2006).

Mann-Whitney (Lomax, 2007) is a non-parametric

testing method, widely used to compare the medians

of two non-normal distributions. In our preliminary

experiment in Hu et al. (2008), we employ Mann-

Whitney to conduct non-parametric statistical fault

localization. Its p-value, which measures the probability

that the evaluation bias for all passed executions and

those for all failed executions for a given predicate come

from the same population, is used to indicate the extent

of fault suspiciousness of a program feature, and hence

is used to sort the list of predicates (see equation (1)).

Given two samples, F-test and t-test are statistical

tests commonly used to decide whether the means and

dispersions, respectively, of the distributions are equal

(Lowry, 2006). Again, their p-values are used to sort

the predicate lists in the experiment.

4.3. Effectiveness metric for TC1, TC2, TC3, and TC4

techniques

The metric T-score has been first proposed in

Renieris and Reiss (2003) and then used in other

studies (Cleve and Zeller, 2005; Liu et al., 2005, 2006;

Renieris and Reiss, 2003) to evaluate the effectiveness

of predicate-based fault-localization techniques. The

idea is that debugging can start from some highly

prioritized predicate statements, search the whole space

of statements in a breadth-first manner, and then

measure the result of effectiveness by the percentage

of statements examined before reaching any faulty

statement inclusively. Several previous studies, such as

Cleve and Zeller (2005) and Renieris and Reiss (2003),

have reported the limitations of T-score. One such

limitation is that its rationale heavily relies on an

assumption in the debugging process. In reality, it is

not easy to take for granted the behavior of “an ideal

programmer who is able to distinguish defects from

non-defects at each location, and can do so at the same

cost for each location considered” (Cleve and Zeller,

2005). As such, we adopt another metric in this paper

— the P-score (Zhang et al., 2009a) — which makes no

such assumption, and is more intrinsic to a given list

of predicates generated by a fault-localization technique

than T-score.

P-score uses the appearance position of the most

fault-relevant predicate in the generated predicate

list as the effectiveness of that fault-localization

technique. It is similar to the concepts of Expense

(Jones and Harrold, 2005; Zhang et al., 2009b) (which

has been popularly used to evaluate statement-

level fault-localization techniques) and F-measure

(Chen and Merkel, 2008) (which measures the number

of test cases to reveal the first failure in a faulty

program). P-score is given by

P-score =
∑

m
i=1 1-based index of P̃i in L

m×number of predicates in L
×100%

where m is the number of faults in the program, a 1-

based index is an index that starts from 1 (rather than

0), and P̃i is the most fault-relevant predicate, that is,

the predicate closest to the position i of the fault in the

program (in terms of the number of non-empty non-

comment lines). Let us illustrate P-score through an

example. Suppose (i) the program has only one fault,

(ii) there are 10 predicates in a program, prioritized as

〈P2, P3, . . .〉, and (iii) the most fault-relevant predicate

is P3 (that is, P̃ = P3). One would examine the first

two predicates out of the total of ten before locating

the most fault-relevant predicate, and hence P-score

= 2/10×100% = 20%. The smaller the value, the more

effective will be the fault-localization technique.

P-score is used in all parts of our experiment to

evaluate the effectiveness of TC1, TC2, and TC3,

except when comparing the effectiveness of TC3 and

TC4 techniques as discussed in Section 4.6. In

12

Table 4: Important fault types in subject programs.

Class Fault Type (Durães and Madeira, 2006)

Assignment (43.9%)

A1: Missing assignment (9.6%)

A2: Wrong/extraneous assignment (37.0%)

A3: Wrong assigned variable (46.7%)

A4: Wrong data types or conversion (6.4%)

Check (36.1%)

C1: Missing OR-term/AND-term (45.0%)

C2: Wrong logic or relational operators (52.9%)

C3: Missing branching around statements (1.9%)

Interface (4.2%)
I1: Wrong return expression (16.6%)

I2: Missing return (83.3%)

Algorithm (15.6%)

G1: Missing the whole “if” statement (68.1%)

G2: Missing function call (13.6%)

G3: Wrong function call (18.1%)

that section, we need to compare the effectiveness

of both predicate-based techniques and statement-level

techniques together. Predicate-based techniques are

based on the execution spectra of predicates, and

predicates are set on three kinds of statements (namely,

branch statements, return statements, and assignment

statements) according to the settings of CBI or SOBER.

On the other hand, statement-level techniques are based

on the execution spectra of all statements. Since the

number of statements are greater than that of predicates

in most cases, it is not fair to compare them directly.

In the comparative experiment discussed in Section 4.6,

we collect the execution spectra of predicates on

branch statements only, and adapt TC3 (predicate-

based fault-localization) techniques to work solely on

branch predicates. Further, we collect the execution

spectra of branch statements to drive TC4 (statement-

level fault-localization) techniques. Thus, the inputs

to predicate-based and statement-level techniques are

approximately equal in scale. After that, we adjust

P-score to search for the “most fault-relevant branch

statement P̃i”, and use this revised version of P-score to

evaluate both predicate-based techniques and statement-

level techniques.

4.4. Experimental setup

Recall that there are a total of 132 faulty versions

for all the seven Siemens programs and a total of 38

faulty versions for the space program. Two of the

132 faulty Siemens versions (namely, version v27 of

the replace program and version v9 of the schedule2

program) come with no failed test cases, as reported in

Liu et al. (2005, 2006). These two versions are excluded

because all the methods in our experiment require both

passed and failed test cases. According to execution

statistics on our platform, the faults in 10 out of 38

faulty versions of the space program cannot be revealed

by any test case. Since both passed executions and

failed executions are needed to conduct statistical fault

localization, we exclude these 10 versions from our

experiment. 2 They are versions v1, v2, v25, v26, v30,

v32, v34, v35, v36, and v38.

Following Liu et al. (2005, 2006), we use the whole

test suite as inputs to the testing methods (except when

studying the effect of test suite size on the efficacy

of TC1, TC2, and TC3 techniques as discussed in

Section 4.7 and when conducting the efficiency analysis

of TC1, TC2, and TC3 techniques as discussed in

Section 4.8). We also use branches and returns (see

Section 3.1) as program locations for predicates in all

parts of the experiment except when comparing the

effectiveness of TC3 and TC4 techniques as described

in Section 4.6.

We identify faulty statements by comparing each

faulty version with the original (supposedly correct)

version. If a fault lies in a global definition statement,

we mark the directly affected executable statement as

faulty. If a statement is omitted, we mark the next

executable statement as the faulty statement. Next,

2 We use the UNIX tool gcov to collect the statistics of program

executions. However, gcov cannot work with crashed program runs,

and we therefore exclude from our experiment the test cases that

cause a program to crash. This strategy is also used in other studies

such as Jones and Harrold (2005) and Zhang et al. (2009b). Owing

to different experimental settings (including the platforms and gcc

versions), the number of faulty versions excluded from every study

can be different. For example, Jones and Harrold (2005) excluded 8

faulty versions from their experiment, while Debroy and Wong (2009)

excluded 3 faulty versions.

13

we manually mark the most fault-relevant predicate (or

branch statement) in each faulty version. For 111 faulty

Siemens versions, the position of the most fault-relevant

predicate is always no more than 3 lines from a faulty

statement. There is no ambiguity in identifying the

most fault-relevant predicate and we use all of them in

our experiment. For the remaining 19 faulty Siemens

versions, the most fault-relevant predicate in each case

is hard to be uniquely determined. We therefore exclude

these 19 versions from the experiment. For the 28

faulty versions of space, the positions of the most fault-

relevant branch statements are easy to identify.

We conduct our experiment using a Dell PowerEdge

1950 server running Solaris UNIX with kernel version

Generic 120012-14. The tools used to build up our

experimental platform include flex++ 2.5.31, bison++

1.21.9-1, CC 5.8, and gcov 3.4.3. The implementation

of the two standard non-parametric tests (namely,

Mann-Whitney and Wilcoxon) and the two standard

parametric tests (namely, F-test and t-test) have been

downloaded from the ALGLIB website (available at

http://www.alglib.net/).

4.5. Effectiveness comparison of TC1, TC2, and TC3

techniques

Fig. 1 shows the results of applying P-score to

evaluate the effectiveness of the six methods (Wilcoxon,

Mann-Whitney, CBI, SOBER, F-test, and t-test). It

depicts the percentage of faulty versions whose most

fault-relevant predicates can be located when a certain

percentage of predicates in each of the faulty version

have been examined.

As an illustration, we consider the behavior of the

tests when 10% of the predicates have been examined,

and have the following observation:

TC1: CBI and SOBER can only reach the most fault-

relevant predicate in 9.01% and 8.11% of the 111

faulty versions, respectively.

TC2: F-test and t-test can reach the most fault-relevant

predicate in 1.80% and 4.50% of the 111 faulty

versions, respectively.

TC3: Wilcoxon and Mann-Whitney can reach the most

fault-relevant predicate in 17.12% and 5.41% of

the 111 faulty versions, respectively.

Similarly, when examining up to 20% of all the

predicates in the generated predicate list,

TC1: CBI and SOBER can only reach the most fault-

relevant predicate in 17.12% and 13.51% of the

111 faulty versions, respectively.

TC2: F-test and t-test can reach the most fault-relevant

predicate in 9.01% and 10.81% of the 111 faulty

versions, respectively.

TC3: Wilcoxon and Mann-Whitney can reach the most

fault-relevant predicate in 36.04% and 16.22% of

the 111 faulty versions, respectively.

Moreover, in the range of 10–80%, both CBI and

SOBER outperform F-test and t-test. In the range of 10–

90%, Wilcoxon always outperforms CBI and SOBER,

while the effectiveness of Mann-Whitney is (in the

range of 10–40%) comparable to, or (in the range of

50–90%) better than CBI and SOBER. From this plot,

we observe that Wilcoxon performs better than CBI and

SOBER, Mann-Whitney performs comparably to CBI

and SOBER, while CBI and SOBER perform better

than F-test and t-test.

Table 5 further summarizes the statistics of the

effectiveness of each test. Take Wilcoxon as an

example. It has to examine (in the best case) 0.89%

and (in the worst case) 100.00% of the all predicates,

respectively, in order to locate the most fault-relevant

predicate in a faulty version. The median and mean

statistics are 39.82% and 46.91%, respectively, and the

standard deviation is 35.71%.

Among all six tests, Wilcoxon always scores the best

in the rows that correspond to the minimum, median,

and mean statistics, but its standard deviation is also

the highest. Thus, while Wilcoxon generally performs

very well, its performance also varies more widely than

other tests. Note also that all the tests may reach the

worst case of assigning the lowest rank to the most fault-

relevant predicate.

We also include Figs. 2–6 to give readers a better

understanding of the effectiveness of every method on

each individual subject program. Note that we merge

the results of print_tokens and print_tokens2 and show

them in one figure (Fig. 6) because they have very

similar structures and the number of faulty versions

for each of them is too limited to form meaningful

individual statistics. For the same reason, we merge the

results of schedule and schedule2 and show them in one

figure (Fig. 3).

From the plots for replace in Fig. 2, we find that

the result of Wilcoxon is always the best among the

six, the results of Mann-Whitney and SOBER are the

second best in most regions, while the results of CBI, t-

test, and F-test are comparable to one another. From

the plots for schedule and schedule2 in Fig. 3, our

observation is that the results of Wilcoxon and Mann-

Whitney are better than those of SOBER and CBI, and

14

90%

100%

d

Wilcoxon

Mann-Whitney

50%

60%

70%

80%

e
o

f
fa

u
lt

s
lo

ca
te

d y

CBI

SOBER

F-test

t-test

10%

20%

30%

40%

P
er

ce
n

ta
g

e

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of predicates examined

Figure 1: Overall effectiveness comparison.

Table 5: Statistics of effectiveness of individual tests.

Wilcoxon Mann-Whitney CBI SOBER F-test t-test

min 0.89% 3.45% 0.91% 3.70% 4.44% 4.50%

max 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

median 39.82% 50.00% 63.64% 63.06% 75.86% 80.30%

mean 46.91% 53.38% 58.58% 60.64% 67.01% 70.74%

stdev 35.71% 30.56% 34.34% 32.06% 29.29% 28.23%

the results of the latter two are better than those of t-

test and F-test. The plots for tcas in Fig. 4 show little

difference. The results of Wilcoxon, Mann-Whitney,

and CBI are comparable, the results of SOBER, t-test,

and F-test are also comparable, while results of the

former three are better than those of the latter three.

In the results for tot_info in Fig. 5, TC1 techniques

perform better than TC3 techniques. TC2 techniques

are the least effective. In the results for print_tokens

and print_tokens2 in Fig. 6, on average, TC1 techniques

outperform TC2 techniques, which in turn outperform

TC3 techniques. The results on tot_info), print_tokens,

and print_tokens2 show that there are still improvements

on top of Wilcoxon and Mann-Whitney techniques. CBI

works quite well to locate some faults in these subject

programs. It will also be interesting to dig out why TC2

techniques are more effective than TC3 on these subject

programs.

We have found that TC3 techniques can be more

effective than TC2 techniques in most cases, and

often outperform TC1 techniques. To further find the

relative merits on individual versions, we compute the

difference in effectiveness between each TC1 technique

and each peer technique in TC2 or TC3, and the results

are shown in Tables 6 and 7, respectively.

Let us first take the column “Wilcoxon − Mann-

Whitney” and the row “< −1%” in Table 6 as an

example. It shows that, for 55 of the 110 faulty

versions, the code examination effort of using Wilcoxon

to locate a fault is less than that of using Mann-Whitney

by at least 1%. Similarly, the row “> 1%” shows

that, for only 38 of the 110 faulty versions, the code

examination effort of using Wilcoxon to locate a fault

is more than that of Mann-Whitney by at least 1%. The

row “−1% to 1%” shows that, for 18 faulty versions,

the effectiveness between Wilcoxon and Mann-Whitney

cannot be distinguished at a significance level of 1%. By

comparing these three rows, we observe that Wilcoxon

tends to be more effective than Mann-Whitney. The

other columns can be interpreted similarly. We further

15

90%

100%

d

Wilcoxon

Mann-Whitney

50%

60%

70%

80%

e
o

f
fa

u
lt

 l
o

ca
te

d

y

CBI

SOBER

t-test

F-test

10%

20%

30%

40%

p
er

ce
n

ta
g

e

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of predicate examined

Figure 2: Individual effectiveness comparison on replace.

Table 6: Statistics of pairwise comparison (in terms of P-score) between Wilcoxon and other techniques on individual programs.

Wilcoxon − Wilcoxon − Wilcoxon − Wilcoxon − Wilcoxon -

Mann-Whitney CBI SOBER F-test t-test

< −1% 55 54 58 64 66

−1% to 1% 18 18 20 19 19

> 1% 38 39 33 28 26

< −5% 50 53 55 61 62

−5% to 5% 26 21 28 24 27

> 5% 35 37 28 26 22

< −10% 44 50 49 54 57

−10% to 10% 36 33 38 34 36

> 10% 31 28 24 23 18

observe from the two tables that, in general, Wilcoxon

is more effective in locating faults than the other five

techniques. Similarly, Mann-Whitney is more effective

than SOBER, F-test, and t-test.

4.6. Effectiveness comparison of TC3 and TC4 tech-

niques

We have shown experimentally that TC3 techniques

outperform TC1 and TC2 techniques. In this section,

we further use a case study to compare the effectiveness

of TC3 techniques with TC4 techniques over space.

Fig. 7 shows the histogram for the failing rate

distribution of the 28 faulty versions of space. Since

most faults have failing rates less than 10%, we use

logarithmic coordinates in this figure. We observe that

the mode of this histogram in the range of 4–8%.

In the experiment, we compare the effectiveness

of TC3 techniques with 33 existing statement-level

techniques summarized and studied in Naish et al.

(2011). We have summarized them in Table 1 for

reader’s ease of reference. Each technique differs from

Tarantula on its ranking formula only. The terms aef

means the number of failed executions that exercise a

statement, anf means the number of failed executions

that does not exercise a statement, aep and anp mean the

numbers of passed executions that exercise and do not

exercise a statement, respectively.

The experimental results 3 are shown in Fig. 8.

Note that we group the 33 techniques into three rows

3 The calculation of non-parametric hypothesis testing methods

Wilcoxon and Mann-Whintey are conducted using the ALGLIB library

16

90%

100%

d

Wilcoxon

Mann-Whitney

50%

60%

70%

80%

e
o

f
fa

u
lt

 l
o

ca
te

d

y

CBI

SOBER

t-test

F-test

10%

20%

30%

40%

p
er

ce
n

ta
g

e

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of predicate examined

Figure 3: Individual effectiveness comparison on schedule and schedule2.

Table 7: Statistics of pairwise comparison (in terms of P-score) between Mann-Whitney and other techniques (except Wilcoxon) on individual

programs.

Mann-Whitney − Mann-Whitney − Mann-Whitney −
SOBER F-test t-test

< −1% 55 53 60

−1% to 1% 23 29 24

> 1% 33 29 27

< −5% 53 52 55

−5% to 5% 26 33 30

> 5% 32 26 26

< −10% 52 48 51

−10% to 10% 29 39 35

> 10% 30 24 25

according to their order of appearance in Table 1. The

effectiveness of each technique is shown in the figure

using the box-and-whisker plot. Furthermore, for ease

of comparison, we replicate the results of the two TC3

techniques (Wilcoxon and Mann-Whitney) as the two

rightmost bars in each group. Let us take the Anderberg

technique (the second from the left in the first row) as an

(available at http://www.alglib.net/). The wilcoxonsignedranktest and

mannwhitneyutest procedures of the ALGLIB library may encounter

malformatted data and output NaN (Not a Number) results in a few

cases. It may be caused by unknown reasons due to the execution

spectra data of the space program. In such cases, we use Tarantula’s

formula to continue the calculation and replace the NaN values. We

choose Tarantula’s formula because it is known to be unaffected by

the divided-by-zero issue.

example. For each of the 28 faulty versions, Anderberg

outputs a ranked list of branch statements. Accordingly,

by applying P-score on each of the 28 faulty versions,

Anderberg produces an individual P-score value. The

position of the separator dash in the box indicates a

median value of 32% using Anderberg is used. It means

intuitively that, by following the suggestion made by

Anderberg, developers need to examine, on average,

32.0% of the branch statements in order to locate 50%

of the most fault-relevant branch statements in the 28

faulty versions. The top of the upper whisker shows the

maximum value (62.5%) of the 28 P-scores, while the

bottom of the lower whisker shows the minimum value

(11.1%). Accordingly, they mean the worse case and

the best case scenarios when Anderberg is used. The top

17

90%

100%

d

Wilcoxon

Mann-Whitney

50%

60%

70%

80%

e
o

f
fa

u
lt

 l
o

ca
te

d

y

CBI

SOBER

t-test

F-test

10%

20%

30%

40%

p
er

ce
n

ta
g

e

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of predicate examined

Figure 4: Individual effectiveness comparison on tcas.

and bottom of the box correspond to the 75% percentile

and the 25% percentile of the 28 P-score values. They

indicate intuitively that developers need to examine, on

average, 37.7% and 23.2% of the branch statements to

locate the 7th (25% percentile position) and the 21st

(75% percentile position) most fault-relevant branch

statements in the 28 faulty versions.

We also zoom into the figure and show them

in Fig. 9. From Figs. 8 and 9, we observe that

the effectiveness of TC4 techniques are not always

good. Some old technique (e.g., Tarantula) and some

recently well evaluated techniques (e.g., Jaccard) have

outstanding effectiveness. Some techniques having

good mathematical supports (e.g., Geometric Mean)

do not yield good results. Interestingly, there are

also some techniques (e.g., Scott), which are not

extensively mentioned in previous works, but work well

on space. Comparing with the overall effectiveness of

TC4 techniques, the effectiveness of TC3 techniques are

above the average.

Readers may be interested to know the number of

faults located with different code examining effort for

these techniques. Table 8 gives such a summary. Again,

we group the 33 TC4 techniques into three rows to

ease our presentation. Take the column with a label

“Jaccard” and the row with a label “1%” for example.

The cell means that with 1% code examination effort,

the technique Jaccard can find the most fault-relevant

branch statements in 13 faulty versions of space. Other

cells can be interpreted similarly. From this table,

we observe that for almost each of the 1%, 2%, 5%,

10%, 20%, and 50% code examination efforts, TC3

techniques can outperform almost every TC4 technique

in locating the most fault-relevant branch statements in

the faulty versions of space.

We further calculate the minimum, maximum, mean,

median, and standard deviation of effectiveness for

each technique, and show them in turn in the five

plots in Fig. 10. Logorithmic coordinates are used

in the y-axes. Further, we use a triangle sign and a

square sign to mark the Wilcoxon and Mann-Whintey

techniques, respectively. For ease of comparison, we

sort the techniques in the first plot in ascending order of

their minimum effectiveness measures. For example,

it shows that among the 35 techniques, Wilcoxon

is the champion in effectiveness in the best case

(minimum measurement), while the Mann-Whitney

technique is the first runner-up. The other plots are

interpreted similarly except that the maximum, mean,

median, and standard deviation effectiveness measures

are used for sorting. Our observation is that in

terms of the minimum, maximum, mean, or median

values, Wilcoxon and Mann-Whitney are always the

best two among the 35 peer techniques. However,

when looking at the standard deviations, Wilcoxon and

Mann-Whintey are the 4th and 5-th, respectively. In

summary, this figure shows that TC3 techniques require

the lowest effort in code examination to locate faults

and have relatively low fluctuations in the effectiveness

of locating faults. This test also consolidates the

18

Table 8: Number of faults located with different code examining efforts using TC3 and TC4 techniques.

Ja
cc

ar
d

A
n
d
er

b
er

g

S
o
re

n
se

n
-D

ic
e

D
ic

e

K
u
lc

zy
n
sk

il
1

K
u
lc

zy
n
sk

il
2

R
u
ss

el
l

an
d
 R

ao

H
am

m
an

S
im

p
le

 M
at

ch
in

g

S
o
k
al

M
1

W
il

co
x
o

n

M
a
n

n
-W

h
it

n
ey

1% 13 0 13 0 13 0 0 0 7 6 7 16 18

2% 16 0 16 1 15 0 0 0 8 7 7 21 20

5% 21 0 21 1 21 0 0 0 13 10 10 23 22

10% 23 0 23 1 23 0 0 0 15 14 14 24 23

20% 27 5 27 6 27 5 5 0 20 18 18 26 25

50% 28 26 28 26 28 26 26 20 21 21 21 28 28

100% 28 28 28 28 28 28 28 28 28 28 28 28 28

M
2

R
o
g
er

s
&

 T
an

im
o
to

G
o
o
d
m

an

M
am

m
in

g
 e

tc
.

E
u
cl

id

O
ch

ia
i

O
v
er

la
p

T
ar

an
tu

la

Z
o
lt

ar

A
m

p
le

W
o
n
g

1

W
il

co
x
o
n

M
a
n

n
-W

h
it

n
ey

1% 14 2 13 6 6 13 0 9 0 13 0 16 18

2% 18 3 16 7 7 16 0 14 0 15 0 21 20

5% 23 3 21 10 10 22 0 17 1 19 0 23 22

10% 24 9 23 14 14 24 1 21 1 22 0 24 23

20% 24 13 27 18 18 26 1 26 2 24 5 26 25

50% 26 20 28 21 21 27 2 28 16 27 26 28 28

100% 28 28 28 28 28 28 28 28 28 28 28 28 28

W
o
n
g

2

W
o
n
g

3

O
ch

ia
i2

G
eo

m
et

ri
c

M
ea

n

H
ar

m
o
n
ic

 M
ea

n

A
ri

th
m

et
ic

 M
ea

n

C
o
h
en

S
co

tt

F
le

is
s

R
o
g
o
t1

R
o
g
o
t2

W
il

co
x
o
n

M
a
n

n
-W

h
it

n
ey

1% 1 14 11 0 0 0 0 13 2 0 7 16 18

2% 3 19 15 0 0 0 0 15 8 1 8 21 20

5% 5 23 20 0 0 0 0 20 13 1 16 23 22

10% 8 24 24 0 0 0 0 21 16 1 21 24 23

20% 9 24 25 1 1 1 1 23 19 5 23 26 25

50% 11 26 27 19 19 19 19 23 23 24 25 28 28

100% 28 28 28 28 28 28 28 28 28 28 28 28 28

19

90%

100%

d

Wilcoxon

Mann-Whitney

50%

60%

70%

80%

e
o

f
fa

u
lt

 l
o

ca
te

d

y

CBI

SOBER

t-test

F-test

10%

20%

30%

40%

p
er

ce
n

ta
g

e

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of predicate examined

Figure 5: Individual effectiveness comparison on tot_info.

observations in previous paragraphs.

4.7. Effect of test suite size on efficacy of TC1, TC2, and

TC3 techniques

We have also investigated the effect of different test

suite sizes by observing the corresponding change in

effectiveness. Fig. 11 shows the results. The test suite

size, shown as x-axis in the figure, is gradually increased

from 50 to 100, 150, 200, 300, 400, 500, and finally

to 1000. The y-axis stands for the mean percentage

of predicates examined to locate the most fault-relevant

predicate. The test cases were randomly selected from

the test pool.

We observe that, overall, the curves for Wilcoxon

and Mann-Whitney show a decreasing trend as test suite

size increases. On the other hand, the curves for CBI,

SOBER, F-test, and t-test do not show any decreasing

trend with the increase of test suite size. The results

show that the use of Wilcoxon or Mann-Whitney in our

model is more effective for test suites of larger sizes

than for test suites of smaller sizes. Thus, in terms of

effectiveness improvement with increase of test suite

size, Wilcoxon and Mann-Whitney are more scalable

than CBI, SOBER, F-test, and t-test.

4.8. Efficiency analysis of TC1, TC2, and TC3

techniques

In this section, we report the efficiency of our

implementation of the fault-localization techniques.

Fig. 12 shows the mean execution time of using these

techniques to rank the predicates. The test suite size

is chosen as 1000. All the times spent are collected

by sequentially executing each technique to rank the

predicates in each faulty version. The six categories

in Fig. 12 represent, respectively, the results over all

the programs, the results on programs print_tokens

and print_tokens2, the results on program replace, the

results on programs schedule and schedule2, the results

on program tcas, and the results on program tot_info. In

each category, the six different bars respectively show

the mean times taken by each technique on the faulty

versions of the corresponding program category. For the

print_tokens and print_tokens2 category, for instance,

the six bars in the figure represent the mean execution

times spent by Wilcoxon (1.002 s), Mann-Whitney

(1.192 s), CBI (1.674 s), SOBER (1.657 s), F-test (1.218

s), and t-test (1.223 s). Note that we group the faulty

versions of print_tokens and print_tokens2 into the same

category because (i) each of them has too few faulty

versions to form meaningful statistics individually, and

(ii) these programs have similar structures and logic.

For the same reason, we also group the faulty versions

of programs schedule and schedule2 into the same

category.

From Fig. 12, we observe that the times taken

by individual techniques show an increasing trend as

the program sizes increases. For example, programs

replace, print_tokens, and print_tokens2 are larger in

scale than programs schedule, schedule2, tcas, and

20

90%

100%

d

Wilcoxon

Mann-Whitney

50%

60%

70%

80%

e
o

f
fa

u
lt

 l
o

ca
te

d

y

CBI

SOBER

t-test

F-test

10%

20%

30%

40%

p
er

ce
n

ta
g

e

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of predicate examined

Figure 6: Individual effectiveness comparison on print_tokens and print_tokens2.

tot_info, and the mean execution times of each technique

in the former three programs are longer than those

in the latter four programs. This is understandable

because the former three programs have relatively more

predicates (Zhang et al., 2010). We also observe that

the tests in category TC1 (CBI and SOBER) generally

run slower than those in categories TC3 (Wilcoxon and

Mann-Whitney) or TC2 (F-test and t-test), while the

tests in TC2 often run slightly faster than those in TC3

(apart from applying Wilcoxon to the replace program).

The former happens because the selected standard

parametric or non-parametric methods are designed by

mathematicians and have better performance. The

latter happens because the algorithms of these two non-

parametric methods are more complex than those of the

two parametric methods.

4.9. Answering research questions

In the previous sections, we have discussed the

phenomenon that TC3 techniques are observably more

effective than TC1 techniques, and TC1 techniques

are observably more effective than TC2 techniques.

To know whether the differences in effectiveness are

statistically significant, we conduct hypothesis testing

(using t-test) to verify the observations. We set up the

following hypothesis:

H1 Technique X and technique Y have no significant

difference in terms of P-score.

Note that only the p-values less than 0.05 are shown in

Table 9. We leave the cell as “−” if the p-values ≥ 0.05.

Take the rightmost cell with a value of 0.0068 as an

illustration. It means that the p-value for the hypothesis

is 0.0068, indicating the null hypothesis (H1) can be

rejected at a 5% significance level (0.0068 < 0.05).

In other words, given such samples, the probability

that “the effectiveness of the techniques using F-test

and that of the techniques using t-test come from the

same population” is 0.68%. Since we also have an

intuitive observation in Sections 4.5 and 4.7 that F-test

is more effective overall than t-test, we can conclude

with confidence that F-test has statistically significant

advantages over t-test. Similarly, we compare the

other pairs of techniques and summarize the following

observations from Table 9:

R1: Wilcoxon significantly outperforms Mann-

Whitney, Mann-Whitney significantly outperforms

SOBER, and SOBER significantly outperforms

F-test.

R2: Wilcoxon significantly outperforms CBI, and CBI

significantly outperforms F-test,

R3: F-test significantly outperforms t-test.

Based on the above statistical results and the results

presented in the previous sections, we can answer the

research questions in Section 3.3 thus:

21

456t s
012
34N umb er off au

l t
0

Range of failing rate
Figure 7: Histogram for failing rate distribution of the 28 faulty versions of space.

Table 9: Hypothesis testing results on H1.

X =
Wilcoxon Mann-Whitney CBI SOBER F-test

Y = t-test < 0.0001 < 0.0001 = 0.0002 < 0.0001 = 0.0068

F-test < 0.0001 = 0.0003 = 0.0074 = 0.0080

SOBER < 0.0001 = 0.0362 −
CBI = 0.0025 −
Mann-Whitney = 0.0327

A1: Compared with TC1 techniques, TC2 techniques

are not statistically more effective (at a 5%

significance level).

A2: Compared with TC2 techniques, TC3 techniques

are statistically more effective (at a 5% signifi-

cance level).

A3: Compared with TC1 techniques, TC3 techniques

are often more effective (for 3 cases out of 4, at a

5% significance level).

We have shown that TC3 techniques outperform TC4

techniques in the minimum, maximum, mean, and

median effectiveness measures. To find out whether the

advantages are also statistically significant, we validate

them using hypothesis testing.

Let X be the Wilcoxon or Mann-Whitney technique

and Y be one of the other 33 techniques. We follow

the above procedure in Section 4.9 to test hypothesis

H1. It can be interpreted as similar to the answering of

research questions Q1 to Q3.

If we take 5% as the threshold to reject H1, the

null hypothesis H1 can be rejected at a significance

level of 5% when X is Wilcoxon and Y is any of the

33 TC4 techniques except Sørensen-Dice, Kulczynski1,

Goodman & Kruskal, Ochiai, and Ochiai2. In other

words, given such samples, the probability that “the

effectiveness of Wilcoxon and that of the other 28 (=
33−5) techniques come from a same population” is less

than 5%. Since we also have an intuitive observation

in previous sections that Wilcoxon needs, on average,

less code examination effort to locate faults on space

than TC4 techniques, we conclude that Wilcoxon

has statistical advantages over all the TC4 techniques

studied (except Sørensen-Dice, Kulczynski1, Goodman

& Kruskal, Ochiai, and Ochiai2) at a significance

level of 5%. Similarly, Mann-Whitney also has

statistical advantages over all the TC4 techniques

studied (except Sørensen-Dice, Kulczynski1, M2,

Goodman & Kruskal, Ochiai, and Ochiai2) at a

significance level of 5%. When we use 10% as

the significance level to test H1, both Wilcoxon and

22

Mann-Whiney has statistically significant advantages

over 30 of out of the 33 TC4 techniques studied

(except Sørensen-Dice, Kulczynski1, and Goodman &

Kruskal). When using 30% as the threshold to test H1,

Wilcoxon has statistically significant advantages over

all the TC4 techniques studied. When we use 35%

as the significance level to test H1, Mann-Whintey has

statistically significant advantages over all the studied

TC4 techniques. Finally, we answer research question

Q4 as follows:

A4: The effectiveness of TC3 techniques is empirically

better than most of the TC4 techniques.

The experimental results presented in previous

sections show that Wilcoxon, Mann-Whitney, CBI, and

SOBER tend to be more effective as the size of a

test suite increases, whereas the overall effectiveness

trends for CBI, SOBER, F-test, and t-test do not seem

to increase as obviously when the size of a test suite

increases.

To confirm these observations, we apply another

hypothesis test:

H2 For the same technique, there is no significance

difference in P-score with respect to the use of

different test suite sizes.

More specifically, for each curve in Fig. 11, we compute

the change in P-score between every two adjacent

points, compare the series of such changes with a series

of zeros, and conduct hypothesis testing (using t-test) to

validate H2. The results for Wilcoxon, Mann-Whitney,

CBI, SOBER, F-test, and t-test are 0.05, 0.21, 0.16,

0.16, 0.99, and 0.33, respectively.

If we deem 0.05 as the threshold to reject H2,

the effectiveness of Wilcoxon is confirmed to have

changed significantly as the size of a test suite increases.

Since we also have an intuitive observation that the

effectiveness of Wilcoxon has a discernible increasing

trend with the increase of test suite size, we can

conclude with confidence that there is a statistically

significant increasing trend. On the other hand, we

do not find any significant difference for the other

five techniques. Together with the results presented in

the last section on comparing the effectiveness among

techniques, we can answer research question Q5.

A5: The effectiveness of TC2 and TC1 techniques do

not improve much with increasing test suite size;

whereas TC3 techniques, particularly Wilcoxon,

improves significantly as the number of available

test cases increases.

In a previous section, we have observed that there is

discernible difference between the times taken by two

techniques to compute the predicate lists. We further

set up a hypothesis test to validate this observation:

H3 There is no significant difference between the

times taken to compute the predicate lists by two

techniques under study.

The result is shown in Table 10. Note that if a p-

value is greater than 0.05, we do not show it but leave

the cell as “−”. Let us take the top left cell with “X

= Mann-Whitney” and “Y = CBI” as an example. It

means that the p-value is less than 0.0001 and H3 can

be rejected at a significance level of 5%. The other cells

can be interpreted similarly. Based on Table 10, we can

confirm that there is significant difference between the

times taken to compute the predicate lists by every pair

of techniques listed in the table (except the SOBER–

CBI pair). On the other hand, we find that there is no

significant difference between Wilcoxon and any other

technique under study. (Since there is no significant

difference, the comparisons with Wilcoxon are not

listed in the table.)

Although there are significant differences in most

pairs of techniques, we would like to study which

techniques are more efficient in multiple aspects. For

each technique, therefore, we compute the standard

statistics to measure both the extreme values and central

tendency. The results are shown in Table 11.

Take the first column of the table as example. In

the best case scenario, Wilcoxon takes 0.019 s to finish

whereas, in the worst case scenario, it takes 1.618 s. For

the median and mean scenarios, it takes 0.086 and 0.544

s, respectively. The standard deviation of the time taken

to execute Wilcoxon is 0.672. The other columns can

be interpreted similarly.

We observe that Mann-Whitney attains the best mean

and median results. Wilcoxon is the least efficient

among TC2 and TC3 techniques, and is also the most

diverse (having the largest standard deviation) among

the six techniques. For min, max, mean, and median,

TC1 techniques are the least efficient.

Based on the above discussion, we can answer

research question Q6 as follows:

A6: In terms of the time taken to execute a technique,

the efficiencies of TC1, TC2, and TC3 are

comparable.

4.10. Threats to validity

In this section, we discuss the threats to validity of

our experiment.

23

Table 10: Hypothesis testing results on H3.

X =
Mann-Whitney F-test t-test SOBER

Y = CBI < 0.0001 < 0.0001 < 0.0001 −
SOBER < 0.0001 < 0.0001 < 0.0001

t-test < 0.0001 < 0.0001

F-test < 0.0001

Table 11: Statistics of time taken to execute each technique (in s).

Wilcoxon Mann-Whitney CBI SOBER F-test t-test

min 0.019 0.021 0.038 0.022 0.022 0.023

max 1.618 1.340 1.972 1.916 1.366 1.376

median 0.086 0.080 0.138 0.138 0.080 0.081

mean 0.544 0.387 0.613 0.605 0.397 0.400

stdev 0.672 0.445 0.670 0.662 0.455 0.456

4.10.1. Internal validity

Internal validity refers to whether a causal relation-

ship between two variables is properly demonstrated

in the experiment. The authors of SOBER have

released their instrumented faulty versions. We find

that instrumentation to some predicates is omitted in

their experiment. Since we have no clue on whether

a predicate should or should not be included, we follow

their specification to include all the predicates and work

out their experiment again by ourselves. We have also

developed a prototype to automate the experiment to

minimize manual errors. To apply CBI and SOBER,

we have implemented the techniques according to their

published papers. We have used a few sample programs

to test the correctness of our implementations. To apply

F-test, Student’s t-test, the Mann-Whitney test, and the

Wilcoxon signed-rank test in the controlled experiment,

we use a public-domain mathematics package ALGLIB

rather than our own implementation. Note that a number

of research projects have used this package. We have

searched the Internet to look for reports on the accuracy

problems of the mathematical package, and yet we are

not aware of such reporting related to these four tests.

We also spot check some results by working out the p-

values using MATLAB independently to confirm whether

the results computed by the package can be reliable.

In addition, we use gcov, which is assumed to produce

reliable statistics of execution counts.

When analyzing the scalability of Wilcoxon, Mann-

Whitney, CBI, SOBER, F-test, and t-test, we use

the same program library at the ALGLIB website (see

Section 4.4) for implementation, and do not optimize

any of them. Such consideration aims to compare their

effectiveness fairly. However, different implementation

details may affect their run time comparison. Another

threat may be due to the choice of predicates we

investigate. CBI and SOBER interpret different

kinds of statements as predicates. It is not easy to

directly compare them with each other. On the other

hand, SOBER has reported that scalar-pair predicates

only have minor effects on fault localization results.

Hence, we follow SOBER and exclude them from our

experiment. The inclusion of scalar-pair statements may

affect the performance of CBI.

4.10.2. Construct validity

Construct validity refers to whether the experiment

actually measures what it intends to measure.

In the experiment, we include CBI and SOBER for

comparison. Although there exist other techniques,

both CBI and SOBER are representative predicate-

based techniques and popularly used to compare with

new predicate-level fault localization techniques. We

use P-score to measure the effectiveness of a technique.

This metric is originally adapted from its statement-

level counterpart (that is, the number of statements to

be examined in order to locate the faulty statement).

To fairly evaluate both predicate-based and statement-

level techniques and compare their results together, we

apply the former on branch statements and the latter on

branch predicates so that P-score can be used to evaluate

them. The use of other metrics such as T-score may

24

incur limitations as discussed in a previous section and

in Cleve and Zeller (2005). The use of other metrics

may also produce different comparison results.

In the experiment, we manually mark the most fault-

relevant predicates in the faulty versions. Such manual

work may cause threats to construct validity. We

exclude those faulty versions in which the most fault-

relevant predicate cannot be uniquely determined.

To strike a balance between our resources and the

scale of the experiment, the efficacy, scalability, and

efficiency comparisons of two TC1, two TC2, and two

TC3 techniques are conducted over the Siemens suite of

programs, while the efficacy comparisons of two TC3

and 33 TC4 techniques are conducted over the median-

sized real-life program space. This also may cause

threats to construct validity of the experiment if we

compare the results across experiments.

4.10.3. External validity

In our experiment that compares predicate-level

techniques, we show the fault-localization results

using two non-parametric hypothesis testing methods,

two parametric hypothesis testing methods, and two

debugging-specific methods. The use of other non-

parametric, parametric, or debugging-specific statistical

methods may give different comparison results.

However, six techniques have been investigated in

this paper in multiple dimensions. We believe that

it represents a significant effort in the controlled

experiment. We have also used 33 statement-level

techniques in the experiment. We have verified their

formulas carefully.

External validity may also be caused by the subject

programs used. The faults in the Siemens programs

are seeded manually. They may not truly represent

real-life faults. We have used the faulty versions of

space to supplement the study of TC3 techniques. They

contain real-life faults in a real-life program. The use

of other programs may give different results. Moreover,

the subject programs are not large in scale and are not

concurrent programs. It also poses limitations on the

generalization of the results of this paper.

In this paper, we have not evaluated the effectiveness

of the examined techniques on multiple-fault programs.

In our predicate-based fault-localization framework, we

locate only one fault in every fault-localization process.

After fixing the located fault, our technique can be rerun

to locate the next fault.

4.11. Discussions

We have reported the experiment and analyzed the

data to answer the research questions Q1–Q6. In

this section, we revisit the findings and discuss their

implications.

We find that standard parametric fault-localization

techniques cannot outperform debugging-specific tech-

niques. We further observe that, in the experiment,

the techniques under category TC1 (namely, SOBER

and CBI) uses the means either in their assessment

formula or uses the means to represent the probability

in the assessment formula. These techniques are

parametric in nature. The answer to Q1 provides

justification evidence for one to develop debugging-

specific parametric techniques.

Standard non-parametric cores outperform paramet-

ric cores in terms of effectiveness. The effectiveness

of the former is much more positively correlated

to the maximum number of test executions for

fault localization than that of standard parametric

cores or debugging-specific cores. This finding is

interesting. It indicates that non-parametric techniques

are preferred to parametric counterparts. On the other

hand, based on our findings on comparing parametric

cores and debugging-specific cores, we conjecture that

debugging-specific non-parametric cores may be even

more effective than TC1, TC2, and TC3. Our answer

to Q6 further shows that non-parametric techniques can

be efficiently implemented. Therefore, our study points

out a research direction in fault localization, namely,

that one may further study debugging-specific non-

parametric statistical fault-localization techniques.

Our results show that standard non-parametric

predicate-based techniques outperform statement-level

techniques over the evaluated subject programs. It

means that, compared with statement-level techniques,

predicate-based fault-localization techniques can be

also useful. This has not been reported in previous

studies. On the other hand, since we make compromises

on both sides (adapting statement-level techniques

to work solely on branch statements and adapting

predicate-based techniques to work solely on branch

predicates), both of the effectiveness measures on these

subject programs may have been modified.

In many previous studies, predicate-level fault-

localization techniques are often shown to be less

effective than statement-level techniques. In our

experiment, we have shown that using a non-

parametric core for predicate-level techniques can

outperform existing debugging-specific predicate-based

or statement-level techniques. An interesting question is

whether one may import the concept of non-parametric

hypothesis testing to statement-level techniques to

enhance the latter.

25

5. Conclusion

Fault localization is a time-consuming and yet crucial

activity in software debugging. Many previous studies

contrast the program features of passed executions and

failed executions to locate the predicates correlated to

faults. However, they overlook the investigation of

the statistical distributions of the program features, on

which their parametric techniques fully rely. Previous

studies have argued and verified empirically that it

is problematic to assume specific distributions of

program features and use parameters that categorize

the distributions in fault-suspiciousness assessments.

However, solutions to tackle the problem have not been

proposed.

In this paper, we propose a framework to handle

statistical predicate-based fault localization by applying

standard hypothesis testing techniques proposed by

mathematicians. We have conducted a controlled

experiment on the Siemens suite and the space program

to evaluate the effectiveness of different hypothesis

testing methods in our framework, and compare with

statement-level fault-localization techniques. We have

also experimentally compared the efficacy, scalability,

and efficiency of using two standard non-parametric

hypothesis testing methods, two standard parametric

methods, and two debugging-specific methods on

our framework. The experimental results show that

standard non-parametric methods outperform standard

parametric methods and debugging-specific methods

in terms of effectiveness, and are more efficient than

debugging-specific methods. Since non-parametric

methods are the winners over parametric methods

and debugging-specific methods on efficacy, we have

also experimentally compared the efficacy of using

the two standard non-parametric hypothesis testing

methods on our framework with 33 statement-level

fault-localization techniques to gauge whether the best

predicate-based techniques may outperform statement-

level techniques. The experimental results show

that standard non-parametric methods also outperform

statement-level techniques in terms of effectiveness

when given comparably scaled input. Future studies

may include the debugging issues of multi-fault

programs and concurrent programs, optimizing the

size of a test suite for debugging, and developing

scientific non-parametric hypothesis testing methods for

statement-level fault-localization techniques.

References

Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.J.C., 2009. A

practical evaluation of spectrum-based fault localization. Journal

of Systems and Software 82 (11), 1780–1792.

Abreu, R., Zoeteweij, P., van Gemund, A.J.C., 2007. On the

accuracy of spectrum-based fault localization. In: Proceedings

of the Testing: Academic and Industrial Conference: Practice

And Research Techniques (TAICPART-MUTATION 2007). IEEE

Computer Society, Los Alamitos, CA, pp. 89–98.

Agrawal, H., DeMillo, R.A., Spafford, E.H., 1991. An execution

backtracking approach to program debugging. IEEE Software 8

(5), 21–26.

Agrawal, H., Horgan, J.R., 1990. Dynamic program slicing.

In: Proceedings of the ACM SIGPLAN 1990 Conference on

Programming Language Design and Implementation (PLDI 1990).

ACM, New York, NY, pp. 246–256.

Anderberg, M.R., 1973. Cluster Analysis for Applications. Academic

Press, New York, NY.

Arumuga Nainar, P., Chen, T., Rosin, J., Liblit, B., 2007. Statistical

debugging using compound Boolean predicates. In: Proceedings

of the 2007 ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 2007). ACM, New York, NY, pp. 5–

15.

Baudry, B., Fleurey, F., Le Traon, Y., 2006. Improving test suites

for efficient fault localization. In: Proceedings of the 28th

International Conference on Software Engineering (ICSE 2006).

ACM, New York, NY, pp. 82–91.

Binkley, D., Gold, N., Harman, M., 2007. An empirical study of static

program slice size. ACM Transactions on Software Engineering

and Methodology 16 (2), Article No. 8.

Chen, T.Y., Cheung, Y.Y., 1993. Dynamic program dicing. In:

Proceedings of the 9th IEEE International Conference on

Software Maintenance (ICSM 1993). IEEE Computer Society, Los

Alamitos, CA, pp. 378–385.

Chen, T.Y., Merkel, R.G., 2008. An upper bound on software testing

effectiveness. ACM Transactions on Software Engineering and

Methodology 17 (3), 1–27.

Chilimbi, T.M., Liblit, B., Mehra, K., Nori, A.V., Vaswani, K.,

2009. HOLMES: effective statistical debugging via efficient path

profiling. In: Proceedings of the 31st International Conference on

Software Engineering (ICSE 2009). IEEE Computer Society, Los

Alamitos, CA, pp. 34–44.

Cleve, H., Zeller, A., 2005. Locating causes of program failures.

In: Proceedings of the 27th International Conference on Software

Engineering (ICSE 2005). ACM, New York, NY, pp. 342–351.

Cohen, J., 1960. A coefficient of agreement for nominal scales.

Educational and Psychological Measurement 20, 37–46.

Collofello, J.S., Cousins, L., 1987. Towards automatic software

fault location through decision-to-decision path analysis. In:

Proceedings of the 1987 National Computer Conference. Chicago,

IL, pp. 539–544.

Dallmeier, V., Lindig, C., Zeller, A., 2005. Lightweight bug

localization with AMPLE. In: Proceedings of the 6th International

Symposium on Automated Analysis-Driven Debugging (AADE-

BUG 2005). ACM, New York, NY, pp. 99–104.

da Silva Meyer, A., Garcia, A.A.F., de Souza, A.P., de Souza Jr.,

C.L., 2004. Comparison of similarity coefficients used for cluster

analysis with dominant markers in maize (Zea mays L). Genetics

and Molecular Biology 27 (1), 83–91.

Debroy, V., Wong, W.E., 2009. Insights on fault interference for

programs with multiple bugs. In: Proceedings of the 20th

International Symposium on Software Reliability Engineering

(ISSRE 2009). IEEE Computer Society, Los Alamitos, CA, pp.

165–174.

Devore, J.L., 2008. Probability and Statistics for Engineering and the

Sciences. Thomson/Brooks/Cole, Belmont, CA.

Dice, L.R., 1945. Measures of the amount of ecologic association

between species. Ecology 26 (3), 297–302.

26

Do, H., Elbaum, S.G., Rothermel, G., 2005. Supporting controlled

experimentation with testing techniques: an infrastructure and its

potential impact. Empirical Software Engineering 10 (4), 405–435.

Duarte, J.M., dos Santos, J.B., Melo, L.C., 1999. Comparison of

similarity coefficients based on RAPD markers in the common

bean. Genetics and Molecular Biology 22 (3).

Durães, J.A., Madeira, H.S., 2006. Emulation of software faults: a

field data study and a practical approach. IEEE Transactions on

Software Engineering 32 (11), 849–867.

Everitt, B.S., 1978. Graphical Techniques for Multivariate Data.

North-Holland, New York.

Fleiss, J.L., 1965. Estimating the accuracy of dichotomous judgments.

Psychometrika 30 (4), 469–479.

González Sánchez, A., 2007. Automatic Error Detection Techniques

Based on Dynamic Invariants. Master’s Thesis, Department of

Software Technology„ Delft University of Technology, Delft, the

Netherlands.

Goodman, L.A., Kruskal, W.H., 1954. Measures of association for

cross classification. Journal of the American Statistical Association

49, 732–764.

Griesmayer, A., Staber, S., Bloem, R., 2010. Fault localization using

a model checker. Software Testing, Verification and Reliability 20

(2), 149–173.

Gupta, N., He, H., Zhang, X., Gupta, R., 2005. Locating faulty

code using failure-inducing chops. In: Proceedings of the 20th

IEEE/ACM International Conference on Automated Software

Engineering (ASE 2005). ACM, New York, NY, pp. 263–272.

Hamming, R.W., 1950. Error detecting and error correcting codes.

Bell System Technical Journal 29 (1), 147–160.

Hao, D., Xie, T., Zhang, L., Wang, X., Sun, J., Mei, H., 2010. Test

input reduction for result inspection to facilitate fault localization.

Automated Software Engineering 17 (1), 5–31.

Hao, D., Zhang, L., Mei, H., Sun, J., 2006. Towards interactive fault

localization using test information. In: Proceedings of the 13th

Asia-Pacific Software Engineering Conference (APSEC 2006).

IEEE Computer Society, Los Alamitos, CA, pp. 277–284.

Harrold, M.J., Rothermel, G., Sayre, K., Wu, R., Yi, L., 2000.

An empirical investigation of the relationship between spectra

differences and regression faults. Software Testing, Verification

and Reliability 10 (3), 171–194.

Horwitz, S., Reps, T., Binkley, D., 1990. Interprocedural slicing

using dependence graphs. ACM Transactions on Programming

Languages and Systems 12 (1), 26–60.

Hu, P., Zhang, Z., Chan, W.K., Tse, T.H., 2008. Fault localization with

non-parametric program behavior model. In: Proceedings of the

8th International Conference on Quality Software (QSIC 2008).

IEEE Computer Society, Los Alamitos, CA, pp. 385–395.

Jaccard, P., 1901. Étude comparative de la distribution florale dans

une portion des Alpes et des Jura. Bulletin del la Socit Vaudoise

des Sciences Naturelles 37, 547–579.

Jiang, B., Zhang, Z., Tse, T.H., Chen, T.Y., 2009. How well do test

case prioritization techniques support statistical fault localization.

In: Proceedings of the 33rd Annual International Computer

Software and Applications Conference (COMPSAC 2009), vol. 1.

IEEE Computer Society, Los Alamitos, CA, pp. 99–106.

Jones, J.A., Harrold, M.J., 2005. Empirical evaluation of the Tarantula

automatic fault-localization technique. In: Proceedings of the

20th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2005). ACM, New York, NY, pp. 273–282.

Jones, J.A., Harrold, M.J., Bowring, J.F., 2007. Debugging in

parallel. In: Proceedings of the 2007 ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA 2007).

ACM, New York, NY, pp. 16–26.

Jones, J.A., Harrold, M.J., Stasko, J., 2002. Visualization of test

information to assist fault localization. In: Proceedings of the 24th

International Conference on Software Engineering (ICSE 2002).

ACM, New York, NY, pp. 467–477.

Korel, B., 1988. PELAS: Program error-locating assistant system.

IEEE Transactions on Software Engineering 14 (9), 1253–1260.

Korel, B., Laski, J., 1988. Dynamic program slicing. Information

Processing Letters 29 (3), 155–163.

Korel, B., Laski, J., 1988. STAD: a system for testing and debugging:

user perspective. In: Proceedings of the 2nd Workshop on Software

Testing, Verification, and Analysis. IEEE Computer Society,

Washington, DC, pp. 13–20.

Krause, E.F., 1973. Taxicab geometry. Mathematics Teacher 66 (8),

695–706.

Lau, M.F., Yu, Y.T., 2005. An extended fault class hierarchy

for specification-based testing. ACM Transactions on Software

Engineering and Methodology 14 (3), 247–276.

Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I., 2003. Bug isolation

via remote program sampling. In: Proceedings of the 2003 ACM

SIGPLAN Conference on Programming Language Design and

Implementation (PLDI 2003). ACM, New York, NY, pp. 141–154.

Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I., 2005.

Scalable statistical bug isolation. In: Proceedings of the 2005

ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI 2005). ACM, New York, NY, pp. 15–

26.

Liu, C., Fei, L., Yan, X., Midkiff, S.P., Han, J., 2006.

Statistical debugging: a hypothesis testing-based approach. IEEE

Transactions on Software Engineering 32 (10), 831–848.

Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.P., 2005. SOBER:

statistical model-based bug localization. In: Proceedings of the

Joint 10th European Software Engineering Conference and 13th

ACM SIGSOFT International Symposium on Foundations of

Software Engineering (ESEC 2005/FSE-13). ACM, New York,

NY, pp. 286–295.

Lomax, R.G., 2007. Statistical Concepts: a Second Course. Lawrence

Erlbaum Associates, Mahwah, NJ.

Lourenc̨o, F., Lobo, V., Bac̨ão, F., 2004. Binary-based similarity

measures for categorical data and their application in self-

organizing maps.

Lowry, R., 2006. Concepts and Applications of Inferential

Statistics. Vassar College, Poughkeepsie, NY. Available at

http://faculty.vassar.edu/lowry/webtext.html.

Mann, H.B., Whitney, D.R., 1947. On a test of whether one of two

random variables is stochastically larger than the other. Annals of

Mathematical Statistics 18 (1), 50–60.

Masri, W., 2009. Fault localization based on information flow

coverage. Software Testing, Verification and Reliability.

doi:10.1002/stvr.409.

Maxwell, A.E., Pilliner, A.E., 1968. Deriving coefficients of

reliability and agreement for ratings. The British Journal of

Mathematical and Statistical Psychology 21 (1), 105–116.

Naish, L., Lee, H.J., Ramamohanarao, K., 2011. A model for

spectra-based software diagnosis. ACM Transactions on Software

Engineering and Methodology 20 (3), article no. 11.

Ochiai, A., 1957. Zoogeographic studies on the soleoid fishes found

in Japan and its neighbouring regions. Bulletin of the Japanese

Society for Fish Science 22, 526–530.

Ottenstein, K.J., Ottenstein, L.M., 1984. The program dependence

graph in a software development environment. In: Proceedings

of the ACM Symposium on Practical Software Development

Environments. ACM, New York, NY, pp. 177–184.

Renieris, M., Reiss, S.P., 2003. Fault localization with nearest

neighbor queries. In: Proceedings of the 18th IEEE International

Conference on Automated Software Engineering (ASE 2003).

IEEE Computer Society, Los Alamitos, CA, pp. 30–39.

27

Rogers, D.J., Tanimoto, T.T., 1960. A computer program for

classifying plants. Science 132 (3434), 1115–1118.

Rogot, E., Goldberg, I.D., 1966. A proposed index for measuring

agreement in test-retest studies. Journal of Chronic Diseases 19

(9), 991–1006.

Russel, P.F., Rao, T.R., 1940. On habitat and association of species

of Anopheline larvae in south-eastern Madras. Journal of Malarial

Institute of India 3, 153–178.

Scott, W.A., 1955. Reliability of content analysis: the case of nominal

scale coding. Public Opinion Quarterly 19 (3), 321–325.

Tip, F., 1995. A survey of program slicing techniques. Journal of

Programming Languages 3 (3), 121–189.

Vessey, I., 1986. Expertise in debugging computer programs: an

analysis of the content of verbal protocols. IEEE Transactions on

Systems, Man, and Cybernetics 16 (5), 621–637.

Weiser, M., 1984. Program slicing. IEEE Transactions on Software

Engineering SE-10 (4), 352–357.

Wilcoxon, F., 1945. Individual comparisons by ranking methods.

Biometrics Bulletin 1 (6), 80–83.

Wong, W.E., Debroy, V., Choi, B., 2010. A family of code coverage-

based heuristics for effective fault localization. Journal of Systems

and Software 83 (2), 188–208.

Wong, W.E., Qi, Y., 2009. BP neural network-based effective fault

localization. International Journal of Software Engineering and

Knowledge Engineering 19 (4), 573–597.

Wong, W.E., Qi, Y., Zhao, L., Cai, K.-Y., 2007. Effective

fault localization using code coverage. In: Proceedings of the

31st Annual International Computer Software and Applications

Conference (COMPSAC 2007), vol. 1. IEEE Computer Society,

Los Alamitos, CA, pp. 449–456.

Wong, W.E., Wei, T., Qi, Y., Zhao, L., 2008. A crosstab-

based statistical method for effective fault localization. In:

Proceedings of the 1st International Conference on Software

Testing, Verification, and Validation (ICST 2008). IEEE Computer

Society, Los Alamitos, CA, pp. 42–51.

Yu, Y., Jones, J.A., Harrold, M.J., 2008. An empirical study of the

effects of test-suite reduction on fault localization. In: Proceedings

of the 30th International Conference on Software Engineering

(ICSE 2008). ACM, New York, NY, pp. 201–210.

Zeller, A., 2002. Isolating cause-effect chains from computer

programs. In: Proceedings of the 10th ACM SIGSOFT

International Symposium on Foundations of Software Engineering

(SIGSOFT 2002/FSE-10). ACM, New York, NY, pp. 1–10.

Zeller, A., Hildebrandt, R., 2002. Simplifying and isolating failure-

inducing input. IEEE Transactions on Software Engineering 28 (2),

183–200.

Zhang, X., Gupta, N., Gupta, R., 2006. Locating faults through

automated predicate switching. In: Proceedings of the 28th

International Conference on Software Engineering (ICSE 2006).

ACM, New York, NY, pp. 272–281.

Zhang, Z., Chan, W.K., Tse, T.H., Hu, P., Wang, X., 2009a. Is

non-parametric hypothesis testing model robust for statistical fault

localization? Information and Software Technology 51 (11), 1573–

1585.

Zhang, Z., Chan, W.K., Tse, T.H., Jiang, B., Wang, X., 2009b.

Capturing propagation of infected program states. In: Proceedings

of the 7th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT International Symposium

on Foundations of Software Engineering (ESEC 2009/FSE-17).

ACM, New York, NY, pp. 43–52.

Zhang, Z., Jiang, B., Chan, W.K., Tse, T.H., 2008. Debugging

through evaluation sequences: a controlled experimental study. In:

Proceedings of the 32nd Annual International Computer Software

and Applications Conference (COMPSAC 2008). IEEE Computer

Society, Los Alamitos, CA, pp. 128–135.

Zhang, Z., Jiang, B., Chan, W.K., Tse, T.H., Wang, X., 2010. Fault

localization through evaluation sequences. Journal of Systems and

Software 83 (2), 174–187.

Zhenyu Zhang is an assistant research professor

at the State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences.

He received a B.Eng. degree and an M.Sc. degree

from Tsinghua University, and a Ph.D. degree from

The University of Hong Kong. Dr. Zhang’s research

interests include debugging and testing of software

engineering artifacts. Dr. Zhang published widely in

international journals and conferences, including two

articles that won the best paper awards from COMPSAC

2008 and COMPSAC 2009, as well as articles published

in FSE, ICSE, ASE, JSS, IST, and other venues.

He is a program chair of IWPDC 2010 and serves

on the program committees of various international

conferences.

W.K. Chan is an assistant professor at City

University of Hong Kong. He received his Ph.D. degree

from The University of Hong Kong. His main research

interest is in solving software engineering issues in

program testing and analysis, and service composition.

He is on the editorial board of Journal of Systems and

Software.

T.H. Tse is a professor in computer science at The

University of Hong Kong. He received his Ph.D. from

the London School of Economics and was twice a

visiting fellow at the University of Oxford. His current

research interest is in program testing, debugging, and

analysis. He is the steering committee chair of QSIC

and an editorial board member of Software Testing,

Verification and Reliability; Journal of Systems and

Software; Software: Practice and Experience; and

Journal of Universal Computer Science. He is a fellow

of the British Computer Society, a fellow of the Institute

for the Management of Information Systems, a fellow of

the Institute of Mathematics and its Applications, and a

fellow of the Hong Kong Institution of Engineers. He

was decorated with an MBE by The Queen of the United

Kingdom.

Yuen Tak Yu is an associate professor at Department

of Computer Science of City University of Hong Kong.

He received his B.Sc. degree with first class honors

from The University of Hong Kong and Ph.D. degree

from the University of Melbourne, Australia. His

research publications have appeared in various scholarly

28

journals, including ACM Transactions on Software

Engineering and Methodology and IEEE Transactions

on Software Engineering. His research interests include

software testing, software quality, e-commerce and

computer in education. He is a member of the editorial

board of International Journal of Web Engineering and

Technology. He was a program chair of the 2nd Asia-

Pacific Conference on Quality Software (APAQS 2001)

and has served on the program committees of various

international conferences and workshops.

Peifeng Hu received his M.Sc. degree from Tsinghua

University and his Ph.D. degree from the University

of Hong Kong. He has joined China Merchant (Hong

Kong) Bank as a financial analyst since 2007.

29

0
4

0
.6

0
.8 1

ntage of

/statements

locate a fault

0

0
.2

0
.4

Percen

predicates/

exmained to 0
6

0
.8 1

e of

tements

ate a fault

0

0
.2

0
.4

0
.6

Percentage

predicates/stat

exmained to locae0
.8 1

f

ments

a fault

0

0
.2

0
.4

0
.6

Percentage of

redicates/statem

mained to locate

0

p

exm

T
ech

n
iq

u
es

F
ig

u
re

8
:

E
ffectiv

en
ess

co
m

p
ariso

n
b

etw
een

n
o

n
-p

aram
etric

m
eth

o
d

s
an

d
statem

en
t-lev

el
tech

n
iq

u
es.

3
0

0
.0

5

0
.1

ntage of

/statements

locate a fault

0

0
.0

5

Percen

predicates/

exmained to 0
.1

e of

tements

ate a fault

0

0
.0

5

Percentage

predicates/stat

exmained to locae0
.1

f

ments

a fault

0

0
.0

5

Percentage of

redicates/statem

mained to locate

0

p

exm

T
ech

n
iq

u
es

F
ig

u
re

9
:

E
ffectiv

en
ess

co
m

p
ariso

n
b

etw
een

n
o

n
-p

aram
etric

m
eth

o
d

s
an

d
statem

en
t-lev

el
tech

n
iq

u
es

(zo
o

m
ed

in
).

3
1

0
.0

0
0

1

0
.0

0
1

0
.0

1

0
.1 1

xon

tney

card

Dice

okal

M1

M2

rs & …

man

etc.

uclid

mple

ng3

cott

kil1

mple…

hiai

hiai2

got2

ng2

ntula

leiss

Dice

got1

oltar

rlap

berg

kil2

Rao

ng1

Mean

Mean

metic…

ohen

man

mimimum

Wilco

Mann-Whit

Jacc

Sorensen-D

So

Roger

Goodm

Mamming

Eu

Am

Wo

S

Kulczynsk

Sim

Oc

Och

Rog

Wo

Taran

Fl

D

Rog

Zo

Over

Anderb

Kulczynsk

Russell and R

Wo

Geometric M

Harmonic M

Arithm

Co

Hamm

1

maximum

0
.1

Mann-Whitney

Wilcoxon

Jaccard

Sorensen-Dice

Goodman

Kulczynskil1

Tarantula

Ochiai

M2

Wong3

Anderberg

Kulczynskil2

Russell and Rao

Wong1

Dice

Rogot1

Hamman

Zoltar

Simple …

Sokal

M1

Rogers & …

Mamming etc.

Euclid

Overlap

Ample

Wong2

Ochiai2

Geometric Mean

Harmonic Mean

Arithmetic …

Cohen

Scott

Fleiss

Rogot2

m

1

0
.0

1

0
.1

Wilcoxon

Mann-Whitney

Jaccard

Sorensen-Dice

Goodman

Kulczynskil1

Ochiai

Tarantula

M2

Wong3

Ochiai2

Ample

Rogot2

Scott

Simple …

M1

Sokal

Mamming etc.

Euclid

Fleiss

Anderberg

Kulczynskil2

ussell and Rao

Wong1

Rogers & …

Dice

Rogot1

Hamman

Zoltar

Arithmetic …

Cohen

eometric Mean

armonic Mean

Wong2

Overlap

mean

M

S

M

Ru

Ge

H

0
.0

0
1

0
.0

1

0
.1 1

hitney

coxon

M2

Wong3

Ochiai

nskil1

chiai2

accard

n-Dice

dman

Ample

Scott

antula

ogot2

imple …

Fleiss

Sokal

M1

ng etc.

Euclid

gers & …

erberg

nskil2

d Rao

Wong1

ogot1

Dice

mman

Mean

Mean

hmetic …

Cohen

Zoltar

verlap

Wong2

median

Mann-Wh

Wilc

W

O

Kulczyn

Oc

Ja

Sorensen

Goo

A

Tara

Ro

Si

F

Mammin

E

Rog

Ande

Kulczyn

Russell and

W

Ro

Ham

Geometric M

Harmonic M

Arith

C

Z

Ov

W

0
.1 1

d deviation

0
.0

1

Jaccard

Sorensen-Dice

Goodman

Wilcoxon

Mann-Whitney

Kulczynskil1

Tarantula

Ochiai

Anderberg

Kulczynskil2

Russell and Rao

Wong1

Dice

M2

Wong3

Rogot1

Hamman

Zoltar

Arithmetic …

Cohen

Geometric Mean

Harmonic Mean

Ochiai2

Ample

Overlap

Rogers & …

Scott

Simple …

Rogot2

Sokal

Mamming etc.

Euclid

M1

Fleiss

Wong2

standard

F
ig

u
re

1
0

:
M

in
im

u
m

,
m

ax
im

u
m

,
m

ean
,

m
ed

ian
,
an

d
stan

d
ard

d
ev

iatio
n

o
f

effectiv
en

ess
o

f
T

C
3

an
d

T
C

4
tech

n
iq

u
es

o
v
er

th
e

s
p
a
c
e

p
ro

g
ram

.

3
2

70%

75%

in
ed

60%

65%

70%

p
re

d
ic

a
te

s
ex

a
m

i

50%

55%

P
er

ce
n

ta
g

e
o

f
p

Wilcoxon Mann-Whitney

CBI SOBER

F t t t t t
45%

40 80 160 320 640 1280

Size of test suite

F-test t-test

Figure 11: Effect of test suite size. (The lower the curve is, the better will be the technique.)

33

0.400
0.397

0.605
0.613

0.387
0.544

overall

0.826
0.821

1.311
1.333

0.799
1.598

replace

1.223
1.218

1.657
1.674

1.192

0 121

1.002

print_tokens &

print_tokens2

ro
g

ra
m

s

0.158
0.155

0.265
0.278

0 072

0.149

0.048

0.121

schedule &

schedule2

P
r

0.077
0.076

0.129

0 046

0.129

0.024

0.072

0.021

tot_info

Wilcoxon

Mann-Whitney

CBI

SOBER

0.025
0.024
0.051
0.046

0.0 0.5 1.0 1.5 2.0

tcas

Mean run time (seconds)

SOBER

F-test

t-test

Figure 12: Time spent by each technique on subject programs.

34

	1 Introduction
	1.1 Background
	1.2 Our work

	2 Related work
	2.1 Program slicing
	2.2 Predicate-based statistical fault-localization techniques
	2.3 Statement-level statistical fault-localization techniques
	2.4 Other fault-localization techniques

	3 Our study
	3.1 Preliminaries
	3.2 Predicate-based statistical fault-localization framework
	3.3 Research questions

	4 Experiment
	4.1 Subject programs
	4.2 Alternative hypothesis testing methods for TC1, TC2, and TC3 techniques
	4.3 Effectiveness metric for TC1, TC2, TC3, and TC4 techniques
	4.4 Experimental setup
	4.5 Effectiveness comparison of TC1, TC2, and TC3 techniques
	4.6 Effectiveness comparison of TC3 and TC4 techniques
	4.7 Effect of test suite size on efficacy of TC1, TC2, and TC3 techniques
	4.8 Efficiency analysis of TC1, TC2, and TC3 techniques
	4.9 Answering research questions
	4.10 Threats to validity
	4.10.1 Internal validity
	4.10.2 Construct validity
	4.10.3 External validity

	4.11 Discussions

	5 Conclusion

