
J

A
t

P
S

a

A
R
R
1
A
A

K
H
M
C

1

t
f
t
g
s
s
a
m
g
r
t

t
a
(
k
t
o
t
e
t

0
d

ARTICLE IN PRESSG Model
SS-8657; No. of Pages 14

The Journal of Systems and Software xxx (2011) xxx–xxx

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

framework for developing home automation systems: From requirements
o code

edro Sánchez ∗, Manuel Jiménez, Francisca Rosique, Bárbara Álvarez, Andrés Iborra
ystems and Electronic Engineering Division (DSIE), Technical University of Cartagena, Campus Muralla del Mar s/n, 30202, Cartagena, Spain

r t i c l e i n f o

rticle history:
eceived 28 June 2010
eceived in revised form
4 December 2010
ccepted 19 January 2011

a b s t r a c t

This article presents an integrated framework for the development of home automation systems following
the model-driven approach. By executing model transformations the environment allows developers to
generate executable code for specific platforms. The tools presented in this work help developers to
model home automation systems by means of a domain specific language which is later transformed
vailable online xxx

eywords:
ome automation
odel driven

ode generation

into code for home automation specific platforms. These transformations have been defined by means of
graph grammars and template engines extended with traceability capabilities. Our framework also allows
the models to be reused for different applications since a catalogue of requirements is provided. This
framework enables the development of home automation applications with techniques for improving
the quality of both the process and the models obtained. In order to evaluate the benefits of the approach,
we conducted a survey among developers that used the framework. The analysis of the outcome of this

ition
survey shows which cond

. Introduction

Rapid advances in electronics, information and communications
echnology (leading to miniaturization and improvement of per-
ormance of computers, sensors and networking) have given rise
o the development of several home automation (HA) technolo-
ies (Chana et al., 2009). HA applications integrate comfort, energy
aving, security and communications functions. The aim of an HA
ystem is to provide homes with a certain degree of ‘intelligence’
nd to improve the quality of life of its inhabitants. Tasks like auto-
atically switching lights and heating, cutting off the supply when

as or water leaks are detected or controlling the home devices
emotely from a mobile or a computer through an Internet connec-
ion are typical applications of HA domain.

There are several HA standards and protocols adopted by
he leading companies in the market. Some notable examples
re KNX (ISO/IEC14543-3-X and EN50090 standards), Lonworks
ISO/IEC 14908, EN14908 and EIA-709-1 standards) and X10 (a well
nown international and open industry standard for communica-
ion among electronic devices). However, one of the main problems
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

f HA development resides in the fact that there is no consensus in
he standard to implement these applications. As stated in Miori
t al. (2006), it is improbable that there will be a single dominant
echnology for HA in short term. Furthermore, each of such stan-

∗ Corresponding author. Tel.: +34 968326460; fax: +34 968325973.
E-mail address: pedro.sanchez@upct.es (P. Sánchez).

164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2011.01.052
s should be fulfilled in order to increase reusability.
© 2011 Elsevier Inc. All rights reserved.

dards provides its own software suite to create HA applications and
program the devices in question. Hence the particular technology
(specific platform) must be selected at the initial design stage, as
much as the tools and devices to be used depend on this choice.
These facts make the development of HA applications strongly plat-
form dependent, making it very difficult to raise the abstraction
level and work with HA domain concepts rather than technology
elements.

This drawback can be avoided by adopting the well known
Model-Driven Development technique (MDD) (Selic, 2003). In this
approach, application code can be automatically generated from
platform-independent models. Although MDD techniques have
been developed some years ago, there are no well known integrated
frameworks for developing HA systems. However, there is currently
a need for the creation of tools to develop these systems. These
tools should allow the generation of code for several platforms.
In this work, we present an integrated framework that allows the
definition of HA systems at different levels of abstraction, from
requirements to code. Taking advantage of using a domain specific
language (DSL) (Mernik et al., 2005) the developer can work with
graphical elements and concepts of the HA domain.

DSLs provide easy, intuitive domain-specific descriptions of
systems using graphical or textual models. A DSL includes the
veloping home automation systems: From requirements to code.

tooling infrastructure for creating and transforming models into
executable instances of the language (Kelly and Tolvanen, 2008). In
this context, the appearance of the MDD approach has increased the
research on these languages as well as new automatic code genera-
tion techniques. Nevertheless, the development of DSLs is very time

dx.doi.org/10.1016/j.jss.2011.01.052
dx.doi.org/10.1016/j.jss.2011.01.052
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:pedro.sanchez@upct.es
dx.doi.org/10.1016/j.jss.2011.01.052

 INJ

2 stems

c
b
t
p

M
a
e
i
p
d
s
D
p

r
m
e
f
f
i
a
i
t
i
m
n

f

•

•

•

•

d
3
o
t
c
a
t
t

2

2

s
t
f
d
g
r
t
s
t

ARTICLEG Model
SS-8657; No. of Pages 14

P. Sánchez et al. / The Journal of Sy

onsuming: ideally, models made using a particular DSL should
e able to be reused across several implementations to amortize
his effort. The reuse of DSL models across different development
rojects can help reduce the cost of these projects.

Several works discuss advantages and drawbacks of using DSLs.
aintenance, flexibility, productivity, reliability and reusability are

ttributes commonly found in these types of languages (Hermans
t al., 2009). With DSLs, reuse is feasible at the model level, making
t possible to reuse partial or entire models, rather than pieces of
latform-dependent code. Thus, the beginning of a new software
evelopment project can be done from existing reusable assets. A
urprising fact is that reuse hardly plays a significant role in current
SLs as demonstrated in Hermans et al. (2009) for the study of a
articular DSL.

We identify two key aspects that determine the feasibility of
euse in the context of DSLs: (1) to select a model or a model frag-
ent for reuse you must know what is does; and (2) to achieve

ffective reuse, you must be able to discover the model fragment
aster than you could build it. Besides, the use of best practices
or DSL definition and implementation determines the success
n model reuse. For instance, language creators usually try to
void modeling errors by imposing dozens of strongly enforced
ntegrity rules that prevent modelers from temporarily breaking
he rules while they are trying to reuse their models. Moreover,
nterconnected models should have minimal coupling to improve

odularization and avoid data duplication which lead to mainte-
ance and reuse problems.

In short, this article contributes to the state of the art with the
ollowing features:

A framework that integrates a set of tools for defining HA appli-
cations at different levels of abstractions.
A set of model transformations (Mens and van Gorp, 2006) that
enables developers to get full executable code.
Traceability capabilities (Ramesh and Jarke, 2001) to improve
quality both of the process and of the models obtained.
A survey that demonstrates the success of reusing models in MDD
by means of generic requirements. We investigate factors that
contribute to this success.

The article is structured as follows: Section 2 deals with intro-
ucing the basis of the proposal and the related works. Section
presents the proposed framework and also offers a general

verview of the implementation using Eclipse. Section 4 explains
he developed tool for managing traceability. Section 5 gives a
ost model of the approach. Section 6 details an evaluation of the
pproach based on a survey and a comparison of the developed
ool with two HA commercial tools. Finally, Section 7 is dedicated
o conclusions and future work.

. Foundations and related work

.1. Home automation systems development

At the present time, developers of HA applications mainly use
oftware tools provided either by the device manufacturer, in
he case of proprietary system, or by the associations responsible
or providing support for the technology in the case of the stan-
ard systems. These tools are usually platform-dependent, code
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

eneration-oriented integrated environments which do little to
aise the level of abstraction. Moreover, the concrete syntax that
hey use is not usually very intuitive, so that the user requires very
pecialized training and can only work in the immediate context of
he solution.
 PRESS
and Software xxx (2011) xxx–xxx

The whole process of development of HA applications is carried
out by an expert in the domain who collates the customer’s require-
ments for an installation (elements to be integrated, services
required, selection of a concrete technology, etc.) based on his own
experience. This expert carries out the selection and deployment
of the devices and afterwards programs them (using a platform-
dependent development infrastructure) so as to achieve the desired
functionality. Working in this manner it is rather difficult to achieve
some of the desired attributes of software systems such as inter-
operability, flexibility, re-use and productivity. Besides, tools to
develop projects are completely different in each platform, so
learning a new technology implies new training. Thus, developers
usually focus on a particular technology, leaving aside other plat-
forms. This is due to the long training time and high specialization
required (a good developer would need to have undertaken around
100 h of training and have months of practice).

2.2. Related work

2.2.1. MDD for HA development
The literature offers a few examples of works which try to

reach in an integrated way the development of HA systems using
an MDD approach. Among these it is important to highlight the
works of Muñoz et al. (2006), Voelter and Groher (2007) and Nain
et al. (2008) that outline the necessity of using a model driven
approach in HA systems development. The aim is to increase the
level of abstraction, the productivity and the quality of the software,
besides maintaining the independence of the implementation plat-
form. These proposals represent a good example of the advantages
that the use of MDD offers in the development of HA systems, but
they also present some drawbacks. In the first place, Muñoz uses
the UML notation for requirement elicitation which is not very intu-
itive for experts in the field of HA. In the work of Voelter, a set
of HA devices is defined in the meta-model. Applications are cre-
ated using the tool named Tree Editor provided by the plug-in EMF
for Eclipse. Hence to use an HA device not included in the meta-
model, it is necessary to build a new meta-model or extend the
existing one. Nain presents EnTiMid as a middleware composed of
several layers. A driver layer is in charge of the connection between
the devices and the Unified Service layer. A bridge layer links the
Unified Service instances to diverse service technologies such as
Universal Plug And Play (UPnP) and Devices Profile for Web Ser-
vices (DPWS) (Jammes et al., 2005). The work defines EnTiMid as a
middleware implementation that supports various services access
models and also describes how these artifacts are generated using
MDD.

In these proposals the code generation is oriented to obtain OSGi
(Open Service Gateway Initiative) drivers for a server or middle-
ware platform, and not to the programming of the HA devices.
Therefore, it will always be necessary an expert of the specific
platform to program these devices.

Contrary to the previous examples, in our framework the level of
abstraction and usability of requirements modeling rises with the
use of a DSL that uses specific concepts of the domain. In addition,
our proposal guides the code generation to the automatic program-
ming of the devices of the selected HA technology. In this way the
need for specific knowledge of each platform is avoided, as well as
the intervention of an expert in the technology.

2.2.2. Reuse of DSL models
The literature distinguishes between two general types of
veloping home automation systems: From requirements to code.

reuse approaches (von Knethen et al., 2002): composition and
generation-based approaches. Composition-based approaches are
based on composing reusable assets. This type of approach is
typically applied for design or code reuse. Generation-based
approaches focus on instantiating reusable abstractions. Popular

dx.doi.org/10.1016/j.jss.2011.01.052

 IN PRESSJ

stems and Software xxx (2011) xxx–xxx 3

e
2
b
p
(
f
o
q
t
p

u
c
t
s
S
o
f
a
d
a
i
S
t
b
(

o
c
t
i
a
s

3

o
f
l
t
p
d
r
a

w
D

ARTICLEG Model
SS-8657; No. of Pages 14

P. Sánchez et al. / The Journal of Sy

xamples are product-line approaches (Clements and Northrop,
002) or patterns (Lam, 1998). For requirements reuse, generation-
ased approaches are more popular. A detailed survey about
roduct line based requirements reuse can be found in Bühne et al.
2006). In Jacob and Reed (2000) a summary of general approaches
or requirements reusing is given. Others have analyzed the reuse
f requirements in domains where a set of requirements are fre-
uently used (Lam et al., 1997). All these works have in common
he interest in reuse as a key to improving software development
roductivity and quality.

Nowadays there is also a considerable interest in evaluating the
se of DSLs in practice. In DSM (2010), there are some examples and
ase studies of how the use of DSLs has been applied in many indus-
rial applications (mobile applications, business process, embedded
ystems, etc.), consistently improving productivity by 10 times.
everal authors demonstrate that the use of DSLs raises the level
f abstraction beyond coding and consequently make development
aster and easier. For example, in Kärnä et al. (2010) an approach
pplied to sports instruments and heart rate monitoring devices is
escribed. The evaluation of this approach provides an increase of
t least 750% in developer productivity, and what is more, a great
mprovement in the quality of the code and development process.
ince DSLs are based on the concepts already known and used in
he domain, these constructs are easier to understand and remem-
er for all developers, promoting the reuse of validated solutions
Kelly and Tolvanen, 2008).

All the previous works concentrate either on requirements reuse
r in the use of DSLs but none of them analyzes the benefits of
ombining both approaches. Furthermore, there is little evidence in
he literature to suggest that requirements reuse is widely practiced
n DSL-based proposals. At the same time, the reuse of requirements
nd models in the context of MDD applied to DSLs is also in an initial
tage.

. A framework for HA systems development

Fig. 1 shows the main layers and elements involved in the use
f the proposed framework for the development of HA systems
ollowing the MDD approach. As can be seen, the different MDD
evels correspond to: HA requirements, domain specific descrip-
ions, UML-based component level, and executable code for specific
latforms. The intermediate UML-based component level allows
evelopers the integration of other types of applications such as
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

obotics and computer vision. Each model is built or obtained
ccording to its meta-model by following the MDD paradigm.

Fig. 2 illustrates the steps involved in the use of the frame-
ork. The different abstraction levels correspond to requirements,
SL (using a predefined catalogue of functional units as detailed

associated
with

requirements
catalogue

m
fra

(

catalogue
inspection

fragment
reuse

system
requirements DS

application model
construction

by reuse

Fig. 2. A scheme of th
Fig. 1. Overview of the framework.

at (Jimenej, 2009)), and executable code for specific platforms (in
our case, KNX/EIB for deploying HA systems). The correspondences
between the requirements and the DSL level are established man-
ually. In this way, the partial solutions for each HA requirement are
catalogued. When building a new application, the user may inspect
this catalogue identifying the requirements that are going to be
used. By doing this it is possible to reuse the solutions adopted with
the DSL in the development of previous applications. From the DSL
level towards code generation, the transformations are carried out
automatically. Each model-to-model transformation is registered
in the corresponding traceability model that is later processed by a
tool that provides the user with a set of reports (as will be described
later in Section 4).

As demonstrated in Section 6, the existence of a ‘generic’
requirements catalogue for subsequent system instantiation can
significantly contribute to model reuse. Modelers select a subset
of these generic requirements when developing a new system. For
each generic requirement a model fragment is given using the DSL.
A model fragment is part of a complete model in the sense that
accomplishes part of the desired functionality. Then, reuse (see
Fig. 3) may be fulfilled by the integration of all the model fragments
into the system model to be developed. It is possible that a model
fragment would be syntactically or semantically incomplete. Thus,
veloping home automation systems: From requirements to code.

integrity rules should be disabled temporarily in order to facilitate
the integration of these model fragments.

The following aspects are required in order to achieve a
framework with such functionality: (1) to develop graphical user

odel
gments
DSL)

model
refinement

L model Platform Specific
Code for HA

model to model and
model to code

transformations

e methodology.

dx.doi.org/10.1016/j.jss.2011.01.052

ARTICLE IN PRESSG Model
JSS-8657; No. of Pages 14

4 P. Sánchez et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

gene

i
b
h
w
a

3

c
t
e
e
r
s
h
s
c

a
a
i
s
r
t
e

Fig. 3. Overview of the approach: from

nterface editors, and (2) to define and implement transformations
etween the defined layers from DSL models to code. All these tools
ave been implemented by using the Eclipse development frame-
ork. The following subsections give the details of the solutions

dopted in each layer.

.1. Requirements management

In order to integrate requirements management in the MDD pro-
ess it is necessary to adopt a meta-model that allows developers
o catalogue them. At the present time it is possible to find differ-
nt requirements meta-models in the literature (Vicente-Chicote
t al., 2007; Molina and Toval, 2009) with different assumptions and
elationships. Such meta-models improve requirements reuse and
erve as structured requirements reference models. In this work, we
ave decided to use a basic meta-model that has enough expres-
iveness to represent requirements. Fig. 4 shows the class diagram
orresponding to the meta-model proposed.

This meta-model is integrated in the development environment
nd it has the level of complexity and sufficient versatility to be
ble to adopt an approach of requirements reuse. This meta-model
s valid for other domains and, at the same time, simple in its
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

tructure. Thus, we decided to implement an Eclipse-compliant
equirements meta-model editor from scratch in order to facili-
ate the integration with the rest of software modules. The root
lement is called Catalogue where a group of requirements (Require-

Fig. 4. Basic requirements meta-model.
ric requirements to integrated models.

ment) is integrated. Each one of these requirements includes a
name, a description and the validation procedure that the user
should adopt to check that the deployed system has the desired
capability. For example, given the requirement “there should be
smoke detection”, the validation procedure would establish “pro-
voke a simulated situation with smoke and verify that alarms go on”.
The requirements are not isolated, instead they are related to the
whole. To this end the element RelationShip allows the connection
of a requirement (source relationship) with one or more destina-
tion requirements (target relationship). The type corresponding to
the relationship among requirements is identified with the ele-
ment TypeOfRelationship. Table 1 shows an excerpt of a catalogue
of requirements for HA systems keeping in mind the structure of
this meta-model.

As it can be seen relationships have been considered in the cases
of requirements 3, 5, 8 and 9. In some cases the presence of a spe-
cific requirement is required (for example, requirement number 5
requires number 4), at other times at least one of those indexed
is required (as in the case of requirement number 3 with regard
to numbers 1 and 2). The relationship can also be of inclusion
(see requirement number 9) where in this case the requirement
is indicated as being of a greater conceptual level. The relation-
ship type among requirements is not closed and depends on the
user. Nevertheless, this factor should be kept in mind because of
the implications when deriving the specified models with the DSL.
The matches between each requirement and fragments of the DSL
model are traced. By proceeding in this manner, the specification
at the DSL level of a new application starts by reusing model frag-
ments. Finally, all the model fragments (reused and new ones) are
integrated into a single model to undergo the successive transfor-
mations to code.

3.2. Domain specific descriptions

The framework includes a DSL (see (Jimenej, 2009) for a detailed
description) for modeling HA systems in a platform-independent
way. Such a DSL provides easy and intuitive descriptions of HA
systems using graphical models. Any HA system incorporates a
number of elements (called Functional Units), which are present
veloping home automation systems: From requirements to code.

in all the technologies and standards relevant to the domain. These
differ in their architecture and the protocols they use, but they are
identical when it comes to capability. In order to encourage the
re-use of these functional units and to avoid having to repeatedly
define the same unit for each application, it was decided to use

dx.doi.org/10.1016/j.jss.2011.01.052

ARTICLE IN PRESSG Model
JSS-8657; No. of Pages 14

P. Sánchez et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 5

Table 1
Example of some of the catalogued requirements.

Id Name Description Validation procedure Targets Type

1 Light power on/power off Control of power on/power off
of a light (from any HA device)

Activate the switch and check
that it turns on/turns off the
light controlled by this switch

None None

2 Lighting level regulation Regulation of the intensity of a
light

Check that when the lighting
level regulator is activated the
light increases/decreases
correctly

None None

3 Light automatic power
on/power off

Power on/power off of a light
automatically when presence
is detected

Enter the room and check the
lights switch on automatically

1, 2 Includes one or
more

4 Blind raising/lowering Control of the raising/lowering
of a blind from any device

Activate the corresponding
switch and check that the blind
rises/lowers

None None

5 Blind automatic
raising/lowering

The raising/lowering of a blind
automatically according to
external light intensity

Check that in the evening the
blinds lower automatically

4 Includes

6 Burglar alarm Detection of intruders through
the use of presence detectors

Activate the alarm and check
that this alarm goes off when
entering in the building

None None

7 Climate control Control of temperature
increase/decrease

Indicate a temperature and
check that this temperature is
reached

None None

8 Automatic climate control Automatic temperature
increase/decrease according to
timetables and presence

Check that in the absence of
people in the building the
temperature reaches ± 4 ◦C of
the instructed temperature

7 Includes

9 Energy saving Energy consumption saving Check energy consumption 3, 5, 8 Includes all of
them

10 Smoke alarm Detection of smoke Generate smoke and check that None None

a
u
w
f
d
c
t
l
v
c
i
a
b
t
c

i
g
p
t
t

o
a
r
a
5
p
p
I
t
1
c
n

11 Flood alarm Detection of water leaks

catalogue of reusable functional units. For their part, functional
nits have some Services through which they are able to interact
ith other units. Many of these services are repeated among the

unctional units, so that a catalogue of services is available with
efinitions of services that can be reused in any functional unit. Basi-
ally, any HA application is described with the DSL by means of
he instantiation of functional units that are predefined in a cata-
ogue. These instances can be configured by adding the necessary
alues to their parameters. The links between functional units indi-
ates, through services, the way in which these functional units will
nteract with the rest of the system. All the functional units have
n associated location in a Building Structure View. This view has
een taken into account in the DSL meta-model definition. Since
he graphical editor is currently under development, this view is
reated using a hierarchical tree-based editor (Eclipse Tree Editor).

For implementing the DSL tool we have used the Eclipse Graph-
cal Modeling Framework (GMF), which helps to automatically
enerate graphic editors as Eclipse plug-ins from models. The tool
rovides an integrated environment to design HA applications with
he DSL. Fig. 5 shows a screenshot of some of the graphical elements
hat can be dragged to the drawing area from the palette of the tool.

Fig. 6 illustrates a snapshot of the developed tool with the part
f the DSL model corresponding to an application of lighting man-
gement with comfort and energy saving functions in a meeting
oom. To achieve energy saving and comfort, the system activates
power-off function when it detects no presence in the room after
min. The functional unit icons suggest their meanings. The com-
lete specification is given by the model’s graphical view plus the
arameterization of the corresponding functional units properties.
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

n this example, one push button controls three lighting points in
he room. Push button (PB-1) switches and dims the lights LDM-

to LDM-4. To model this behaviour, the push button has been
onnected to a dimming input controller (DMI-1) using a chan-
el link (red line) that binds required (PBactivated) and provided
the alarm is triggered
Wet the detector and check
that the alarm is triggered

None None

(DMIactivated) services (both services must be instances of the
same service definition). At the same time, lights are linked to their
controllers (DMO-1 to DMO-4), which switch and dim the lights.
Finally, controller services are associated with logical links (dashed
green lines). Presence detector PIR3-1 is interconnected through
a channel to the functional unit acting as controller (SWI-1). This
controller calls the TMtempIn service from the timer (TM-1) every
time the system detects a presence. So, the timer switches the lights
on when the system detects a presence and switches them off after
5 min of detecting no presence. (For interpretation of the references
to color in this text, the reader is referred to the web version of this
article.)

As Fig. 6 shows, the tool also includes an area where the avail-
able properties (attributes, parameters, etc.) are displayed and can
be modified for the selected element (functional unit or link). Prop-
erties are shown using editable text fields or drop-down lists to
provide an intuitive and easy access to them.

A second case study example can be seen in Fig. 7. It shows the
floor plan and the home automation devices needed to meet the
following requirements given by the client: “I want to have lights
that I can regulate in my living room and dining room. In the patio
and the balcony I’m concerned about security as it is easy to break
in. During the night we enjoy staying outside so if lights switched on
automatically that would be neat. My wife often forgets to turn off
the stove in the kitchen and it gets filled up with smoke, if you could
do anything about it that would be great. I want the shutters of the
bedrooms to go up automatically in the morning and down at night.
Last year we had a broken pipe at the bathroom and we got both levels
of the house flooded, I want to have something that tells me if there is a
veloping home automation systems: From requirements to code.

flood but just in the two bathrooms from the upper floor. Finally I would
only accept the installations if you could do it without reinstalling cable
in the whole house, perhaps with some wireless gadget. Do you want to
join us on Friday? Every Friday at 9:00 pm we play poker at the living
room”.

dx.doi.org/10.1016/j.jss.2011.01.052

ARTICLE IN PRESSG Model
JSS-8657; No. of Pages 14

6 P. Sánchez et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

f som

i
m
s
p
p
w
a
a
b
T
i
d
w
a

s
u

Fig. 5. Graphical representation and description o

Fig. 8 shows part of the DSL model that resulted from integrat-
ng DSL fragments corresponding to some requirements. As DSL

odels for each requirement are created it can be noticed that the
ame device can be used for several requirements. So an overlap-
ing effect may occur. For example lights that turn On/Off by a
ush-button, can also be turned On/Off by a presence sensor or by a
eekly timer. The same presence sensor that turns the lights On/Off

lso switches an alarm and sends an SMS to a mobile when it is
ctivated. It turns out to be the same alarm and mobile that is used
y the smoke detection and flood detection (as shown in Fig. 8).
here can be even more devices overlapping as the installation
ncreases, making it even harder to keep a trace of the correspon-
ences between devices and requirements. Therefore, classifying
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

hich devices belong to which requirements becomes a complex
nd important task.

Both the applications and the catalogue of functional units and
ervices may be modified and extended without modifying the
nderlying DSL or tools (editor, meta-models and transformations).

Fig. 6. A screenshot of the tool including the DSL model for a ligh
e of the elements used in the graphical language.

For example, to add a home entertainment system it should be
added to the list of functional units with the required/provided ser-
vices. Those services that were not already defined would be added
to the service catalogue. Once the catalogue has been expanded,
this device could be used for new applications or extensions of the
existing ones.

Other proposals, such as (Muñoz et al., 2006; Voelter and Groher,
2007; Nain et al., 2008), define devices within the meta-model
itself, so that the addition of new devices involves modifying the
meta-model and thus the transformations rules and other artifacts
involved in the code generation process.

3.3. Graph grammar transformations and code generation
veloping home automation systems: From requirements to code.

Transformations between the DSL and the component-based
lower layer are completely defined using a graph grammar-
based approach (Rozenberg, 1997) (in particular the EMT plug-in
(Biermann et al., 2006) for the Eclipse environment). The fact that

ting application with comfort and energy saving functions.

dx.doi.org/10.1016/j.jss.2011.01.052

ARTICLE IN PRESSG Model
JSS-8657; No. of Pages 14

P. Sánchez et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 7

t and a

m
m
t
a
n
e

Fig. 7. House plan with devices included in i

odels are usually represented by graphs makes a graph grammar
ore attractive than other approaches; for instance, transforma-
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

ion rules expressed by means of graphs are easier to understand
nd trace. The overall conversion from the DSL to the compo-
ent model uses several transformations. Each transformation is
xpressed with rules with a left hand side (LHS), representing

Fig. 8. DSL fragments for various requirements
descriptive table of the considered devices.

the pre-conditions for the transformation, and a right hand side
(RHS), showing the result of the transformation. Both the LHS and
veloping home automation systems: From requirements to code.

RHS are graphs, both of which usually contain elements from both
the input and output models. The inclusion of elements from the
output model in the LHS ensures that the transformations are exe-
cuted in the correct sequence. A rule may also have a Boolean

needed within the previous application.

dx.doi.org/10.1016/j.jss.2011.01.052

ARTICLE IN PRESSG Model
JSS-8657; No. of Pages 14

8 P. Sánchez et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

F l. Blac
a n of th
o

n
fi
t
f
m
g

s
p
H
b
D
i
i
o
c

c
s
s
p

ig. 9. Example of graph transformation rule: from DSL to component model leve
pplication view (DSL) instance; orange: transformation instance. (For interpretatio
f the article.)

egative application condition (NAC), which must not be satis-
ed to apply it. To apply a rule to a source graph (the graph
o be transformed), there must exist a sub-graph isomorphism
rom the LHS to the source graph. After the application, there

ust be a sub-graph isomorphism from the RHS to the result
raph.

Fig. 9 shows an example of a graph transformation rule. The rule
tates that when a service (LHS) is found it must be transformed into
orts, interfaces and services of the target component model (RHS).
owever, this rule is not applied if the transformation has already
een performed (NAC). The result of applying all the rules to the
SL fragment of Fig. 6 is the UML-based component model shown

n Fig. 10. For example, StdFUInstances of Fig. 6 are transformed
nto the SimpleComps shown in Fig. 10. For a complete description
f the DSL to component model graph transformation rules and the
onsidered meta-models see (Jimenej, 2009).

By means of additional graph grammar transformations, the
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

omponents are transformed into executable models for the
elected platform. In this regard, a target platform must first be
elected. Two key points have been identified for selection of this
latform: (1) the technology must be supported by international

Fig. 10. UML-based component model obtained after applying th
k: catalogue view (DSL) instance; red: target (component model) instance; blue:
e references to color in this figure legend, the reader is referred to the web version

standards and (2) the tools for programming the devices must be
available and able to be interfaced externally. The two leading HA
technologies mentioned above (KNX and Lonworks) fulfill these
requirements.

As our research group has a wide experience in KNX, this has
been selected as the first platform-specific infrastructure. For this
last step, a meta-model has been defined for the KNX/EIB technol-
ogy which considers the Domain Object Model (DOM) used by the
commercial ETS tool (Engineering Tool Software). Platform specific
models are independent of specific commercial tools and serve as
the source for model-to-text transformations. JET (EC, 2010) and
the macro editor called ITTools (IT, 2010) have been chosen for
implementing these transformations. The ITTools plug-in allows us
to interface to the manufacturer’s environment using the VBScript
programming language. In other words, it is a KNX/EIB specific tool
which allows the creation of programming code for this platform
by means of a scripting language, so the reuse of platform-specific
veloping home automation systems: From requirements to code.

tools is promoted.
Below an excerpt of a JET template is shown. It is used to gen-

erate the ITTools macro needed to insert new devices in the HA
project:

e graph transformation rules to the DSL example of Fig. 6.

dx.doi.org/10.1016/j.jss.2011.01.052

ARTICLE IN PRESSG Model
JSS-8657; No. of Pages 14

P. Sánchez et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 9

n of th

<

<

A

<

A

<

A

<

A

<

A

<

A

A

S

.

f
U
m
d
‘

A

A

A

A

A

A

A

S

.
‘

.
‘

.
‘

p

Fig. 11. ETS Project obtained after executio

c:iterate select = ‘‘$d’’ var = ‘‘device’’>

c:if test = ‘‘$device/@name’’>

ddDevice RefName = < c:get select = ‘‘$device/@name’’/>

/c:if>

ddDevice RefName = LCase(AddDevice RefName)

c:if test = ‘‘$device/@manufacturer’’>

ddDevice Manufacturer = < c:get select = ‘‘$device/@manufacturer’’/>

/c:if>

ddDevice Manufacturer = LCase(AddDevice Manufacturer)

c:if test = ‘‘$device/@physicalA’’>

ddDevice PhysicalAddress = < c:get select = ‘‘$device/@physicalA’’/>

/c:if>

ddDevice AuxAlreadyAdded = false

ddDevice AuxName = ‘‘new device’’ + AddDevice RefName

et AddDevice auxDR = Project.parent

. .

This template generates a VBScript macro to create a new device
or each of the devices present in the KNX model (obtained from the
ML-based component model of Fig. 10). The listing of the obtained
acro would look at follows (JET tags have been replaced with KNX

evice-specific information):
Macro for inserting device 1’

ddDevice RefName = ‘‘Universal Dimming Actuator 1-gang REG’’

ddDevice RefName = LCase(AddDevice RefName)

ddDevice Manufacturer = ‘‘Abrecth Jung’’

ddDevice Manufacturer = LCase(AddDevice Manufacturer)

ddDevice PhysicalAddress = ‘‘1.1.2’’

ddDevice AuxAlreadyAdded = false

ddDevice AuxName = ‘‘new device’’ + AddDevice RefName

et AddDevice auxDR = Project.parent

. .
Macro for inserting device 2’

. .
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

Macro for inserting device n’

. .
More macros for binding, parametrization, etc.’

More macros are also obtained for tasks like configuring device
arameters and adding binding between devices. Fig. 11 shows a
e ITTools macros for the example of Fig. 6.

screenshot of the ETS project generated from the component model
of Fig. 10 executing the mentioned macros within the tool. At the
top left the devices in the KNX topology are shown. The top right
section illustrates the configuration of the DMO-1 device with its
communication objects, used in KNX to logically bind different
functions through group addresses. The bottom part shows the
group addresses as an alternative view of the same project. Each
group address links different communication objects of different
KNX devices.

This approach for code generation is interesting in the way that it
takes advantage of the existing technology tools rather than build-
ing a whole set of new tools from scratch.

Without our framework, the starting point for a traditional
developer would be the creation of a project by interacting manu-
ally with the ETS tool from the outset. With ETS the reuse of partial
solutions from application to application is rather constrained. For
example, KNX group addresses are fully dependent on the deploy-
ment.

4. Traceability between models

In the context of MDD, automated transformation techniques
provide capabilities for traceability (Valderas and Pelechano, 2009;
Behrens, 2007). Due to the extensive use of transformations (i.e.
automated creation of artifacts) used throughout a model driven
process it becomes central to be able to understand how and why
an artifact was created (Olsen and Oldevik, 2007). The traceabil-
veloping home automation systems: From requirements to code.

ity of software artifacts offers much more detailed information on
the adaptation of the developed system as well as the implications
that any change may have. There are well known key goals of trace-
ability in software development (Kolovos et al., 2006) that can be
summarized in the following items:

dx.doi.org/10.1016/j.jss.2011.01.052

ARTICLE ING Model
JSS-8657; No. of Pages 14

10 P. Sánchez et al. / The Journal of Systems

1

2

3

t
d
a
e
d
o
a
m
f
s
e

4

e
e
O
o
r
(
t
M

F
i
l

Fig. 12. A meta-model for traceability.

. To validate whether the different requirements have been taken
into account.

. To validate whether the obtained implementation complies with
requirements and whether they have been satisfied.

. To identify the impact that any requirements modification may
have.

To be able to save and later process the links of the defined
raceability it is necessary to have a repository of traces among the
ifferent software artifacts generated. In Kolovos et al. (2006) there
re two main approaches to deal with traceability in a model-based
nvironment. One is to keep the traceability information embed-
ed in the model itself, as new model elements e.g. as stereotypes
r attributes. The other is to keep the traceability information in
n external model. This approach has the advantage of keeping the
odels clean (not polluting them with traceability information) by

acilitating loose couplings between the models and the links. The
oftware development framework presented in this paper consid-
rs a meta-model dedicated to traceability as described below.

.1. A meta-model for traceability

There are many traceability meta-models proposed in the lit-
rature (Kolovos et al., 2006; Fabro et al., 2006; Aizenbud-Reshef
t al., 2006; Dick, 2002; Walderhaug et al., 2006; Melby, 2007;
ldevik and Neple, 2006). The traceability meta-model adopted in
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

ur framework is a basic one with enough expressiveness to rep-
esent a lot of link types among model elements. This meta-model
see Fig. 12) contains a TraceLink pointing to any ModelElement via
wo references: a source element and multiple target elements. The
odelElement is required here because our traceability meta-model

ig. 13. Extension example of a graph transformation rule: from the DSL to the componen
nstance; blue: application view (DSL) instance; orange: transformation instance; green:
egend, the reader is referred to the web version of the article.)
 PRESS
and Software xxx (2011) xxx–xxx

must be able to link to elements of other meta-models. The idea of
the CompositeLink is to be able to define different levels of granu-
larity to arrange Links in others of more complexity, according to
the overall purpose that is being referred to. The linkType attribute
allows developers to categorize the existing relationships and to
distinguish on what level of the development process the trace is
located.

Traceability models are created during the model transforma-
tion process (Walderhaug et al., 2006). The trace between every
HA requirement and the corresponding DSL model is created man-
ually by the user. From the DSL through the final generated code, all
the traces are obtained automatically as part of each of the model-
to-model and model-to-text transformations. In other words, at
the same time as transformations are carried out, links between
involved elements are recorded in the traceability repository. To
achieve this, the transformation rules have been extended in order
to record the trace in the defined meta-model.

Fig. 13 includes the extension carried out on the graph of Fig. 9
to include traceability. In this example, only the RHS part of the
rule has been modified. It is possible to observe how a new ele-
ment corresponding to the traceability model appears in the rule.
Each TraceLink element of the transformation rule collects the nec-
essary information (name, description) for the linkType instances
of the traceability meta-model. The matches between source and
target are also stored. Thereby, the traces between the DSL and the
component-based elements are also recorded.

4.2. A tool for managing traces

Several authors give recommendations about the issues that
should be taking into account when designing a tool for manag-
ing traceability (Walderhaug et al., 2006; Melby, 2007), such as (1)
be able to manage models at different abstraction levels, (2) con-
sider the same meta-model for all the abstraction levels, (3) store
the traces in a persistent medium, (4) be able to identify when a
trace was created and the location of the referenced element(s),
(5) be able to integrate the tool with external applications, and
(6) be able to generate the traces both manually and automati-
veloping home automation systems: From requirements to code.

cally.
With these issues in mind we have developed a tool integrated

into the previous framework, which allows developers to generate
detailed reports from the trace models. For instance these reports
allow HA system developers to analyze how a requirement has been

t-based level. Black: catalogue view (DSL) instance; red: target (component model)
traceability link instance. (For interpretation of the references to color in this figure

dx.doi.org/10.1016/j.jss.2011.01.052

ARTICLE IN PRESSG Model
JSS-8657; No. of Pages 14

P. Sánchez et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 11

from

t
w

i
g
o
i
t
c
2
o

d
w
l
h

4

o
b
i

1

Fig. 14. Traceability report created by the tool:

aken into account in the process of automatic code generation as
ell as including information on the solution adopted.

Fig. 14 shows a screen capture of the use of our tool for traceabil-
ty. For each one of the traces details of name and description are
iven, as well as the relative information to the source and the target
f the traced elements. The first row of the report shows a Compos-

teLink that arranges all the information related to Links involved in
he solution using the DSL for the illumination requirement. In this
ase, Links represent the traces between the requirements number
and 3 of Table 1, which have associated as targets the elements

f the DSL (functional units and links among them).
As explained below, the traceability report allows the user to

istinguish which requirements have been taken into account,
hich architectural elements give support to each one of them, and

astly, in which physical devices of the platform the requirements
ave been implemented.

.3. Benefits derived from traceability

In this subsection, we examine the main benefits that are
btained by using the traceability reports introduced above. These
enefits are derived from the possibility of performing the follow-

ng tasks:

. To validate whether all the requirements have been supported. This
validation can be carried out through the traceability reports. In
the first place, we can check that all the requirements are rep-
resented by means of the model elements obtained according to
the DSL. During the process of checking that a requirement has
been taken into account, we can filter the traceability report to
find those DSL elements that are linked to the analyzed require-
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

ment. For example, the requirement number 3 (Table 1) that
represents the control of the automatic lighting in relation to the
presence of people implies the presence of a functional unit for
presence detection (PIR3-2) and of a controller for the power off
timer. The analyst can check, according to the traceability report
requirements to domain specific descriptions.

whether the elements of presence detection and timer are part
of the solution of this requirement.

2. To verify whether the DSL model is compliant with the home
automation requirements. To do this the DSL elements should
be validated to see if they fit with the semantics of the rel-
evant requirements. In this case, the traceability report helps
the analyst to know which HA requirements have given rise
to which elements of the DSL model. To be able to carry out
this validation, the analyst should have the templates used in
the implementation of the transformation rules perfectly cat-
alogued. The traceability report is required for the verification
of the requirements. However, the verification of the correc-
tion is not immediate. In the case of the requirement number
3 (Table 1), to assure the correctness of the model implies cor-
rectly characterizing the parameterization of the controller for
the timer and to verify that its switching off service is correctly
linked to the switching services of the lighting elements. These
features can be verified more easily with the trace information
provided by the traceability tool.

3. To establish the impact of changing a home automation require-
ment. It is usual that the users of the system suggest changes to
the requirements throughout the whole development process.
The traceability report can help analysts to evaluate the impact
of these changes before applying them. The first useful fact for
the analyst is to know how many DSL elements, how many archi-
tectural components, and how many elements of the specific
level of the execution platform should be modified. This impact
study is very important because it allows the analyst to obtain
an integrated vision of the changes that should be kept in mind
when changing a requirement. On the other hand, the analyst can
just as easily verify the implications that modifying a require-
veloping home automation systems: From requirements to code.

ment of this type has in relation to the rest of the requirements
already implanted. For example, they could modify the require-
ment number 3 (Table 1) to include an additional condition of
switching the light on when the light entering from the exte-
rior was insufficient. The inclusion of this modification would

dx.doi.org/10.1016/j.jss.2011.01.052

 IN PRESSJ

1 stems and Software xxx (2011) xxx–xxx

5

m
o
m
t
a
t
m
t
d
D

C

w
u

(
e
t
d

C

t
r
C
m
f
fi
t
s
a
d
m
i
i

Table 2
Questions of the survey.

Question

Q1 During the third training session I looked into the
platform-dependent code in order to customize it very
often

Q2 It was very easy to add new requirements
Q3 It was very easy to define a new DSL model fragment

from requirements
Q4 It was very easy of to identify, define, connect and

classify new requirements
Q5 It was very easy to integrate in a unique model several

model fragments from distinct requirements
Q6 I gained time using the new approach
Q7 It was easy to know what a DSL model fragment did
Q8 It was faster to discover a model fragment than
ARTICLEG Model
SS-8657; No. of Pages 14

2 P. Sánchez et al. / The Journal of Sy

imply the addition of an external light sensor, a controller to
compare the light readings with a threshold and the correspond-
ing interconnections with the services of the presence detector
and lighting controllers. In view of the integration characteristics
of the HA applications, many of these elements can be included
in other requirements. For example, the light sensor can be part
of the requirement number 5 (control of blinds by lighting level),
and the presence detector can be part of the requirements num-
ber 8 (change of air conditioning temperature for presence) and
6 (burglar alarm). The traceability report can help the analyst
to check which requirement each element is associated to and
to verify if the inclusion of new elements or the alteration in
their associations can affect the correct implementation of other
requirements. In other words, if an external light detector for the
automatic power on of lights is required it will be necessary to:
check whether this detector is already present to satisfy some
other requirement or whether a new element must be added
and, to modify the associations of, for example, PIR (presence
detection). This PIR can be associated to other DSL elements to
implement other requirements. Therefore, when modifying their
associations you may be altering the models corresponding to
other requirements.

. Cost model of the proposal

Using catalogues of generic requirements to reuse DSL-based
odel fragments may have an associated cost and incurs an initial

verhead. A model fragment must be built for each generic require-
ent following the process outlined above. Moreover, building

ools for reusing these requirements takes time. The payoff of
pplying this proposal is realized when the catalogue is used many
imes. Since catalogues are built with the intention of being reused

ultiple times, in most of the cases the effort to create and manage
he catalogue is paid off. Generally, we can represent the cost of
eveloping a new application from scratch and using the proposed
SL as:

ost (Modeling App) = f (n2 + c) ≈ O(n2),

here n represents the number of HA devices and functional units
sed during modeling and c is the minimum cost of using the tool.

The cost has order n2 because for each new model element
devices and functional units), the dependencies with each existing
lement need to be checked. The development of HA applications
aking into consideration the reusable requirements catalogue and
eveloped tool for integration can be represented as:

ost (Modeling AppR) = C1 + C2 + C3 + f (n + c) ≈ O(n + c).

The cost O(n + c) is now linear since developers need effort only
o integrate the DSL model fragment into the complete model. C1
epresents the extra effort to create and maintain the catalogue.
2 is the cost of building a more advanced tool infrastructure for
anaging generic requirements and linking them with DSL model

ragments. C3 is the cost of finding the generic requirements that
ts the actual requirements. In our experience, C1 is not high and
ends to zero when the catalogue is stable and robust. C2 is only a
ignificant overhead initially and is soon paid off. C3 is a cost that
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

lso is also typically low and depends on the previous experience of
evelopers in managing the catalogue. When the catalogue and DSL
odel fragments are reused multiple times a significant savings

s achieved and Cost (Modeling AppR) ≈ O(n + c) � Cost (Model-
ng App) ≈ O(n2 + c) ≈ O(n2).
building it
Q9 In general terms, I think that reuse of models through

generic requirements is improved
Q10 When I start a new HA project, how would I proceed?

6. Evaluation of the proposal

To measure the success of reusing model fragments through
generic requirements we conducted a survey among HA develop-
ers. The survey was set up according to Pfleeger and Kitchenham
(2001). The first step was to set the survey objective(s). The objec-
tive of our evaluation was to provide an answer to the following
research question:

Is the use of the framework really effective for reusing DSL-based
models through generic requirements?

To reason about the effectiveness of reuse, we identified a num-
ber of questions (see Table 2) that gives to a lesser or greater extent
the success in reusing models. These questions relate directly to
the survey objective and consider the availability of the previ-
ous methods, languages, and tools. Taking into account (Pfleeger
and Kitchenham, 2001), the questions have the following proper-
ties: they are neutral, in other words, we have avoided the use of
wording that could influence the answer; they adequately cover
the topic; the order of questions was independent so that the
answer to one does not influence the response to the next; they
represent unbiased and mutually exclusive response categories.
After pre-testing the questionnaire (i.e. reliability, understandabil-
ity, validity, etc.) it was conducted. Before undertaking any detailed
analysis, responses were vetted for consistency and completeness
as (Pfleeger and Kitchenham, 2001) states. In total we invited 12
experts in HA development to participate in this survey. The experts
were located in companies engaged in the development of HA
applications. They were asked to participate in the study and a
random selection was made from those who were willing to partic-
ipate. Therefore, we knew for sure that all of them had a background
in developing HA systems. All participants responded and we got
11 meaningful results, giving our survey an effective response rate
of 92%. With that small population it was not used any form of
sampling.

Developers received the questionnaire with an explanation of
the purpose of the survey. We imposed no time limit in filling
out the questionnaire. Since the mentioned experts were neither
involved in the design of the DSL nor in the methodology there were
no risks of bias towards a positive evaluation. This assures us that
subjects got the chance to reflect both positive and negative aspects
of the proposal. We offered participants three training sessions
before beginning the evaluation. The first involved training in the
veloping home automation systems: From requirements to code.

use of the defined DSL and tools (3 h). The second session provided
training in the use of the requirements catalogue and the previously
detailed procedures for managing the catalogue (2 h). The third ses-
sion was dedicated to solve a medium-size HA example and then
to modify it with new capabilities (4 h). This last session involved

dx.doi.org/10.1016/j.jss.2011.01.052

ARTICLE IN PRESSG Model
JSS-8657; No. of Pages 14

P. Sánchez et al. / The Journal of Systems and Software xxx (2011) xxx–xxx 13

Table 3
Outcomes of the developed survey.

Strongly disagree Disagree Neutral Agree Strongly agree

Q1 3 5 2 1 0
Q2 0 1 2 5 3
Q3 0 1 3 6 1
Q4 0 1 2 5 3
Q5 1 3 4 2 1
Q6 0 1 2 4 4
Q7 0 2 3 4 2
Q8 0 1 2 6 2
Q9 0 1 2 5 3

om sc

s
n
e

g
f
q
p
n
i
d
r
w
w
c
o
t
t
p
i
t
i
t
t
p
v
D

k
s
r

T
C

Use the catalogue and DSL fragments Start a new DSL model fr

Q10 6 3

cenarios where all the situations were simulated (new categories,
ew devices, new requirements, new requirements relationships,
tc.).

As Table 3 shows, the outcomes of the study indicate that in the
iven survey the framework helped to improve reuse, and there-
ore, to reduce time and costs. The distribution of the answers to
uestion number 1 demonstrates the confidence that commercial
latform-dependent developers have in the tool. It also shows the
eed for long-term experiences that provide greater confidence

n the proposed approach. The responses to question 2 show the
ifficulties encountered by some users in the management of the
equirements catalogue. We think that most of these difficulties
ere due to the fact that these users were not familiar with the
ay in which the requirements were organized. Again, deficien-

ies related to this aspect would diminish with the continued use
f the catalogue. Questions 3 and 7 demonstrate the capabilities
hat our tool provides for the integration and interpretation of
he DSL fragments in the catalogue, one of the main goals of our
roposal. Question number 5 highlights the extra effort needed to

ntegrate model fragments. The answers to questions 6 and 8 show
hat time is gained using our tool. We believe that performance
mprovements can be even more significant as both the tool and
he developers’ training evolve. Question number 10 is relevant in
his study because it reflects the improvement in the development
rocess. Moreover, question number 9 summarizes the favorable
iew of developers about the proposal regarding requirements and
SL fragments reuse.
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

Table 4 summarizes a comparison of our tool with two HA well
nown commercial tools based in our experience. As it can be
een, the results highlight the interest to continue working on the
esearch line proposed in this paper.

able 4
omparison of features of the developed tool and the two leading HA technology-depend

Feature Developed tool

Concepts used by the tool user Exclusively HA domain
concepts

Requirement support Yes
Graphical syntax for HA

concepts
Yes

Platform independent
modeling

Yes

Design reuse Very easy
Capability of integrating

different HA technologies
Yes (through future extensions
in transformations)

Possibility of integrating other
domains (wireless sensor
networks, computer vision,
robotics, etc.)

Yes (by means of the platform
independent component
model)

Traceability support Yes
ratch Copy-modify previous models Use platform-dependent tools

2 0

7. Conclusions and future work

In this work we have introduced a framework for developing
HA systems by following a model driven approach. The develop-
ment of this kind of systems is a time-consuming endeavor that
could only be afforded by experienced developers with program-
ming and execution-platform expertise. Our framework allows
low-experienced developers to create HA system descriptions by
means of a domain specific language and a set of transformations
to generate executable code. These features enable the develop-
ment of HA applications with improved quality both of the process
and of the software artifacts obtained.

Our approach makes it possible to deal with the reuse of model
fragments from the requirements elicitation phase. It provides a
requirements catalogue that can be reused from system to sys-
tem development. This catalogue has served as a basis to develop
an extensible approach that allows developers to reuse DSL-model
fragments and hence to incorporate as a partial solution that will
be integrated into complete DSL models. This helps modelers to
improve the quality of their models and avoid the necessity of mod-
eling recurrent requirements. A set of experiments to help provide
an empirical evaluation of the proposal has been given. Thus, the
survey demonstrates that the reuse of DSL-based models through
generic requirements is really effective. The most encouraging les-
son from our work is the opportunity to increase the level of model
reuse through the combination of DSLs and generic requirements.
It is the synergy between the involved elements in the process
veloping home automation systems: From requirements to code.

which is likely to bring the most significant benefits of reuse in
MDD. The factor of usability of the DSL graphical syntax has also
been tested with very promising results as detailed in Jiménez et al.
(2009).

ent tools.

ETS (KNX/EIB) Lonmaker (Lonworks)

HA domain + platform
dependent concepts

HA domain + platform
dependent concepts

No No
No Partially

No No

Hard Medium
No No

No No

No No

dx.doi.org/10.1016/j.jss.2011.01.052

 INJ

1 stems

c
o
d
t
t
a
m
n
t

t
o
K
a
T
c

a
e
d
e
r

A

E
s

R

A

B

B

B

C

C

D

D
E

F

H

I

J

J

J

J

K

K

ARTICLEG Model
SS-8657; No. of Pages 14

4 P. Sánchez et al. / The Journal of Sy

Our work is now focused on the consideration of other exe-
ution platforms and the interoperability of our framework with
ther tools (such as an animator to validate the models before final
eployment). In addition, work is currently underway to improve
he traceability tool to facilitate, for instance, advanced filtering fea-
ures, statistical information of elements generated in each level,
nalysis of orphan elements (a typical use of this is to find ele-
ents that are not required by the system, e.g. a feature that was

ot described in the requirements) and, lastly, the integration of
he tool in environments other than Eclipse.

Also of interest is the consideration of the BCU SDK tools from
he University of Vienna (Neugschwandtner et al., 2005) which
ffer an alternative way to tackle the code generation for the
NX/EIB platform. These free tools could facilitate the code gener-
tion as they allow writing customized code for OEM KNX devices.
hus the need of cataloging commercial devices by functionality
ould be avoided.

The elements of the domain specific language can be extended
nd refined to consider more specific elements. We also want to
xtend the language in order to facilitate the modeling of new
evices from scratch. All this information will be very valuable to
xtend and tune future versions of the framework to developer
equirements.

cknowledgements

This work was partially supported by the Spanish CICYT project
XPLORE (TIN2009-08572). We are also grateful for highly con-
tructive engagement by the reviewers and editors.

eferences

izenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y., 2006. Model traceabil-
ity. IBM Systems Journal 45 (3), 515–526.

ehrens, T., 2007. Never Without a Trace: Practical Advice on Implementing Trace-
ability., http://www.ibm.com/developerworks/rational/library/feb07/behrens.

iermann, E., Ehrig, K., Ermel, C., Köhler, C., Kuhns, G., Taentzer, G., 2006.
Tiger EMF Model Transformation Framework (EMT)., http://tfs.cs.tu-
berlin.de/emftrans/papers/userdoc.pdf.

ühne, S., Halmans, G., Lauenroth, K., Pohl, K., 2006. Scenario-based application
requirements engineering. In: Software Product Lines: Research Issues in Engi-
neering and Management ,. Springer, Heidelberg.

hana, M., Campoa, E., Estevea, D., Fourniols, J.Y., 2009. Smart homes: current fea-
tures and future perspectives. Maturitas 64 (2), 90–97.

lements, P., Northrop, L., 2002. Software Product Lines: Practices and Patterns.
Boston, Addison-Wesley.

ick, J., 2002. Rich traceability. In: Proceedings of Automated Software Engineering
, CA, USA.

SM Forum, 2010. http://www.dsmforum.org.
clipse Consortium, 2010. Java Emitter Templates (JET).,

http://www.eclipse.org/modeling/m2t/?project=jet.
abro, D., Bezivin, J., Valduriez, P., 2006. Weaving models with the eclipse AMW

plugin. In: Eclipse Modeling Symposium, Eclipse Summit Europe , Esslingen,
Germany.

ermans, F., Pinzger, M., van Deursen, A., 2009. Domain-specific languages in prac-
tice: a user study on the success factors. Lecture Notes in Computer Science
5795, 423–437.

TTools, 2010. IT GesellschaftfürInformationstechnikmbH., http://www.it-
gmbh.de/en/products/ittools.htm.

acob, L., Reed, K., 2000. Requirements classification and reuse: crossing domain
boundaries. 6th International Conference on Software Reuse: Advances in Soft-
ware Reusability, Vienna, Austria. Lecture Notes in Computer Science 1844,
190–210.

ammes, F., Mensch, A., Smit, H., 2005. Service-oriented device communications
using the devices profile for web services. In: Proceedings of the 3rd Inter-
national Workshop on Middleware for Pervasive and Ad-hoc Computing , CA,
USA.

imenez, M., 2009. Development of HA Applications Using a Model Driven
Approach. Ph.D. Thesis. Technical University of Cartagena, Spain, (March).
http://hdl.handle.net/10317/846.
Please cite this article in press as: Sánchez, P., et al., A framework for de
J. Syst. Software (2011), doi:10.1016/j.jss.2011.01.052

iménez, M., Rosique, F., Sánchez, P., Álvarez, B., Iborra, A., 2009. Habitation: a
domain-specific language for home automation. IEEE Software 26 (4), 33–38.

ärnä, J., Tolvanen, J.P., Kelly, S., 2010. Evaluating the Use of Domain-specific Mod-
eling in Practice., http://www.dsmforum.org/events/DSM09/Papers/Karna.pdf.

elly, S., Tolvanen, J.P., 2008. Domain-specific Modeling: Enabling Full Code Gener-
ation. John Wiley & Sons.
 PRESS
and Software xxx (2011) xxx–xxx

Kolovos, D., Paige, R., Polack, F., 2006. On-demand merging of traceability links with
models. In: Proceedings of the 2nd EC-MDA Workshop on Traceability , Bilbao,
Spain.

Lam, W., 1998. A case-study of requirements reuse through product families. Annals
of Software Engineering 5, 253–277.

Lam, W.J., McDermid, J.A., Vickers, A.J., 1997. Ten steps towards systematic require-
ments reuse. Journal of Requirements Engineering 2, 102–113.

Melby, S., 2007. Traceability in Model Driven Engineering, Master Thesis. University
of Oslo Norway. http://urn.nb.no/URN:NBN:no-18721.

Mens, T., van Gorp, P., 2006. A taxonomy of model transformation. Electronic Notes
in Theoretical Computer Science 152, 125–142.

Mernik, M., Heering, J.A., Sloane, M., 2005. When and how to develop domain-
specific languages. ACM Computing Surveys 37 (4), 316–344.

Miori, V., Tarrini, L., Manca, M., Tolomei, G., 2006. An open standard solution for
domotic interoperability. IEEE Transactions on Consumer Electronics 52 (1),
97–103.

Molina, F., Toval, A., 2009. Integrating usability requirements that can be evalu-
ated in design time into model driven engineering of web information systems.
Advances in Engineering Software 40, 1306–1317.

Muñoz, J., Pelechano, V., Cetina, C., 2006. Implementing a pervasive meetings room:
a model driven approach. In: Proceeding of the 3rd International Workshop on
Ubiquitous Computing , Paphos, Cyprus.

Nain, G., Dauber, E., Barais, O., Jézéquel, J.M., 2008. Using mde to build aschizofrenic
middleware for home/building automation. In: ServiceWave’08: Networked
European Software & Services Initiative (NESSI) Conference , Madrid, Spain.

Neugschwandtner, G., Kastner, W., Kogler, M., 2005. Programming fieldbus nodes: a
RAD approach to customizable applications. In: 10th IEEE Conference on Emerg-
ing Technologies and Factory Automation (ETFA’05) , Catania, Italy.

Oldevik, J., Neple, T., 2006. Traceability in model to text transformations. In: 2nd
European Conference on Model-Driven Architecture Foundations and Applica-
tions , Bilbao, Spain.

Olsen, G.K., Oldevik, J., 2007. Scenarios of traceability in model to text transforma-
tions. In: 3rd European Conference on Model-Driven Architecture Foundations
and Applications , Haifa, Israel.

Pfleeger, S., Kitchenham, B., 2001. Principles of survey research. ACM SIGSOFT Soft-
ware Engineering Notes 26, 16–18.

Ramesh, B., Jarke, M., 2001. Toward reference models for requirements traceability.
IEEE Transactions on Software Engineering 27 (1), 58–93.

Rozenberg, G., 1997. Handbook of Graph Grammars and Computing by Graph Trans-
formation. World Scientific, Netherlands.

Selic, B., 2003. The pragmatics of model-driven development. IEEE Software 20 (5),
19–25.

Valderas, P., Pelechano, V., 2009. Introducing requirements traceability support
in model-driven development of web applications. Information and Software
Technology 51 (4), 749–768.

Vicente-Chicote, C., Moros, B., Toval, A., 2007. Remm-studio: an integrated model-
driven environment for requirements specification, validation and formatting.
Journal of Object Technology 6 (9), 437–454.

Voelter, M., Groher, I., 2007. Product line implementation using aspect-oriented and
model-driven software development. In: Proceedings of the 11th International
Software Product Line Conference , Kyoto, Japan.

von Knethen, A., Paech, B., Kiedaisch, F., Houdek, F., 2002. Systematic requirements
recycling through abstraction and traceability. In: 10th International Require-
ments Engineering Conference (RE’02) , Essen, Germany.

Walderhaug, S., Johansen, U., Stav, E., Aagedal, J., 2006. Towards a generic solu-
tion for traceability in MDD. In: Proceedings of the 2nd EC-MDA Workshop on
Traceability , Bilbao, Spain.

Pedro Sánchez is an associate professor of computer science at the Technical Uni-
versity of Cartagena and a member of the university’s DSIE (Division of Systems and
Electronic Engineering) research group. His research interests include model-driven
engineering for real-time systems. Sánchez has a PhD in computer science from the
Technical University of Valencia.

Manuel Jiménez is an associate professor of industrial electronics at the Techni-
cal University of Cartagena and is a member of the university’s DSIE (Division of
Systems and Electronic Engineering) research group. His research interests include
electronics and model driven engineering for reactive systems. Jiménez has a PhD
in computer science from the Technical University of Cartagena.

Francisca Rosique is an assistant professor and a PhD student in computer sci-
ence at the Technical University of Cartagena and a member of the university’s
DSIE (Division of Systems and Electronic Engineering) research group. Her research
interests include model-driven engineering and home automation systems. Rosique
has a master’s in telecommunication engineering from the Technical University of
Cartagena.

Bárbara Álvarez is a full professor in computer science at the Technical University of
Cartagena and a member of the university’s DSIE (Division of Systems and Electronic
Engineering) research group. Her research interests include real-time systems and
software architectures for teleoperation. Alvarez has a PhD in telecommunication
veloping home automation systems: From requirements to code.

engineering from the Technical University of Madrid.

Andrés Iborra is full professor and head of the Electronics Technology Department
at the Technical University of Cartagena and a member of the university’s DSIE (Divi-
sion of Systems and Electronic Engineering) research group. His research interests
include computer vision and robotics. Iborra has a PhD in industrial engineering
from the Technical University of Madrid.

dx.doi.org/10.1016/j.jss.2011.01.052
http://www.dsmforum.org/
http://hdl.handle.net/10317/846
http://urn.nb.no/URN%3ANBN%3Ano-18721

	A framework for developing home automation systems: From requirements to code
	Introduction
	Foundations and related work
	Home automation systems development
	Related work
	MDD for HA development
	Reuse of DSL models

	A framework for HA systems development
	Requirements management
	Domain specific descriptions
	Graph grammar transformations and code generation

	Traceability between models
	A meta-model for traceability
	A tool for managing traces
	Benefits derived from traceability

	Cost model of the proposal
	Evaluation of the proposal
	Conclusions and future work
	Acknowledgements
	References

