
Accepted Manuscript

Title: An information presentation method based on tree-like
super entity component

Authors: Ruijun Zhang, Jie Lu, Guangquan Zhang

PII: S0164-1212(11)00093-8
DOI: doi:10.1016/j.jss.2011.04.001
Reference: JSS 8696

To appear in:

Received date: 15-9-2010
Revised date: 31-3-2011
Accepted date: 4-4-2011

Please cite this article as: Zhang, R., Lu, J., Zhang, G., An information presentation
method based on tree-like super entity component, The Journal of Systems and Software
(2010), doi:10.1016/j.jss.2011.04.001

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

dx.doi.org/doi:10.1016/j.jss.2011.04.001
dx.doi.org/10.1016/j.jss.2011.04.001

Page 1 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 1 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

1

An information presentation method based on tree-like super entity
component

Ruijun Zhanga,b,*, Jie Lub, Guangquan Zhangb

a School of Management, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, PR China
b Decision Systems & E-Service Intelligence Research Laboratory, Centre for Quantum Computation & Intelligent Systems,

School of Software, Faculty of Engineering & Information Technology, University of Technology, Sydney, PO BOX 123, Broadway
NSW 2007, Australia

Abstract: Information systems are increasingly oriented in the direction of large-scale integration due to the explosion of
multi-source information. It is therefore important to discuss how to reasonably organize and present information from multiple
structures and sources on the same information system platform. In this study, we propose a 3C (Components, Connections,
Container) component model by combining white-box and black-box methods, design a tree-like super entity based on the model,
present its construction and related algorithm, and take a tree-like super entity as the information organization method for
multi-level entities. In order to represent structural, semi-structural and non-structural data on the same information system
platform, an information presentation method based on an editable e-book component has been developed by combining the
tree-like super entity component, QQ-style menu and 1/K switch connection component, which has been successfully applied in
the flood protection project information system of the Yangtze River in China.

Keywords: E-book; Tree-like super entity; Component; Information presentation; Multi-source

1. Introduction

Information systems today are increasingly becoming the nerve centre of any business. Entities such
as power companies (Sforna, 2000; Tsamenyi and Cullen, 2006), banks (Ravichandran and Banerjee,
1994; Waema and Walsham, 1990), transport departments (Taylor et al.), finance companies
(Terpsiadou and Economides, 2009), and manufacturing industries (Coppus and Strashok, 1995) cannot
operate without clear and accurate information systems. With the integration of information systems and
the diversity of the requirement for information, a single data source cannot meet the information needs
of businesses. Several data acquisition techniques and communication protocols related to the bar code
(Manthou and Vlachopoulou, 2001) and radio frequency technology (Ko, 2009) are undergoing
continuous development, and communication and network techniques improve frequently.

It is vitally important to organize and present information from multi-source, multi-regional,
multi-field and multi-structured data for information systems (Yang et al., 2007; Lu et al., 2007), but it is
equally important to direct the focus of intelligent information systems (Ma et al., 2010).

The Flood Protection Project Information System of the Yangtze River (FPPISYR) in China plays a
very significant role in flood risk management. It also provides an important decision support tool to
prevent flooding and provide a rapid response to danger for the Yangtze River (Jiang et al., 2007; Li et
al., 2007; Wu et al., 2007; Xu et al., 2005). The Ministry of Water Resources of China needs to manage
the geological information of more than forty culvert-brakes, dams, consolidating projects and
regulating projects, and to build a digital library of the Yangtze River embankments for the purpose of
sharing information. The FPPISYR is a part of that digital library. The data types involved in the system
vary and include not only conventional project data, but also a large amount of geographic information,
maps, photographs, reports, and so on for a variety of purposes. The system is complex and the
information requirements of users vary, making it difficult to meet the demands of the system by using a
single database management model.

There are various methods of organizing and representing information. Typically, traditional
information systems can only process structured information but cannot effectively manage audio,
images, video and other semi-structured and unstructured information. Several techniques, such as Web
pages (Ettredge et al., 2001; Klitzman et al., 2009), XML (Combi et al., 2005; Manvi and Venkataram,
2005), PDA terminal (Chang et al., 2006; Kundu et al., 2007) and so on can clearly organize and
represent information, but they are less interactive and not as easy to update and expand.

As an information carrier, e-book has the advantage of optionality of contents, easy retrieval, easy
spread and substantial content when compared with traditional books. Its content is also well organized,
which is a feature other carriers cannot achieve, but it is not convenient for editing and expanding
information (Han and Jin, 2009; Kang et al., 2009; Shelburne, 2009).

Modern cognitive psychology and ergonomics indicate that different styles of information
presentation have a great effect on people's ability to acquire information, their learning knowledge and
decision-making skills. Niederhauser et al. (2000), Khalifa and Kwok (1999), and Quentin-Baxter (1998)
compared and analyzed hypertext and linear text. It is generally believed that hypertext supports human
associative thinking, but its flexible structure does not provide the user with a clear learning route, and

* Corresponding author. Tel.: +862788512213.
E-mail addresses: zrjun@wust.edu.cn (R.Zhang), jielu@ it.uts.edu.au (J.Lu), zhangg@it.uts.edu.au (G.Zhang).

Page 2 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 2 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

2

as a result, the user can easily get lost. Although hypertext is conducive to browsing and searching
information resources, it does not contribute to learning. Speier studied the impact of space maps, charts,
tables and other different types of information on effective decision-making (Speier, 2006). All the
theories above discussed the coverage and depth of information, but did not study the interaction and
editability of information. Teuvo Kohonen, a Finnish academician, proposed Self-Organized Feature
Maps (SOFM) according to how the brain processes information (Sun Microsystems, 1997). He
considered that the human brain is a typical, self-organized system which can learn in a non-directive
way and developed a model aimed at the characteristics of information presentation.

On the basis of an in-depth analysis of component technologies, this study constructs an editable
e-book component by combining the advantages of management information systems and the e-book.
The component is packed into an intelligent information system to represent structured, semi-structured
and unstructured information on the same platform, in which users can organize information according
to their own roles and present information from different dimensions to meet their personal information
requirements. The FPPISYR has also been developed on the basis of an editable e-book component.

This paper is organized as follows: A component model and its formal description are given in Section
2. The concept of a tree-like super entity is presented in Section 3 with the aim of solving the problem of
the connection of multiple layer entities in relational databases. An editable e-book, which mainly
consists of a tree-like super entity component, QQ menu component and 1/K switch connection
component, is outlined in Section 4. Conclusions are discussed in Section 5.

2. The component and its connection

In this section, we will give the definition of an atomic component, component and the connection
between components.

2.1. Component

There are essentially three traditional types of component: COM (Feng et al., 2007), CORBA(Sun et
al., 2009) and JavaBeans (Bruce, 2004), but no unified definition of a component has yet been proposed.
Liu et al. defined components as re-usable software modules which can be packed in object classes, a set
of functional modules or a software framework (Liu et al., 2000). Cox and Song (2001) considered that a
component was a software unit with a certain independent function which could be a basic component or
a complex component having a combination of several basic components. D'Souza and Wills (1997)
defined a component as a coherent package of software that can be independently developed and
delivered as a unit. Leach (1997) stated that a software component is a unit of composition with
contractually specified interfaces and explicit context dependencies only. These definitions only
describe the internal attributes of a component, such as encapsulation, re-usability and so on, from the
perspective of the white box method, which does not indicate its external attributes of environmental
adaptability, component interaction, and so forth.

2.1.1. The concept of component

According to the history of concept formation and the challenges of component-based development
(Crnkovic and Larsson, 2002), we provide the definition of 'component' as follows:

Definition 1 (Atomic component): An atomic component is an integral software unit with input and
output interfaces which fulfills the corresponding functions when triggered under special conditions.

Definition 2 (Component): A component is a detachable unit with a certain function for application
software (Cox, 2001). It is assembled by (1)n n units, called atom components, through the interface

by following a certain linkage mechanism. It can interact with other components given certain
environmental support.

This provides a comprehensive definition for 'component' in terms of a combination of the white-box
and black-box methods. 'Interface' defines the service that the component can provide for the
environment and other components from the perspective of the external service.

2.1.2. Formal Description of Component Model

According to Definitions 1 and 2, the formal descriptions of an atomic component and component are
provided as follows:

Definition 3 (The formal definition of an atomic component):
c= (cD, In, Out, Func/Event, Triggers) (1)
Where,

cD is an identifier of atomic component;

Page 3 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 3 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

3

In is the input of atomic component, 1 2(, ,...,), 0nIn i i i n ; (2)

Out is the output of atomic component, 1 2(, , ...,), 0nOut o o o n ; (3)

Triggers are the trigger conditions for the atomic component, which are hidden knowledge in the
system,

1 2(, , ...,), 0nTriggers tr tr tr n ; (4)

Func/Event is the function of atomic component and n-maps from In to Out under the trigger
conditions.

 (5)

Definition 4 (Component model): a basic component can be described as follows (Rousseau et al.,
2006):

C=(CD, Components, Connections, Container) (6)
Where,
CD is a component identifier;
Components is the set of sub-components;

1 2(, ,...,), 1nComponents com com com n ; (7)

Connections indicates the connection method between components, and is divided into three methods:
parallel connection, series connection and mixed connection,

()Connections Par Con Ser Con Mix Con ; (8)

Container is a component container.
From the formal description above, we know that a component is essentially a similar onion-skin

structure and its ‘core’ is made up of so-called atomic components. Following the formal interface
standard in a certain context, these atomic components are packed layer by layer to constitute a basic
component.

2.2. Connection of components

When low-level components are assembled into high-level components, the connection method is
divided into parallel connection, series connection and mixed connection.

2.2.1. Parallel Connection

Parallel connection indicates that high-level components are the aggregation of low-level components,
in which 'input' is the input of all low-level components, while 'output' is the output of all low-level
components. The parallel connection is shown in Fig. 1.

Com 1

Com 2

Com n

……

In1 Out1

In 2

In n

Out2

Outn

In Out

Fig. 1. Parallel connection

The parallel connection relationship is formally described as follows:
Par Con=(In, Out, Triggers) (9)
Where,
In= (In1×Triggers1, In2×Triggers2, …, Inn×Triggersn) (10)
Out = (Out1, Out2, …, Outn); (11)
Triggers = (Trigger1, Trigger2, …,Triggern) (12)
In1, In2,… Inn are respectively input interfaces of component 1, component 2,…, component n;

Out1, Out2, …, Outn are respectively output interfaces of component 1, component 2,…, component n.
Trigger1, Trigger2, …,Triggern are respectively the trigger conditions of component 1, component 2,…,

component n.

2.2.2. Series Connection

Series connection indicates that the high-level component is composed of a sequence of low-level
component nodes in which the input of the first node is the input of the high-level component, while the
output of the end nodes is the output of the high-level component. The output of the predecessor nodes
changes into the input of the successor node, as shown in Fig. 2.

1 2/ : (, ...) ()Triggers nFunc Event i i i Out

Page 4 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 4 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

4

Com 1 ……
Out nIn1In Out

Com 2 Com n

Fig. 2. Series connection

A series connection relationship could be described as follows:
Ser Con=(In, Out, Triggers) (13)

Where,
In is the input of component 1, In = In1;
Out is the output of component n, Out = Outn;

Triggers = (Trigger1, Trigger2, …,Triggern); (14)
In1, In2,… Inn are respectively input interfaces of component 1, component 2,…, component n;
Out1, Out2, …, Outn are respectively output interfaces of component 1, component 2,…, component n.

Furthermore,
Ini = (Outi-1×Triggeri) i=2,…,n (15)

There are also other mixed connection methods, such as series/parallel connection, parallel/series
connection, network, etc. These details are not given here.

3. Tree-like super entity

In this era of information explosion, the best method of organizing information is by DBMS (Database
Management System). The data model, as the core and foundation of DBMS, has undergone three
phases: hierarchical model (Greenfield and Schneider, 1977), network model and relational model
(Cardenas, 1985). The relational database has been the most popular database since the 1970s.

3.1. A problem exists in a traditional tree structure E-R diagram

In relational databases, there are three ways to describe the relationship between entities: one-to-one,
one-to-multi, multi-to-multi (Mannino, 2009). An entity-relationship (E-R) exists based on the
hierarchical structure; for example, the administrative organization of a university in Fig. 3 illustrates the
tree structure.

School

ID3

University

ID1

name1

others1

ID2

name2

others2

Faculty

name3

others3

Section

ID4

name4

others4

School
ID3

Fig. 3. The traditional organization chart of a university with tree structure

Where, IDi is an identifier which identifies the i-th layer entity uniquely as the primary key, namei is
the main property and othersi is the set of other properties. The i-th layer entity can be transferred into
the following relational model:

enti (IDi ,namei, IDi-1, othersi) i=2,..n
Where, if i=1, there is no IDi-1 property.
Obviously, each entity is presented with a type of tree structure and each tuple of an entity has the

same depth in the tree. The model is usually determined by the tuple semantics and data dependencies.
The relationship of the relational model will change at different times because the real world constantly
changes in different conditions (Yeh et al., 2008). The semantics of tuple are ambiguous; therefore, the
integrity constraints of the relationships can easily be challenged. For example, the tree structure of
Fig.3 will change when a faculty is directly under the university, and accordingly, the E-R diagram
changes from tree to graph, as shown in Fig. 4.

University

ID1

name1

others1

ID2

name2

others2

School

ID3

Faculty

name3

others3

ID3

Section

ID4

name4

others4

Fig. 4. The changed organization chart of a university with graph structure

Page 5 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 5 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

5

Furthermore, when we visit the tree in Fig. 3, a concatenation operation of multi-level entities is
required and the computation result is written to the temporary files in the memory. If the depth of the
tree is high and the tuple number in each level is large, the computation will consume a large amount of
CPU and system memory resources, causing the system to run at reduced efficiency.

3.2. The tree-like super entity and its data structure

Scholars have conducted in-depth studies on how to describe the data structure and related algorithm
in Fig. 4, and how to present the data. Freeman and Yin (2005) proposed a new method termed
‘Treeview self-organizing maps’ (Treeview SOMs) for clustering and organizing text documents by
means of a series of independently and automatically created, hierarchical one-dimensional SOMs. Hu
et al. (2001) discussed how to express hierarchical data and information by TreeView Control, but did
not achieve effective separation between program and data. Liu (2001) achieved the separation but did
not unify multi data tables. Ji et al. (2003) proposed a tree-structure storage model of a bill of material
(BOM) in MRPII. Two link fields (parent and child) were used in the table to present the relationship
between the levels of a product tree, but the related algorithms were not provided.

We therefore adopt the parent representation method of tree structure to store the above multi-level
entities with irregular one-to-multi relationships in the form of a database table, and present the concept
of tree-like super entity.

Definition 5 (Tree-like super entity): As far as the multi-level entities with one-to-multi
relationships are concerned, we extract their keywords and the main attributes with a common semantic,
uniform names, and add an attribute to identify the keyword of their parent nodes. This entity is called a
tree-like super entity.

For example, in Fig. 5, the keywords (ID1, ID2, ..., IDn) and the primary attributes (name1, name2, ...,
namen) are named differently, but their semantics are consistent with each other. They can be
normalized and have an attribute added to identify the parent node, to form the following relational
model.

sup_ent(ID�name�upID)
Where, ID is the keyword, it is used to uniquely identify a node entity in the tree; name is the node

name; upID is the code of the parent node which is the foreign key associated with the parent node. This
relational model adopts a static table to realize a tree-like data structure. Fig. 6 presents the tree.

ID name upID

ID name upID ID name upID ID name upID…

nil

ID name upID ID name upID… ID name upID

Layer 1

… …

…

…

ID name upID ID name upID…

…

Layer 2

Layer n-1

Layer n

Fig. 5. Data structure of a tree-like super entity

To clearly understand the concept of a tree-like super entity, Fig. 6 provides an example of the data
structure and a static storage table for a super entity. The relationship between a super entity and general
entities is also presented by combining with other detailed data.

Page 6 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 6 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

6

001 University 0

002 Faculty 1 001 003 School 1 001 004 School 2 001

Layer 1

Layer 3 006 Faculty 2 003

logic layer

007 Faculty 3 003 008 Faculty 4 004005 Section 1 002

009 Section 2 007 010 Section 3 007

Layer 2

Layer 4

Layer 1

Layer 3

semantic layer

Layer 2

Layer 4

Section

ID4
name4
others4

(a) Example for data structure of tree -like super entity

(b) Static table related to
the super entity

(c) General entity in
layer i

ID name upID

001 University 0

002 Faculty 1 001

003 School 1 001

004 School 2 001

005 Section 1 002

006 Faculty 2 003

007 Faculty 3 003

008 Faculty 4 004

009 Section 2 007

010 Section 3 007

Fig. 6. An example of the data structure of a tree-like super entity

Definition 6 (Logic layer): Logic layer is each layer of the super entity tree, and accordingly, the
depth of each node which exists in the logic layer is the one that exists in the tree.

Definition 7 (Semantic layer): Semantic layer is each layer with the same narrow semantic in the
super entity tree. If the nodes in the same semantic layer are not in the same logic layer, they should be
reduced to the deepest layer of the logic layer in the super entity tree.

From Fig. 6, we know that each node of the tree-like super entity is exactly the tuple in the data table.
The depth of each node in the logic layer and the semantic layer is not always the same; in fact, the
former is not greater than the latter. Taking Fig. 6 as an example, in the case of the node with ID ‘006’
and the name ‘Faculty 2’, the depth in the logic layer is the same as that in the semantic layer. However,
the node with ID ‘005’ and the name ‘Section 1’, has a depth of 2 in the logic layer, and less than 3 in the
semantic layer.

Definition 8 (Path): Path is the reachable node sequence between any two nodes in the super entity
tree (Kruse et al., 1997).

According to the characteristic of the tree, the path from any node to the root is unique in the tree-like
super entity.

3.3. Algorithms of tree-like super entity

The tree-like super entity has a dual role. First, it is a data table for physical storage. Second, it is
logically expressed as a tree. It performs several operations as a common tree, such as CreateTree (& T,
structure), InsertChild (&T, p, c), SetValue (T, cur_e, values), GetValue (T, cur_e, values) , DeleteChild
(& T, p) , Parent (T, cur_e) , Son (T, cur_e). It also performs two main operations as follows:

(1) TraverseTree (T, Visit_stra ())
Initial conditions: tree T exists, Visit_stra is the traversal strategy.
Description�access each node of the tree once, and only once, according to traversal strategy

Visit_stra.
There are two traversal strategies: sequential traversal and breadth-first traversal.
 Sequential traversal

Access sequentially the data table corresponding to the super entity tree from beginning to end.
 Breadth-first traversal

Establish an index for the data table corresponding to the super entity tree according to an upID
attribute, and access the table once.

Only the child node can point to its parent node, but a parent node cannot point to its child nodes so
there is no depth-first traversal algorithm.

(2) Connect (T, Ent)
Initial conditions: tree T exists, Ent is an entity.

Page 7 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 7 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

7

Description: join the tuple in the k-th semantic layer with the entity in the k+1-th semantic layer of the
tree T.

For example, Fig. 6. provides the relationship between the Faculty tuple in the 3rd semantic layer and
the Section entity in the 4th semantic layer.

3.4. Analysis of computational complexity

The most important operation is the Join-Query operation in many operations of the tree-like super
entity, in which two situations are important. One is to visit from the root to the node in the deepest
semantic layer (the k-1-th layer), that is, the leaf node. The other is to connect the leaf node with the
common entity in the k-th layer. In the following, we will discuss the algorithm complexity when
comparing the traditional tree structure and the super entity.

Here are the two entity modes:
The entity in the i-th layer of the traditional tree-like structure: enti (IDi, namei, IDi-1, others)
The tree-like structure super entity: sup_ent (ID, name, upID)
Obviously, IDi-1 and upID, ID and IDi have the same semantic. This is conveniently described as

follows: we assume that the length of the field name of super_ent and the one of the field namei of enti
are the same, so that entity enti has one field more than entity super_ent; that is, field others. We obtain
the storage capacity ratio for each tuple between these two entities:

sup_/ (1) /1 1enti ent i ic c (16)

We assume that the capacity for each tuple in super_ent is 1, then the capacity for each tuple in enti is

i1 .

Assume that the number of tuples for the i-th layer entity in the traditional tree structure is
ni(i=1,2,…,k-1), the capacity of related data for the k-th layer entity is C. We will discuss the space
complexity of the Cartesian product as follows.

There are three steps for two tables to make a Cartesian product. Firstly, several blocks of tuples from
these two tables should be alternately read from the memory according to certain rules. Secondly, the
tuples make connections and are written to temporary files. Finally, the temporary files are read to make
selection and project operations, according to the query demand. During the whole operation, most of
the time and space are spent on the connecting operation, and its complexity is O(ni×nj).

When data tables of the prior k-1 layers in the traditional tree structure connect with each other and
connect with the k-th data table, the size of the generated temporary file is:

CCCCC entkententent 121 ... Cnnn kk)1(...)1()1(112211 (17)

As far as the tree-like super entity is concerned, we can create an index according to upID. After being
visited once, the nodes in the k-1 th layer connect with the k-th data table, and the size of the generated
temporary file is:

CnnnC kent 121sup_ ... (18)

Obviously, Cent>> Csup_ent (19)
Suppose that the memory can read and write m blocks of data per second, then the time to read and

write is:
mCnnnT kkent /)1(...)1()1(111111 (20)

mCnnnT kent /)...(121sup_
 (21)

We can also obtain that: Tent>> Tsup_ent (22)
In the FPPISYR, the background database is SQLServer2000 and the capacity of the whole database is

40G. Under the same hardware and software environment, we designed two methods to create a data
table structure: one is the traditional table with one-to-multi relationship, and the other is a tree-like
super entity. When retrieving the fifth layer data table, the first method takes 21.23 seconds, while the
other takes only 0.562 seconds (Zhang et al., 2007).

4. An editable e-book component-based information presentation method

In a number of highly integrated information systems, text information is usually managed through the
database system and other non-text information (such as sound, images, or video) is read and written by
special software. There are two ways to integrate these. The first is to perform operations, such as adding,
deleting and updating text information from the database, by constructing a powerful system framework,
and the non-text information can be read and written by several readers. It is easy to modify all kinds of
information in this way. However, there is no consistent thread running through the entire system, the
cognition field is independent each other, the effect that the system displays is relatively poor, the object

Page 8 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 8 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

8

renders large distance, and it is difficult for an user to quickly acquire the related information from the
system. The second option is to manage involved content through e-book – its powerful catalogue
features provide the system with a sense of organization and hierarchy in the management of content,
and it is easier for users to learn compared to the first method. However, because of the customizable
nature of the information, it does not facilitate the expansion of the theme and content, and the
interaction is weak. In order to solve these shortcomings, we developed an information presentation
method based on an editable e-book component.

The editable e-book component consists of the tree-like structure component, QQ menu component,
various kinds of media player components and an 1/K switch connection component. In this section, we
will introduce the composition mechanism of these components by combining the FPPISYR.

4.1. Tree-like structure component

4.1.1. Architecture of tree-like structure component

There are different representations when the tree-like super entity component connects with different
components and is encapsulated in different languages and in a different environment. The granularity
of components is also different (de Jonge, 2009; Oussalah, 2003). The common representation is a
tree-like structure which looks like Windows Explorer in the C/S (Client/Server) mode. As we know,
several classic C/S front-end development tools, such as PowerBuilder, Delphi, or VB, support tree-like
components and have plenty of events, functions and methods. In the following content, we use
PowerBuilder as the programming environment to describe the components. Fig. 7. provides the
architecture of the tree-like structure component.

Pbodbc90.dll Data access
layer

Business
logic layer

Presentation layer

Embankment database
of Yangtze River

Pbvm90.dll

Pbdw90.dll

ODBC component

Data store component

TreeView component

Tree-like super entity component

Window component

Tree-like
structure

component

Data layer

Context for components

Fig. 7. Architecture of tree-like structure component

From Fig. 7, we can see that the tree-like structure component is composed of three sections from
bottom to top: the tree-like super entity component, data store component and tree view component. It
connects with the database through the ODBC component downward, and uses the window component
as the representation platform upward.

When planning the system tree of FPPISYR, we designed the hierarchical structure of Middle and
lower reaches of Yangtze River- Province- Embankment- Subembankment/Brake. The following super
entity mode is given:

t_diduan (code, name, upcode)
Where, code is the primary key which identifies the node in the tree, name is the name of the node and

upcode points to its parent node.
A system tree example is illustrated in Fig. 8. in an interactive way.

Page 9 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 9 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

9

Jianli honghu Yangze River embankment

FPPISYR

Middle & lower reaches of Yangtze River

Hubei Province

Jinjiang embankment

nanxian embankment

Wuhan Yangze River embankment

Hanjiangyao embankment

Hanjiangyao embankment

Jinnan Yangze River embankment

Songzhi embankment

Huangguang embankment
Huanggang Yangze River embankment

Niupiao brake

Hunan Province

Jiangxi Province
Anhui Province
Jiangsu Province

Shanghai City

Fig. 8. A real system tree example

4.1.2. Composition mechanism of tree-like structure component

According to the component and its connection model outlined in Section 2, we provide a formal
description of the relevant components for the tree-like structure component as follows:

 Tree-like super entity component
cD = sup_ent001;
In = <data table structure, data of each tuple>;
Out = <data table, stored procedure, trigger>;

 Func/Event = <CreateTree, InsertChild, SetValue, GetValue, DeleteChild, Parent, Son, TraverseTree,
Connect>.

Description: This component usually exists in the form of a stored procedure or trigger, and is
activated by the triggers under certain conditions after loading data though the data tables. The algorithm
for the functions is described in Section 3.3. For example, CreateTree is used to construct the tree;
actually, it is a static table illustrated as Fig. 6 (b). Connect is used to connect the leaf nodes in the tree
and the related common entities.

 Data store component
cD = datastore002;
In = <dataobject, object>;
Out = <invisible data view>;
Func/Event = <Create, Destroy, DBError, ItemChanged, RetrieveStart>.
Description: Data store is a type of special component in PowerBuilder which is used to convert the

data table in the back-end database to the invisible data view in the foreground application program. It
has plenty of events and functions; for example, event Create is used to create the data store, event
Destroy is used to destroy the data store, event DBError gives an error message when extracted data is
wrong, event ItemChanged is triggered when the data item is changed and event RetrieveStart is
triggered when retrieving data.

 Tree view component
cD = treeview003;
In = <datastore>;
Out = <tree>;
Func/Event = <Constructor, Destructor, Itemexpanded, SelectionChanged, Clicked, RightClicked,

DoubleClicked>.
Description: The tree view component is also a component in PowerBuilder which is used to fetch the

data in the data store item by item and write to the nodes of tree view. It mainly has the events
Constructor, Destructor, Itemexpanded, SelectionChanged, Clicked, RightClicked, DoubleClicked,
and so on. These events are triggered when the user executes the relevant operations.

 Tree-like structure component
C=(CD, Components, Connections, Container);

 CD = tree01;
 Components = <Sup_ent001, datastroe002, treeview003>;

Connections = <Series Connection>;

Page 10 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 10 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

10

Container = <Window>.
Description: The tree-like structure component is a composite component which combines the three

components in series and presents to the user by using the window as the container and display mode. In
this way, a user only creates a tree-like super entity data table in the background and uses it as an
entrance to the tree-like structure component to output the visible system tree.

4.2. QQ Menu component

As a popular online chatting tool, QQ is welcomed by the majority of users in China (Gao and Cao,
2010) because its menu is designed with icons and text, more information is provided and its functions
are strongly interactive. Nowadays, more and more user-friendly presentation modes of information
systems are welcomed by users, and the popularization of large screen and high-resolution display
means that the QQ menu is used as a trend for the menu (Chen, 2005).

Fig. 9 provides the structure of the QQ menu, which consists of three levels of assembled components.
The components from the inside to the outside are as follows: second level menu item components
(LeafMenu), first level menu item components (SonMenu) and the menu components (Menu). There are
four atomic components: Text Label components (TextLabel), PictureLabel components (PictureLabel),
UpButton components (UpButton) and DownButton components (DownButton). All models of these
components are described as follows:

Geographical information

Flood protection project

Embankment location

Lake, pool and well in
embankment

Valley landform

Central shoal landform

Basic geological Data

Hydrogeology

Engineering geology condition

 Laboratory & field test

LeafMenu

SonMenu

Text Label
 (records from database �

Graphics Label
 (pictures from graph base)

UpButton

DownButton

Fig. 9. QQ menu

 Text label component (TextLabel)
cD = TextLabel001;
In = <Database table rows>;
Out = <A window representing data objects>;

Func/Event = <Clicked, RightClicked, DoubleClicked>.
Description: This component is an atomic component, which mainly includes click, double click,

right-click and other events. These events are triggered when the user performs the relevant operations.
 Picture label component (PictureLabel)
cD = PictureLabel 002;
In = <Picture in graph base>;
Out = <A window representing data objects>;
Func/Event = <Clicked, RightClicked, DoubleClicked>.
Description: This component is an atomic component, which corresponds to the text label

component.
 Second level menu item component (LeafMenu)

CD = LeafMenu 003;
Components = <TextLabel, PictureLabel>;
Connections = <Parallel Connection>;
Container = <UserObject>.

Page 11 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 11 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

11

Description: The component consists of text labels and picture labels in parallel, and it is packaged
by the user’s object in PowerBuilder.

 First level menu item component (SonMenu)
CD = SonMenu 004;
Components = <LeafMenu, UpButton, DownButton>;
Connections = <Parallel Connection>;
Container = <DataWindow>.
Description: The component consists of second-level menu item components and UpButton,

DownButton components in parallel, and it is packaged by a datawindow in PowerBuilder.
 Menu item component (Menu)

CD = Menu 005;
Components = <SonMenu>;
Connections = <Parallel Connection>;
Container = <Window>.
Description: The component consists of several first-level menu item components in parallel.

4.3. 1/K switch connection component

In order to switch seamlessly between different kinds of media in editable e-books, a 1/K switch
connection component is proposed between the previous component and several next components, and
looks like the single-pole multi-throw switch in a physical circuit. In the component, the high level
component is the aggregation of a previous component and several next components. The input of the
component is the input of the previous component, and the output is the output of one of the several next
components, as shown in Fig. 10.

Previous
component

……

Tr i gger 1
Out

1

Out
2

Out n

I n s

Out

Next component 1

Tr i gger
2

Tr i ggern

Out s

I n Next component 2

Next component n

Fig. 10. 1/K switch connection component

The connection component can be formally described as follows:
1/k_switcher_Con = (In, Out, Triggers)
Where, In = Ins

Triggers = (Trigger1, Trigger2, …,Triggern)

 (23)

1

1
n

i
i

Trigger

 (24)

1

()
n

i s i
i

Out func Out trigger

 (25)

Where, Ins is input of the system tree.
Outs is output of the system tree.
Out1, Out2, …, Outn are the outputs of component1, component2, …, componentn, respectively.

Trigger1, Trigger2, …,Triggern are the triggers of component1, component2, …, componentn,
respectively.

4.4 Architecture of the editable e-book

The editable e-book component takes a system tree component as the root, the 1/K switch connection
component as the branch, and a number of browser and player components as the nodes. In this way, a
tree-like architecture is formed as shown in Fig. 11.

Triggeri=
1 if previous component connects to next componenti

0 if not

Page 12 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 12 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

12

…

System tree component

QQ menu
component

IE browser
component

Map browser
component

Video play
component

…

1/K switch
connection component

…

…

1/K switch
connection component 1/K switch

connection component

V
ie

w
1

V
ie

w
2

V
ie

w
n

W
or

d
do

cu
m

en
ts

E
-m

ap
s

W
eb

pa
ge

s

E
xc

el
sh

ee
ts

PP
T

do
cu

m
en

ts

V
id

eo
fi

le
s

Fig. 11. Architecture of editable e-book

The tree formed by an editable e-book has the following properties:
Property 1: The path from the previous node to the next node is one-way mapping.
Property 2: The root can only reach one leaf node at a given time; that is, there is only one path

between all the paths from the root to each leaf node that can be activated.
Property 3: 1 / k switch connection component is usually coupled with its previous node.

4.5. Multi-style information presentation mode based on editable e-book component

Taking the FPPISYR as an example, the system interface is divided into two parts: the system tree and
workspace. The system tree on the left side is made up of the tree-like structure component; it controls
the flexible switching and intelligent presentation of the various media information on the right side,
through the 1/K switch connection component. Figs. 12, 13 and 14 respectively illustrate multi-style
presentation modes with database information, video information and image information under the same
system tree.

S
ys

te
m

tr
ee

Workspace

M
ul

ti
-d

im
en

si
on

Q
Q

m
en

u

Functional interactive area

Detailed form

Grid form

Fig. 12. Database information presentation mode

S
ys

te
m

tr
ee

Workspace

Page 13 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 13 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

13

Fig. 13. Video information presentation mode

S
ys

te
m

tr
ee

Workspace

Embankment project map of middle and lower reaches of Yangtze River

Fig. 14. Image information presentation mode

A user can also edit the related node information in the system tree according to the right details,
which cannot be achieved with an ordinary e-book. Fig. 15 provides an example interface for editing the
system tree.

S
ys

te
m

tr
ee

Preview the
system tree

Replace system tree

Edit system tree

Preview

Close
Save

Edit the nodes
of system tree

Workspace

Fig. 15. Edit the system tree

When the user clicks the Edit system tree button, he or she can add, delete and edit the information of
nodes in the tree and then save them in the background database by clicking the Save button. If the user
clicks the Replace system tree button, the system will pop-up a window and ask the user to select a data
table with a tree-like structure to replace the current system tree. When clicking the Preview button,
users can preview the system tree in the middle section.

4.6. Comparison between the editable e-book and other information presentation methods

From the example interfaces mentioned above, we know that the editable e-book provides a new
representation method to display information from different aspects, depth and coverage. Here we
design a questionnaire survey with twenty questions and related example information presentation
interfaces by combining the evaluation model for human-computer interaction given by Wang (2006),
Hu et al. (1999) and Speier (2006). The questionnaire concerns document, hypertext, button, e-book and
other combined information presentation methods, and evaluates the presentation effect from four
aspects: Coverage, Depth, Dimension and Interaction. A 5-point scale is adopted in the questionnaire: 5-
excellent, 4- very good, 3- good, 2-medium, 1- poor, 0- very poor. In the survey, a hundred and
twenty-one questionnaires are delivered, and a hundred and two effective questionnaires are received.
Table 1 illustrates the evaluation weights for several general combined information presentation
methods within a 95% confidence interval.

Page 14 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 14 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

14

Table 1

Evaluation weights for several general combined information presentation methods

Information presentation
method

Coverage Depth Dimension Interaction Description

Common editable
document

0-4 0-4 0-4 3
focus on one aspect of converge, depth,
dimension or interaction according to the
context

Linkable hypertext 1 4 1 1 tend to be confused
Menu+ embedded
form+ buttons

1 2 5 3 tend to be confused

Menu+ embedded
form+ buttons

5 0 5 5 no sense of hierarchy

Tree structure +
form+ buttons

3 5 0 5 cannot reflect multi-aspect of the object

Text

Menu+ tree
structure + form+
buttons

3 5 5 5
reflect multi-level and multi-aspect of the
object comprehensively

Web page 0-5 0-5 0-5 0-5
emphasize differently according to the context
of the web page, less security, low access
speed

E-book 4 3 4 0 a strong overall sense, less interaction

Non-
text

Map browser 5 1 1 1 a regional sense, less sense of hierarchy

Editable e-book 4 -5 4 -5 4 - 5 5
reflect different aspects, levels, and coverage
of the object

From the comparison in Table 1, we see that the editable e-book provides a satisfactory method of
presenting information. In the method, two-dimensional tables, documents, e-maps, videos and other
media are used to represent the object in detail, the system tree is utilized to illustrate the different levels
of the object, the QQ menu is adopted to describe the object from a different profile and the interaction
between the user and object is performed in the functional interactive area.

5. Conclusions

Aiming to solve the problem of information presentation in the same information system platform for
multi-structure and multi-source information, this study proposes a tree-like super entity based
multi-layer entity organization mode, and encapsulates the tree-like super entity with the component
mode we have designed. An editable e-book component-based information presentation method was
developed, which has been successfully implemented in the FPPISYR. The main contributions of this
study can be summarized as follows:

(1) A tree-like super entity was proposed to solve the ambiguity problem whereby the semantic of
some tuples change when constructing multi-layer one-to-multi entities. The data structure and related
algorithms for the tree-like super entity were given and the architecture of the tree-like structure
component was also illustrated. We compared the tree-like super entity with the traditional tree structure
entity and found that the former had the advantage of time complexity in Join-Query operation and
space complexity when it was saved as a data table.

(2) An editable e-book component was designed, consisting of a tree-like structure component, QQ
menu component, 1/K switch connection and other components. The component can present
multi-dimensional and multi-level information in an interactive way by combining with table form,
video, web page, editable document, and other presentation methods. We developed and deployed the
editable e-book component in real life integrated information systems and achieved good results.

Acknowledgements

This research is supported by the National Natural Science Foundation under Grant 90924026 from
the China Government, by the Australia Research Council (ARC) under Discovery Grant DP0557154,
by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education
Ministry, and by the Research Program of Humanities and Social Sciences, State Education Ministry,
China.

References

Bruce E., 2004. Thinking in Java (second edn.), Prentice Hall, Upper Saddle River, NJ.

Cardenas A., 1985. Data Base Management Systems (second edn.), Allyn and Bacon, Boston, MA.

Chang, Y., Lin, C., Lee, Y., Lai, H., 2006. Optimized PDA orientation and screen layout for Chinese vocabulary learning by young

Page 15 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 15 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

15

children. Displays 27(2), 73-79.

Chen, Z., 2005. Dynamic design of QQ panel menu by Delphi. Journal of Youjiang Teachers College for Nationalities Guangxi
18(6), 67-69.

Combi, C., Oliboni, B., Rossato, R., 2005. Merging multimedia presentations and semistructured temporal data: a graph-based
model and its application to clinical information. Artificial Intelligence in Medicine 34(2), 89-112.

Coppus, G., Strashok, A., 1995. Manufacturing information systems for the process industry: responding to the plant management
challenges of the 90's. ISA Transactions 34(2), 119-132.

Cox, P.T., Song, B., 2001. A formal model for component-based software. Proc of 2001 IEEE Symposium on Visual/Multimedia
Approaches to Programming and Software Engineering, Stresa, Italy, 122-124.

Crnkovic, I., Larsson, M., 2002. Challenges of component-based development. Journal of Systems and Software 61(3), 201-212.

D'Souza, D.F., Wills, A.C., 1997. Objects, Components, and Frameworks with UML: the Catalysis Approach. Addison-Wesley,
Boston, MA.

de Jonge, M., 2009. Developing product lines with third-party components. Electronic Notes in Theoretical Computer Science
238(5), 63-80.

Ettredge, M., Richardson, V.J., Scholz, S., 2001. The presentation of financial information at corporate Web sites. International
Journal of Accounting Information Systems 2(3), 149-168.

Feng, S., Li, L.X., Duan, Z.G., Zhang, J.L., 2007. Assessing the impacts of South-to-North Water Transfer Project with decision
support systems. Decision Support Systems 42(4), 1989-2003.

Freeman, R.T., Yin, H., 2005. Tree view self-organisation of web content. Neurocomputing 63, 415-446.

Gao, Y., Cao, T., 2010. Memory forensics for QQ from a live system. Journal of Computers 5(4), 541-548.

Greenfield, P.M., Schneider, L., 1977. Building a tree structure: the development of hierarchical complexity and interrupted
strategies in children's construction activity. Developmental Psychology 13(4), 299-313.

Guoli, J., Daxin, G., Tsui, F., 2003. Analysis and implementation of the BOM of a tree-type structure in MRPII. Journal of
Materials Processing Technology 139(1-3), 535-538.

Han, X., Jin, Y., 2009. Research progress on display technology of electronic book. China Printing and Packaging Study 1(4),
8-13.

Hu, J., Gu, Q., Wang, X., 2001. Application of tree view component in management information system. Computer Development
and Application 14(8), 31-32.

Hu, P., Ma, P., Chau, P., 1999. Evaluation of user interface designs for information retrieval systems: a computer-based experiment.
Decision Support Systems 27(1-2), 125-143.

Jiang, T., Su, B., Hartmann, H., 2007. Temporal and spatial trends of precipitation and river flow in the Yangtze River basin,
1961-2000. Geomorphology 85(3-4), 143-154.

Kang, Y., Wang, M., Lin, R., 2009. Usability evaluation of e-books. Displays 30(2), 49-52.

Khalifa, M., Kwok R.C., 1999. Remote learning technologies: effectiveness of hypertext and GSS. Decision Support Systems
26(3), 195- 207.

Klitzman, R., Zolovska, B., Folberth, W., 2009. Preimplantation genetic diagnosis on in vitro fertilization clinic websites:
presentations of risks, benefits and other information. Fertility and Sterility 92(4), 1276-1283.

Ko, C., 2009. RFID-based building maintenance system. Automation in Construction 18(3), 275-284.

Kruse, R. L., Tondo, C. L., Leung, B. P., 1997. Data structures & program design in C (second edn.), Prentice Hall, Upper Saddle
River, NJ.

Kundu, S., Mukherjee, J., Majumdar, A.K., Majumdar, B., Sekhar Ray, S., 2007. Algorithms and heuristics for efficient medical
information display in PDA. Computers in Biology and Medicine 37(9), 1272-1282.

Leach, R.J., 1997. Software Reuse: Method, Models, and Costs. McGraw Hill, New York.

Li, L., Lu, X., Chen, Z., 2007. River channel change during the last 50 years in the middle Yangtze River, the Jianli reach.
Geomorphology 85(3-4), 185-196.

Liu, H., Hu, J., Zheng, P., 2000. A development method based on architecture of component-based application system and its
application. Journal of Wuhan University of Hydraulic and Electric Engineering 33(4), 83-85.

Liu, S., 2001. The application of tree structure in production management information system. Information Technology(9), 11-13.

Lu, J., Ma, J., Zhang, G.., 2007. Warning message generation by information filtering technique. International Journal of Nuclear
Knowledge Management 2(4), 435-448.

Ma, J., Zhang, G., Lu, J., 2010. A state-based knowledge representation approach for information logical inconsistency detection in
warning systems. Knowledge-Based Systems 23(2), 125-131.

Mannino, M.V., 2009. Database Design, Application Development, and Administration. McGraw-Hill, New York.

Page 16 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 16 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

16

Manthou, V., Vlachopoulou, M., 2001. Bar-code technology for inventory and marketing management systems: a model for its
development and implementation. International Journal of Production Economics 71(1-3), 157-164.

Manvi, S.S., Venkataram, P., 2005. An intelligent product-information presentation in e-commerce. Electronic Commerce
Research and Applications 4(3), 220-239.

Niederhauser, D.S., Reynolds, R.E., Salmen, D.J., Skolmoski, P. 2000. The influence of cognitive load on learning from hypertext.
Journal of Educational Computing Research 23(3), 237-255.

Oussalah, M., 2003. Reuse in KBS: a components approach. Expert Systems with Applications 24(2), 173-181.

Quentin-Baxter, M., 1998. Hypermedia learning environments limit access to information. Computer Networks and ISDN
Systems 30(17), 587-590.

Ravichandran, R., Banerjee, H., 1994. Support for information systems usage in banks. International Journal of Information
Management 14(1), 5-12.

Rousseau, C., Bellik, Y., Vernier, F., 2006. A framework for the intelligent multimodal presentation of information. Signal
Processing 86(12), 3696-3713.

Sforna, M., 2000. Data mining in a power company customer database. Electric Power Systems Research 55(3), 201-209.

Shelburne, W.A., 2009. E-book usage in an academic library: user attitudes and behaviors. Library Collections, Acquisitions, and
Technical Services 33(2-3), 59-72.

Speier, C., 2006. The influence of information presentation formats on complex task decision-making performance. International
Journal of Human-Computer Studies 64(11), 1115-1131.

Sun, H., Wu, Y., Wei, J., 2009. Research on CORBA pluggable protocols. Computer Knowledge and Technology 5(27),
7783-7787.

Sun Microsystems, 1997. JavaBeans for Java Studio: Architecture and API white paper.

Taylor, M.A.P., Woolley, J.E., Zito, R., Integration of the global positioning system and geographical information systems for
traffic congestion studies. Transportation Research Part C: Emerging Technologies 8(1-6), 257-285.

Terpsiadou, M.H., Economides, A.A., 2009. The use of information systems in the Greek public financial services: the case of
TAXIS. Government Information Quarterly 26(3), 468-476.

Tsamenyi, M., Cullen, J., 2006. Changes in accounting and financial information system in a Spanish electricity company: a new
institutional theory analysis. Management Accounting Research 17(4), 409-432.

Waema, T.M., Walsham, G., 1990. Information systems strategy formation in a developing country bank. Technological
Forecasting and Social Change 38(4), 393-407.

Wang, Y., Forgionne G., 2006. A decision-theoretic approach to the evaluation of information retrieval systems. Information
Processing & Management 42(4), 863-874.

Wu, Y., Zhang, J., Liu, S.M., Zhang, Z.F., Yao, Q.Z., Hong, G.H., Cooper, L., 2007. Sources and distribution of carbon within the
Yangtze River system. Estuarine, Coastal and Shelf Science 71(1-2), 13-25.

Xu, K., Chen, Z., Zhao, Y., Wang, Z., Zhang, J., Hayashi, S., Murakami, S., Watanabe, M., 2005. Simulated sediment flux during
1998 big-flood of the Yangtze (Changjiang) River, China. Journal of Hydrology 313(3-4), 221-233.

Yang, Y., Jing, Z., Gao, T., Wang, H., 2007. Multi-sources information fusion algorithm in airborne detection systems. Journal of
Systems Engineering and Electronics 18(1), 171-176.

Yeh, D., Li, Y., Chu, W., 2008. Extracting entity-relationship diagram from a table-based legacy database. Journal of Systems and
Software 81(5), 764-771.

Zhang, R., Chen, D., Shi, L., Zhou, S., Zhang, B., 2007. Research and realization of embankment information system of Yangtze
River based on three modes. Journal of Wuhan University of Technology (Transportation Science & Engineering) 31(1), 27-30.

Ruijun Zhang is currently an Associate Professor and tutor of graduate students in the Information
Management Department, School of Management, Wuhan University of Science and Technology (WUST),
China. He received the Bachelor's degree in Computer Science from the Northern Jiaotong University in
1994, and Master's and Ph.D. degrees in Computer Application Technology from Wuhan University of
Technology in 2002 and 2007 respectively. His research interests include information system engineering,
decision support systems and intelligent information systems. He has published two textbooks and over 20
papers. Contact him at zrjun@wust.edu.cn.

Jie Lu is a Professor and Director of the Decision Systems and e-Service Intelligence Research Laboratory in
the Faculty of Engineering and Information Technology at the University of Technology Sydney (UTS),
Australia. She received her PhD from Curtin University of Technology in 2000. Her main research interests
lie in the area of intelligent information systems, decision making modeling, decision support system tools,
uncertain information processing, e-Government, and e-Service intelligence and personalization. She has
published five research books and more than 250 papers in refereed journals and conference proceedings. She
has won four Australian Research Council (ARC) discovery grants and many other research grants. She

Page 17 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

Page 17 of 17

Acc
ep

te
d

M
an

us
cr

ip
t

17

served as Editor-in-Chief for Knowledge-Based Systems and as a guest editor of special issues for six
international journals, and has also delivered four keynote speeches at international conferences. Contact her
at jie.lu@uts.edu.au.

Guangquan Zhang is an Associate Professor in the Faculty of Engineering and Information Technology at
the University of Technology Sydney (UTS), Australia. He has a PhD in Applied Mathematics from Curtin
University of Technology, Australia. From 1979 to 1997, he was a Lecturer, Associate Professor and Professor
in the Department of Mathematics, Hebei University, China. His main research interests lie in the area of
multi-objective, bilevel and group decision making, decision support system tools, fuzzy measure, fuzzy
optimization and uncertain information processing. He has published four monographs, four reference books
and over 250 papers including more than 120 refereed journal articles. He has won four Australian Research
Council (ARC) discovery grants and many other research grants. He has served, and continues to serve, as a
guest editor of special issues for three international journals. Contact him at Guangquan.Zhang@uts.edu.au.

