
T
m
n

G
a

b

a

A
R
R
A
A

K
V
R
C
A
G
P

1

u
(
(
n
e
c
(
o
a

c
t
2
a
m
i
t

t

0
d

The Journal of Systems and Software 84 (2011) 1270– 1291

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

he effects of scheduling, workload type and consolidation scenarios on virtual
achine performance and their prediction through optimized artificial neural

etworks

eorge Kousiourisa,∗, Tommaso Cucinottab, Theodora Varvarigoua

Dept. of Electrical and Computer Engineering, National Technical University of Athens, 9, Heroon Polytechniou Str., 15773 Athens, Greece
Real-Time Systems Laboratory (ReTiS), Scuola Superiore Sant’Anna, Via Moruzzi, 1, 56100 Pisa, Italy

 r t i c l e i n f o

rticle history:
eceived 25 February 2011
eceived in revised form 6 April 2011
ccepted 6 April 2011
vailable online 14 April 2011

a b s t r a c t

The aim of this paper is to study and predict the effect of a number of critical parameters on the perfor-
mance of virtual machines (VMs). These parameters include allocation percentages, real-time scheduling
decisions and co-placement of VMs when these are deployed concurrently on the same physical node,
as dictated by the server consolidation trend and the recent advances in the Cloud computing systems.
Different combinations of VM workload types are investigated in relation to the aforementioned factors
in order to find the optimal allocation strategies. What is more, different levels of memory sharing are
eywords:
irtualization
eal-time scheduling
loud computing
rtificial neural networks
enetic algorithms

applied, based on the coupling of VMs to cores on a multi-core architecture. For all the aforementioned
cases, the effect on the score of specific benchmarks running inside the VMs is measured. Finally, a black
box method based on genetically optimized artificial neural networks is inserted in order to investi-
gate the degradation prediction ability a priori of the execution and is compared to the linear regression
method.
erformance prediction

. Introduction

During the recent years, server consolidation through the
se of virtualization techniques and tools such as VMware
http://www.vmware.com/), XEN (http:www.xen.org/), KVM
http://www.linux-kvm.org/) is widely used in data centers or in
ew computing paradigms such as Cloud computing (Armbrust
t al., 2010). Through this technique, applications with different
haracteristics and requirements can run inside virtual machines
VMs) on the same physical multi-core host, with increased levels
f security, fault tolerance, isolation, dynamicity in resource
llocation and ease of management.

However, a number of issues arise from this advancement in
omputing, like the degradation of the performance of the applica-
ions, due to the usage of the virtualization layer (Tikotekar et al.,
008). Except for the extra layer, a number of other parameters may
lso affect the performance in distributed and virtualized environ-

ents. These may be the percentage of CPU allocated to the VM and

ts effect on execution time and the scheduling granularity (the way
his percentage is assigned) that may also affect the latter. What

∗ Corresponding author. Tel.: +30 6939354121.
E-mail addresses: gkousiou@mail.ntua.gr, gkousiou@yahoo.com (G. Kousiouris),

ommaso.cucinotta@sssup.it (T. Cucinotta), dora@telecom.ntua.gr (T. Varvarigou).

164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2011.04.013
© 2011 Elsevier Inc. All rights reserved.

is more, consolidation decisions, whether these imply the assign-
ment of VMs to the same core or neighbouring cores on the same
physical node, may have an effect on application performance. In
addition, different types of applications may have different inter-
ference effect on the co-scheduled ones on the same physical node.
This may happen due to application internal characteristics, like
type of calculations, usage of specific sub-circuits of the CPU, effect
due to cache sharing, memory access patterns etc.

The degradation of performance in this case may lead to
increased need for resources. However, the current Cloud business
SPI model (Youseff et al., 2008) identifies discrete roles between
the entity that offers a platform (PaaS provider) and the entity that
offers the resources which this platform may use (IaaS or Cloud
provider). This model, in conjunction with the aforementioned per-
formance overhead, creates the following problem:

• A PaaS provider has estimated that X number of resources are
needed for meeting the QoS features of the application inside the
VM. This estimation will probably be made after observing the
application behavior when running as standalone.

• The IaaS provider receives a request in order to reserve this X

amount of resources. In an attempt to maximize profit, the VMs
of the application will be consolidated with other VMs that are
admitted in the infrastructure. The way this consolidation is per-
formed is unknown to the PaaS layer. This does not mean that

dx.doi.org/10.1016/j.jss.2011.04.013
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:gkousiou@mail.ntua.gr
mailto:gkousiou@yahoo.com
mailto:tommaso.cucinotta@sssup.it
mailto:dora@telecom.ntua.gr
dx.doi.org/10.1016/j.jss.2011.04.013

stems

•

•

d
s
a
i
t
i
i
w
r

r
n
o
s
m
t
t
t
l
a
i

•

•

•

•

2
S
f
a
i

G. Kousiouris et al. / The Journal of Sy

the IaaS provider will give less resources. The same amount as
requested will be allocated.
The performance degradation due to the aforementioned consol-
idation and according interference will be translated to decreased
Quality of Service (QoS) levels for the application.
The breach of confidence between the PaaS and IaaS provider is
inevitable. The former will consider that the latter has deceived
him/her, and that the allocation of resources was less than agreed.
The latter will consider that the former made a poor estimation
and is trying to transfer the responsibility to the infrastructure
layer.

Therefore, it is imperative for an IaaS provider to be able to pre-
ict accurately the overhead that is produced by the consolidation
trategy and therefore increase a priori the number of resources
llocated to an application accordingly. This will not only lead to
mproved reputation but will enable the IaaS provider to optimize
he assignment of VMs to hosts or even cores of one host, depend-
ng on the type of workload these VMs produce and the estimated
nterference of one type of workload over the other. By knowing

hich combinations result in less overhead, over-provisioning with
egard to standalone execution can be minimized.

The aim of this paper is to take under consideration a wide
ange of parameters that affect application performance when run-
ing on consolidated virtualized infrastructures and quantify this
verhead. Therefore, IaaS providers may perform intelligent deci-
ions regarding the placement of VMs on physical nodes. This will
itigate the aforementioned problem and will aid the IaaS layer

o minimize the need for over-provisioning. As indicative applica-
ions we consider the 6 standard Matlab benchmark tests, due to
he fact that they represent a wide area of computational work-
oad, from mathematical calculations to graphics processing, and
re easily reusable by other researchers. The following aspects are
nvestigated:

Scheduling decisions for EDF-based (Earliest Deadline First)
scheduling (budget Q over period P), both in terms of CPU share
assigned (Q/P) and granularity of this assignment (P). This type
of scheduling (Liu and Layland, 1973), which is very popular in
the real-time world, is used in order to guarantee that the assign-
ments of CPU percentages to the VMs will be followed and to
ensure temporal isolation.
Different combinations of benchmark tests, in order to discover
the ones that show less interference (and therefore overhead),
when running concurrently on the same node.
Different placement decisions and how these affect the overhead
(placement on the same core, in adjacent or non-adjacent cores
in one physical node, compared with standalone execution). As
adjacent cores we consider the ones that share a L2 cache mem-
ory.
Ability to predict in advance these effects in order to proactively
provision the resources needed by an application and be able to
choose the suitable configuration that creates the least overhead.
For achieving this, artificial neural networks (ANNs) are used, that
are automatically designed and optimized through an innovative
evolutionary (GA-based) approach. The topology of the networks
is dynamic in terms of number of hidden layers, neurons per
layer and transfer functions per layer and is decided through the
optimization process of the GA.

The remaining of the paper is structured as follows. In Section
, similar approaches in the related field are presented, while in

ection 3 an extended analysis is made on the chosen parameters
or investigation. Section 4 contains the description of the test-bed
nd the measuring process, while Section 5 presents the analyt-
cal results from the experiments. Section 6 details the approach
 and Software 84 (2011) 1270– 1291 1271

in order to predict in advance the effect and compares it to the
multi-variate linear regression method, while Section 7 provides
the overall conclusions from this study and intentions for the future.

2. Related work

In the past, we have investigated partly a number of the param-
eters that are considered here. In our previous works (Cucinotta
et al., 2010a; Kousiouris et al., 2010), the main focus was given on
the effect of scheduling parameters and % of cpu assignments on
the QoS offered by specific applications (mainly interactive ones).

Given that virtualization technologies have become very
popular during the recent years, a large number of interest-
ing research efforts exist. In (Padala et al., 2007), the authors
investigate the overhead that is inserted through the use of
different virtualization tools, with the intention to discover the
most efficient one. In (Makhija et al., 2006), the main focus is
the scalability of virtual machines with mixed workloads and
the effect on their performance when consolidated. The bench-
marks are based on server applications. With the extended
use of Cloud technologies, applications that are envisioned to
be part of their workload may have more complicated work-
loads rather than traditional data center ones. Such examples
may be the case of the Digital Film Post-production applica-
tion (http://www.irmosproject.eu/Postproduction.aspx) of the
IRMOS project or the availability of mathematical program-
ming and optimization tools like GAMS in Cloud infrastructures
(http://support.gams-software.com/doku.php?id=platform:aws).
Furthermore, no temporal isolation between the virtual machines
is used.

A very interesting approach, similar to our work, is Koh et al.
(2007). In this case, the authors study the performance interference
of combinations of elementary applications when running inside
co-allocated VMs. Interesting score methodology is presented that
can also be used for classifying applications. The workload char-
acteristics of each application are gathered in order to be used as
a comparison in the future for identifying unknown applications
that are going to be inserted in the infrastructure and as predictors
in a linear regression model. The main differences of our approach
lie on the fact that we investigate a limited number of specific and
generic benchmark tests, with the use of real time scheduling and
a different prediction method based on ANNs. Especially the use of
RT scheduling ensures the temporal isolation of VMs when run-
ning concurrently on the same CPU and the fair division of the
resource percentages that each VM utilizes. In addition, we inves-
tigate different hardware setup interferences, such as running VMs
on the same core or in adjacent cores in multi-core architectures
and different setups in terms of granularity and percentage for each
elementary application.

In Soror et al. (2008), a very promising approach for dynamically
handling the resources on which concurrent VMs are executed is
portrayed, in order to optimize system utilization and application
response times. This is based on both offline recommendations and
online corrections. However this work is centered around database
applications. In Moller (2007), a design and validation methodol-
ogy of benchmarks for virtual machines is presented, where also
the concurrency effects are investigated. In Tickoo et al. (2010),
a number of configurations is taken under investigation, like run-
ning on the same or adjacent cores, through hyper-threading or not.
Experiments are focused on 3 tests and without taking under con-
sideration scheduling parameters. Prediction methods are based on

analytical formulas.

In Jin et al. (2008), VSCBenchmark is described, an analysis of
the dynamic performance of VMs when new VMs are deployed.
The authors investigate the behavior of the co-scheduled VMs for

1 stems

b
s
m
w
t
fi
c

V
a
t
r
d
s
fi
r

d
i
m
A
r
(
r
v
t
n

r
(
o
fi
p
i
t
i
t
p
a
e
u

n
n
a
l
o
o
I
a
l
e
o
S
t
p
a

3

e
p
e
d

time needed to make the necessary calculations for each test.
Furthermore, different allocation scenarios are investigated for

multi-core architectures. The VMs are pinned with a variety of ways

Table 1
Details regarding the Matlab benchmark tests and the specific computa-
tional patterns that they represent (http://www.mathworks.com/help/techdoc/
ref/bench.html).

Test 1 Floating point operations with regular memory accesses
Test 2 Floating point operations with irregular memory accesses
272 G. Kousiouris et al. / The Journal of Sy

oth launching and maintaining multiple instances on the same
erver. Boot time for a VM is a very resource consuming task, that
ay lead other co-scheduled tasks to resource starvation. In our
ork, this is avoided through the use of the real time scheduling

hat limits the resources assigned to a task (like a VM) to a prede-
ned percentage. Thus temporal isolation is achieved between the
oncurrently running tasks.

In Weng et al. (2009), an interesting approach for scheduling
Ms is presented, with two modes of operation (high-throughput
nd concurrent) which aims at efficiently handling CPU time for
he phases where the VMs have multiple threads running concur-
ently. This approach is more focused on the scheduling aspects and
oes not take into consideration concurrent VMs running on the
ame server. The VirtualGEMS simulator for testing different con-
gurations with regard to L2 setup between different concurrently
unning VMs appears in García-Guirodo et al. (2009).

A benchmarking suite specifically for VM performance is
epicted in El-Refaey and Rizkae (2010). While it pinpoints some

mportant features for benchmarking of virtualized applications, it
ainly focuses on one type of workload (linux kernel compilation).

 survey of virtualization technologies in addition to performance
esults for different configurations appears in White and Pilbeam
2010). In Cucinotta et al. (2009, 2010b), an investigation is car-
ied out on the possibility to enhance the temporal isolation among
irtual machines concurrently running on the same core, by using
he IRMOS real-time scheduler, focusing on compute-intensive and
etwork-intensive workloads.

In Khalid et al. (2009) a very interesting approach for adaptive
eal-time management of VMs in High Performance Computing
HPC) workloads is presented. This mechanism is used during the
peration of the HPC infrastructure, in which the VMs have a prede-
ned running period which is decided by the infrastructure sharing
olicy. The main goal is to calculate in real time if the job that is

ncluded in the VM is going to be finished in time or not. The ones
hat will not anyway finish in time are prematurely killed in order to
mprove the success rate of the overall infrastructure. In our view,
his work can be used in combination with the one presented in this
aper. The models that are described here can be used for observing
nd minimizing the overhead of a specific allocation over the differ-
nt nodes, while the work presented in Khalid et al. (2009) can be
sed for the runtime optimization of the virtualized infrastructure.

GA-based optimization of ANNs has been used in the past in a
umber of significant works. For example, in Leung et al. (2003), a
umber of the parameters of the network (like connection weights)
re chosen through GAs. The main disadvantage of this approach
ies on the fact that a static structure for the network is required. In
ther cases (like in Ilonen et al. (2003)) they are used for indirect
ptimization, through for example optimizing the training process.
n Fiszelew et al. (2007), another approach combining GAs and ANN
rchitecture is presented, however the structure of the network is
imited to two hidden layers and static transfer functions, while
xperimenting with a different set of parameters such as number
f nodes and their connections. The same applies for Giustolisi and
imeone (2006). In our approach, the networks may have a dynamic
opology, in terms of number of hidden layers, number of neurons
er layer and transfer functions per layer. Other parameters such
s different training methods can be added at will.

. Investigated parameters

In a general purpose operating system, when two tasks start to

xecute, they compete with each other for the underlying com-
utational resources. The amount of the latter that is assigned to
ach task may be divided according to the temporal needs and
emands of them. However, this results in an inability to predict
 and Software 84 (2011) 1270– 1291

the QoS offered by an application running inside a VM, in shared
infrastructures. The percentage of CPU allocated to it may vary
significantly depending on the co-located tasks demand (like the
booting of another VM in Tickoo et al. (2010)). One solution to mit-
igate this effect is derived from the real time world. Through the
use of EDF-based scheduling, the percentage assigned to a task may
be guaranteed. In general, for this type of scheduling, there are two
significant parameters, the budget Q and the period P. Q is the com-
putational time on the physical node that is assigned to a task over
a period P. Thus, the ratio of Q/P is the resulting percentage on the
machine. However, for a given percentage, different granularities
may exist, depending on P (for example, 50% may mean 50 ms every
100 ms or it may mean 250 over 500 ms). One interesting question
is how these parameters affect application performance.

As investigated in Cucinotta et al. (2010a), Kousiouris et al.
(2010), the effect of real-time scheduling parameters may affect the
application performance in a variety of ways. For example, in our
aforementioned works, that investigate interactive applications,
different granularities of the same CPU percentage assignments
lead to increased standard deviation values for server response
times. The conclusion from that analysis was that for interactive
applications, low granularity (small scheduling period P) leads to
more stable performance for the same percentage of CPU assigned.
In this work, we focus on 6 computationally intensive applica-
tions. The effect of scheduling decisions (for both percentage of CPU
allocated and granularity of this allocation) on their performance
metrics is observed along with the interference of the co-allocation
of VMs for the same CPU % assigned.

As identified in IRMOS project D5.1.1 (2009), the metric that
is currently used by infrastructure providers in order to describe
hardware capabilities is mainly CPU frequency. However this met-
ric is far from sufficient, given that it does not reflect the physical
node’s ability to solve problems (does not take under consid-
eration other factors such as bus speed, memory speed, etc.).
Other approaches such as the Berkeley dwarfs (http://view.eecs.
berkeley.edu/wiki/Dwarfs) or Matlab benchmark tests are more
able to capture a node’s computational capability. In this paper
the second approach was chosen. The Matlab benchmarks
(http://www.mathworks.com/help/techdoc/ref/bench.html) con-
sist of 6 tests, that measure the physical node’s (and Matlab’s for
this matter) ability to solve problems with different computational
requirements. Therefore these tests are used for both determining
the hardware computational capability (test score) and the charac-
terization of the types of workloads (test number).

What is more, they represent a wide area of types of workloads
(Table 1) with a limited number of tests and it is the reason the spe-
cific approach was chosen. For these, we investigate the effect of the
CPU allocation and the effect of their combination in concurrently
running VMs. It is expected that different combinations will have
different effect, due to the nature of the computations. The degra-
dation of the performance is reflected on the test score. Lower test
scores indicate better performance. In general, the test score is the
Test 3 Data structures
Test 4 Floating point and mixed integer operations
Test 5 2-D graphics
Test 6 3-D graphics

stems

o
e
r
(
s
a
r
l

•

•

•

•

•

•

4

(
a
(
w
s
1
t
t
t
f
I
s

G. Kousiouris et al. / The Journal of Sy

n cores of the same physical node in order to examine the interfer-
nce effect per scenario on their performance. This is expected to be
educed due to the temporal isolation when sharing the same core
with the exception of cache influence). However it is interesting to
ee what happens when the VMs that contain the individual tests
re scheduled on different cores on the same physical node, thus
unning in real parallelism and contending for the same sub-circuits
ike the RAM bus.

So, overall what is investigated is:

different core% assignments for a single VM running an elemen-
tary test,
different granularity of allocation assignments for a single VM
running a test,
mutual interference effect of combination of tests for concur-
rently running VMs on the same core (shared L1 and L2 cache
memories) and for a variety of scheduling periods,
mutual interference effect of combination of tests for concur-
rently running VMs on adjacent cores (with shared L2 cache) on
the same physical node and for a variety of scheduling periods,
mutual interference effect of combination of tests for concur-
rently running VMs on non-adjacent cores (non-shared L1/L2
cache) on the same physical node and for a variety of scheduling
periods,
ping times for different ping periods, %core assignments and
scheduling periods of VMs in order to investigate the effect on
network responsiveness.

. Testbed

For the real time scheduler, the one that is presented in
Checconi et al., 2009) was chosen. The host of the experiments was

 quad core (2.4 GHz) CPU, with 8 GB of RAM and 8 MB of L2 cache
divided in two 4 MB parts per core couple). Power management
as switched off in order not to dynamically change the processor

peed for power efficient operation. The host OS is Ubuntu Linux
0.10, the VM OS is Windows 7 (with Cygwin and OpenSSH) and
he hypervisor is KVM. The Matlab executable containing the tests
ook as arguments the duration of the experiment, the number of

est to run, an execution ID and the scheduling parameters (Q, P)
or documentation purposes. It was compiled in Matlab R2007b.
n order to be able to run individual tests and not the entire
uite, the variation of the benchmark function that is provided in

Fig. 1. Pseudo-code for Java Coord

Fig. 2. Pseudo-code for Matlab e
 and Software 84 (2011) 1270– 1291 1273

(http://www.mathworks.com/matlabcentral/fileexchange/11984)
was used. This was combined with suitable logic in order to
perform the tests for a specific period of time and not for a specific
number of runs. The reason for this is that each one of the 6
elementary tests has a different execution time, which is also
affected by the resources allocated to it. So the synchronization of
them cannot be based on number of runs. Furthermore, in order
to run each test for an increased number of times, this duration
was significantly larger so that a large sample could be collected
(in the range of hundreds of test runs per configuration). From this
sample, the mean value of the execution times was extracted for
each case.

The experiments were coordinated by a Java module (Coordina-
tor) that was pinned on one core (CPU 0). This code implemented
the interface towards the real time scheduler, in order to change
the Q, P scheduling parameters on the processes of the VMs. The
VMs were pinned to either one core (CPU 2) or each one on dif-
ferent cores (CPU 1, 2 or 3), depending on the experiment. After
the setup of the scheduler, the Coordinator was used in order to
connect into the VMs through SSH and launch different combina-
tions of the Matlab executables for a specific period of time. The
time was measured from inside Matlab, and each execution with a
given configuration was performed until a certain time period had
passed (500 s). This leads to a small violation of the time period,
but it was much smaller than the overall duration. It is critical to
mention that if the functions used to measure time are based on the
clock function of Matlab, this is far from accurate. It was observed
that with high utilization inside the VM, these timing mechanisms
lost completely track of time (indicatively, while the simulation
was running for 2 h, inside the VM only 5 measured minutes had
passed). This is why the tic-toc measuring function of Matlab was
used.

The pseudo-code for the Coordinator appears in Fig. 1 and for
the executable inside the VM in Fig. 2. The overall implementa-
tion design and the interactions between the necessary software
components appear in Fig. 3. In detail, the different steps needed
are:

• Launching of the Java Coordinator. This component has the
responsibility of keeping track of the execution loops for the

various parameters of the experiments like scheduling periods,
CPU percentages assigned and test combinations. Furthermore,
it raises the threads that contact the scheduler interface (Python
script) for setting up the CPU allocations for each VM.

inator sequence of actions.

xecutables inside the VMs.

1274 G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291

F : the

o s an
b

•

•

t
k
o
d

c
t
f
t
f
i
f
t
t

T
T

ig. 3. Software components needed for the implementation and their interaction
rder to cover the investigated interval, sets up the scheduling parameters of the VM
y the current execution.

The next step is to raise different threads in order to con-
nect to the VMs and launch the Matlab executables with the
specific arguments (test combinations). These threads are syn-
chronized in the end of their execution, in order to ensure
the concurrency of the next combination execution. It is crit-
ical to mention that in order to ensure a stable execution of
the threads for an unlimited period of time, the implementa-
tion suggested in (http://www.javaworld.com/javaworld/jw-12-
2000/jw-1229-traps.html?page=4) was followed. This guaran-
tees that the output and error streams are captured efficiently,
in order to avoid computer hangs.
When both executions inside the VMs are completed, the Java
Coordinator progresses with the next configuration dictated by
the loop.

Thread synchronization was performed in order to ensure that
he VMs are executed concurrently. The results of each VM were
ept in a logfile locally at the VM. At the end they were merged in
rder to obtain the overall logs. Details regarding the testbed are
ocumented in Table 2.

The duration of each run (a specific test combination with a spe-
ific hardware configuration) was set to 500 s. This was sufficient
ime to ensure that the threads would be concurrently executed
or the majority of the time, without having random ssh connec-
ion delays influence this process. The ssh connection delays ranged
rom 2.8 to 3.8 s. This is why thread synchronization was performed
n the end of the 500-s interval. The thread that finished first waited

or the second one to complete. It was also enough in order to let the
ests run for an increased number of runs (in the range of hundreds),
hus leading to sufficient sample gathering.

able 2
est-bed details regarding hardware and software.

Host OS Linux Ubuntu 10.10
Guest OS Windows 7
Hypervisor KVM
BenchmarksMatlab R2007b executable
Physical hostIntel Core 2 Duo Q6600 (Quad core 2.4 GHz, 8 MB cache, 8 GB RAM)
main component is the Java Coordinator which keeps track of execution loops in
d connects to the guest OS in order to launch the specific test combination dictated

Furthermore, an execution ID was passed inside the VMs, in
order to be included in the reported results. This was a unique
number for each examined combination. This is necessary due to
the fact that it was observed that for a number of random rea-
sons (like broken tcp pipes, etc.) a limited number of combinations
did not succeed in starting or finishing. For these cases the ID did
not get logged. This way the results from the separate files that
are kept inside each VM and consolidated in the end could be fil-
tered in order to rule out the aforementioned cases and repeat the
experiment for them.

5. Measurements

In the following paragraphs the different deployment scenarios
are described, along with the resulting measurements. For all cases,
the scheduler granularity was investigated from 200 to 800 ms. A
warm-up period for the system was introduced, as suggested by the
literature, in order for the VMs to behave in a more stable fashion.
That is why the experiments began from 150 ms, but the results
were discarded for that specific value. Each data point in the graphs
shown in the next sections is the mean value of the individual test
runs inside a 500-s interval. In general these individual test runs
were in the range of hundreds of times.

5.1. Single VM on a core

In this scenario the maximum percentage assigned to each test
is 80%. This is due to the fact that the remaining part is left for host
system tasks to utilize. In this configuration, each VM is executed
as standalone on one core. No other VM is running. This was per-
formed in order to see the effect of the granularity of the scheduling
parameters and the percentage allocation, in addition to acquir-
ing the baseline scores of un-interfered execution (standalone) for
comparison with the VM consolidation scenarios. As scheduling
parameters are considered the CPU share X assigned to a task in

a period P. In every period, the task is given X*P ms of CPU time. For
example if we have a scheduling period of 500 ms and a CPU share
of 40%, this means that the task will be given 200 ms of CPU time
every 500 ms.

G. Kousiouris et al. / The Journal of Systems

Fig. 4. Test scores for different CPU percentages and granularity (scheduling period)
when the tests are running without any interference (co-scheduled tests). The test
score (vertical axis) indicates the time needed for executing one test run and has
been calculated from the mean value of hundreds of test runs inside a 500-s execu-
tion run. The scheduling period (horizontal axis) is the time interval in which the
allocation of X% CPU share is guaranteed. (a) Standalone test 1; (b) Standalone test
4; (c) Standalone test 6.
 and Software 84 (2011) 1270– 1291 1275

In Fig. 4 the scores for each test are portrayed, for different
CPU shares and periods of assignment of them. Lower test scores
indicate better performance. In essence, the test score is the time
needed for completing one test run. Only an indicative number is
portrayed here, remaining graphs are included in Appendix A (Fig.
A.1).

For tests 1–4, the conclusion is that the behavior is indepen-
dent of the granularity of scheduling. This is anticipated since in a
standalone basis, the effect of interference in cache memories from
task switching is non-existent. With relation to the improvement
of performance when the CPU share increases, this is almost linear,
as seen from the inversely proportional test scores.

For tests 5–6 (graphics tests), the behavior is more oscillatory,
which can be attributed to the difficulty of the virtualization layer
to access or emulate the graphics card.

5.2. Concurrent VMs collocated on the same core

The second experiment aims at examining the effect of concur-
rency on the performance of VMs that are running on the same
core, thus using shared L1 and L2 cache memories. For this reason,
each VM is allocated 40% of the core capacity. The performance
scores are compared to the 40% scores of experiment A. Results are
shown in Fig. 5. These illustrate the scores of each individual test,
when running on the same core with each of the other tests. That
is why the (i,j) figure does not coincide with the (j,i) figure. Lower
test scores mean better performance.

It is evident from the above graphs that while the scheduling
period P of the assignments increases, the performance overhead
of the co-scheduled tests improves. This is owed mainly to the fact
that with larger periods (and the same % of CPU) the applications
have more time to utilize components such as the cache memories.
A lower period results in more frequent task switching on the CPU
and thus higher cache interference and contamination between
the concurrent tasks. Furthermore, the overhead from the context
switching (scheduler overhead) is increased.

Another conclusion was that in some parts the graphs seemed to
portray some anomalies like in the test 3 graph (Fig. 5c). However,
after carefully observing the results, it seemed that when the high
values of one test occurred, there were low values for the other test.
This led us to plot the combined performance (added benchmark
scores) of both co-scheduled VMs, which showed a more logical
system-level graph. It seems that what matters in this case is which
task starts first. In the test-bed description in Section 4 it was stated
that the execution threads are synchronized in the end of the testing
period, because this cannot happen in the beginning. The threads
are launched simultaneously, but due to a number of random rea-
sons (like ssh delay for example), the execution of each test in the
respective VMs does not start at exactly the same time. This delay
was in the range of 3 s, however it was much lower than the selected
500 s duration of each combination. From the system level graphs
more accurate conclusions can be deducted. These are combined
with the other scenarios and are depicted in Fig. 6.

Furthermore, there seem to be extremely high values for the
250 ms period P. This happens for almost all graphs and is con-
tradictory to the general trend of the graphs. By taking under
consideration the way the for loops are constructed in Fig. 1, we
can conclude that this happens due to some internal interference
in the guest OS (e.g. an OS task that starts executing inside the VM)
and influences the measurements taken at this period.

5.3. Concurrent VMs collocated on adjacent cores
The third experiment aims at investigating the effect on
the performance of VMs when running on different but adja-
cent cores on the same CPU. This is to identify the effect of

1276 G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291

Fig. 5. Effect on individual test scores for different combinations of concurrent tests. Each of the graphs indicates a test’s performance. It contains 7 lines which correspond
to this test’s performance, when each of the other tests is running on the other VM, in addition to its performance when it is executed as standalone for comparison purposes.
(a) Test 1 performance; (b) test 2 performance; (c) test 3 performance; (d) test 4 performance; (e) test 5 performance; (f) test 6 performance.

L
o
r
t
p
m
(
s
i

1 cache memory interference, when compared to the results
f B. In this setup, the cores have different L1 cache memo-
ies but common L2 ones. The chosen utilization percentage for
his experiment was 40% per core. The reason for choosing this
ercentage was to have comparable results with B, for which

aximum assignment of two tasks on one core is 40% per task

after subtracting approximately 20% that is always available for
ystem tasks). Comparison with the other scenarios is included
n Fig. 6.
5.4. Concurrent VMs collocated on non-adjacent cores

The fourth configuration was decided to be pinning the VMs on
non-adjacent cores. The reason for this setup is that the physical
node of the experiments has 4 cores, which share a L2 cache in

pairs. So by pinning the VMs on non-adjacent cores, the gain in
terms of having no shared cache memories is investigated, in com-
parison to the previous experiment where L2 memory was shared.
For all scenarios, the combined performance of the VMs per com-

G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291 1277

Fig. 6. Comparison of system level (added scores) performance for all deployment scenarios and 40% CPU allocation per VM. In each of the graphs a specific combination
of tests is investigated in order to compare their added scores (vertical axis) with regard to different deployment scenarios and how this performance is affected by the
s ests 6
a nd 6

c

b
t
s
t
B

cheduling period P (horizontal axis). (a) Tests 1 and 1 combined performance; (b) t
nd 5 combined performance; (e) tests 2 and 4 combined performance; (f) tests 2 a
ombined performance.

ination of tests is depicted in Fig. 6. In this figure, we have added

he test scores of both VMs and have plotted all the deployment
cenarios for comparison purposes. The remaining combinations
hat are not included in this figure are located in Appendix B (Fig.
.1).
 and 6 combined performance; (c) tests 1 and 4 combined performance; (d) tests 1
combined performance; (g) tests 3 and 5 combined performance; (h) tests 4 and 6

The anticipation during the beginning of these experiments was

that interference between memory usage of concurrently running
VMs would significantly affect VM performance. This was validated
from all tested cases. The baseline scores are much better than any
other configuration, even though the percentage of core assigned to

1278 G. Kousiouris et al. / The Journal of Systems

Fig. 7. Percentage of the degradation of benchmark scores for all test combina-
tions and scenarios and P = 800 ms in order to illustrate the range of the overhead
a
t
p

t
l
c
o
b

p
(
o
t
m
i
b
h
b
I
b
t
t
t
4
t
e
i
t
t
t
(
w
o
F

o
t
c
t
o
t
t
d

%

t
c
d

nd the identification of optimum combinations. In the horizontal axis the different
est combinations are portrayed while in the vertical one the degradation of the
erformance as extracted from Eq. (1).

he VMs was the same. Furthermore, different tests create different
evels of interference, thus validating the initial assumptions that
areful analysis must be made in order to optimize VM groupings
n available nodes. Higher periods for the scheduler seem also to
enefit the performance, due to better cache utilization.

However, it was also anticipated that moving from tightly cou-
led configurations (same core) to more loosely coupled ones
adjacent and non-adjacent cores) would benefit the performance
f the VMs. After observing the graphs, we can conclude to the fact
hat this does not happen. Given that the loosely coupled cases

ean L1 cache independence (for adjacent cores) and L1/L2 cache
ndependence (for non-adjacent cores) it can be assumed that the
ottleneck that is causing this lack of performance improvement
as to do with RAM accesses. The factor of influence in this case can
e the memory bus (FSB) that is necessary for accessing the RAM.
n the observed hardware, this was a 1066 MHz bus. However, this
andwidth is shared between the different cores trying to access
he main memory. If more than one cores try to access the RAM at
he same time, the available bandwidth will be divided between
hem. Thus, when allocating VMs on different cores (with the same
0% share), the divided bandwidth is a limiting factor in comparison
o the same core scenario. For the same core deployment, VMs are
xecuted one after the other, in a sequential, pseudo-parallel fash-
on. During this time, each VM has all the available bandwidth of
he FSB. When allocated in different cores, for the interval in which
he 40% activation periods of the VMs overlap, their bandwidth on
he FSB will be divided. Given that the number of accesses to RAM
or when) that are necessary can be fluctuating, this can explain
hy in some cases one configuration is better than the other, with

ne effect prevailing over the other (cache interference over shared
SB bandwidth).

In order to better conclude and illustrate for which combination
f tests this improvement is greater, the percentage degradation of
he system level test scores is portrayed in Fig. 7, for P = 800 ms. We
hose the specific period due to the fact that it was shown from
he previous graphs that for this value of P the system had the least
verhead. The degradation of the performance is the ratio between
he test scores of the added concurrent executions and the ones of
he added standalone ones, for all the combinations of tests and is
erived from Eq. (1).

Degradation = 100 × (TA I + TB I) − (TA Base + TB Base)
TA Base + TB Base

(1)
In this formula, A and B are the test numbers per combination, I is
he deployment scenario (same core, adjacent cores, non-adjacent
ores) and Base is the scores when the tests are executed as stan-
alone, without any other test running on the physical node.
 and Software 84 (2011) 1270– 1291

The aim of this figure is to show the concrete percentage over-
heads of different scenarios and for different test combinations
and to identify any patterns that can be of benefit for extracting
generic conclusions. From this it can be shown that the compu-
tational capabilities of the VMs can range from almost 0 and up
to 160%, depending on the collocated tasks and the deployment
scenario.

From this graph it is also evident that the best combinations
are for all applications with test 5 and the second fittest candidate
is test 6. The reason why these graphics tests are the fittest can be
attributed to the fact that they use a small amount of data, on which
they perform a large number of computations. Worst candidate for
co-allocation is test 4, while the adjacent cores placement seems to
produce the maximum overhead (combination of L2 and FSB bus
interference). This is evidence of the importance of the investiga-
tion of the interference caused between co-scheduled VMs, which
can lead to significant degradation of the QoS features of applica-
tions running in virtualized infrastructures. Furthermore, in most
cases the adjacent core setup has the worst performance, due to L2
cache interference and division of memory bus bandwidth. L1 cache
interference seems to affect only a limited number of combinations
(like 1 and 2).

5.5. Statistical analysis of the measurements

In order to gather the dataset that was presented in the previous
graphs, each configuration (specific scheduling period, specific test
combination and deployment scenario) was let to run for 500 s. This
means that each point in the graphs (with the according setup) was
produced from taking the mean from all the runs executed in this
500-s interval. The number of runs was fluctuating due to the fact
that each test had different computational needs and also the over-
head from the concurrently running VMs was varying. However it
was in the range of hundreds of times for each data point This is
indicative also of the test scores, which indicate the time needed to
perform one run. The mean value from these hundreds of times of
executions for each configuration was used in the graphs. Details
regarding the specific numbers for each experiment are included
in Appendix D (Fig. D.1).

In order to further validate the data gathering process, we
repeated a number of the experiments for 10 times. This means that
the executions with a specific configuration (test combinations, Q/P
ratio, P scheduling period) were executed 10 times in order to inves-
tigate the difference between non-consecutive executions with the
same conditions. During this experiment, each configuration (500-
s interval) was run for 10 times in a non-consecutive manner. The
results (mean values of the test scores in the 500-s interval and
standard deviations of the values inside this interval) are portrayed
in Fig. 8. From this it can be observed that the difference between
the different executions is very small.

Furthermore, the number of runs for each test in each of the exe-
cutions was documented and is shown in Fig. 9. From this it can be
observed that for each execution (from which the mean value and
standard deviation that is portrayed in Fig. 8 was extracted) around
320 runs were conducted for test 4 and around 230 runs for test 5.
The difference in the number of runs between the two tests occurs
from the fact that each test has different types of computations,
thus different time of execution. It was chosen to synchronize the
executions based on a given time interval (and not on number of
runs) in order to ensure the concurrency of the computations. By
having the same number of runs (and different time for each run of
each test) we would have the problem of one test finishing faster

than another. Thus the remaining runs of the slower test would be
executed as in the standalone phase.

From the above graphs we can conclude that due to the fact that
the test runs in each execution are significantly high, repetition of

G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291 1279

Fig. 8. Variation of the mean times and standard deviations of the test scores for
10 different non-consecutive executions of the same configuration (combination
of tests 4 and 5, scheduling period = 700 ms, same core execution). The sample for
extracting the mean value and std dev for each execution has been gathered after
letting each execution run for 500 s.

F
t
o

t
F
f
a
c
p

a
f
v
t
u
t
0
i
s
(
fi
t
a
t

5

t
e

Fig. 10. Histogram of the distribution of individual times for each test run for (a) 1
execution of the 500-s interval and (b) 10 executions of the 500-s interval with a
given configuration (combination of tests 4 and 5, scheduling period = 700 ms, same
core execution).

Fig. 11. Cumulative distribution function and confidence intervals for tests 4 and 5
ig. 9. Number of test runs inside the 500-s sample gathering interval for each of
he different non-consecutive executions of the same configuration (combination
f tests 4 and 5, scheduling period = 700 ms, same core execution).

he experiments will produce very similar values (as depicted in
ig. 8). The distribution of the individual values of the test scores
or test 4 appears in Fig. 10, for one of the 10 executions (Fig. 10a)
nd all 10 repetitions (Fig. 10b). From this comparison it can be
oncluded that the two distributions are almost alike, showing the
eaks in the same bins (0.8–1.2 and 1.2–1.4 values).

Regarding the statistical analysis of the samples gathered inside
 single execution, the confidence intervals are depicted in Fig. 11,
or both tests (4 and 5) of the selected run. For this run (500-s inter-
al), test4 was executed 232 times while test 5 was executed 321
imes. In order to process the results, the dfittool of Matlab was
sed. From this we can observe that, especially for test 5 there are
wo major areas of concentration of the test scores, around the
.9 and 1.3 values. This can be attributed to the inactive periods

nserted by the scheduler for the task. This configuration had a 40%
hare over a period of 700 ms. This means that for 60% of the time
420 ms) the task is deactivated. Thus if the test run manages to
nish before the inactive period it will not have the extra delay of
he 420 ms. If not, then it will finish right after that interval. This
grees also with the difference between the two major values of
he distribution.

.6. Network response
During the initial tests for the experiments of 5.1 it was noticed
hat for low values of period P (below 100 ms) the VMs were
xtremely unresponsive, even for a simple ssh connection or ping.
execution samples for scheduling period = 700 ms, same core execution. The hori-
zontal axis symbolizes the test scores and the vertical axis the probability to have
these scores.

For this reason it was decided to conduct another experiment in
order to investigate the deterioration of VM network response
times. This investigation involved the pinging of one VM for a cer-
tain period of time (300 s) for a number of different configurations.
Different ping periods were used. The number of samples can be
derived from the division of the 300-s period with the pinging
period. Different percentages of CPU assignments were also taken
under consideration and different periods P of the scheduling allo-
cation. Detailed values appear in Table 3.

In order to stress the CPU to full load, two approaches were con-

sidered. The first was with one of the Matlab benchmarks. In order
to avoid the effect of some specific computation interference that
could be caused by these tests (like increased I/O that could increase

1280 G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291

Table 3
Parameters varied for the ping experiment.

Pinging period 0.5, 1, 1.5 and 2 s

t
c
l
w
v
s
a

g
m
f
c
i
a
d
o
d
p
w
t
o
s
u
4
g
d

(
(
p
t

a
p
o
e
o
m
e
m

Fig. 13. (a) Distribution of the individual ping delays in 500 ms bins and (b) Density
distribution of individual values (ping times) and fitting of an exponential distribu-

F
t
0

Scheduling period P 150–800 ms (50 ms step)
VM status Full load
Q/P 20, 40, 60 and 80%

he served interrupts and affect the ping responses), another exe-
utable was created. This was comprised of a simple infinite for
oop that calculated the square value of the loop index. The results

ere almost identical. In the following graphs (Fig. 12), the mean
alue and deviation of the response times are depicted, for the most
tressful experiment (pinging period = 0.5 s). More combinations
re included in Appendix C (Fig. C.1).

It is imperative to stress that the test began from P = 50 ms of
ranularity, however the VMs showed little responsiveness, with
any packet time outs occurring. Full responsiveness was shown

rom 150 ms values, and from these values and on the plots were
reated. What is seen from these measurements is that after the
nitial granularities when the VM is unresponsive, low values of P
re more beneficial for the network metrics (both mean value and
eviation from that for each individual packet time). Furthermore,
ne theoretical expectancy would be that the ping times would
eteriorate as the P values increased, due to the fact that for low
ercentages of CPU assignments, large inactive periods of the task
ould affect especially the deviation times. However, as seen from

he graphs, the highest values for both metrics are for middle cases
f P (for the 450 ms case). After this maximum, the network metrics
eem to improve again, however not to the levels of the low P val-
es. Similar behavior was noticed for adjacent values of P (200 ms,
00 ms and 800 ms). These were skipped for better visibility of the
raphs. Another interesting conclusion is that the pinging period
oes not seem to affect this behavior.

The similarity of the metrics for high values of the allocation Q/P
%CPU share) is due to the fact that for percentages close to 100%
like the 80% case), the CPU is almost dedicated to the task, so the
eriod of this allocation does not influence the VM behavior. Almost
he entire time the task is active.

For the statistical analysis of the measurements we have used
s an example the configuration for scheduling period of 150 ms,
inging period of 0.5 s and CPU share of 60%. The distribution
f the 600 individual values collected during the sample gath-
ring experiment is depicted in Fig. 13a. In Fig. 13b the fitting

f an exponential distribution to these values is shown, with
ean value = 461.544, variance = 213,023, std error = 18.8739 and

stimated covariance = 356.226. Exponential distributions are com-
only used for networking times, as also shown in Cucinotta et al.

ig. 12. (a) Mean time of the response times for full load and various configurations of gra
ime (as reported by the ping command) of the response times for full load and various co
.5 s.
tion for scheduling period of 150 ms, pinging period of 0.5 s and CPU share of 60%. (a)
Histogram of the distribution of the individual values and (b) density distribution
and fitting of an exponential distribution.

(2010a). The CDF and confidence intervals for all CPU shares of this
configuration are shown in Fig. 14, from which the benefit of having
more CPU share is visualized in a more quantitative way.

6. Prediction of overhead

The experiments that were presented above are helpful for
an infrastructure/Cloud provider in order to be able to have a

generalized picture of how application performance deteriorates
following the placement decisions. The high level conclusions could
always be extracted as fuzzy logic rules in a similar decision mak-
ing mechanism that would aid the provider during the scheduling

nularity of assignment (scheduling period) P and pinging period 0.5 s and (b) Mdev
nfigurations of granularity of assignment (scheduling period) P and pinging period

G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291 1281

Fig. 14. Cumulative distribution function and according confidence intervals for all
C
a
t

a
a
b
t
t
t
p
t

b
a
b
(
t
b
t
p
i
d
s
h
h
i
i
d
a
b
a

i
s

T

n

Table 4
Range of parameters.

Test number/application type 1 Can be from 1 to 6 (Matlab
benchmarks)

Test number/application type 1 Can be from 1 to 6 (Matlab
benchmarks)

Q/P (core %) 0–80%
P Arbitrary (in our case it is

from 200 to 800 ms)
Execution mode Can be standalone, same

cally creates the ANNs according to the GA-selected parameters, by
changing the network topology. Then it initializes and trains them
(feed-forward, back propagation networks were used, trained with
the Levenberg–Marquardt (Moré, 1978) algorithm) and returns the
PU shares, for scheduling period of 150 ms, pinging period of 0.5 s. The horizontal
xis is the time delay in milliseconds and the vertical the probability to have a ping
ime less or equal to this delay.

nd allocation policies enforcement. However, in order for this
pproach to meet its full potential, a suitable generic model should
e designed. This model must be able to extract accurate predic-
ions regarding the anticipated performance of the applications
hat have similar behavior to the investigated tests. It must be able
o take as input the conditions of execution and produce the antici-
ated level of performance (test score), thus accurately quantifying
he expected overhead.

In order to implement such a system, the most generic black-
ox method was chosen, an artificial neural network (ANN). ANNs
re a methodology that aims to imitate the behavior of the human
rain and have been used up to now for a number of applications
e.g. pattern recognition, function approximation, classification or
ime series prediction). Their main ability is to model a system’s
ehavior based only on a training data set (black box approach)
hat includes a number of system inputs and the according out-
uts. In general, the ANN correlates the input with the output data

n order to find an overall approximation of the model function that
escribes the dependence of the output from the input. It was cho-
en since as demonstrated in Section 5, there are numerous, even
idden, factors that may affect an application’s performance like
ardware design details. Having an analytical modeling approach

s almost impossible, given the variety of these factors. But even
f one devotes such an effort to create a detailed model, it will be
eemed useless with the next processor generation or a different
rchitectural design. The ANNs offer a much more generic and flexi-
le approach, and given only a suitable data set, can achieve a quick
nd satisfactory model.

The identified inputs and outputs of the ANN model are depicted
n Fig. 15 and include the investigated parameters of the previous
ections.

The range or potential values of the parameters are listed in

able 4.

All the inputs and outputs were normalized in the (−1,1)
umeric interval. For the non-numeric inputs, these were assigned

Fig. 15. ANN model.
core, adjacent cores,
non-adjacent cores

different values for each state. The normalization is necessary for
internal ANN representation and better depiction of the system. The
data set that was presented in the previous sections (1100 different
executions, each for 500 s) was used for training (50%), intermediate
validation during training (20%) and independent validation (30%)
of the network.

6.1. Optimization of ANN structure and parameters

Despite their advantages, ANNs come with an important draw-
back. The decisions regarding their design parameters (like number
of hidden layers, transfer functions for each layer and number
of neurons per layer) are more or less based on the designer’s
instinct and experience. In order to automate and optimize this
process, an evolutionary approach was followed in this paper. The
aforementioned parameters of the ANN design were inserted in
a Genetic algorithm (GA) (Holland, 1975), in order to optimize
their selection. In each generation of the GA, a set of solutions
is tried out, through training and validating the respective net-
works. The performance metric for each solution, in our case the
error in the training set, is then returned to the GA, as an indi-
cation of its suitability. Then the next generation is created by the
best solutions of the current one (elitism), combinations of existing
solutions (crossover) and slight differentiation of them (mutation).
Through this algorithm, the parameter space is quickly searched
for a suboptimal solution. The parameters that are fed into the GA
appear in Fig. 16.

In order to implement the aforementioned approach, an ini-
tial GA script is created in order to handle the population in each
iteration and to launch the ANN creator script, after feeding it
with the values that are depicted in the chromosomes. The ANN
creator script takes the variables from the GA script and dynami-
Fig. 16. Parameters of the ANN design taken from the GA. These include how many
hidden layers will be initialized and what will their transfer function and their
neurons. These parameters were in general decided by a human expert based on
practical experience.

1282 G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291

Table 5
Details of the best ANN structure as this was derived from the optimization process, for different number of generations of the GA.

Number of layers/GA generations Neurons per layer Transfer functions per layer Mean absolute error (%) Standard deviation Time

4/30 5–7–19–1 Satlin–Radbas–Radbas–Satlins 5.94 16.47 40 min
3/50 5–7–1 Tansig–Tansig–Purelin 5.06 13.85 1.1 h

–Radbas–Netinv 4.59 14.80 3 h
Logsig–Satlins 5.16 14.61 5 h

p
e
u
n
i
t
s
w
n
p
i
i
s

t
t
l
p
(
s

d
r
v
b
e
u
d

e
o
m
m
a
c
a
1
a
t

m
o
o
i
r
T
a
n
t
i
o
s

n
t
m
b

Fig. 17. Temporal evolution of the performance (mean absolute error on the inde-
pendent validation set) of the networks that meet the save criterion (MAE < 10%
4/100 5–10–18–1 Radbas–Softmax
4/150 5–24–8–1 Purelin–Logsig–

erformance criterion (error in the training set) to the GA for the
valuation of each solution. An intermediate validation set was
sed in order to enhance the ANN generalization capabilities, the
etwork’s ability to predict cases that it has not met before dur-

ng training. In this case, each network was trained by the 50% of
he data set then if its predictions on the intermediate validation
et had a mean absolute error (MAE) smaller than 10%, this net-
ork was saved. In the end of the generations, from all the saved
etworks, the final candidate was the one that showed the best
erformance (MAE) in the independent validation set. It was also

nvestigated if the returned metric of the GA was the MAE in the
ntermediate validation set, instead of the training set error. This
howed a worse performance.

13 different transfer functions were taken under considera-
ion (as they are described in http://www.mathworks.com/help/
oolbox/nnet/function.html) and a maximum limit of ten (10)
ayers and thirty (30) neurons per layer was inserted. Four inde-
endent runs were conducted for different number of generations
30, 50, 100 and 150). Each generation investigated 20 possible
olutions.

The ANN structure and overall prediction accuracy for these is
escribed in Table 5. In this table, only the best model from each
un is depicted. The mean absolute error for all 328 independent
alidation cases is between 4.5 and 5.94, depending on the num-
er of generations used, which can be considered as a very good
stimator. Only the values in the independent validation set were
sed for the calculation of this error. These data have not been used
uring training.

The deterioration in the performance for 150 runs is not
xpected but can be attributed to the fact that each GA run depends
n some random parameters, like the initial values of the chro-
osome or the randomness in the selection of characteristics to
utate. In a real-world situation, this can be easily tackled by

dding generations of investigation until a specific performance
riterion is met. The most suitable solutions are found in the 50
nd 100 generations runs. The difference lies in the fact that for
00 generations a better mean error is acquired but a worse devi-
tion metric. The final choice depends on the trade-off between
hese characteristics.

Another interesting conclusion is that smaller networks are
ore able to capture the dependencies between the input and the

utput. Even though the number of layers had a maximum value
f 10, only 3 or 4-layer networks showed good performance (3
s the minimum limit for ANNs). This can be attributed to more
obust behavior of small networks due to the following aspect.
he influence of the jth input to the ith output depends on all the
lternative paths that connect them and the increase of this path
umber (because of higher number of layers) seems to increase
he standard deviation of the prediction. A similar result appears
n the circuit synthesis domain, where the increase in the number
f paths (ladder compared to lattice synthesis) results in higher
ystem sensitivity.

In Fig. 17 the evolution of the mean absolute error of the saved

etworks is portrayed for each run. These networks are saved as
he GA progresses and if the intermediate validation criterion is

et (error in the intermediate validation set <10%). The lack of sta-
ility (continuously reduced mean error) in this process is due to
on the intermediate validation set). After a period of time, the GA has converged
to a suitable solution, after which the performance of the investigated networks
deteriorates.

the fact that randomness is up to a point inherent in an evolution-
ary approach due to the use of operators such as mutation and
crossover.

Furthermore, from this graph it is evident that a large number
of good quality networks are produced through the proposed opti-
mization process. It can also be seen that the networks that are
saved in later generations of one run appear to be losing quality.
This can be attributed to the fact that when the GA finds a good
solution, it also focuses on nearby similar configurations. If the good
solution is the local or global optimum, then the nearby solutions
will be underperforming and a large number of the candidates will
be devoted to this area in vain (other solutions based on crossover
will search the remaining sample space). However this is also one of
the strengths of GAs, since through this process in the early stages
vast areas of the sample space are tried out and afterwards the best
ones are thoroughly examined in order to find the optimal solution
in that particular interval.

The distribution of the errors of the network in predicting the
performance (test scores) is directly compared to the multi-variate
regression method in Fig. 18. This accuracy is based only on the
independent validation set only, for objectivity purposes.

6.2. Comparison with multi-variate linear regression

In order to compare our approach, the multivariate regression
method was chosen, that is also used in Koh et al. (2007). The MAT-
LAB function mvregress was used, in the same normalized data set.
The only difference was that now the training and intermediate

validation data vectors were merged. In this method, there is no
need to have intermediate validation step. For the validation of the
results, the same 30% independent validation data set was used,
for objectivity purposes. The details of the approximation function

G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291 1283

Fig. 18. Histogram of the errors in the independent validation set for 50 and 100
generation runs of the GA-ANN model compared to multi-variate regression. The
difference lies on the center of the distributions, which for the proposed method
is around 0 while for mv-regress is around 8%, The horizontal axis is the error (%)
in the estimation (in bins) while the vertical is the number of validation cases for
which the error was in the specific bin.

Table 6
Multi-variate regression details.

Coefficients Mean absolute error Standard deviation Time needed

0.0218 8.78% 18.15 ∼1 s
−0.0171
0.8326
−0.0801

a
o
p
b
i

f
t

t
m
f
W
t
c

t
w
f
a
(
i
s

p
c
s
t
h
c
s
r
s
o

m

n

Table 7
Comparison between multivariate regression and GA-optimized ANNs.

Method %Improvement (ANN
mean absolute error
compared to
mvregress)

%Improvement (ANN
standard deviation
compared to
mvregress)

50 gen. GA-ANN 42.36% 23.64%
0.0631
0

ppear in Table 6. The coefficients cell contains in the respective
rder the multipliers for each one of the 5 inputs depicted in Fig. 15,
lus the constant factor. Their values are low because they have
een derived for the normalized values of the dataset in the [−1,1]

nterval.
The results from this method have been incorporated in Fig. 18

or direct comparison with the best ANN models from the optimiza-
ion method.

From the comparison of the two approaches it can be concluded
hat the optimized ANNs have a better performance in terms of

ean absolute error and standard deviation. This is also evident
rom the distribution of the errors as depicted in the histogram.

hile the ANN models exhibit high concentration of errors around
he zero value, this is not the case for the regression model, which
oncentrates around the 8–10% error point.

The standard deviation values are high for both methods, but
his is due to specific values of the 328-case validation set for
hich the measurements have large deviations. This happens

or the peaks of the graphs presented in Section 5 and can be
ttributed to some random effects that affect system performance
e.g. system tasks that update the OS inside the VM, etc.), like
n the case of P = 250 ms that was mentioned in the previous
ections.

However, because the proposed method has much larger com-
utational needs, for environments where new models must be
reated on the fly the multi-variate regression method offers a
atisfactory performance in a very fast way. In the context of inves-
igation in this paper (infrastructure/Cloud provider that wants to
ave a model for more efficient allocation of VMs over nodes), the
omputational needs of the optimized ANN method are not con-
idered a constraint. The models will be created once, and may be
efreshed in the future with new data. However, tight timing con-
traints for the production of the models do not exist. This is an
ff-line process.
Detailed percent improvements achieved by the compared
ethod are depicted in Table 7.
For the response time of the models, that is the duration

eeded for each model to provide the prediction after the
100 gen. GA-ANN 47.61% 18.4%

assertion of the conditions of execution to the input, this was
better for the multivariate regression. However, for the ANN
it was also very fast (∼10 ms), thus not making this a critical
limitation.

7. Conclusions and future work

As a conclusion, the emergence of virtualized and shared infras-
tructures like Clouds imposes a significant challenge for providers
and applications. Applications that are running inside virtual
machines are affected by many factors like virtualization and co-
allocation of other VMs. In this paper, the effects of these allocation
decisions were investigated, by taking under consideration a sig-
nificant number of parameters like real time scheduling decisions,
types of workload and different deployment scenarios. The perfor-
mance overhead posed by these parameters can reach up to 150%,
while carefully selecting the co-allocated tasks and the scenario of
placement can minimize or even cancel this effect. What is more,
higher scheduling periods result in a significant reduction in the
overhead caused by the interference. Furthermore, the application
of such a performance analysis method on new hardware design
may lead to optimized multi-core architectures for Cloud-specific
environments, through the identification of bottlenecks like the
shared memory bus.

In order to provide an automatic decision making mechanism
that will guide the infrastructures to proper configurations and
remove the need of human intervention, a GA-optimized ANN can
be used to model, quantify and accurately predict the performance
of the applications for a given configuration. The model acquired
from this process is effective (error < 5%), generic and can be at
any time extended in order to include other identified signifi-
cant factors or scenarios. Through the use of this mechanism, an
infrastructure/Cloud provider can have a priori knowledge of the
interference. Thus they are able to optimize the management of
the physical resources.

For the future, one interesting aspect to pursue is the automatic
detection of the type of workload caused by each application. In this
study, the analysis was based on the 6 Matlab benchmark tests, that
depict different types of computations. For real-world applications
this means that they must be matched to one or more of these
elementary tests, based for example on the comparison of their
footprints.

Acknowledgments

This research is partially funded by the European Commission
as part of the European IST 7th Framework Program through the
projects IRMOS under contract number 214777 and OPTIMIS under
contract number 257115.
Appendix A. Remaining figures from Section 5.1

See Fig. A.1.

1284 G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291

Fig. A.1. Remaining figures from Section 5.1 (Fig. 4: test scores for different CPU percentages and granularity (scheduling period) when the tests are running without any
interference (co-scheduled tests). The test score (vertical axis) indicates the time needed for executing one test run and has been calculated from the mean value of hundreds
of test runs inside a 500-s execution run. The scheduling period (horizontal axis) is the time interval in which the allocation of X% CPU share is guaranteed). (a) Standalone
test 3; (b) standalone test 2; (c) standalone test 5.

A
ppendix B. Remaining combinations from Section 5.4

See Fig. B.1.
Appendix C. Figures for pinging period = 2 s (continuation
of Section 5.5)

See Fig. C.1.

G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291 1285

Fig. B.1. Remaining combinations from Section 5.4 (Fig. 6: comparison of system level (added scores) performance for all deployment scenarios and 40% CPU allocation
per VM. In each of the graphs a specific combination of tests is investigated in order to compare their added scores (vertical axis) with regard to different deployment
scenarios and how this performance is affected by the scheduling period P). (a) Tests 1 and 3 combined performance; (b) tests 4 and 4 combined performance; (c) tests 4
and 5 combined performance; (d) tests 5 and 5 combined performance; (e) tests 3 and 4 combined performance; (f) tests 2 and 3 combined performance; (g) tests 1 and 6
combined performance; (h) tests 3 and 6 combined performance; (i) tests 2 and 5 combined performance; (j) tests 2 and 2 combined performance; (k) tests 3 and 3 combined
performance; (l) tests 1 and 2 combined performance.

1286 G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291

Fig. B.1. (Continued).

G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291 1287

F s of g
t ous configurations of granularity of assignment (scheduling period) P and pinging period
2

A
p

ig. C.1. (a) Mean time of the response times for full load and various configuration
ime (as reported by the ping command) of the response times for full load and vari

 s (continuation of Section 5.5).
ppendix D. Number of executions for each of the data
oints in same core scenario graphs

See Fig. D.1 .
ranularity of assignment (scheduling period) P and pinging period 2 s and (b) Mdev

1288 G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291

Fig. D.1. Number of test runs from which the mean values for the scores were extracted for the same core scenario graphs (Fig. 5) for (a) test 1 when it is coscheduled with
all other tests, (b) test 2 when it is coscheduled with all other tests, (c) test 3 when it is coscheduled with all other tests, (d) test 4 when it is coscheduled with all other tests,
(with

t
w

e) test 5 when it is coscheduled with all other tests, (f) test 6 when it is coscheduled

est 2 number of runs when co-scheduled with all other tests; (c) test 3 number of runs wh
ith all other tests; (e) test 5 number of runs when co-scheduled with all other tests; (f)
all other tests. (a) Test 1 number of runs when co-scheduled with all other tests; (b)

en co-scheduled with all other tests; (d) test 4 number of runs when co-scheduled

test 6 number of runs when co-scheduled with all other tests.

G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291 1289
Fig. D.1. (Con
tinued).

1290 G. Kousiouris et al. / The Journal of Systems and Software 84 (2011) 1270– 1291

 (Con

R

A

C

C

Fig. D.1.

eferences

rmbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M., 2010. A view of cloud
computing. Commun. ACM 53 (4), 50–58, doi:10.1145/1721654.1721672,
http://doi.acm.org/10.1145/1721654.1721672.

hecconi, F., Cucinotta, T., Faggioli, D., Lipari, G., 2009. Hierarchical multiprocessor
CPU reservations for the Linux Kernel. In: Proceedings of the 5th International
Workshop on Operating Systems Platforms for Embedded Real-Time Applica-

tions (OSPERT 2009) , Dublin, Ireland.

ucinotta, T., Anastasi, G., Abeni, L., 2009. Respecting temporal constraints in vir-
tualised services. In: Proceedings of the 2nd IEEE International Workshop on
Real-Time Service-Oriented Architecture and Applications (RTSOAA 2009) ,
Seattle, Washington, July.
tinued).

Cucinotta, T., Checconi, F., Kousiouris, G., Kyriazis, D., Varvarigou, T., Mazzetti,
A., Zlatev, Z., Papay, J., Boniface, M., Berger, S., Lamp, D., Voith, T.,
Stein, M., 2010a. Virtualised e-Learning with real-time guarantees on
the IRMOS platform. In: Proceedings of the IEEE International Confer-
ence on Service-Oriented Computing and Applications (SOCA 2010) , Perth,
Australia.

Cucinotta, T., Giani, D., Faggioli, D., Checconi, F., 2010b. Providing performance guar-
antees to virtual machines using real-time scheduling. In: Proceedings of the
5th Workshop on Virtualization and High-Performance Cloud Computing (VHPC

2010) , Ischia (Naples), Italy.

El-Refaey, M.A., Rizkaa, M.A., 2010. CloudGauge: a dynamic cloud and virtualization
benchmarking suite. In: Enabling Technologies: Infrastructures for Collaborative
Enterprises (WETICE), 2010 19th IEEE International Workshop on, vol., no., pp.
66–75, 28–30 June 2010, doi:10.1109/WETICE. 2010.17.

http://dx.doi.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
http://dx.doi.org/10.1109/WETICE.%202010.17

stems

F

G

G

H

h
h
h
h
h
h
h
h
h
h
I

I

J

K

K

K

L

L

M

M

M

Athens, and Director of the Postgraduate Course “Engineering Economics Systems”.
Prof. Varvarigou has great experience in the area of semantic web technologies,
G. Kousiouris et al. / The Journal of Sy

iszelew, A., Britos, P., Ochoa, A., Merlino, H., Fernández, E., García-Martínez, R.,
2007. Finding optimal neural network architecture using genetic algorithms.
Adv. Comput. Sci. Eng. Res. Comput. Sci. 27.

arcía-Guirado, A., Fernández-Pascual, R., García, J.M., 2009. Virtual-GEMS: An
infrastructure to simulate virtual machines. In: Fifth Annual Workshop on Mod-
eling, Benchmarking and Simulation MoBS 2009 held in Conjunction with the
36th Annual International Symposium on Computer Architecture Sunday.

iustolisi, O., Simeone, V., 2006. Optimal design of artificial neural networks by a
multi-objective strategy: groundwater level predictions/Construction optimale
de réseaux de neurones artificiels selon une stratégie multi-objectifs: prévisions
de niveau piézométrique. Hydrol. Sci. J. 51 (3), 502–523.

olland, J., 1975. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor.

ttp://support.gams-software.com/doku.php?id=platform:aws.
ttp://view.eecs.berkeley.edu/wiki/Dwarfs.
ttp://www.irmosproject.eu/Postproduction.aspx.
ttp://www.javaworld.com/javaworld/jw-12-2000/jw-1229-traps.html?page=4.
ttp://www.linux-kvm.org/.
ttp://www.mathworks.com/help/techdoc/ref/bench.html.
ttp://www.mathworks.com/help/toolbox/nnet/function.html.
ttp://www.mathworks.com/matlabcentral/fileexchange/11984.
ttp://www.vmware.com/.
ttp://www.xen.org/.

lonen, J., Kamarainen, J.K., Lampinen, J., 2003. Differential evolution training algo-
rithm for feed-forward neural networks. Neural Process. Lett. 17 (February (1)).

RMOS Project D5.1.1, 2009. Models of real time applications on service oriented
infrastructures, It-Innovation and other partners.

in, H., Cao, W., Yuan, P., Xie, X., 2008. VSCBenchmark: benchmark for dynamic
server performance of virtualization technology. In: Proceedings of the 1st Inter-
national Forum on Next-generation Multicore/Manycore Technologies , Cairo,
Egypt.

halid, O., Maljevic, I., Anthony, R., Petridis, M., Parrott, K., Schulz, M., 2009. Dynamic
scheduling of virtual machines running HPC workloads in scientific grids. In:
New Technologies, Mobility and Security (NTMS), 2009 3rd International Con-
ference on, vol., no., pp.1–5, 20–23 Dec., doi:10.1109/NTMS. 2009.5384725.

oh, Y., Knauerhase, R.C., Brett, P., Bowman, M., Wen, Z., Pu, C., 2007. An analysis
of performance interference effects in virtual environments. In: ISPASS ,. IEEE
Computer Society, pp. 200–209.

ousiouris, G., Checconi, F., Mazzetti, A., Zlatev, Z., Papay, J., Voith, T., Kyriazis, D.,
2010. Distributed interactive real-time multimedia applications: a sampling
and analysis framework. In: 1st International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS 2010) , Brussels,
Belgium.

eung, F.H.F., Lam, H.K., Ling, S.H., Tam, P.K.S., 2003. Tuning of the structure and
parameters of a neural network using an improved genetic algorithm. IEEE Trans.
Neural Networ. 14 (January (1)).

iu, C.L., Layland, J., 1973. Scheduling algorithms for multiprogramming in a hard
real-time environment. J. ACM 20 (1).

akhija, V., et al., 2006. VMmark: a scalable benchmark for virtualized systems.
Technical report, VMWare.
oller, K.T., Virtual machine benchmarking. Diploma Thesis. Universitat Karlsruhe
(TH). 2007.

oré, J.J., 1978. The Levenberg–Marquardt algorithm: implementation and the-
ory. In: Watson, G.A. (Ed.), Numerical Analysis, Dundee 1977. Lecture Notes in
Mathematics, vol. 630. Springer, Berlin, pp. 105–116.
 and Software 84 (2011) 1270– 1291 1291

Padala, X.Z., Wanf, Z., Singhal, S., Shin, K., 2007. Performance evaluation of vir-
tualization technologies for server consolidation. HP Labs, Tech. Rep. HPL-
2007-59.

Soror, A.A., Minhas, U.F., Aboulnaga, A., Salem, K., Kokosielis, P., Kamath, S.,
2008. Automatic virtual machine configuration for database workloads. ACM
Trans. Database Syst. 35 (1), 47 p, Article 7, doi:10.1145/1670243.1670250,
http://doi.acm.org/10.1145/1670243.1670250.

Tickoo, O., Iyer, R., Illikkal, R., Newell, D., 2010. Modeling virtual machine perfor-
mance. ACM SIGMETRICS Perform. Eval. Rev. 37, 55.

Tikotekar, A., Vallı̌ee, G., Naughton, T., Ong, H., Engelmann, C., Scott, S.L., Filippi, A.M.,
2008. Effects of virtualization on a scientific application running a hyperspectral
radiative transfer code on virtual machines. In: Proc. of HPCVirt’08. USA , ACM,
pp. 16–23.

Weng, C., Wang, Z., Li, M., Lu, X., 2009. The hybrid scheduling framework for
virtual machine systems VEE ‘09. In: Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments ,
ACM, pp. 111–120.

White, J., Pilbeam, A., 2010. A Survey of Virtualization Technologies With Perfor-
mance Testing, ArXiv e-prints, 1010.3233.

Youseff, L., Butrico, M., Da Silva, D., 2008. Toward a unified ontology of cloud comput-
ing. In: Grid Computing Environments Workshop, 2008. GCE ‘08grid Computing
Environments Workshop, 2008, GCE ‘08, pp. 1–10.

George Kousiouris received his diploma in Electrical and Computer Engineering
from the University of Patras, Greece in 2005. He is currently pursuing his Ph.D. in
Grid and Cloud computing at the Telecommunications Laboratory of the Dept. of
Electrical and Computer Engineering of the National Technical University of Athens
and is a researcher for the Institute of Communication and Computer Systems (ICCS).
He has participated in the EU funded projects BEinGRID IRMOS and OPTIMIS and the
National project GRID-APP. In the past he has worked for private telecommunica-
tions companies. His interests are mainly computational intelligence, optimization,
computer networks and web services.

Tommaso Cucinotta graduated in Computer Engineering at the University of Pisa
in 2000, and received the Ph.D. degree in Computer Engineering from the Scuola
Superiore Sant’Anna of Pisa in 2004. He is Assistant Professor of Computer Engineer-
ing at the Real-Time Systems Laboratory (ReTiS) of Scuola Superiore Sant’Anna. His
main research activities are in the areas of real-time and embedded systems, with
a particular focus on real-time support for general-purpose Operating Systems, and
security, with a particular focus on smart-card based authentication.

Theodora A. Varvarigou received the B. Tech degree from the National Technical
University of Athens, Athens, Greece in 1988, the MS degrees in Electrical Engi-
neering (1989) and in Computer Science (1991) from Stanford University, Stanford,
California in 1989 and the Ph.D. degree from Stanford University as well in 1991.
She worked at AT&T Bell Labs, Holmdel, New Jersey between 1991 and 1995.
Between 1995 and 1997 she worked as an Assistant Professor at the Technical
University of Crete, Chania, Greece. Since 1997 she was elected as an Assistant Pro-
fessor while since 2007 she is a Professor at the National Technical University of
scheduling over distributed platforms, embedded systems and grid computing.
In this area, she has published more than 150 papers in leading journals and
conferences.

http://support.gams-software.com/doku.php%3Fid=platform%3Aaws
http://view.eecs.berkeley.edu/wiki/Dwarfs
http://www.irmosproject.eu/Postproduction.aspx
http://www.javaworld.com/javaworld/jw-12-2000/jw-1229-traps.html%3Fpage=4
http://www.linux-kvm.org/
http://www.mathworks.com/help/techdoc/ref/bench.html
http://www.mathworks.com/help/toolbox/nnet/function.html
http://www.mathworks.com/matlabcentral/fileexchange/11984
http://www.vmware.com/
http://www.xen.org/
http://dx.doi.org/10.1109/NTMS.%202009.5384725
http://dx.doi.org/10.1145/1670243.1670250
http://doi.acm.org/10.1145/1670243.1670250

	The effects of scheduling, workload type and consolidation scenarios on virtual machine performance and their prediction t...
	1 Introduction
	2 Related work
	3 Investigated parameters
	4 Testbed
	5 Measurements
	5.1 Single VM on a core
	5.2 Concurrent VMs collocated on the same core
	5.3 Concurrent VMs collocated on adjacent cores
	5.4 Concurrent VMs collocated on non-adjacent cores
	5.5 Statistical analysis of the measurements
	5.6 Network response

	6 Prediction of overhead
	6.1 Optimization of ANN structure and parameters
	6.2 Comparison with multi-variate linear regression

	7 Conclusions and future work
	Acknowledgments
	Appendix A Remaining figures from Section 5.1
	Appendix B Remaining combinations from Section 5.4
	Appendix C Figures for pinging period=2s (continuation of Section 5.5)
	Appendix D Number of executions for each of the data points in same core scenario graphs
	References

