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a  b  s  t  r  a  c  t

Mobile  devices  are  increasingly  being  used  to store  and  manage  users’  personal  information,  as  well  as
to access  popular  third-party  context-based  services.  Very  often,  these  applications  need  to determine
common  availabilities  among  a set  of  user  schedules,  in order  to  allow  colleagues,  business  partners  and
people to meet.  The  privacy  of the  scheduling  operation  is  paramount  to the  success  of such  applications,
as  often  users  do not  want  to share  their  personal  schedule  details  with  other  users  or  third-parties.

In this  paper,  we  propose  practical  and  privacy-preserving  solutions  for mobile  devices  to  the server-
based  scheduling  problem.  Our  three  novel  algorithms  take  advantage  of  the  homomorphic  properties  of
well-known  cryptosystems  in order  to  privately  and  efficiently  compute  common  user  availabilities.  We
omomorphic encryption also  formally  outline  the  privacy  requirements  in  such  scheduling  applications  and  we  implement  our
solutions  on  real mobile  devices.  The  experimental  measurements  and  analytical  results  show  that  the
proposed  solutions  not  only  satisfy  the  privacy  properties  but  also  fare  better,  in  regard  to computation
and  communication  efficiency,  compared  to  other  well-known  solutions.  Finally,  we  assess  the  utility
and expectations,  in  terms  of  privacy  and  usability,  of  the  proposed  solutions  by means  of  a targeted

 mobi
survey  and  user-study  of

. Introduction

Users rely increasingly on mobile devices such as smartphones,
etbooks and lightweight internet tablets to access information
hile on the move (Dailywireless.org, 2011), and very often they
se the same equipment to store personal information about
heir daily schedules and activities (CHIlabs PDA (Personal Digital
ssistants) Use Study, 2011). Although many context and data
haring applications such as Google Maps, Facebook and Twitter
re popular, activity management and synchronization applica-
ions are also gaining more and more attention (Google Smart
escheduler, 2011). Applications such as Microsoft Outlook, Apple

Cal and Nokia Ovi are available on mobile devices and they all
ffer time and activity management services. One desirable feature
n such applications is activity scheduling:  colleagues can sched-

le meetings at common available time slots, groups of friends can
rganize parties on weekends and people unbeknownst to each
ther can engage in dating based on their common free/busy hours.
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One concern in such scheduling applications is that often users
would prefer not to share all personal information with everyone.
For example, they may  only want to share common availabilities,
but not details about other records. They may also have reserva-
tions about sharing personal information with third-party service
providers. Therefore, privacy of personal information, vis-à-vis ser-
vice providers and peers, is paramount for the success of such
scheduling applications. For instance, a well-known service that
allows users to find all common availabilities is Doodle. However,
Doodle does not provide privacy: Each user and the doodle server
see the free/busy state of every user, and the private information
that is leaked to all users and the central server is well beyond just
the common available slots. Cultural, religious and many other pri-
vate information can be easily inferred from availability patterns.
Even if pseudonyms are used instead of real names, the server and
all peers still know what time slots are available for everyone and
how many users are free or busy.

Privacy-preserving scheduling problems have been extensively
studied in the past by researchers from the theoretical perspec-
tive, for instance, by modeling them as set intersection problems
(Kissner and Song, 2005; De Cristofaro and Tsudik, 2010), dis-

tributed constraint satisfaction problems (Wallace and Freuder,
2005; Yokoo et al., 2005; Silaghi and Mitra, 2004; Silaghi, 2004),
secure multi-party computation problems (Herlea et al., 2001;
Du and Atallah, 2001) and by framing them in the e-voting con-
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i i,1 i,2 i,m i,j
the availability of user ui in a particular time slot j; bi,j = 1 means
that user ui is available at time slot j, whereas bi,j = 0 means that the
user is not available.1 We  assume that the length m of xi, i.e. the
I. Bilogrevic et al. / The Journal of Sys

ext (Kellermann and Böhme, 2009). Traditionally, there are two
ossible approaches to the scheduling problems: distributed and
entralized. Distributed solutions do not rely on a third-party
rovider (and thus they prevent revealing information to the
rovider), but have several limitations. For instance, due to the fre-
uent and intensive message exchanges among peers, scalability
nd computational complexity is an issue when dealing with a large
umber of (resource-limited) mobile devices; moreover, the need
f sequencing among peers and the unpredictability of scheduling
esults (if a user interrupts the protocol) are two  additional draw-
acks. The centralized approaches, such as cloud-based computing,
re better in terms of scalability, communication cost, complexity,
ynchronization and resilience but usually do not provide privacy,
ecause users are required to transmit their personal information
o the provider.

Our goal is to provide simple, practical and feasible solutions to
he scheduling problem which, in addition to ensuring reasonable
rivacy guarantees, are easily integrated with existing operational
odels and mobile service providers. In this paper, we  follow a

entralized approach for addressing the problem of efficient and
rivacy-preserving scheduling. In the proposed schemes, users
re able to determine common time slots without revealing any
ther information to either the other participants or to the central
cheduling server. Our specific contributions are as follows. First,
y building on the work of authors in related domains, we formally
efine the basic privacy requirements for users in a schedul-

ng scenario. Second, we propose three novel privacy-preserving
cheduling algorithms that take advantage of the homomorphic
roperties of asymmetric cryptosystems. Third, we  implement the
roposed algorithms on a test-bed of Nokia mobile devices and
erform extensive experiments in order to verify their computa-
ion and communication overheads. Moreover, we  explain how
he system can be further made resilient to collusion and other
ell-known active attacks. Finally, we present the modalities and

esults of a targeted user-study on mobile-phone users, focused
n both privacy and usability aspects of our applications. To the
est of our knowledge, we believe this is the first implementation
nd extensive testing of privacy-preserving scheduling schemes on
ommercial mobile devices.

The paper is organized as follows. We  introduce the state-of-
he-art in Section 2 and the system model and problem definition in
ection 3. We  formalize the privacy requirements for the schedul-
ng problem in Section 4 and outline our algorithms in Section 5.

e present a comparative analysis and implementation results in
ection 6, and we discuss the extensions of our schemes in Section
. We  summarize the results of our user-study in Section 8, and we
onclude the paper in Section 9.

. State of the art

In the literature, the four most relevant bodies of work that
ddress privacy in scheduling or similar scenarios are based on
echniques from private set-intersection (Kissner and Song, 2005;
e Cristofaro and Tsudik, 2010), distributed constraint satisfac-

ion (Wallace and Freuder, 2005; Yokoo et al., 2005; Silaghi and
itra, 2004; Silaghi, 2004), secure multi-party computation (Herlea

t al., 2001; Du and Atallah, 2001) and e-voting (Kellermann and
öhme, 2009). Hereafter, we review the most relevant aspects of
uch approaches.

In the private set-intersection domain, Kissner and Song (2005)
se mathematic properties of polynomials to design privacy-

reserving union, intersection and element reduction operations
n private multisets by leveraging on the Goldwasser–Micali
omomorphic encryption scheme (Goldwasser and Micali, 1984).
e Cristofaro and Tsudik (2010) provide efficient variations of
and Software 84 (2011) 1910– 1927 1911

private-set intersection protocols and present a comparison in
terms of computational and communication complexity, adversar-
ial model and privacy. The authors also give informal definitions
of client and server privacy. However, PSI approaches are gener-
ally distributed, and an efficient extension to an n-party protocol
is challenging. In the meeting scheduling scenario, for instance, a
trivial extension of the 2-party PSI to n parties (by running a 2-
party protocol between each pair of users) would undermine the
privacy of users’ schedules as well; knowing the personal avail-
ability and the aggregate availability is sufficient to infer the other
party’s schedule.

Distributed constraint satisfaction approaches were investi-
gated by Wallace and Freuder (2005):  they study the tradeoff
between privacy and efficiency and show that the information
that entities learn during the negotiation of a common schedule
has, in some cases, a tremendous impact on privacy. Details of an
accept/reject response are exploited by intelligent agents in order
to successfully infer the availabilities of other peers involved in the
scheduling process. Similarly, Zunino and Campo (2009) design a
scheduling system in which entities learn and refine their knowl-
edge about user preferences using a Bayesian network. Yokoo et al.
(2005) use secret sharing among third-party servers in order to
determine a suitable agreement among entities in a collusion-
resistant way.

Solutions based on secure multi-party computation were inves-
tigated in Du and Atallah (2001) and a practical scheme was
proposed in Herlea et al. (2001).  Herlea et al. (2001),  for instance,
design and evaluate a distributed secure scheduling protocol by
relying on properties of the XOR operation over binary values,
in which all users contribute to the secrecy of individual sched-
ules while ensuring the correctness of the results. Although not a
pure e-voting scheme, Kellermann and Böhme (2009) proposed an
event scheduling protocol that inherits several security and pri-
vacy requirements from the e-voting context. However, a formal
study of such properties and experimental performance results are
missing in their work.

In contrast to most of the above solutions, we  take a more
centralized approach (with a single third-party server) for the
privacy-preserving scheduling problem. Our solutions overcome
communication and computational complexities intrinsic to most
distributed approaches discussed above, as well as ensure that no
private information (other than the resulting common availabili-
ties) is exposed. Moreover, our protocols can easily fit into today’s
popular provider–consumer service architectures without incur-
ring a huge communication cost on the service-provider.

3. System model

In this section, we  outline the network and adversary model and
formally define the scheduling problem.

3.1. Network model

We  assume that there is a total of N users ui, i ∈ {1 . . . N}, that
want to schedule an activity (meeting, party) at a common available
time slot. Each user has a private schedule xi represented by a string
of bits x = [b , b , . . .,  b ], where each bit b ∈ {0, 1} expresses
1 In general, however, users may  assign not only a binary value (available or busy)
for  each time slot, but they could express preferences (Ephrati et al., 1994; Franzin
et  al., 2004). For example, bi,j ∈ 0, . . .,  10 where bi,j = 0 means that user ui is busy
in  the time slot j, whereas its preference would increase if bi,j ≥ 1. For simplicity of
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ime horizon of the individual schedules, is constant for all users.
he value of m can either be predecided by the participants or fixed
y the application.

Moreover, we assume that each user’s device is able to perform
ublic key cryptographic operations and that there is a semi-
onest (Goldreich, 2001) (as detailed in Section 3.2) third-party
erforming the scheduling computations. The latter must be able
o communicate with the users and run public key cryptographic
unctions as well. For instance, a common public-key infrastruc-
ure using the RSA (Rivest et al., 1978) cryptosystem could be
mployed. All communications between a user and the third-party
erver will be encrypted with the latter’s public key for the pur-
oses of confidentiality of the schedules with respect to other users,
or authentication and integrity protection. Thus, all users know
he public key of the server but nobody, except the server, knows
he corresponding private key. For simplicity of exposition, in our
lgorithms we do not explicitly show the cryptographic operations
nvolving the server’s public/private key.

We  assume that the N users share a common secret, which is
sed to derive (i) a fresh common key pair (KP, Ks), where Kp is the
ublic key and Ks is the private key, and (ii) a fresh bit permutation
unction � = [�1, . . .,  �m] before initiating the scheduling operation.
his could be achieved, for example, through a secure credential
stablishment protocol (Cachin and Strobl, 2004; Chen et al., 2008;
in et al., 2009). Thus, these keys and permutations are derived
nd known to each member of the group but not to the server. We
efer to the encryption of a message M with the group public key as
KP ,r(M)  = C, where r is a random integer that is eventually needed,
nd to the decryption of the encrypted message C as DKs (C) = M.
he permutation �, although not strictly required, is used in order
o randomize the order of bits sent to the server. This prevents the
erver from gaining any knowledge about which time slot is being
valuated in each computation.

.2. Adversarial model

.2.1. Server
The third-party server is assumed to execute the scheduling

rotocols correctly, but it tries to learn any information it can
rom the input it gets by the users and the computations it per-
orms. The server can accumulate the knowledge about users in
ach computation it performs. We  refer to this adversarial behavior
s semi-honest. In most practical settings, where service providers
ave a commercial interest in providing a faithful service to their
ustomers, the assumption of a semi-honest server is generally suf-
cient. More details about the semi-honest model can be found in
oldreich (2001).

.2.2. Users
Users also want to learn private information about other users’

chedules and, in addition to the passive eavesdropping attacks,
sers could act maliciously by generating fake users, manipulat-

ng their own schedules or by colluding with other users or the
cheduling server. Initially, we assume that users are honest but
urious (or semi-honest), and afterwards we present more active
or malicious) types of user adversaries in Section 7.2.

Although, as mentioned, the semi-honest adversarial model is
ufficient in most practical settings, considering the commercial
nterest of service providers and the mutual trust among partici-

ants, it does not include possible malicious behavior by the server
r users. For instance, the server could collude with the participants
r generate fake participants in order to obtain private information

xposition, we  assume a binary value here. We  later discuss a more general case
ith non-binary costs in Section 7.
and Software 84 (2011) 1910– 1927

of the participants. Similarly, users might collude with other users
or try to maliciously modify their schedules in order to disrupt the
execution of the protocol or to gain information about other users’
schedules. We  address such active attacks by both users and server
in Section 7.2, and we  describe how such attacks can be thwarted
using existing cryptographic mechanisms.

3.3. Centralized scheduling algorithm

Given a group of N users ui, i ∈ {1 . . . N}, each with private sched-
ules xi = [bi,1, . . .,  bi,m], the scheduling problem is to find time slots
j such that ∀i = 1 . . . N, bi,j = 1, i.e. all users are available in the same
time slot j. We refer to an algorithm that solves the scheduling
problem as a scheduling algorithm. Fig. 1 shows a functional dia-
gram of a generic privacy-preserving scheduling protocol, where
the scheduling algorithm A is executed by a server. Formally, a
scheduling algorithm A accepts the following inputs and produces
the respective outputs:

• Input: a transformation of individual schedules

f (bi,1, . . . , bi,m), ∀i = 1 . . . N.

where f is a one-way public transformation function (based on
secret key) such that it is hard (success with only a negligible
probability) to determine the input of the function without know-
ing the secret key, just by observing the output.

• Output: a function f(Y), Y = y1, . . .,  yj, . . .,  ym where:

yj =
{

YES if bi,j = 1, ∀i = 1 . . . N
NO otherwise

such that each user is able to compute Y = f−1(f(Y)) using its
local data. As we will see later on, we use the well-known cryp-
tosytems ElGamal (1985), Paillier (1999) and Goldwasser–Micali
(Goldwasser and Micali, 1984) as our transformation and output
functions f.

A centralized scheduling process works as follows. Each user ui,
i ∈ {1 . . . N} computes fi = f(bi,1, . . .,  bi,m) and sends it to the third-
party server, which then executes the scheduling algorithm A on
the received inputs fi, ∀ i, and produces f(Y) = A(f1, . . .,  fN). Finally,
the server sends f(Y) to each user who  then obtains Y = f−1(f(Y)).
Fig. 2 shows one execution of such a generic centralized scheduling
process.

4. Privacy definitions

As mentioned earlier, in this paper we  follow a centralized
approach to solve the privacy-preserving scheduling problem. In
other words, we  assume that a third-party, given users’ individ-
ual private schedules, computes their common availabilities (time
slots). The privacy provided by a centralized scheduling algorithm
can be defined in terms of the following two  components: a) User-
privacy and b) Server-privacy. Hereafter, we formally define each
of these components. The symbols used throughout the paper are
summarized in Table 1.

4.1. User-privacy

The user-privacy of any centralized scheduling algorithm A mea-

sures the probabilistic advantage that any user ui, i ∈ {1 . . . N} gains
towards learning the private schedules of at least one other user uj,
j /= i, except their common availabilities, after all users have par-
ticipated in the execution of the algorithm A. In order to accurately
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Fig. 1. Functional diagram of the privacy-preserving activity scheduling protocol, where each user sends his own  transformed schedule availabilities to the scheduling server
and  obtains the aggregate availabilities. The scheduling obliviously performs the aggregated availabilities, without knowing the individual user schedules.
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ig. 2. A generic scheduling protocol. Users first send their transformed schedules f
ends  the encrypted output f(Y) back to each user.

easure users’ privacy, we need to compute the following two
dvantages. First, we measure the Identifiability Advantage,  which
s the probabilistic advantage of an adversary in correctly guessing

 schedule bit (which is not a common availability) of any other
ser. We  denote it as AdvIDT

ui
(A). Second, we measure the Linkability

dvantage,  which is the probabilistic advantage of an adversary in
orrectly guessing that any two or more other users have exactly the
ame corresponding schedule bit (not a common availability bit)
ithout necessarily knowing the values of those bits. We  denote

his advantage as AdvLNK
ui

(A). We  make the following straightfor-
ard observation.

bservation 1. If an adversary has identifiability advantage over
wo corresponding schedule bits of two different users, this implies
hat it has linkability advantage over those two bits as well. How-
ver, the inverse is not necessarily true.

We  semantically define the identifiability and linkability

dvantages using a challenge-response methodology. Challenge-
esponse games have been widely used in cryptography to
rove the security of cryptographic protocols. We  now describe

able 1
able of symbols.

Symbol Definition

AdvLNK (A) Linkability advantage
AdvIDT (A) Identifiability advantage
D  (C) Decryption of a ciphertext C
EK,r (m) Encryption of a message m using the key K and a

random number r
KP Shared public key of the N users
KS Shared private key of the N users
m  Number of slots of each individual schedule
N  Number of users
xi = [bi , 1, . . .,  bi,m] Schedule of user ui , where bi,j is the availability at

time slot j
�  = �1, . . .,  �m Schedule permutation function
e server, which then performs the scheduling algorithm A on the received data and

such a challenge-response game for the identifiability advantage
AdvIDT

ui
(A) of any user ui participating in the algorithm A as follows.

1. Initialization: Challenger privately collects xi = [bi,1, . . .,  bi,m] and
fi = f(bi,1, . . .,  bi,m) from all users ui, i ∈ {1 . . . N}.

2. Scheduling: Challenger computes f(Y) = A(f1, f2, . . .,  fN) with the
users and sends f(Y) to all users u1, u2, . . .,  uN.

3. Challenger randomly picks a user ui, i ∈ {1 . . . N}, as the adver-
sary.

4. ui picks j ∈ {1 . . . N}, s.t. j /= i and sends it to the challenger.
5. Challenge: the challenger picks a random time slot p ∈ {1 . . . m},

s.t., ∃bk,p = 0 for at least one k ∈ 1, . . .,  N. Challenger then sends (j,
p) to the user ui. This is the challenge.

6. Guess: User ui sends b′
j,p

∈ {0, 1} to the challenger as a response
to his challenge. If b′

j,p
= bj,p, the user ui (adversary) wins; oth-

erwise, he loses.

The identifiability advantage AdvIDT
ui

(A) can be defined as

AdvIDT
ui

(A) =
∣∣∣Prui

[b′
j,p = bj,p] − 1

2

∣∣∣ (1)

where Prui
[b′

j,p
= bj,p] is the probability of user ui winning the

game (correctly answering the challenge in the challenge-response
game), computed over the coin flips of the challenger, b′

j,p
is ui’s

guess about the schedule of user uj in the time slot p and bj,p is uj’s
true availability. An external attacker, having no access to the out-
put of the algorithm, has obviously no advantage at all. Thus, we
focus on the non-trivial case with participating users only.

Similarly, we  describe the challenge-response game for the link-
ability advantage AdvLNK

ui
(A) of any user ui as follows.
1. Initialization: Challenger privately collects xi = [bi,1, . . .,  bi,m] and
fi = f(bi,1, . . .,  bi,m) from all users ui, i ∈ {1 . . . N}.

2. Scheduling: Challenger computes f(Y) = A(f1, f2, . . .,  fN) with the
users and sends f(Y) to all users u1, u2, . . .,  uN.
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. Challenger randomly picks a user ui, i ∈ {1 . . . N}, as the adver-
sary.

. ui picks h, j ∈ {1 . . . N}, s.t. j /= h, j /= i, h /= i and sends (h, j) to the
challenger.

. Challenge: Challenger randomly picks a time slot p ∈ {1 . . . m},
s.t., ∃bk,p = 0 for at least one k ∈ 1, . . .,  N. Challenger then sends (j,
p) and (h, p) to the user ui. This is the challenge.

. Guess: User ui decides if bj,p = bh,p or not. User ui sets b′ = 1 if he
decides bj,p = bh,p and b′ = 0 if he decides bj,p /= bh,p. User ui sends
b′ to the challenger as a response to his challenge. If bj,p = bh,p
and b′ = 1 or if bj,p /= bh,p and b′ = 0, the user ui (adversary) wins;
otherwise, he loses.

The linkability advantage AdvLNK
ui

(A) can be defined as

dvLNK
ui

(A) =
∣∣∣Prui

[((bj,p = bh,p) ∧ b′ = 1) ∨ ((bj,p /=  bh,p) ∧ b′ = 0)] − 1
2

∣∣∣
here Prui

[.] is the probability of user ui winning the game, com-
uted over the coin flips of the challenger. As for the identifiability
dvantage, an external attacker has no linkability advantage at all.

We now define the user-privacy of the scheduling algorithm A
n a per-execution basis as follows:

efinition 1. An execution of the centralized scheduling algo-
ithm A is user-private if both the identifiability advantage AdvIDT

ui
(A)

nd the linkability advantage AdvLNK
ui

(A) of each participating user
i, i ∈ {1, . . .,  N} is negligible.

A function f(x) is called negligible if, for any positive polynomial
(x), there is an integer B such that for any integer x > B, f(x) < 1/p(x)
Goldreich, 2001).

Definition 1 says that a particular execution of the scheduling
lgorithm is user-private if and only if users do not gain any (actu-
lly, negligible) additional knowledge about the schedule bits of
ny other user, except the schedule bits that have a value 1 for all
sers (common availabilities).

.1.1. Server-privacy
The server-privacy of any (centralized) scheduling algorithm A

easures the probabilistic advantage that the server (which exe-
utes the scheduling algorithm A and observes the inputs from
he users) gains towards learning the private schedules of at least
ne user ui, i ∈ {1 . . . N}. As in the case of user-privacy, we  need to
ompute the following two advantages. First, the advantage of the
erver in guessing correctly any schedule bit of any user participat-
ng in the scheduling algorithm, called as Identifiability Advantage
nd denoted as AdvIDT

S (A). Second, the advantage of the server in
uessing correctly that any two (or more) participating users have
xactly the same corresponding schedule bits without necessarily
nowing the values of those bits, called the Linkability Advantage
nd denoted as AdvLNK

S (A).
The server identifiability and linkability advantages are defined

n a similar fashion as the user advantages. The challenge-response
ame for the server identifiability advantage AdvIDT

S (A) is defined as
ollows.

. Initialization: Challenger privately collects xi = [bi,1, . . .,  bi,m] and
the server privately collects fi = f(bi,1, . . .,  bi,m) from all users ui,
i ∈ {1 . . . N}.

. Scheduling: Server computes f(Y) = A(f1, f2, . . .,  fN) with the users

and sends f(Y) to all users u1, u2, . . .,  uN.

. Server picks i ∈ {1 . . . N} and sends it to the challenger.

. Challenge: Challenger randomly picks a time slot p ∈ {1 . . . m}.
Challenger then sends (i, p) to the server. This is the challenge.
and Software 84 (2011) 1910– 1927

5.  Guess: server sends b′
i,p

∈ {0, 1} to the challenger as a response
to his challenge. If b′

i,p
= bi,p, the server (adversary) wins; other-

wise, he loses.

The identifiability advantage AdvIDT
S (A) is defined as

AdvIDT
S (A) =

∣∣∣PrS[b′
j,p = bj,p] − 1

2

∣∣∣ (2)

where PrS[b′
j,p

= bj,p] is the probability of the server winning the
game, computed over the coin flips of the challenger.

The challenge-response game for the server linkability advan-
tage AdvLNK

S (A) is defined as follows.

1. Initialization: Challenger privately collects xi = [bi,1, . . .,  bi,m] and
the server privately collects fi = f(bi,1, . . .,  bi,m) from all users ui,
i ∈ {1 . . . N}.

2. Scheduling: Server computes f(Y) = A(f1, f2, . . .,  fN) with the users
and sends f(Y) to all users u1, u2, . . .,  uN.

3. Server picks h, j ∈ {1 . . . N}, s.t. j /= h and sends (h, j) to the chal-
lenger.

4. Challenge: Challenger randomly picks p ∈ {1 . . . m}  and then
sends (j, p) and (h, p) to the server. This is the challenge.

5. Guess: Server decides if bj,p = bh,p or not. Server sets b′ = 1 if he
decides bj,p = bh,p and b′ = 0 if he decides bj,p /= bh,p. Server sends
b′ to the challenger as a response to his challenge. If bj,p = bh,p
and b′ = 1 or if bj,p /= bh,p and b′ = 0, the server (adversary) wins;
otherwise, he loses.

The linkability advantage AdvLNK
S (A) is defined as

AdvLNK
S (A) =

∣∣∣PrS[ (bj,p = bh,p) ∧ b′ = 1
)

∨ (bj,p /= bh,p) ∧ b′ = 0)] − 1
2

∣∣∣ (3)

where PrS[.] is the probability of the server winning the game, com-
puted over the coin flips of the challenger.

The server-privacy of the scheduling algorithm A on a per-
execution basis can then be defined as follows:

Definition 2. An execution of the centralized scheduling algo-
rithm A is server-private if both the identifiability advantage
AdvIDT

S (A) and the linkability advantage AdvLNK
S (A) of the server is

negligible.

Now, it is reasonable to assume that in practice users will be
able to perform multiple executions of the scheduling algorithm
with possibly different participating sets of users. This is especially
true if such an algorithm is offered, for example, as a service by
mobile service providers to their subscribers. Thus, privacy of the
scheduling algorithm should be defined over multiple executions.
First, we define a private execution as follows:

Definition 3. A private execution is an execution which does not
reveal more information than what can be derived from its result
and the prior knowledge.

Based on how memory is retained over sequential executions,
we define two types of algorithm executions, namely, independent
and dependent:

Definition 4. An independent (respectively, dependent) execution
is a single private execution of the scheduling algorithm defined in
Section 3.3 in which no (respectively, some) information of an earlier
and current execution is retained and passed to a future execution.
The information retained can include past inputs to the algo-
rithm, intermediate results (on the server) and the outputs of the
algorithm. Based on the type of executions, we define a privacy-
preserving scheduling algorithm as follows:
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efinition 5. A scheduling algorithm A is execution (respectively
ully) privacy-preserving if and only if for every independent (respec-
ively all)  execution(s):

. A is correct; All users are correctly able to compute yj = 1,
∀ j = 1 . . . m if and only if bi,j = 1, ∀ i = 1 . . . N.

. A is user-private in every execution.

. A is server-private in every execution.

A fully privacy-preserving algorithm is a much stronger (and
ifficult to achieve) privacy requirement. In this work, simi-

ar to earlier efforts, we focus on achieving execution privacy.
he following observation gives the relationship between fully
rivacy-preserving and execution privacy-preserving scheduling
lgorithms.

bservation 2. Any scheduling algorithm A, as defined in Section
.3, is execution privacy-preserving if it is fully privacy-preserving.
owever, the inverse is not true.

Next, we outline our centralized scheduling algorithms.

. Privacy-preserving scheduling algorithms

In this section, we present our three privacy-preserving schedul-
ng algorithms. For each algorithm, we first outline the basic
ryptographic properties that are used, and then we  describe and
how their operational mechanisms in detail. We  finally state the
rivacy guarantees provided by each of the algorithms.

.1. SchedElG

Our first privacy-preserving centralized scheduling scheme is
ased on the ElGamal (1985) cryptosystem. The security of the
lGamal encryption relies on the intractability of the discrete log-
rithm problem (DLP), which assumes that it is computationally
nfeasible to obtain the private key Ks given the public key (g, h),

here g is a generator of a multiplicative cyclic group G of prime
rder q and h = gKs mod  q.

Our protocol SchedElG uses the homomorphic property of the
lGamal cryptosystem in order to allow the scheduling server
o compute the aggregated availabilities by working only on the
ncrypted individual schedules. For instance, it can be verified that
he ElGamal scheme satisfies:

D(EKP ,r1 (m1) · EKP ,r2 (m2)) = D((gr1 , m1hr1 ) · (gr2 , m2hr2 ))

= D(gr, (m1 · m2)hr) = m1 · m2

here r = r1 + r2 ∈ Zq is a random integer. Moreover,
eing a probabilistic encryption scheme, it follows that if
1 /= r2, EKP ,r1 (m) /= EKP ,r2 (m).

For the SchedElG algorithm, we assume that the meeting partic-
pants represent their availabilities in the following way: b∗

i,j
= 1 if

i,j = 1, but b∗
i,j

= R (where R ∈ Zq, R > 1 is a random integer) if bi,j = 0.

.1.1. Scheme
The privacy-preserving scheduling protocol SchedElG is shown

n Fig. 3. All users first select the sequence of time slots according to
he permutation �, i.e., �j, ∀ j = 1 . . . m, and then encrypt individually
he corresponding schedule availabilities, i.e., Ei = [Ei,�1

, . . . , Ei,�m ]
here Ei,� = EK ,r (b∗ ). Then, each user sends its Ei privately to
j P i,j i,�j

he scheduling server that performs the multiplication
∏N

i=1Ei,�j
of

ll users’ encrypted schedules Ei,�j
, for j = 1, . . .,  m.  The results of

uch operation are the (encrypted) aggregated availabilities of all
and Software 84 (2011) 1910– 1927 1915

users for each time slot j. Next, the server replies with the aggre-
gated encrypted result Esched back to each user. Each slot in Esched
contains a product of the individual time-slot bits encrypted with
the users’ common session key. Finally, each user decrypts the
result and obtains the aggregated availabilities [y1 = B∗

�1
, . . . , ym =

B∗
�m

] of all users ui for each time slot �j. If B∗
�j

= 1, it means that all
users are available at time slot �j; if B∗

�j
> 1, then at least one user

is not available and therefore �j is not a suitable time slot. The
following result shows the correctness and privacy properties of
SchedElG.

Lemma  1. The protocol SchedElG is correct and execution privacy-
preserving.

Proof. Correctness: From Section 3.3,  we know that any schedul-
ing algorithm should output f(Y), on inputs f1, f2, . . .,  fN, where
fi = f(b1,1, . . .,  bi,m), such that each user is able to privately com-
pute Y = f−1(f(Y)), where Y = y1, . . .,  yj, . . .,  ym. The output bit yj, ∀ j
should be such that it should take some value v if and only if all users
are available. Otherwise, the output bit yj never takes value v and
should take some other value, indicating that at least one user is
not available. From Fig. 3, we can see that, provided the homomor-
phic properties of the ElGamal cryptosystem are correct, we have
that (with overwhelming probability) yj = 1 if and only if bi,j = 1, ∀ i,
i.e., all users are available. Otherwise we  have yj = R, where R > 1 is
some random number. Thus, SchedElg is correct.

Privacy: In order to be user-private, the identifiability and linka-
bility advantages defined in Section 3 must be a negligible function.
Formally, we  need that

AdvIDT
ui

(SchedElG) =
∣∣∣Prui

[b′
j,p

= bj,p] − 1
2

∣∣∣ <
1

p(N)

AdvLNK
ui

(SchedElG) =
∣∣∣Prui

[(bj,p =bh,p) ∧ b′ =1) ∨ (bj,p /= bh,p) ∧ b′ =0)] − 1
2

∣∣∣ <
1

p(N)

where Prui
[b′

j,p
= bj,p] and Prui

[(bj,p = bh,p) ∧b′ = 1) ∨
(bj,p /= bh,p) ∧b′ = 0)] are the probabilities of a user ui win-
ning the challenge-response games, and p(N) is any positive
polynomial function of N. Without loss of generality, we assume
that the Challenger chooses user u1 as the Adversary. Moreover, as
the computation of the availabilities for all time slots are identical,
we  provide the proof for one time slot p only.

Hereafter we  provide the privacy proofs for both client- and
server-privacy, by computing the respective identifiability and
linkability advantages.

• User identifiability advantage
After Step 4 of the challenger-response game, u1 knows (i) its

own schedule bit b1,p and (ii) the non-trivial result of the algo-
rithm B∗

p = b∗
1,p · · · · · b∗

N,p > 1, i.e. there is at least one user that
is not available in the time slot p. Therefore, the identifiability
advantage becomes

AdvIDT
ui

(SchedElG) =
∣∣∣Prui

[b′
j,p = bj,p|B∗

p > 1, b1,p] − 1
2

∣∣∣
where

Prui
[b′

j,p
= bj,p|B∗

p > 1, b1,p]

=
1∑

k=0

Pr(b′
j,p

= bj,p|B∗
p > 1, b1,p = k) · Pr(b1,p = k|B∗

p > 1)

=
1∑

k=0

1∑
z=0

Pr(b′
j,p

= z ∧ bj,p = z|B∗
p > 1, b1,p = k) · Pr(b1,p = k|B∗

p > 1)
=
1∑

k=0

1∑
z=0

Pr(b′
j,p

= z|B∗
p > 1, b1,p = k) · Pr(bj,p = z|B∗

p > 1, b1,p = k)

·Pr(b1,p = k|B∗
p > 1)
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For illustration purposes, in Fig. 4 we plotted the identifiability
and linkability advantages of an adversary for SchedElg, compared
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Fig. 3. Sch

Given that the Challenger chooses a time slot p where ∃bq,p = 0,
q ∈ {1, . . .,  N}, we have

Pr(b′
j,p

= 0|B∗
p > 1, b1,p = 0) = Pr(b′

j,p
= 1|B∗

p > 1, b1,p = 0) = 1/2
Pr(bj,p = 0|B∗

p > 1, b1,p = 0) = Pr(bj,p = 1|B∗
p > 1, b1,p = 0) = 1/2

Pr(b′
j,p

= 0|B∗
p > 1, b1,p = 1) = Pr(bj,p = 0|B∗

p > 1, b1,p = 1)

=

N−1∑
m=1

CN−1
m · m

2N−1 · (N − 1)
= 2N−2

2N−1 − 1
Pr(b′

j,p
= 1|B∗

p > 1, b1,p = 1) = Pr(bj,p = 1|B∗
p > 1, b1,p = 1)

=

N−2∑
m=0

CN−1
m · m

2N−1 · (N − 1)
= 2N−2 − 1

2N−1 − 1

which implies

Prui
[b′

j,p = bj,p|B∗
p > 1, b1,j] = a

2
+ (1 − a) · 22(N−2) + (2N−2 − 1)

2

(2N−1 − 1)2

where a = Pr(b1,p = 0|B∗
p > 1). By including this result, we have

that

AdvIDT
ui

(SchedElG, N) =

∣∣∣∣∣∣∣
a

2
+ (1 − a) · 22(N−2) + (2N−2 − 1)

2

(2N−1 − 1)2︸  ︷︷  ︸�

− 1
2

∣∣∣∣∣∣∣
where

� = 22N−4 + 22N−4 − 2 · 2N−2 + 1
2N−2 − 2 · 2N−1 + 1

= 22N−3 − 2N−1 + 1
22N−2 − 2N + 1

= (22N−2 − 2N + 1) + 1
2 · (22N−2 − 2N + 1)

= 1
2

+ 1
2(22N−2 − 2N + 1)

By combining the previous expressions, we obtain

AdvIDT
ui

(SchedElG, N) =
∣∣∣ a

2
+ (1 − a) · � − 1

2

∣∣∣ =
∣∣∣ 1 − a

22N−1 − 2N+1 + 2

∣∣∣
=

∣∣∣ 1 − a

2N+1(2N−2 − 1) + 2

∣∣∣ ∀N>2
<

1
2N

which holds ∀0 ≤ a ≤ 1. Therefore AdvIDT
ui

(SchedElG, N) is a negligi-
ble function of the number of participants N, as it approaches zero
faster than the reciprocal of any polynomial, for large enough N
(Bellare, 2008).
User linkability advantage

By definition we have
AdvLNK
ui

(SchedElG)

=
∣∣∣Prui

[(bj,p = bh,p) ∧ b′ = 1) ∨ (bj,p /= bh,p) ∧ b′ = 0) |B∗
p > 1, b1,p] − 1

2

∣∣∣
 protocol.

From the above, we  obtain

Prui
[(bj,p = bh,p) ∧ b′ = 1) ∨ (bj,p /= bh,p) ∧ b′ = 0) |B∗

p > 1, b1,p]

=
1∑

k=0

Pr[(bj,p = bh,p) ∧ b′ = 1|B∗
p > 1, b1,p = k

)
] · Pr(b1,p = k|B∗

p > 1)

+
1∑

k=0

Pr[(bj,p /= bh,p) ∧ b′ = 0|B∗
p > 1, b1,p = k

)
] · Pr(b1,p = k|B∗

p > 1)

which implies

Prui
[(bj,p = bh,p) ∧ b′ = 1) ∨ (bj,p /= bh,p) ∧ b′ = 0) |B∗

p > 1, b1,p] = a

2
+ (1 − a)

·

{[(
2N−2

2N−1 − 1

)2

+ 2N−3 − 1
2N−2

· 2N−2 − 1
2N−1 − 1

]2

+
[

1
4

+ 1
2

2N−2 − 1
2N−1 − 1

]2

}

where a = Pr(b1,p = 0|B∗
p > 1). Similarly to the identifiability

advantage, it can be shown that AdvLNK
ui

(SchedElG, N) is a neg-
ligible function of the number of participants N. As both
identifiability and linkability advantages are negligible functions
(in the number of participants N), SchedElG is user-private.

• Server advantages
The server that is performing the computations on the

encrypted schedules does not know any user’s schedule bit, as all
schedules have been encrypted by the users prior to being sent to
the server with the users’ shared public key, and only they know
the corresponding private key. Therefore, AdvIDT

S (SchedElG) =
AdvLNK

S (SchedElG) = 0, i.e. SchedElG is server-private.
100 10 1 10 2 10 3

Number of users (N)

Fig. 4. Identifiability and linkability advantages of an adversary.
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ith polynomially (in terms of the number of participants N)
ecreasing functions 1/p(N). As confirmed by our analysis, the plot
hows that both identifiability and linkability advantages are lower
han the considered polynomials 1/p(N), for the given values of N.

.2. SchedPa algorithm

In this section, we define our second privacy-preserving
cheduling scheme, which is based on the Paillier cryptosystem
Paillier, 1999). The security of the Paillier encryption scheme is
ased on the intractability of determining whether an integer r is an
-residue mod  n2, where n is a composite number. In our protocol,
e use the homomorphic properties of the Paillier cryptosystem to

ompute in a privacy-preserving fashion the availability of all users
nvolved in the scheduling process. In particular, one can verify that
he Paillier scheme satisfies the following:

D[EKP ,r1 (m1) · EKP ,r1 (m2) mod  n2] = m1 + m2 mod  n
D[EKP ,r(m1)m2 mod  n2] = m1 · m2 mod  n

here ri, r ∈ Z
∗
n are random numbers chosen by the encrypters,

 ∈Zn is the message to encrypt and n = pq where p, q are two
arge primes. The randomness in the encryption ensures that if
1 /= r2, EKP ,r1 (m) /= EKP ,r2 (m).

To  adapt our scheme to the addition property of Paillier’s homo-
orphism, we take the bit value b̄i,j in the computation instead of

he original bit value bi,j as follows: b̄i,j = 0 if bi,j = 1, and b̄i,j = r
where r ∈ Z

∗
n, r > 1 is a random integer) if bi,j = 0.

.2.1. Scheme
The corresponding privacy-preserving scheduling protocol is

hown in Fig. 5. First, all users select the sequence of time
lots according to the permutation �, i.e., �j, ∀  j = 1, . . .,  m,  and
hen encrypt individually the corresponding availabilities, i.e. Ei =
Ei,�1

, . . . , Ei,�m ] where Ei,�j
= EKP ,ri,j

(b̄i,�j
). Then, each user sends

ts Ei privately to the scheduling server that performs the multi-

lication and exponentiation (
∏N

i=1Ei,�j
)
R

of all users’ encrypted
chedules Ei,�j

, for j = 1, . . .,  m,  in order to obtain the encryption
f the value V�j

that is needed by the users. Afterwards, the server
ends the aggregated encrypted result Esched back to each user. Each
lot in Esched contains a randomly scaled sum of the individual time-
lot bits b̄i,�j

encrypted with the users’ common session key. Finally,
ach user decrypts the result and knows that if V�j

= 0, the time slot
j is available for everybody. If V�j

> 1, then at least one user is not
vailable. Note that even if the server chooses R = 1, the privacy
f the users is preserved with b̄i,j . The following result shows the
orrectness and privacy properties of SchedPa.

emma  2. The protocol SchedPa is correct and execution privacy-
reserving.

roof. Correctness: From Section 3.3,  we know that any schedul-
ng algorithm should output f(Y), on inputs f1, f2, . . .,  fN, where
i = f(b1,1, . . .,  bi,m), such that each user is able to privately com-
ute Y = f−1(f(Y)), where Y = y1, . . .,  yj, . . .,  ym. The output bit yj, ∀ j
hould be such that it should take some value v if and only if all users
re available. Otherwise, the output bit yj never takes value v and
hould take some other value, indicating that at least one user is
ot available. From Fig. 3, we can see that, provided the homomor-
hic properties of the Paillier cryptosystem are correct, we  have
hat (with overwhelming probability) yj = 0 if and only if bi,j = 1, ∀ i,
.e., all users are available. The value of yj = R, where R > 1 is some
andom number, otherwise. Thus, SchedPa is correct.
Privacy: Hereafter we present the privacy proofs, both for user-
nd server-privacy.

User advantages
and Software 84 (2011) 1910– 1927 1917

The knowledge that any user ui has in the SchedPa game
is the same as in SchedElG. In particular, ui knows that
Vp = R ·

∑N
k=1bk,p > 0 and therefore it knows that there is at

least one user uk, k ∈ {1, . . .,  N} that is not available in the
time slot p. Moreover, each user ui knows its own sched-
ule bi,p. As a consequence, AdvIDT

ui
(SchedPa) = AdvIDT

ui
(SchedElG)

and AdvLNK
ui

(SchedPa) = AdvLNK
ui

(SchedElG) and therefore SchedPa
is user-private.

• Server advantages
As in the SchedElG algorithm, the server performing the SchedPa

algorithm does not have access to any schedule bit and therefore
SchedPa is server-private.

�

5.3. SchedGM algorithm

In this section, we present our third privacy-preserving schedul-
ing algorithm, which is based on the Goldwasser–Micali (GM)
cryptographic scheme (Goldwasser and Micali, 1984). The security
of the GM encryption relies on the intractability of the quadratic
residuosity problem, i.e. on the infeasibility of determining whether
or not an integer r is a quadratic residue mod  n when the Jacobi
symbol for r is 1, given n = pq where p, q are large primes. SchedGM
makes use of the following homomorphic property of the GM cryp-
tosystem:

D[EKP ,r1 (m1) · EKP ,r2 (m2)] = m1 ⊕ m2

The intuition behind the protocol is based on the work by Herlea
et al. (2001), in which users privately establish a global bit mask
(unknown to any user) and then compare all the masked availabil-
ities without knowing the true bit value bi,�j

of the other users. If
all users have the same masked bit value for a given time slot �j,
then each user knows that everybody else has the same availability,
which can be inferred by looking at the private unmasked bit value
bi,�j

. Although initially used in a distributed scenario, we extend
the general idea to the centralized scheme as well.

5.3.1. Assumption
Each user ui generates a private random bit mask si = [ci,1, ci,2,

. . .,  ci,m], ci,j ∈ {0, 1}, of the same length of the schedule xi.

5.3.2. Scheme
The privacy-preserving scheduling algorithm is shown in

Fig. 6. Each user first selects the sequence of time slots accord-
ing to the permutation �, i.e., �j, ∀ j = 1, . . .,  m,  and then
masks the corresponding schedule bits, i.e. b⊕

i,�j
= bi,�j

⊕ ci,j .

Then, each user encrypts individually both its bit mask, i.e.
Ec

i
=

[
EKP ,ri,1

(ci,1), . . . , EKP ,ri,m
(ci,m) , and the masked availabilities,

i.e. Ei = [Ei,�1
, . . . , Ei,�m ], where Ei,�j

= EKP ,ri,j
(b⊕

i,�j
). Afterwards,

each user ui sends its Ei and Ec
i

to the server, which com-
putes the multiplication of the received Ei,�j

with the encrypted

masks of all other users uk, ∀ k /= i, obtaining E⊕
i,�j

= Ei,�j
·∏

k /=  iEKP
(ck,j), ∀i ∈ 1, . . . , N and ∀j = 1, . . .,  m. Afterwards, the

server sends all individual schedules, masked by a global mask
c1,j ⊕ · · · ⊕ cN,j, to each user in a random order. As a result, a user will
not know his own schedule (masked with the global mask), other-
wise he would be able to determine the global mask. Finally, each
user decrypts the received messages and compares all masked indi-

vidual schedules. If for a given time slot �j they all have the same
value, then each user ui can infer whether the time slot �j is avail-
able by looking at its own  schedule bi,�j

. The following result shows
the correctness and privacy properties of SchedGM.
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emma  3. The protocol SchedGM is correct and server-private.

roof. Correctness: From Section 3.3,  we know that any schedul-
ng algorithm should output f(Y), on inputs f1, f2, . . .,  fN, where
i = f(b1,1, . . .,  bi,m), such that each user is able to privately compute

 = f−1(f(Y)), where Y = y1, . . .,  yj, . . .,  ym. The output bit yj, ∀ j should
e such that it should take (with overwhelming probability) some
alue v if and only if all users are available. Otherwise, the output
it yj never takes value v and should take some other value, indi-
ating that at least one user is not available. In the case of SchedGM,
ach f(yj) (output by the server) consists of N different bits, one for
ach user, where each bit is the corresponding bi,j (schedule bit j
f user ui) masked by a global mask. From Fig. 6, we  can see that
j = “YES”, for a particular user ui, if and only if all of the N bits in f(yj)
re equal and bi,j = 1 (user ui is available), and yj = “NO” otherwise.
t is straightforward to see that all N bits in f(yj) will be equal only
n two cases: 1) bi,j = 1, ∀ i (all users are available) or 2) bi,j = 0, ∀ i (all
sers are not available). Thus, yj = “YES” if and only if all users are
vailable and yj = “NO” for any other case. Thus, SchedGM is correct.

Privacy: Hereafter we present the privacy proofs, both for user-
nd server-privacy.

User identifiability advantage
As for the previous two algorithms, the identifiability advan-

tage of any user ui for the SchedGM protocol is defined as

AdvIDT
ui

(SchedGM) =
∣∣∣Prui

[b′
j,p = bj,p|r > 1, bi,p] − 1

2

∣∣∣
where 1 ≤ r ≤ �N/2
 is the number of output elements that have
the same value. Note that in SchedGM each user gets N masked
output values b⊕

i,p
, ∀i ∈ {1, . . . , N}, for each time slot p ∈ {1, . . .,
m},  but it cannot unmask them as it does not possess the global
mask. Therefore, any user knows that there are r masked bit val-
ues of one kind and N − r of the other kind, without knowing
whether one or the other kind corresponds to bi,p = 1. Without

Fig. 6. SchedGM
protocol.

loss of generality, we assume that the Challenger chooses user u1
as the Adversary and we focus on the non-trivial case N > 2. By
expanding the first term, we have

Pru1 [b′
j,p

= bj,p|r > 1, b1,p]

=
1∑

k=0

Pr(b′
j,p

= bj,p|r > 1, b1,p = k) · Pr(b1,p = k|r > 1)

=
1∑

k=0

1∑
z=0

Pr(b′
j,p

=z|r > 1, b1,p =k) · Pr(bj,p =z|r > 1, b1,p =k) · Pr(b1,p =k|r >1)

From the above, we obtain

Pr(b′
j,p

= 0|r > 1, b1,p = 0) = 1
2

· CN
r · r

CN
r · N

+ 1
2

· CN
N−r · (N − r)

CN
r · N

= 1
2

Pr(b′
j,p

= 1|r > 1, b1,p = 0) = 1
2

Pr(b′
j,p

= 0|r > 1, b1,p = 1) = Pr(b′
j,p

= 1|r > 1, b1,p = 1) = 1
2

which implies

Prui
[b′

j,p = bj,p|r > 1, bi,p] = 1
2

and thus the final result

AdvIDT
ui

(SchedGM) = 0, ∀N > 2

• User linkability advantage
Hereafter we intuitively show that ∃N > 2|AdvLNK

u (SchedGM) ≥

i

1/p(N), where p(N) is any positive polynomial function of N. After
Step 4 of the challenge-response game, the Adversary u1 knows
(i) its own schedule bit b1,p and (ii) the number r of masked sched-
ules of one particular kind. Even though u1 cannot determine

 protocol.
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Table 2
Client and server specifications.

Client (Nokia N810) Server

Processor TI OMAP 2420 Intel Centrino Duo
400 MHz T2500, 2× 2.00 GHz

RAM DDR RAM 128 MB  DDR2 RAM 3 GB
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OS  Maemo  Linux OS2008 (Diablo) Ubuntu 9.10, kernel 2.6.31.22

with certainty whether the r elements correspond to the “avail-
able” or to the “busy” state, it knows that the challenger picks the
two other bits bh,p, bj,p, j /= h /= i, at random and therefore it also
knows that the lower the value r, the greater the probability that
any two bits in the sequence under consideration have the same
value. Intuitively, if r = 1 it means that there are N − 1 schedules
of one kind and only one schedule of the other kind. Therefore,
the probability that any two users have same schedule value is
greater than, for instance, when r = �N/2
. Thus, the linkability
advantage AdvLNK

ui
(SchedGM) is not less than 1/p(N), ∀ N > 2, as

∃r ∈ {1, . . . , �N/2
}|AdvLNK
ui

(SchedGM) ≥ 1/p(N) for some positive
polynomial p(N).
Server advantages

As in SchedElG and SchedPa, the server performing the SchedGM
algorithm does not have access to any schedule bit. Therefore,
SchedGM is server-private. �

. Implementation and performance evaluation

In this section we present the system and implementation
etails related to our three privacy-preserving scheduling algo-
ithms. First, we describe the details about the systems and
latforms on which we  developed and implemented our applica-
ions. Second, we present the experimental measurements of the
erformance of our applications (both on the client devices and on
he server), and we thoroughly discuss these results and compare
he efficiency of all the algorithms.

.1. Systems and platforms

Clients and server systems: The client application was run,
ested and evaluated on the Nokia N810 devices. The server appli-
ation was implemented and evaluated on and a high-end machine.
he hardware and OS specifications are listed in Table 2.

Code specifications: Our privacy-preserving scheduling appli-
ations were developed with the Qt 4.0 framework (Nokia Qt
ramework, 2011), using QtCreator as the IDE. The client applica-
ion was ported to the N810 devices using the Maemo  SDK on the
cratchbox cross-compilation toolkit2.

Cryptographic libraries: The libgcrypt standard GNU library3

as used to implement the Elgamal and the RSA cryptosystems.
imilarly, the libpaillier library4 was used to implement the Paillier
ryptosystem. For the Goldwasser–Micali cryptosystem, we did not
nd any existing available libraries, and therefore we  developed a
ew library, libgm, to implement the basic cryptographic opera-
ions. We  intend to release our libgm library to the public under the

PL licence.

2 Details on the Scratchbox and Maemo  SDK are available at http://maemo.org/
aemo release documentation/maemo4.1.x/node4.html.
3 The documentation for libgcrypt is available at http://www.gnupg.org/

ocumentation/manuals/gcrypt/index.html.
4 Source code available at http://acsc.cs.utexas.edu/libpaillier/.
and Software 84 (2011) 1910– 1927 1919

6.2. Software architecture

Our privacy-preserving activity scheduling software consists of
two  applications: the client and the server.  The client application
runs on the Nokia N810 mobile device, and has a GUI to take inputs
from the users. The server application runs on the Intel-based PC
and is managed through the standard Unix console.

6.2.1. Client application
The client application stores the schedules of the users and dis-

plays the list of potential meeting participants for each user. This
list is maintained and managed by the user himself, who can choose
the meeting participants before initiating the meeting scheduling
procedure. Each user can use the GUI to set his availabilities, send a
meeting scheduling request, reply to an ongoing meeting request or
refuse to participate in a received meeting request. To send a meet-
ing scheduling request, the initiator first selects one of the available
privacy-preserving algorithms (SchedElG, SchedPa or SchedGM) and
the intended meeting participants. Then, the procedure is initiated
by a click on the “Start meeting” button. Fig. 7a shows a flowchart
of the application on the client device, when a user sends a request
to schedule a meeting.

6.2.2. Server application
The server is a GUI-less application that interacts with the clients

to handle requests such as login and computation of common avail-
abilities. The main server class, ScServer, inherits QTcpServer and is
used as the server socket. Fig. 8 shows the server flowchart struc-
ture.

More details about the inner structure of the server will be made
available to the public, together with the source code, under the GPL
licence.

6.3. Experimental performance evaluation

Before presenting the performance measurement details, let us
first perform a comparative analysis of the asymptotic complexities
of the proposed protocols, as shown in Table 3. In order to compare
our three algorithms with an equivalent security, we  set the bit-
lengths of the ElGamal modulus q and the Paillier and GM modulus
n to 1024 bits. A time-slot availability would then be encrypted to
a 2-tuple of 1024-bit ciphertexts for ElGamal, to a 1024-bit cipher-
text for GM and to a 2048-bit ciphertext for the Paillier encryption
scheme.

From Table 3 we  can see that the SchedElG and SchedPa proto-
cols are very efficient, both in terms of communication O(m), where
m is the number of time slots, and computation complexity O(m).
Moreover, these two  algorithms provide strong privacy guarantees.
SchedGM, on the contrary, is comparatively less efficient due to the
greater number of exchanged messages (O(N · m),  where N is the
number of participants). From the privacy perspective, SchedGM
reveals more information: users can infer the ratio of free/busy par-
ticipants for each time slot without identifying those that are busy
and those that are free. Because in all schemes, the server operates
only on encrypted data, it cannot gain any knowledge about the
users’ private schedules.

Distributed (Silaghi and Mitra, 2004; Herlea et al., 2001) and
hybrid (Yokoo et al., 2005) solutions proposed in the literature
are less efficient from the communication standpoint as compared
to the proposed protocols. Moreover, the computational complex-
ity of these schemes is higher than SchedElG and SchedPa, and
this undermines their applicability on resource-constrained mobile

platforms. Even though the hybrid approach (Yokoo et al., 2005) has
comparable computation complexity, it is not completely reliable
from the privacy point of view because it assumes that the server(s)
can get clear-text access to the individual availabilities.

http://maemo.org/maemo_release_documentation/maemo4.1.x/node4.html
http://maemo.org/maemo_release_documentation/maemo4.1.x/node4.html
http://www.gnupg.org/documentation/manuals/gcrypt/index.html
http://www.gnupg.org/documentation/manuals/gcrypt/index.html
http://acsc.cs.utexas.edu/libpaillier/
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Fig. 7. Flowchart showing the initiation of a meeting scheduling request on the client application. The function names (such as encrypt (elg/pa/gm) or requestCommon-

Schedule (elg/pa/gm) that appear in this figure are intuitive placeholders for the actual function names that are used in the client application.
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ig. 8. Flowchart showing the server application structure when handling meeting
r  Process Elg) that appear in this figure are intuitive placeholders for the actual

We  further evaluate the performance of SchedElg, SchedPa
nd SchedGM by implementing the client component of the
rotocols and primitives on Nokia N810 mobile devices with
 400 MHz  CPU and 128 MB  RAM (Fig. 9), and the server
omponent on a desktop computer with a 2 GHz CPU and

 GB RAM. The results of the experimentation are shown in
ig. 10.

able 3
fficiency and privacy comparison with the scheduling protocols DisCSP Yokoo et al., 200

Per-user encr. Per-user decr. Per-user

Centralized
SchedElG O(m) O(m) O(m) 

SchedPa  O(m) O(m) O(m) 

SchedGM O(m)  O(N · m) O(N · m)  

Naïve  0 0 O(m) 

Hybrid
DisCSP protocol O(m) O(m) O(N · m)  

Distributed
MPCDisCSP2 protocol O(N · m)  O(m) O(N · m)  

SDC  protocol O(N2 · m) O(N · m) O(N · m · 

a The nave algorithm does not encrypt the schedule bits.
b AdvIDT is a negligible function, whereas, for some output Y of the algorithm, AdvLNK is 
sts and replies from and to the clients. The function names (such as RSA Decrypt

on names that are used in the server application.

6.3.1. Client encryption
As we can see from Fig. 10,  the time required to perform the

scheduling operations increases with the number of time slots for

all the proposed algorithms, which is intuitive. With respect to
encryption performance, Fig. 7a shows that SchedElg is the most
efficient scheduling algorithm, requiring 4 s to encrypt 45 time
slots (a typical weekly schedule on a per hour basis). The same task

5, MPC-DisCSP2 Silaghi and Mitra, 2004 and SDC Herlea et al., 2001.

 comm.  Order of an encr. availab. Privacy properties

1024 bits User-private Server-private
2048 bits User-private Server-private
1024 bits User-privatebServer-private
1 bita None

1024 bits Private

2048 bits Private
[log2(N)]) 1024 bits Private

non-negligible.
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Fig. 9. Frontend of the scheduling application on a Nokia N810.
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Fig. 10. Testbed implementation p
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is accomplished by SchedGM and SchedPa, respectively, in 7
and 14 s. These results might be explained by the following. First,
the cryptographic primitives for the ElGamal scheme are imple-
mented in a standard well-optimized library, libgcrypt, present in
most Unix-based operating systems. SchedGM, on the contrary,
does not use a standard library and can be further optimized. Sec-
ond, the encrypted elements in SchedPa have twice the bit-length
of those used in the other two algorithms, and therefore the same
operations (multiplications and exponentiations) require more
time.

6.3.2. Client decryption
Fig. 7b shows the time required for decrypting the final result

(common availabilities) of the scheduling algorithms at the client.
Similarly to the encryption time, the fastest algorithm for the
decryption is SchedElg, which takes 4 s in order to obtain the
aggregated availabilities for a 45 time-slot period. For the same
number of time slots, SchedPa takes approximately 7 s, which
is almost twice longer than the best performance. The decryp-

tion times for both SchedElg and SchedPa are independent of
the number of participants. The performance of SchedGM, due
to the fact that the final output of the algorithm is a sequence
of vectors instead of just a single aggregated vector, decreases
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erformance measurements.
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ith the number of users, as well as with the number of time
lots. Thus, for a reasonable number of participants (e.g. N = 5),
chedGM is still practical enough to be implemented on resource-
onstrained mobile devices, although it is not the preferred
olution.

.3.3. Client communication
Fig. 7c shows the (application layer) data that each client

xchanges during one execution of the scheduling algorithm. In
eneral, all the proposed privacy-preserving scheduling algorithms
ave reasonable communication costs. SchedElg and SchedPa are the
ost efficient algorithms and they require 22 kB of data in order

o compute the aggregated availabilities of a 45 time-slot period,
hereas SchedGM requires 39 kB for the same result. As previously
entioned, SchedGM uses a sequence of masked vectors in order

o compute the final availabilities of the users, and therefore the
mount of data is proportional both to the number of users and
ime-slots.

.3.4. Server performance
The scheduling server’s performance is shown in Fig. 8. As it

an be seen, the time required to perform the scheduling oper-
tions on encrypted values increases with both the number of
sers and time slots. For instance, the running time (in seconds)
or the server implementation of the SchedElG algorithm is at most

 · N · m · Tmul−ElG, where N is the number of clients, m the number
f time-slots and tmul−ElG is the time required to compute one mul-
iplication operation between two �log(q)�-bit integers (q is the
rder of the group in the ElGamal encryption scheme). The run-
ing time for the SchedPa and SchedGM is, respectively, at most

 · m · Tmul−Pai + m · Texp−Pai (where Tmul−Pai and Texp−Pai is the time
equired to perform a multiplication and an exponentiation respec-
ively of two �log(n2)�-bit integers) and 3 · N · m · Tmul−GM (where
mul−GM is the time required to perform a multiplication between
wo lceil log(n)

⌉
-bit integers).

As it can be seen, even with a large number of users and time
lots, the amount of time required for the server-side schedul-
ng operations is still below 0.2 s, which suggests that the load on
he server is limited, which allows it to efficiently handle multi-
le scheduling events, without incurring in huge computational
verhead.

. Extensions

In this section, we show how SchedPa can be easily extended to
he case where user schedules are non-binary, i.e., each time slot is

 non-negative cost Ci,j that indicates ui’s preference for time-slot j.
e also describe several active attacks on the proposed scheduling

chemes, such as collusion between users-server and data modifi-
ations by the users, and how these attacks can be mitigated using
xisting cryptographic mechanisms. Finally, we discuss some fur-
her enhancements for the privacy of users’ schedules and how to
mplement them.

.1. Non-binary schedules

The goal here is to find, in a privacy-preserving fashion, the
ime-slot with the minimum aggregated cost. The scheme works
s follows:
. Each user ui reorders his cost sequence Ci,1 . . . Ci,m using the
shared permutation � and encrypts each cost Ci,�j

in the
sequence using the Paillier cryptosystem with the shared group
and Software 84 (2011) 1910– 1927

key KP. He then passes the result (EKP ,ri,1
(Ci,�1

) . . . EKP ,ri,m
(Ci,�m ))

to the server.
2. The server computes the encrypted sum of costs EKP ,rj

(R ·∑N
i=1Ci,�j

), ∀j, where R is a random integer (greater than one)
chosen by the server.

3. The server selects a pre-determined user uk and passes a ran-
domly ordered (different from �) sequence of the encrypted
aggregated costs to it. This is to prevent uk from learning the
aggregated cost function.

4. User uk decrypts all the elements passed from the server, and
identifies the minimum aggregated cost.

5. User uk then queries the server for the index of the (encrypted)
minimum aggregated cost. The server then distributes the
queried index to all users.

It can be easily shown that the above scheme is execution
privacy-preserving. For conciseness, we do not discuss the details
of the privacy analysis here.

7.2. Active attacks

There are five kinds of possible active attacks on the scheduling
schemes: (i) collusion between the scheduling server and users, (ii)
collusion among users, (iii) fake user generation by the server, (iv)
individual user schedule modification and (v) integrity and replay
attacks.

In order to thwart the first issue, the invited participants could
agree to establish a shared secret using techniques from threshold
cryptography, such as Stadler (1996).  The server should then col-
lude with at least a predefined number of participants in order to
obtain the shared secret and learn the individual availabilities. The
second concern may  arise if k colluding users set their schedules to
all-available, and try to learn the schedules of other users. Assum-
ing that N is the total number of participants and k the number of
colluding ones, our schemes would provide some level of sched-
ule privacy to honest users, as long as N − k ≥ 2. Only if all but one
users collude, then they would be able to determine the schedule
of the remaining user. In order for the third attack to succeed, the
server would need to generate fake users and convince the true
participants about the legitimacy of the fake users. In practice, this
is a non-trivial task to achieve, and thus the attack has a very slim
chance of succeeding. Moreover, the effectiveness of such an attack
could be further reduced by adopting the threshold cryptographic
scheme mentioned previously, because the server would then need
to generate k fake users and validate them as true participants.

The fourth attack is also not able to succeed in revealing the
availability of other meeting participants, as the best a mali-
cious user can do is to set its own schedule to all-available,
and then guess the availabilities of the other N − 1 participants.
Even if a malicious user attempts to modify its own  sched-
ule with invalid values, such as negative values, the message
domain restrictions of cryptosystems (such as ElGamal and Pail-
lier) would prevent such modifications. Thus, malicious attacks
consisting of manipulating the final result using invalid negative
values as schedule values are not possible in the proposed proto-
cols.

The last attack concerns the integrity and freshness of the
encrypted schedules. The participants are the only entities in the
system that know the secret that has been used to generate the pub-
lic/private key pair, and therefore they are the only ones that can
generate and verify the integrity of the encrypted data. Moreover,

using the shared common secret, each participant could generate a
fresh nonce at each algorithm execution and send it (in encrypted
form) to the server during the scheduling process. The server would
then forward these encrypted nonces to each participant, who
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Fig. 11. Extended algorithm scheme

ould verify that all received nonces are equal. If not all nonces
re equal, then the participants know that there has been at least
ne replay attack, and thus the schedule results are not to be
rusted.

.3. Single available time slot

The output of conventional, no-privacy-preserving scheduling
ervices (such as Doodle or Outlook) consists of time slots in
hich all participating users are available. The proposed schemes

ollow this paradigm and they provide, in an efficient and privacy-
reserving way, all time-slots for which all users are available.

In some cases, however, it might be desirable to limit the disclo-
ure of common availabilities to only one time-slot, instead of the
et of all available time-slots. This would provide an additional layer
f privacy for the individual schedules, as the participants would be
iven a single feasible solution. Hereafter we describe one simple
ay to adapt the proposed schemes to support this feature (Fig. 11).

First, all users participating in the scheduling process perform
tep 1 of the respective algorithm ( SchedElg, SchedPa or SchedGM).
econd, the server performs Step 2 but it does not send the final
utput to each user. Instead, it randomly chooses a private time-slot
ermutation function � = [�1, . . .,  �m] and applies it to the elements
f the final output vector(s) Esched. We  call this new vector(s) E�

sched
.

t this point, the schedules have been permuted twice, once by the
sers prior to the encryptions (with �) and once by the server (with
).

Next, the server sends E�
sched

to the user who started the activity
cheduling (the initiator), which then gets the common avail-
bilities but in a doubly permuted order. The initiator is able to
etermine the available slots in this doubly permuted time slot list,
ut he is not able to determine the time slots they correspond to in
he original schedule. The initiator selects one commonly available
ime slot �k and securely sends the index �k to the server. Fourth,
he server (i) replaces all availabilities other than �k in E�

sched
with

andom numbers, (ii) reverts the permutation �, and (iii) sends
his new vector(s) Êsched to each user. Finally, each user decrypts
nd reverts the initial permutation � of the received vector(s) and
etermines which time slot j is the only commonly available time
lot.

This simple solution that reveals only a single available time
lot to all the participants involves one extra message exchange
etween the initiator and the scheduling server, as shown in Step 3
f Fig. 11.  Although the permutation � performed by the server pre-

mpts the initiator from knowing the true common availabilities,
e might still want to maliciously modify the permuted availabili-
ies. However, the only action the initiator can do is to choose one
f the permuted time slots and communicate its index �k to the
vealing a single available time slot.

server, as it is the server who  will then revert the permutation �
and send the final vector(s) Êsched to all users.

8. User study

In this section we  present the modalities and results of the user
study that we carried out with our prototype meeting-scheduling
application. The goal of this study was  to assess the sensitivity of
the subjects to privacy issues in meeting-scheduling applications,
as well as to obtain feedback with respect to our prototype appli-
cation.

8.1. Background

Based on the privacy- and usability-related questionnaire guide-
lines from (Chignell et al., 2003; Lewis, 1995), we  prepared and
conducted a targeted user-study on 19 subjects, sampling a pop-
ulation of university students (both undergraduate and graduate),
non-scientific personnel and people from a non-technical environ-
ment.

The entire study was  divided into three phases, with two dif-
ferent sets of questions that were given in Phase 1 and Phase 3
respectively. In Phase 1, the participants were asked to reply to a
set of 20 questions before using the meeting scheduling applica-
tion. In Phase 2, they were asked to use our prototype application
to schedule meetings with the other participants both in a con-
trolled and uncontrolled setting; the first time, we  instructed them
how to use the application, and afterwards they were free to use
it as they pleased. Finally, in Phase 3 the participants answered a
second set of 14 post-experience questions, after having used our
prototype application.

The goal of Phase 1 of the study was to assess the participants’
level of adoption of mobile technology and applications, and to get
their opinion on privacy issues in such applications. The partic-
ipants were not told beforehand what kind of mobile application
they will be asked to use in Phase 2. During Phase 1, the respondents
answered the Pre-Experience A questionnaire, which comprises 20
questions on both generic technology topics (such as usage and
ownership of mobile devices, utilization of mobile social networks
and calendar/agenda) and more specific privacy-related questions
(such as their online behavior and opinions on information release).
For instance, one statement related to users’ online behavior and
privacy is “I am willing to use my  real name in online discussions
(forums, chat rooms, etc.)”, to which the respondents had to answer

with either Disagree, Tend to disagree, Tend to agree or Agree.

After Phase 1 was  completed, in Phase 2 we instructed the par-
ticipants on the specifics of our prototype scheduling application
and how it works, in a step-by-step fashion. We  then asked them to
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Overall, the results suggest that privacy is indeed perceived as
being the top or the second priority in meeting-scheduling applica-
tions, which is in line with the concerns that the respondents had
before using our application. From a software developer standpoint,
Fig. 12. Extract of the user-study que

xecute one instance of the scheduling process. Next, we  told them
o use the application as they please, without the experimenters
verseeing the process. The goal of Phase 2 was to show our appli-
ation and to let the participants use it autonomously, in order to
et an opinion for the Phase 3 of the study.

The goal of Phase 3 was to obtain feedback on different per-
ormance and privacy aspects of our prototype application. The
espondents answered the Post-Experience B questionnaire, which
omprises 14 questions centered on our application prototype,
ts perceived usefulness, efficiency, ease of use, and privacy. For
xample, the statement “I could easily identify who was/were the
erson/people that were not available for a particular time slot”
ould be answered by Disagree, Tend to disagree, Tend to agree or
gree.

Hereafter we provide the summary of the results and discussion
n our user-study.

.2. Results

.2.1. Phase 1
Technology utilization: In this first part, we discuss the results

oncerning the technology utilization habits of the respondents.
ith respect to mobile applications, our results show that 63% the

espondents browse the Internet with a mobile device, whereas
3% of them use the mobile calendar/agenda application on their
evices in order to organize meetings. 86% of such meetings are
cheduled once or twice a week, and most of the time (89%) such
eetings involve 2–4 people. In order to reach a consensus, the
eeting participants use e-mail 58% of the time and the telephone

or the remaining 42%. Social networks, such as Facebook or Twit-
er, are used by 84% of the respondents, and 44% of them access
uch services using their mobile devices. These results suggest
hat although meeting scheduling and calendar management using

obile devices is already a reality, people still struggle to reach a
onsensus in an efficient way. In order to agree on a common time
lot using e-mail, multiple rounds of interaction among the meeting
articipants are required.

Privacy attitudes:  In this second part, we discuss the privacy
oncerns of the respondents when using everyday applications. In
eneral, 63% of the respondents tend to disagree or disagree with
he statement “I would put photos/videos of myself, my  family and
riends on the Internet”. When asked about third parties sharing
ersonal information about them, 89% of the respondents agree
hat no third party should disseminate users’ private information

ithout their knowledge. With respect to privacy in online interac-

ions, 63% feel that they would prefer not to use their real name and
se pseudonyms instead. Fig. 12 shows other interesting privacy
ttitude results. In summary, our respondents tend to by sensi-
aire about people’s privacy attitudes.

tive to the privacy issues related to the use of mobile applications,
and thus effectively controlling the access to and dissemination of
personal information is a valuable differentiator for mobile appli-
cations.

Scheduling applications and privacy: The third part of the
results show the opinion of respondents about meeting-scheduling
applications on mobile devices. According to the results, 84% of the
respondents are not aware of any existing mobile application for
meeting scheduling. Among those, 43% would be quite (or a lot)
interested in having such applications. With respect to privacy, 58%
would be comfortable in sharing their basic schedule availabilities
with the other meeting participants, while none of them would
be willing to share all the details (such as place, time and subject)
about these availabilities.

With respect to priorities in mobile meeting-scheduling appli-
cations, Fig. 13 shows the choices of the respondents, ordered by
the perceived priority (on a scale from 1 to 4, where 1 is the top
priority and 4 is the least priority). The figure shows that privacy is
perceived as the first priority in mobile meeting-scheduling appli-
cations 33% of the time. If we consider the cumulative result for the
1st and 2nd priorities, privacy achieves a total of 77%. Although the
ease of use of the application is perceived as the top priority for
50% of the respondents, the cumulative result for the 1st and 2nd
priorities achieves 67%, which is 10% less than privacy. The speed
and the Graphical User Interface (GUI) have the least priority for
the users, where speed is only the third priority most of the time,
and the GUI is almost exclusively the least priority.
Fig. 13. Extract of the user-study questionnaire about people’s priorities in mobile
scheduling applications.
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Fig. 14. Extract of the user-study questionnaire a

his means that both ease of use and privacy need to be taken into
ccount from the beginning of the application development pro-
ess. In particular, the privacy mechanisms should be implemented
n a way that does not significantly affect the usability or perfor-

ance. The acceptance of meeting-scheduling applications is thus
ighly influenced by the availability of effective and intuitive means

or controlling privacy preferences.

.2.2. Phase 3
User-experience:  Fig. 14 shows some interesting results about

he perceived user experience while using our prototype meeting-
cheduling application on the Nokia N810 devices. As it can be seen,
lmost 70% of the respondents agree that they were able to perform
he meeting scheduling task quickly using our application. More-
ver, 95% of them agree that it was easy for them to learn to use
ur application. Regarding the information presented on the screen,
sers mostly agree that it was easy to find all necessary information,
uch as the meeting participants, the individual schedule and con-
rol buttons. Similar results have been obtained for the organization
f the user interface.

These results suggest that it is indeed possible to integrate sim-

le privacy mechanisms into mobile application, without incurring

n significant learning overhead. A clean GUI with a transparent
ntegration of privacy features proved to be very effective in this
egard.

Fig. 15. Extract of the user-study questionnaire about people’s op
he user experience for our prototype application.

Privacy in our prototype application: In this last part, we
discuss the subject of privacy with respect to our prototype
application, and how its implementation was  perceived by the
respondents. Fig. 15 shows some of the results obtained from the
user study. In general, all respondents tend to agree or agree that
it is important to not reveal any more information to the central
server than strictly necessary. When asked about the way privacy
has been implemented in our prototype application, 95% of them
claim that they could not identify the people who  were available (or
not) in a given time-slot. Concerning the potential overhead due to
the privacy mechanisms, 71% of the users feel that having the pri-
vacy feature in such application did not make it more complicated
for them to use it; only 5% tend to agree with the opposite.

Regarding the third-party knowledge of the individual sched-
ules, 74% agree that they felt comfortable knowing that the central
scheduling server did not know their private schedules, and only
5% of them disagree. The users were told about this feature during
Phase 2 of the study. However, when the third-party is the other
meeting participants (and not the central server), 47% felt com-
fortable knowing that their privacy was preserved. Nevertheless,
this percentage increases to 95% when considering responders who
tend to agree with such statement, in addition to those who  agree.
In summary, this user-study has shown that the majority of the
respondents are concerned about their privacy in scheduling appli-
cations, and that they would welcome effective and simple means
for protecting it and still enjoy such services. Our prototype appli-

inions on the privacy features in our prototype application.
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ation has proven to be effective in both providing a user-friendly
nterface for the meeting scheduling participants, and a transpar-
nt way to ensure that privacy of individual schedules is preserved.
he results have also shown that there is no significant overhead
or using privacy in such applications, and that people appreci-
ted having the ability to not disclose more information about their
chedules than what was strictly necessary in order to compute the
vailable time slots.

. Conclusion and future work

Activity-scheduling applications are increasingly used by peo-
le on-the-move in order to efficiently and securely manage their
ime. In addition to privacy, which is paramount, such services
hould also be practical and feasible to implement, given the client-
erver paradigm that most providers use, and they should be as
ransparent to the user as possible. In this paper, we  have pro-
ided a framework for the formal study of privacy properties in
uch applications, and we have proposed three novel privacy-
reserving protocols that, in addition to guaranteeing privacy,
re more efficient than similar solutions in terms of computa-
ion and communication complexities. Our implementation and
xtensive performance evaluation on real mobile devices demon-
trated that the proposed privacy-preserving schemes are well
uited to practical network architectures and services. Moreover,

 thorough user-study of the prototype application suggests that
ur algorithms and software architecture are seamlessly inte-
rated with the privacy-preserving algorithms, in a way that does
ot impede the user from quickly and effectively utilizing our
pplication.

As part of our future work, we intend to further optimize the
mplementation of the proposed scheduling algorithms for perfor-

ance on mobile devices, and to include user preferences and the
ecurity related features described in Section 7. We  also plan to
elease the source code of the proposed scheduling schemes to the
eneral public under the GPL licence.
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