
 
On Software Veri!cation for Sensor Nodes 

Doina Bucura, Marta Kwiatkowskab
 

a
Oxford University Computing Laboratory, Oxford, OX1 3QD, UK                                                              

b
Oxford University Computing Laboratory, Oxford, OX1 3QD, UK 

Abstract  

We consider software written for networked, wireless sensor nodes, and specialize software verification 
techniques for standard C programs in order to locate programming errors in sensor applications before 
the software’s deployment on motes. Ensuring the reliability of sensor applications is challenging: low-
level, interrupt-driven code runs without memory protection in dynamic environments. The difficulties lie 
with (i) being able to automatically extract standard C models out of the particular "avours of embedded 
C used in sensor programming solutions, and (ii) decreasing the resulting program’s state space to a 
degree that allows practical verification times.  

We contribute a platform-dependent, OS-independent software verification tool for OS-wide programs 
written in MSP430 embedded C with asynchronous hardware interrupts. Our tool automatically translates 
the program into standard C by modelling the MCU’s memory map and direct memory access. To 
emulate the existence of hardware interrupts, calls to hardware interrupt handlers are added, and their 
occurrence is minimized with a double strategy: a partial-order reduction technique, and a supplementary 
reachability check to reduce overapproximation. This decreases the program’s state space, while 
preserving program semantics. Safety speci!cations are written as C assertions embedded in the code. 
The resulting sequential program is then passed to CBMC, a bounded software veri!er for sequential 
ANSI C. Besides standard errors (e.g., out-of-bounds arrays, null-pointer dereferences), this tool chain is 
able to verify application-speci!c assertions, including low-level assertions upon the state of the registers 
and peripherals.  

Veri!cation for wireless sensor network applications is an emerging !eld of research; thus, as a !nal 
note, we survey current research on the topic.  

Keywords: sensor, TelosB, MSP430, TinyOS, veri!cation, bounded model checking, CBMC  

 

1. Introduction  

While small applications for basic embedded systems for a particular microcontroller can be programmed 
directly in machine code, sensor node platforms are typically equipped with a rather rich set of features, 
including a radio (and in many cases, also a wired serial) transceiver, sensing chips and external "ash 
memory. Programming from scratch each new application for such sensor platforms is difficult and 
unmaintainable—be this programming done in either assembly, or the platform’s own "avour of 
embedded C. For example, a basic Oscilloscope functionality (i.e., a sensor node periodically sampling a 



sensor, then broadcasting a message over the radio every ten readings) in the elf32-avr binary form 
for the MicaZ mote1 disassembles into over 12 × 103  lines of executable code in its .text section 
alone; similar program sizes are yielded from TelosB2  MSP430 elf !les. Programming embedded C 
instead (for the platforms’ C compilers, e.g., avr-gcc and msp430-gcc (Underwood, 2003)) does not 
decrease the code’s complexity—the application will have roughly the same size3. 

# 104 "/Users/doina/tinyos 2.x/tos/chips/msp430/McuSleepC.nc" 
static inline void McuSleepC$McuSleep$sleep(void )

PlatformLedsC

Msp430GpioC

HplMsp430GeneralIO

Leds

LedsP

LedsCActiveMessageC

   __asm volatile ("bis  %0, r2" :  : "m"(temp));

}

    }
      McuSleepC$computePowerState();
  if (McuSleepC$dirty) {
#line 111 
  uint16_t temp;
{
#line 109 

   __asm volatile ("" :  :  : "memory");
  __nesc_disable_interrupt();

  temp = McuSleepC$msp430PowerBits[McuSleepC$powerState] | 0x0008;

GeneralIO

OscilloscopeAppC

HplMsp430GeneralIOC

msp430
nescc gcc

23e: sbis  0x0e, 7
23a: ld    r24, Z

236: cpc   r17, r1

23c: out   0x0f, r24
240: rjmp  . 4
242: rjmp  .+6
244: out   0x0f, r1

234: cp    r16, r1

238: breq  .+10

MSP430
machine code

nesC/C modules,

TelosB node

embedded Cconfigurations, wiring
MSP430

 
Figure 1: Example TinyOS program compilation for a TelosB mote. The nesC compiler, nescc, inlines nesC/C components into 
MSP430 embedded C; msp430-gcc then outputs machine code.  

Instead of programming sensor applications from scratch, operating systems have been developed for 
sensor nodes, such as TinyOS (Levis et al., 2005) and Contiki. As a result, typically programmers write 
application logic in a high-level language, while calling scheduling and driver functionality from the 
operating system. Fig. 1 overviews TinyOS’s tool chain of program compilation for a TelosB mote. The 
Oscilloscope application is a nesC (Gay et al., 2003) or TOSThreads (Klues et al., 2009) component 
interfacing with existing TinyOS components; the binary program deployable on a TelosB mote is 
generated by two discrete stages of program translations, from nesC to inlined MSP430 C, to MSP430 
machine code.  
  With this multi-stage style of program compilation in mind, our task is to design software veri!cation 
methods and tools for sensor applications. In this paper, we focus on taking as input platform-speci!c 
embedded C, such as that automatically generated from higher-level software components in the chain of 
compilation from Fig. 1. While we take our case studies from the standard TinyOS applications, the 
veri!cation method itself is OS-independent.  

Software veri!cation per se is a compile-time method which, given a particular program 
implementation and set of speci!cations, unwinds and analyses all of the program’s traces, and outputs 
violations of the program’s speci!cations, if any. Speci!c such tools cater for speci!c programming (and 
speci!cation) languages, and most are limited as to the program features they support, e.g.:  

• complex data structures are supported by few existing software veri!ers,  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!

1 Mica motes are based around the Atmel AVR ATmega128L 8-bit micro-controller (Corp., 2009).  
2 Telos platforms (e.g., TelosB (Moteiv Corporation, 2004)) are built with MSP430 (Texas Instruments, 2006), 

a 16-bit MCU from Texas Instruments.  
3 These examples of application complexity come from the basic Oscilloscope and MultihopOscilloscope 

applications, programmed for the TinyOS (Levis et al., 2005) operating system. Thus, optimizations over these 
numbers may be feasible.  
!



• programs, particularly concurrent ones, give rise to sets of program states which are too large to 
be veri!ed within certain time limits.  

 
In what follows, we describe our platform-dependent, OS-independent software veri!cation tool for 

OS-wide programs (on the order of magnitude of 10
3 
LOC) written for msp430-gcc with asynchronous 

hardware interrupts. Our tool automatically translates such a program into standard C by modelling direct 
memory access and the MCU’s memory map in ANSI-C. Calls to hardware interrupt handlers are inserted 
into the main application to emulate the existence of hardware interrupts, and the number of their 
occurrences is minimized with a partial-order reduction technique, in order to decrease the program’s 
state space, while fully preserving program semantics. Safety speci!cations are written as C assertions 
embedded in the code. The resulting sequential program is then passed to CBMC (Clarke et al., 2004), a 
bounded software veri!er for sequential ANSI C. Besides memory-related errors (e.g., out-of-bounds 
arrays, null-pointer dereferences), the tool chain veri!es application-speci!c assertions, including low-
level assertions upon the state of the registers and peripherals.  

We !rst give background information essential to our approach in Section 2. This includes the syntax 
and semantics of MSP430 embedded C, an overview of (i) the MSP430 microcontroller, (ii) the TelosB 
platform, and (iii) CBMC, the software veri!er for ANSI C that we specialize for our purpose. 

2. Background: Platform and embedded language for sensor nodes. CBMC  

A variety of hardware platforms are available as sensor nodes. TelosB motes (Moteiv Corporation, 2004) 
are based on the 16-bit Texas Instruments MSP430 microcontroller (Texas Instruments, 2006); Mica 
nodes are built around Atmel’s AVR (Corp., 2009), and MITes nodes around Intel’s 8051 (Atmel, 2008).  

2.1. MSP430, TelosB and msp430-gcc  

We consider MSP430, a microcontroller con!guration featuring, on a I2C bus, a 16-bit RISC CPU, 48kB 
Flash memory (and 10kB RAM), 16-bit registers, two built-in 16-bit timers, a 12-bit analogue-to-digital 
converter (ADC), two universal serial synchronous/asynchronous communication interfaces (USART), 
and 64 I/O pins (the latter, together with their connections on a TelosB mote, overviewed in Fig. 2).  



60 59 58 51 50 49

A
D

C2
A

D
C1

A
D

C0
RE

SE
T

SV
So

ut

LE
D

3

LE
D

2

P5.4/MCLK
P5.3/UCLK1

P5.2/SOMI1
P5.1/SIMO1

P5.0/STE1

P4.6/TB6
P4.5/TB5

P4.4/TB4
P4.3/TB3

P4.0/TB0

P4.2/TB2

P4.1/TB1

P4.7/TBCLK

P3.7/URXD1
P3.6/UTXD1

P3.5/URXD0

48

47

46
45

44
43

42
41

39
40

38
37

36
35
34
33

LED1

FLASH_HOLD
RADIO_RESET
RADIO_VREF_EN

FLASH_CS

RADIO_CS

RADIO_SFD

UART0RX

UART1TX
UART1RX

P6.3/A3

P6.4/A4

P6.5/A5

P6.6/A6/DAC0
P6.7/A7/DAC1/SVSIN

P1.2/TA1
P1.1/TA0
P1.0/TACLK

P1.3/TA2

P1.4/SMCLK

6
5
4
3

2

12
13

14

15

16

ADC3
ADC4

ADC5
DAC0/ADC6

SVSin/ADC7

PKT_INT
UART1TX

P_DVCC
RADIO_GIO0

RADIO_GIO1

P1
.5

/T
A

0

P1
.6

/T
A

1

P1
.7

/T
A

2
P2

.0
/A

CL
K

P2
.1

/T
A

IN
CL

K
P2

.2
P2

.3
P2

.4

P2
.5

P2
.6

/A
D

C1
2C

LK

P2
.7

/T
A

0

P3
.0

P3
.1

/S
IM

O
0/

SD
A

P3
.2

/S
O

M
I0

P3
.3

/S
CL

P3
.4

/U
TX

D
0

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

H
U

M
_S

D
A

H
U

M
_S

CL
H

U
M

_P
W

R

G
IO

0
G

IO
1

U
A

RT
1R

X
G

IO
2

1W
ire

G
IO

3

U
se

rIN
T

RA
D

IO
_S

I

RA
D

IO
_S

O

RA
D

IO
_S

CL
K

U
A

RT
0T

X

P6
.2

/A
2

P6
.1

/A
1

P6
.0

/A
0

P5
.7

/S
V

SO
U

T
P5

.6
/A

CL
K

P5
.5

/S
M

CL
K

RS
T/

N
M

I

TI MSP430
61

F1611

 

Figure 2: The MSP430 F1611 microcontroller as used on TelosB motes. Selected I/O pins and their connections on TelosB 
motes. Pins such as those supplying voltage (1 and 62-64) or the two crystal oscillators’ input and output ports (8-9, 52-53) are 
not drawn.  

A pin’s identi!er is three-fold; pin 17, for example, is pin 5 of peripheral port 1 (out of six 8-bit I/O 
ports), and is a general-purpose digital I/O pin or a Timer A output pin, from the microcontroller’s 
perspective; on TelosB speci!cally, this pin is connected to the bidirectional serial data port, HUM_SDA, 
of the TelosB on-board humidity sensor (which produces a digital output). Similarly, pins 32-33 are 
transmit/receive pins for the !rst serial port, USART0, and are connected as such to the serial physical 
port on TelosB. Pins 48-50, or 4 to 6 on peripheral port 5 (general-purpose digital I/O pins, or clock 
outputs) are instead connected to, and control, the three on-board LEDs.  

The software is able to access these pins, together with other peripheral modules and registers, by direct 
memory access. All on-board memory, including peripherals and the Interrupt Vector Table, are mapped 
into a unique address space, with Special Function Registers and peripheral modules at low addresses, as 
in Fig. 3.  



0x000F
0x0010
0x00FF
0x0100

0x01FF
0x0200

0x0000

0xFFDF
0xFFE0

0xFFFF
!"#$%%&'#()$*#+%(,-./$

0/-12

345

67 .8#(9$%8'2$%-/(5+:&/$1

; .8#(9$%8'2$%-/(5+:&/$1

<'$*8-/(0&"*#8+"(3$=81#$%1  

Figure 3: Memory organization for MSP430 microcontrollers.  

The MCU’s six 8-bit I/O ports whose pins are shown in Fig. 2 are mapped onto the 0x10-0xFF 
address space for 8-bit peripheral modules. E.g., the 8-bit output register for port 5 is accessed as 
0x0031; bits 4-6 in this register control the LEDs. Thus, when a msp430-gcc (Underwood, 2003) 
embedded C program states:  

static volatile uint8_t r __asm ("0x0031"); r ^= 0x01 << 6;  

or in other words:  

*(volatile uint8_t *)49U ^= 0x01 << 6;  

this amounts to toggling a bit in the 8-bit output register P5OUT of peripheral port 5 at location 0x0031, 
where LEDs are accessed, which toggles the yellow LED. Other essential memory-mapping examples are 
shown in Table 1.  

Addr Identifier Description 
0x0030 P5IN Port 5 Input 
0x0031 P5OUT Port 5 Output 
0x0074  U0BR0 USART0 Baud Rate 0 
0x0075  U0BR1 USART0 Baud Rate 1 
0x0076  U0RXBUF USART0 Receive Buffer 
0x0077 U0TXBUF USART0 Transmit Buffer 
0x0140  ADC12MEM[16] ADC12 Memory 0-15 
0x01A2  ADC12MCTL[16] ADC12 Memory-Control Register 0-15 
0x01A0  ADC12CTL0 ADC12 Control Register 0 
0x01A2 ADC12CTL1 ADC12 Control Register 1 
0x0180 TBCTL TimerB Control Register 
0x0190 TBR TimerB Count Register 
0x0192 TBCCR0-6 TimerB Compare Register 0-6 

Table 1: Individual memory addresses for selected peripheral ports and MCU-internal registers.  

Similarly, when a function such as sig_ADC_VECTOR is declared with the attributes  

__attribute((wakeup)) __attribute((interrupt(14)))  
 
the function is an interrupt handler for interrupt line 14 (i.e., it wakes the processor from any low power 
state as the routine exits).  



2.2. TinyOS  

TinyOS (Levis et al., 2005) is a mainstream operating system for wireless sensor network devices. We 
give an overview of TinyOS in order to clarify (i) program structure and (ii) terminology related to the 
style of concurrency, for our case studies.  
  The operating systems itself, as well as the applications, are implemented in the nesC (network 
embedded systems C) language (Gay et al., 2003); some new applications are coded in TOSThreads 
(Klues et al., 2009), TinyOS 2.x’s recent thread library. NesC software comes in components, either 
modules or con!gurations. Fig. 4 gives a partial overview of Oscilloscope, a typical TinyOS nesC 
application; the LED driver module LedsC is given a degree of detail. Components have similarities to 
objects: they enclose the program’s state and interact through interfaces (Gay et al., 2005). For efficiency, 
given the language’s focus on embedded systems, an application’s components, interfaces and memory 
use are determined at compile-time; there is no dynamic memory allocation.  

HplMsp430GeneralIO

Boot Receive

PlatformLedsC

GeneralIO

AMReceiverC DemoSensorC ActiveMessageC
LedsP

LedsRead<unit16_t> SplitControl

LedsC

Msp430GpioCgeneric module

module

configuration

interface

generic configuration

OscilloscopeAppC

MainC

HplMsp430GeneralIOC

 

Figure 4: Overview of Oscilloscope, a typical TinyOS nesC application. Modules, con!gurations and interfaces. The 
OscilloscopeAppC module wires existing components such as the MainC from which nescc generates the program’s main 
function, and platform-speci!c drivers such as that for LEDs (partly pictured).  

All lengthy commands in TinyOS (e.g., the sending of a packet on the radio) are non-blocking; their 
completion is signalled by an event (some of which are triggered by a hardware interrupt), whose handler 
should be brief, instead posting tasks to the system’s task queue for further execution. All threads of 
control in a TinyOS application are thus rooted in either an event handler or a task, in a two-level 
concurrency model: event handlers run with highest priority and may preempt the lower-priority tasks, 
which execute most of the program logic. Tasks run to completion relative to each other, however, and 
synchronous code is that which is only reachable from tasks; asynchronous code is reachable from at least 
one event handler. Whenever program variables are accessible to asynchronous code, a potential data 
race ensues.  

For a particular application, nesC components are wired together through their interfaces to form an 
OS-wide program; nesC is in fact designed under the expectation that a !nal, inlined embedded C 
program will be generated from all the necessary components.  

2.3. CBMC  

CBMC (Clarke et al., 2004) is a bounded model-checker (Clarke et al., 2001) for ANSI-C programs, from 
the CProver suite. It takes safety speci!cations written as C assert statements, and is roughly geared 



towards verifying embedded systems software. Unlike other C model checkers, CBMC supports a richer 
subset of the language in what regards data types and data representation, by modelling semantics 
accurately to the bit level, to the extent that this semantics is de!ned by the ANSI C standard4. Standard 
static program analyses are supported, including alias analysis5. Thus, the tool can pinpoint program 
errors related to bit-level operators and arithmetic over"ow, pointer and array operations, arithmetic 
exceptions, user-inserted assertions and assumptions.  

To derive an accurate mathematical representation of an input program, the tool translates the C input 
into a side-effect-free intermediate representation:  

• All side-effect assignments are broken into equivalent statements by introducing auxiliary 
variables, and all loops (for, while, backward gotos) are unwound a user-provided number 
of times, by replicating the loop body. 

• Function calls are inlined and recursive calls are similarly unwound.  
 

The resulting program consists of if instructions, assignments, assertions, labels, and forward jumps. 
This is then translated into static single assignment form (SSA), a standard intermediate representation in 
which every program variable is split into “versions”, i.e., a new program variable is invented for each 
assignment to the original (Fig. 5, center). Frequently used for compiler optimizations, the technique 
simpli!es the analysis of the variables’ de!nition and use.  

 

Figure 5: CBMC (Clarke et al., 2004) program transformation into a mathematical model  

Two boolean propositional formulas are derived from this program in SSA form: C for the program 
itself, and P for the asserted expression, as in Fig. 5, right. ANSI-C variables xi of any data type 
(including arrays, structures, unions, pointers, and all basic data types) are now replaced with bit-vector 
variables, and all mathematical operations performed over program variables with bit vector operations, 
by bit blasting (Kroening and Strichman, 2008). This transformation is word-width adjustable to, e.g., 16 
bits, to simulate different hardware platforms. 

P is then veri!ed by converting C ∧¬P into conjunctive normal form (CNF) and then passing it to a 
SAT solver such as MiniSAT (Sorensson and Een, 2005). If this conjuncted formula is satis!able, there 
exists a violation of the assertion, and CBMC returns to the programmer a program trace leading to the 
violation, as a debugging tool would do; otherwise, the assertion holds.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
4 This fact results in a number of issues in the case of C code which relies on, e.g., the memory alignment of struct 
!elds, which is not standardized; whenever a veri!cation run depends on non-standard C, CBMC reports the issue 
and we disregard the run.  
5! The CBMC manual at http://www.cprover.org/cbmc/ gives some detail on the static program analyses included in 
the tool.!



  In verifying an ANSI-C program by bounded unwinding, CBMC thus proves a partial guarantee of 
program properties (i.e., that bugs are absent for a certain amount of unwinding). The process is highly 
automated and scales reasonably well.  

3. TOS2CProver: source-to-source transformation  

3.1. Overview  

Software bugs stem from "aws both in the legacy OS code base (the lowest levels of which are platform-
dependent), and in the programmer’s applications. By a safe sensor application, we understand that which 
exhibits no memory violations, and whose programmer-inserted assertions hold, if reachable. Note that a 
safe application may still contain undiscovered errors, either if they require a greater number of loop 
unwindings, or if no appropriate assertion was speci!ed. However, our veri!cation approach can detect 
errors deeper in the program, compared to static analysis.  
  To achieve a homogeneous veri!cation scheme for both legacy and newly programmed TinyOS code, 
we contribute, also in (Bucur and Kwiatkowska, 2010), an automated tool chain of program 
transformation and veri!cation as depicted in Fig. 6.  

 

# 104 "/Users/doina/tinyos 2.x/tos/chips/msp430/McuSleepC.nc" 

!""#$%&'()&("%$*+#(%!%&'(
,*"#$-

}

    }
      McuSleepC$computePowerState();
  if (McuSleepC$dirty) {
#line 111 
  uint16_t temp;
{
#line 109 

   __asm volatile ("" :  :  : "memory");
  __nesc_disable_interrupt();

.#/"

.#/"0

.#/"123%&4#5#""!6#1
static inline void McuSleepC$McuSleep$sleep(void )

7895"8:;<=#(#$!9>?

5"8:;<=8&'1

09!%@'$+.#/"1

=#(#$!9>?

   __asm volatile ("bis  %0, r2" :  : "m"(temp));

,*"#$A1B51-
!""#$%&'()&("%$*+#(%!%&'(

  temp = McuSleepC$msp430PowerBits[McuSleepC$powerState] | 0x0008;

7895"8:;<=#(#$!9>?1

?"3&99'"3'8#2881

  if(McuSleepC_dirty)
  {

{
  uint16_t temp;

    McuSleepC_computePowerState();
  }

  _R2 |= temp;
  sig_ADC_VECTOR();
  __nesc_disable_interrupt();
}

inline static void McuSleepCleep void )  

  temp = McuSleepC_msp430PowerBpowerState

nescc

#+C#//#/)1

,"'*$3#)%$!("@'$+!%&'(D
!(!9E"&"D)!(/

>FG)&("%$*+#(%!%&'(-

/#$#@#$#(3#"
&99#6!9 !//$#""

tos2cprover

(#"1A1)+'/*9#"D 10$'4#$ $#!/!C9#
"%!(/!$/)1

5H0:;<
3'(@&6*$!%&'("D)I&$&(6

,I
&%J
)8
$'
6$
!+
)%$
!3
#-

!"
"#
$%&
'(
)4
&'
9!
%&'
(

1B51

 

Figure 6: Our veri!cation tool chain  

In order for the tool to be independent of the OS-speci!c programming paradigm, an initial run of 
TinyOS’s nescc compiler is used to generate an inlined, platform-speci!c, embedded C program out of 
nesC and TOSThreads components. Then, instead of employing the platform’s own compiler to further 
build this into a binary deployable on a mote, the program is passed to our own tool, tos2cprover, 
which performs a dual task:  

• In a source-to-source transformation step, it gives a precise ANSI-C model to all low-level, 
hardware-managing language extensions, and instruments the code so as to emulate the 
hardware’s functionality: whenever a register’s value is !lled in from the hardware, the program 
is augmented so as to provide such values.  

• Then, tos2cprover reads the functions’ attributes and determines which functions would be 
called as IRQ handlers in the event of a hardware interrupt, then instruments the resulting 
program so that IRQ handlers may be called whenever hardware interrupts are allowed; this way, 
the code also becomes a hardware emulator. A specialized partial-order reduction (POR) 



technique is used to minimize the number of occurrences of such calls. Following these 
transformation and instrumentation steps, the result is a standard-C program which both soundly 
preserves the functionality of the initial platform-speci!c program, and emulates the hardware. 
The program is instrumented with user-inserted properties (in the form of assertions, assumptions 
and nondeterministic input), and passed to CBMC (which also introduces a set of assertions) for 
veri!cation; the unwinding bounds for the program loops are set individually per loop.  
 

In the remainder of this section, we brie"y describe tos2cprover’s source-transformation step. The 
instrumentation of the source with calls to IRQ handlers (and the accompanying partial-order reduction 
technique) are detailed in Section 4.  

3.2. TOS2CProver: source-to-source transformation  

Table 2 exempli!es the source transformations executed by tos2cprover on a TelosB, MSP430 
program. While msp430-gcc code implicitly assumes an underlying memory map (as overviewed in 
Section 2) in which low, constant addresses have a de!ned semantics (e.g., writing at 0x0031 programs 
the LEDs), tos2cprover models direct memory access with a header !le de!ning memory as a set of 
new, global variables. E.g., uint8_t _P5OUT is now the 8-bit output register for peripheral port 5. All 
subsequent dereferences of address 0x0031 are replaced by accesses to _P5OUT6. As a note, the Status 
Register _R2 has the General Interrupt Enable (GIE) as bit 4; if GIE is set, interrupts are enabled.  

 
MSP430-specific program feature Example tos2cprover!transformation 
MCU registers and memory map Standard C global variables 
 unsigned short _R2;  (Status Register) 
 unsigned char  _P5OUT;  (Port 5 at 0x0031 by Table 1) 
 unsigned short _ADC12CTL0;  (ADC12 Register at 0x01A0) 
 unsigned short _ADC12MEM[16];  (ADC12 Memory 0-15) 
Fixed-address dereference Global variable access 
*(uint8_t*)49U ^= 0x01 << 6; _P5OUT ^= 0x01 << 6; 

Fixedly allocated variables Global variable access 
uint16_t HplAdc12P$ADC12CTL0 __asm("0x01A0"); (declaration removed; ADC12CTL0 previously declared) 
HplAdc12P$ADC12CTL0 |= 0x0010; _ADC12CTL0 |= 0x0010; 

Assembly instructions C statements 
__asm volatile ("eint"); _R2 |= 0x0008; 
__asm volatile ("bis %0, r2"::"m"(temp)); _R2 |= temp; 

Table 2: tos2cprover: source-to-source transformation examples for MSP430 code.  

Then, msp430-gcc’s assembly extensions are modelled into standard C, as are all other non-standard 
language features (e.g., identi!er names are standardized by replacing dollar signs with underscores, 
struct and union designated initializers are expanded).  
 
 
 
 
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
6 Note that the variables we introduce are named in accordance with the MSP430 documentation (Texas 

Instruments, 2006), but are preceded by an underscore, to avoid name clashes with existing program variables. 



 

4. TOS2CProver: IRQ instrumentation and the partial-order reduction (POR) technique  

4.1. Overview  

The nescc-generated program inputted to tos2cprover does not explicitly call any IRQ handlers; in 
deployments, the calls are made from the hardware. Instead, it de!nes the functions and marks them as 
interrupt service routines; e.g., in the case of a TelosB-based Sense, two types of hardware interrupts are 
expected: one from the user timer, TimerB, and another from the 12-bit Analog-to-Digital Converter, 
ADC. Their handler functions have the signatures:  

  void sig_TIMERB0_VECTOR(void) __attribute((wakeup)) __attribute((interrupt(24)));  
  void sig_ADC_VECTOR(void)      __attribute((wakeup)) __attribute((interrupt(14)));  
 
The size of the asynchronous code (i.e., code reachable from either IRQ handler) is substantial: in Sense, 
out of the 520 reachable functions in the program, 166 are reachable from the ADC interrupt handler and 
185 from the TIMERB0 handler (i.e., are asynchronous); 386 (both synchronous and asynchronous 
functions) are reachable from main7.  
  To simulate the presence of interrupts, tos2cprover needs to instrument the program with explicit 
calls to the handlers of the expected hardware interrupts, e.g., sig_ADC_VECTOR(), with each call 
guarded by a check of the GIE bit, and each call made atomic by disabling and enabling interrupts8. A 
listing of an IRQ instrumentation is given in Table 3.  
 

 
Table 3: The ADC IRQ instrumentation.  

A correct, yet naive, approach is to instrument the program by refactoring it to use threads, and running 
the IRQ instrumentation (listed in Table 3) as threads alongside a main thread, as in Fig. 7(a). An 
equivalent sequential alternative is to add an instrumentation as every second statement in all non-atomic 
main-reachable code. Since each instrumented IRQ call amounts, at model-checking time, to the 
duplication of all code rooted in the call, we employ two automated minimization procedures to reduce 
the number of these sequential instrumentations, as described in what follows.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
7 As a note, the style of nesC wiring has as consequence the fact that a number of functions generated by nescc 
consist of a simple one-line function call. 
8! This is a somewhat artificial limitation, as TinyOS events may nest, instead of running to completion; this 
limitation can be lifted with a finer implementation of TinyOS’s scheduling priorities.!

if (int_enabled()) {  
 disable_int();   /* _R2 &= ~0x0008; */ 
 sig_ADC_VECTOR();  
 enable_int();  /* _R2 |= 0x0008; */ 
} 



(a)

sig_TIMERB0 sig_ADCmain

    (b)

main

...

...

...

sig_TIMERB0

sig_TIMERB0

sig_ADC

sig_TIMERB0

 

Figure 7: (a) Naive refactoring of the application to emulate hardware interrupts, by running IRQ handlers concurrently with the 
main program thread. Solid lines denote atomic code blocks; TinyOS events interrupt synchronous code and run to completion. 
(b) Efficient hardware emulation by partial-order reduction, resulting in a sequential program of reduced state space; all code 
blocks are now de facto atomic. After a further reduction step, this program is passed to CBMC.  

4.2. Decreasing the state space with a partial-order reduction technique  

The !rst state-space minimization procedure is a partial order reduction (POR) technique (or model 
checking using representatives) (Clarke et al., 2000), a general method to reduce the state space of a 
concurrent program to be model checked. Applied to the original embedded C code, it calculates a smaller 
C program for CBMC to verify; the technique reduces the number of interleavings between threads of 
behaviour by exploiting the fact that a number of different interleavings are equivalent and 
indistinguishable to the model checking algorithm, and thus it suffices to check a single interleaving 
representative. An image of the transformation of the program as a result of the POR technique is given in 
Fig. 7(b).  
   To achieve this, we take the concurrent C program refactoring as in Fig. 7(a) and give it a standard 
formalization, over which we then apply a specialized POR algorithm, as follows.  

System formalization. We de!ne by state s ∈ S a valuation of all program variables before or after a C 
statement9 or an explicitly atomic section. Then, we de!ne the transition set T to contain state 
tuples,T ! S " S ; we write ! ∈ T for a single transition; a path is a sequence of transitions. Intuitively, 
transitions model C statements (including assertions), atomic sections, and the program’s control "ow: 
when executed from a state s, a transition ! leads the program into a new state s’. As an example of this 
formalization, the simpli!ed, inlined fragment of Sense from Fig. 8 (refactored with a concurrent ADC 
interrupt handler as in Fig. 7(a)) is formalized in Fig. 9 (left).  
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
9 For tos2cprover, the atomicity grain of the C program is at the level of C statement: a colon-terminating 
statement in the inlined C program is considered atomic; the statement may correspond to more than one basic 
assignment.  



3

assert (state == RES_IDLE);

if (head != NO_TASK)
{

}
__nesc_atomic_end(n);

_ADC12IV = 0;
_ADC12IFG = 0;

unsigned short AdcStreamP_readDone = 5U, 
uint8_t next[8U], head, tail, state;
/* global variables */ /* function SchedulerBasicP_postTask */

next[tail] = AdcStreamP_readDone;

main sig_ADC

/* function SchedulerBasicP_taskLoop */

head = next[head];
next[head] = NO_TASK;
assert(head != NO_TASK);

__nesc_atomic_t n = __nesc_atomic_start();

NO_TASK = 0xFF, RES_IDLE, _ADC12IV, _ADC12IFG;

!!"

!!"

!!"
!!"

"

0

1

2
 

 
Figure 8: Fragment of a sensor application pre-POR, with a concurrent ADC IRQ. Transition labels are noted on the side. The 
fragment is extracted from code originally in the SchedulerBasicP nesC system component  

3

sini

s

s

s

s

1

0

2

3

0

1

2

3

r

r

r

r0

1

2

3

sfin

0

1

2

          

3

sini

s

s

s

s

1

0

2

3

0

1

2

3

r

r

r1

2

3

sfin

1

2

 

Figure 9: (left) Formalization in terms of states and transition set of the concurrent program in Fig. 8; (right) A sound reduction 
of the program by our method  

A transition ! from T is called enabled in state s if !s '" S.s# s ' , with the set of transitions enabled in s 
denoted by enabled (s). E.g., enabled (s0) = {!"#$} in Fig. 9 (left). Then, the Kripke structure equivalent to 
this concurrent program is M = (S, T, {sini}), with sini the unique initial state of the program. This we call 
the full-state graph, as T models all possible inter-leavings between the program’s threads.  
  As usual, our POR technique aims at constructing from the full-state transition relation T a second, 
smaller such relation by selecting for each state s ∈ T only a subset ample(s) of its enabled transitions,  

ample(s) ⊆ enabled(s)  



This reduced set of transitions must satisfy a soundness condition: when ample(s) replaces enabled(s), the 
soundness of the model checking algorithm must be preserved.  

Calculating the ample set. The basis for soundly calculating ample(s) relies on an independence relation 
between transitions (Clarke et al., 2000). This independence relation I ⊆ T × T is a symmetric relation 
satisfying, for any s ∈ S and for any !#$ ∈ I, two conditions:  

Enabledness The two transitions may execute in either order from any state s. I.e., if !#$ ∈ enabled(s), 
then ! ∈ enabled($%s)). 

Commutativity Executing either of the two possible transition sequences starting in any state s leads to 
the same end state. I.e, if !#$ ∈ enabled(s), then $%!%s)) = $%!%s)). 

 
The dependency relation D is the complement of I; two transitions which are not independent are then 
dependent.  
  With these de!nitions, the sound reduction from enabled(s) to ample(s) must satisfy the constraints 
upon ample(s) (based on (Clarke et al., 2000)) listed in Table 4.  

C0 ample(s) is empty iff enabled(s) is empty. 
C1 Along every path of the full-state graph starting in s, 

a transition dependent on a transition ! from 
ample(s) must be preceded by !. This effectively 
allows the deferring of transitions. 

Table 4: Constraints upon reducing enabled(s) to ample(s) for a sound partial-order reduction. As program cycles are 
subsequently bound and unwound, a constraint upon cycles is not necessary.  

We then apply the constraints from Table 4 to the reduction of the sample program in Fig. 9 (left). To 
start with, we note, from the listing in Fig. 8 by applying the de!nition of independence above, that !&#'!( 
and !)'are independent from $; e.g., executing either !&$'or $!& from any initial variable valuation leads 
to the same end values for variables state, next, etc. Intuitively, the independent pairs of transitions 
are those which cannot cause data races.'!" and $'are dependent, with a data race over next.  
  Take initial program state sini with enabled(sini) ={!&#'$}. By C0, ample(sini) cannot be empty; it must 
have at least one transition. Eliminating'$ (and thus, the entire branch through r0) from ample(sini) is legal 
by C1, with no constraints imposed on the full-state graph. Similar reasoning can be applied for s1 and s2. 
Any reduction of states r1-3 is illegal by C0. 

In s0, with the dependence relation between !" and $'discovered above, C1 gives the constraint that $'
could only be eliminated from ample(s0) if, in the full-state graph starting in s0, any occurrence of !" is 
preceded by a $. Since this is not the case for the !" enabled in s0, $ must remain in ample(s0).  

Fig. 9 (right) gives the resulting, sound ample sets for all program states. This demonstrates that only 
two IRQ instrumentations need to be considered when verifying this program (with the second not needed 
in practice: since it becomes the last statement in a sequential program, it cannot influence its 
verification). Thus, the body of the concurrent program in Fig. 8 can soundly be rewritten as Fig. 10. 



assert (state == RES_IDLE);

if (head != NO_TASK)
{

}
__nesc_atomic_end(n);

_ADC12IV = 0;
_ADC12IFG = 0;

/* function SchedulerBasicP_taskLoop */

head = next[head];
next[head] = NO_TASK;
assert(head != NO_TASK);

__nesc_atomic_t n = __nesc_atomic_start();

/* function SchedulerBasicP_postTask */
next[tail] = AdcStreamP_readDone;

 

  Figure 10. Sound rewriting of the program in Fig. 8. 

More intuitively, tos2cprover instruments the main program with the following reduced set of 
IRQ calls:  

• A call for, e.g., sig_ADC_VECTOR() appears before each statement containing a read of a 
variable raced between the ADC interrupt and main. This is sound, but overapproximated: the 
statement may execute in an atomic context, in which case the call is not reachable.  

• A call also appears (i) before the beginning of those atomic sections where a data race may 
happen, or (ii) in the MCU’s interruptible sleep.  

 
This !rst POR-based minimization step results in, e.g., in the case of Sense, a total number of 91 IRQ 

calls between the two types of IRQs, as opposed to a number two orders of magnitude higher in a naive 
refactoring (i.e., Fig. 7 (a)).  

4.3. Improving POR’s overapproximated race criterion by reachability checks  

A !nal analysis step is used to further minimize the instrumentation count described in Section 4. To 
remove some of the degree of overapproximation in assessing the atomicity of code, tos2cprover 
inputs the instrumented program to CBMC for a preliminary run which checks the reachability of each 
IRQ instrumentation: the veri!cation of a claim of the form assert(0); inserted in the body of the 
interrupt routine will fail when the assertion is reachable.  

This step leaves, e.g., Sense with a manageable set of 8 reachable IRQ calls. This CBMC run is 
inexpensive, with veri!cation times per claim in the range of 8 to 78 seconds. This order-of-magnitude 
reduction is due to tos2cprover having thus far overapproximated the race criterion—many of the 
IRQ instrumentations prove to be unreachable within a bounded check, e.g., in situations when they run at 
program points when interrupts are disabled, or when the code is explicitly atomic.  

5. Assertions, nondeterminism and assumptions. Unwinding bounds for CBMC  

This section describes the instrumentation of the program with assertions, assumptions and 
nondeterminism, and the setting of bounds for program unwinding by CBMC.  

5.1. Assertions, nondeterminism and assumptions  



Our tool chain veri!es, for each inputted program, two types of assertions. For both existing TinyOS code 
base and any new applications, assertions may be manually inserted by the programmer and are preserved 
as such in the transformed program source. These application-based assertions can be either hardware-
aware, e.g.  

  assert(_P5OUT & 0x0008);  

or high-level, (e.g., asserting upon the value of a local variable).  
  Furthermore, CBMC automatically inserts memory-violation assertions guarding both bounds of all 
array accesses, null-pointer dereferences, and other exceptions such as arithmetic division by zero. E.g., 
as function SchedulerBasicP_pushTask(uint8_t id) writes upon the task queue:  

  SchedulerBasicP_m_next[SchedulerBasicP_m_tail]=id;  

with id unsigned, CBMC will generate the upper-bound assertion:  

  Claim SchedulerBasicP_pushTask.1:  
  array ‘SchedulerBasicP_m_next’ upper bound  
  (unsigned int)SchedulerBasicP_m_tail < 8  

For Sense, 132 memory-violation assertions are thus generated10. Advantageously, this generation is 
completely automatic, with CBMC analysing an array’s declaration to !nd the index bounds; SafeTinyOS 
(Cooprider et al., 2007), for example, has programmers explicitly type-annotate arrays with access bounds 
instead.  
  Finally, a decision needs to be taken with regard to the contents of those registers and buffers whose 
values are !lled in by the hardware and not the software. For example, reading the current time in a 
TelosB application takes the form of reading the user timer’s count register, _TBR (mapped at address 
0x0190), which holds the number of clock periods elapsed since the last timer interrupt, and which is 
automatically incremented from the hardware at every clock period. In another example, the 8-bit 
_U0RXBUF buffer (mapped at 0x0076) holds the latest byte received from the network. A similar 
discussion holds for setting TOS_NODE_ID, the variable which holds the node’s address, and which is 
programmed only at deployment time.  
   Clearly, the actual values in such registers drive the program’s further behaviour. We set their values 
in either of two ways:  

• The register involved is assigned a nondeterministic (i.e., any) value, and the veri!cation 
procedure explores all the ensuing possibilities.  

• The register is assumed to have a particular value, or to have any value within a small, speci!ed 
set.  

 

5.2. Unwinding bounds for CBMC  

As a !nal step in our tool chain, the transformed program annotated with assertions is passed to CBMC 
(con!gured for 16-bit words), and each claim is veri!ed one at a time, for scalability. The runs need to 
have an unwinding depth speci!ed; this can be either identical for all loops and recursions, or— ideally—
selectively re!ned for each. Some of the loops are obviously of !xed iterations; e.g., out of only 16 
interesting loops in Sense, the loop:  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
10 The names of functions, variables and assertion identi!ers in all our code examples are those generated by 
nescc: the original nesC function or variable name is preceded by a list of nesC component names, which helps in 
recovering the C code’s counterpart in the original nesC code.  
 



do {  
*resultBuffer++ =  
Msp430Adc12ImplP_HplAdc12_getMem(i);  

}  
while(++i < length);  

is always bounded at 16 iterations (the size of the ADC12 conversion memory)11. Other loops, on the 
other hand, are clearly unbounded, such as the main OS scheduler loop in function 
SchedulerBasicP_Scheduler_taskLoop. For our benchmarks, in the following, we make a 
visual inspection of the program’s loops (as reported by CBMC), determine bounds for the loops which 
are clearly bounded, and experiment with unwinding depth for the rest. For the purpose of determining 
the reachability of instrumented IRQ calls (described in Section 4), we set the depth for the unbounded 
loops to the minimum, 1.  

6. Veri!cation and results  

For our tests, we settle on the existing applications in the apps directory from TinyOS’s source tree; we 
pick applications which wire TelosB components of different functionality, as summarized in Table 5. 
The coverage criteria is in the amount of different driver code which is pulled in by each application: this 
ranges from only the timer driver in Blink, to timer, ADC and communication drivers for 
TestDissemination. 

 

 Blink Sense TestDissemination 
functionality timer sensor, timer CC2420 radio, timer 
lines of code, number of loops 3340, 8 7181, 16 13388, 31 
memory-violation assertions 35 132 747 
expected interrupts TIMERB0 TIMERB0, ADC TIMERB0, PORT1, PORT2, UART0RX, UART0TX 
reachable functions total: 248, 

TIMERB0: 114 
total: 520, TIMERB0: 
185, ADC: 166 

total: 1022, TIMERB0: 364, PORT1: 153, PORT2: 
25, UART0RX: 268, UART0TX: 16 

potentially raced global 
variables 

TIMERB0: 6 TIMERB0: 7, ADC: 11 TIMERB0: 15, PORT1: 13, PORT2: 0, UART0RX: 
19, UART0TX: 0 

IRQ instrumentations initial 21, 
minimized to 4 

initial 92, minimized to 
8 

initial 422, minimized to 30 

Table 5: TelosB-based test cases 

We detail the size and complexity of the test cases in terms of (i) the number of lines of code in the 
cleanly reformatted program outputted by tos2cprover, (ii) the number of unique loops for which 
CBMC needs to have con!gured an unwinding depth, (iii) the number and type of expected hardware 
interrupts, together with qualitative measures of the size of the code duplication incurred during the IRQ 
instrumentation phase, such as the count of asynchronous functions, and that of ensuing data races. As a 
side note, the program generated by nescc and inputted to tos2cprover is not fully optimized; for 
our test cases, this input program contained code of no end functionality, such as that rooted in the IRQ 
handlers for the non-user timer, TIMERA0/1; tos2cprover skips instrumenting the program with 
such IRQ calls. On another hand, for TestDissemination we preserved the code for the UART0RX/TX 
interrupts, and instrumented the program with the respective calls: UART functionality may not be wired 
through to the top application component, but supports the CC2420 radio.  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
""! A few loops are bounded, but not worthy of exploring, and are thus commented out. An example is the initial 
clock calibration, which busy waits for thousands of clock periods.!



  Finally, Table 5 gives the number of IRQ instrumentations calculated as in Section 4, and the number 
of automatically generated, memory-violation assertions; most of the assertions are array bounds checks, 
with a number of null-pointer dereference checks.  
  In the remainder of this section, we give an overview of our veri!cation runs, and discuss the tool’s 
scalability.  

6.1. Out-of-bounds array access, null-pointer dereference, and application-based assertions  

We ran our MSP430 test cases through the veri!cation tool chain, having set to any value the contents of 
the TimerB count register _TBR, the 16 ADC12 sensor memory buffers _ADC12MEM[], and the transmit 
and receive buffers _U0TXBUF/_U0RXBUF. Any veri!cation run is parameterized by the following:  

• The number of IRQ calls added per iteration of the scheduler main loop. While tos2cprover 
calculates the program points at which an IRQ of a certain type can be called, a veri!cation run 
may include all, none, or any superset of these calls. This is settled empirically on a per-
application basis: one TIMERB0 interrupt is sufficient to explore the workings of Blink, and 
similarly for ADC and Sense; for any network communication, on the other hand, an interrupt 
arrives for any byte received, which induced us to allow more UART0 transmit or receive 
interrupts per loop.  

• The unwinding bound for the in!nitely looping 
SchedulerBasicP_Scheduler_taskLoop function. Given some understanding of the 
task loop functionality, and the number of IRQ calls per loop, we again settle the number 
empirically, per application.  

• The number of assertions checked in one veri!cation run; this number can be either one (and 
CBMC is con!gured with the assertion’s identi!er) or all; as checking one assertion at a time 
scales better, we automated our tool to iterate through all of the program’s assertions.  

 
All our veri!cation runs of the memory violations in the test cases from Table 5 came up negative, when 
allowed two task loops and one IRQ per loop (in the case of Blink and Sense) and up to eight loops and 
eight IRQs per loop for TestDissemination. We then arti!cially triggered positive runs in 
TestDissemination, simulating known bugs in TinyOS serial drivers. I.e., we sent a null pointer to a 
requestData call in the DisseminationEngineImplP module from TinyOS’s network library 
(the comments are ours):  

static void DisseminationEngineImplP_sendObject(uint16_t key)  
{  
void *object;  
uint8_t objectSize = 0;  
[..]  
// send a zero instead of &objectSize  

  object = DisseminationEngineImplP_DisseminationCache_requestData(key, 0);  
}  
 
Since the !nal requestData method does no sanity check on the pointer it receives:  

inline static void* DisseminatorP_0_DisseminationCache_requestData(uint8_t *size)  
{  
  *size = sizeof(DisseminatorP_0_t);  
[..]  

}  

the assertion then generated by CBMC to check the sanity of the pointer:  



Claim DisseminatorP_0_DisseminationCache_requestData.1:  
  line 7503 function DisseminatorP_0_DisseminationCache_requestData  
  dereference failure: NULL pointer  
  !(SAME-OBJECT(size, NULL))  

fails.  

6.2. Constant-address dereference  

A potential, secondary source of errors in embedded software is that of dereferencing constant memory 
addresses. While null pointers may still be erroneous (as exempli!ed in Section 6.1), dereferencing 
constant, low pointers is generally expected from embedded code. To enforce a degree of safety when 
dereferencing constants is involved, we state that all dereferencing of constants must be limited to 
constants from those memory-map sections which pertain to peripheral control (I/O locations), and not to 
other sections.  
  To this end, in the process of program transformation, tos2cprover reports to the programmer the 
list of encountered memory dereferences, and translates the constant address implicated to its section in 
the memory map, e.g., for the line:  
 
*(volatile uint8_t *)49U ^= 0x01 << 6;  

we report  

  -> DEREF at 49/0x31 in the 8-bit Peripheral Module in *(volatile uint8_t *)(49U)  

and for a !xedly allocated variable:  

  static volatile uint8_t r __asm ("0x0019"); r|=1 <<1;  

we report  

  -> DEREF at 25/0x19 in the 8-bit Peripheral Module with fixed-address variable r  

In some cases (particularly for dereferences of address 0x0), an inspection of this report is advisable to 
sort any null pointers from legitimate peripheral access. A similar approach is taken by SafeTinyOS 
(Cooprider et al., 2007), which has programmers explicitly mark legal dereferences of constants with a 
trusted type, and thus make null-pointer dereferences visible.  

6.3. Cost of veri!cation  

The cost of showing that a TinyOS application is safe lies partially in (i) inspecting the program’s loops 
to settle on an unwinding bound for each, (ii) inspecting the list of expected hardware interrupts to decide 
on the number of IRQ instrumentations necessary, and (iii) inspecting the report on dereferencing 
constant addresses. Mostly, however, the cost lies with the veri!cation time: the time it takes the model 
checker to unwind the program (i.e., the program unwinding time), generate and simplify its boolean 
formula, and have this veri!ed by the SAT solver (i.e., the decision procedure runtime).  
  Fig. 10 exempli!es the veri!cation times for a representative subset of memory-violation assertions 
from Sense. The x axis is labeled with identi!ers of assertions: e.g., 
SchedulerBasicP_pushTask.1 is the !rst assertion within the body of function 
SchedulerBasicP_pushTask (i.e., in the original nesC code, function pushTask from 
component SchedulerBasicP). When more than two assertions are generated for a single function, 
we note that veri!cation times are similar for all these assertions, and only depict the !rst and the last. 
Two veri!cation runs are given for each assertion (each run in terms of both program unwinding time and 



of decision procedure runtime); both runs are con!gured with one IRQ call per OS scheduler main loop; 
the !rst run unwinds the loop once, and the second twice.  

 0  10  20  30  40  50  60
memset.1

AdcStreamP_Init_init.1
HplAdc12P_HplAdc12_getCtl0.1

SchedulerBasicP_popTask.1
SchedulerBasicP_popTask.2

McuSleepC_McuSleep_sleep.1
HplAdc12P_HplAdc12_getCtl0.2

HplAdc12P_HplAdc12_getMem.1
Msp430Adc12ImplP_HplAdc12_conversionDone.1
Msp430Adc12ImplP_HplAdc12_conversionDone.2

HplAdc12P_HplAdc12_setMCtl.1
HplAdc12P_HplAdc12_setMCtl.2

HplAdc12P_HplAdc12_getMem.20
Msp430Adc12ImplP_HplAdc12_conversionDone.3

SchedulerBasicP_isWaiting.1
SchedulerBasicP_pushTask.1

HplAdc12P_HplAdc12_getCtl0.3
HplAdc12P_HplAdc12_setMCtl.3
HplAdc12P_HplAdc12_setMCtl.4
HplAdc12P_HplAdc12_getMCtl.1

RoundRobinResourceQueueC_0_RoundRobinQueue_isEnqueued.1
RoundRobinResourceQueueC_0_RoundRobinQueue_isEnqueued.2

RoundRobinResourceQueueC_0_RoundRobinQueue_isEmpty.1
RoundRobinResourceQueueC_0_RoundRobinQueue_isEmpty.2

RoundRobinResourceQueueC_0_clearEntry.1
RoundRobinResourceQueueC_0_clearEntry.2

RoundRobinResourceQueueC_0_RoundRobinQueue_enqueue.1
RoundRobinResourceQueueC_0_RoundRobinQueue_enqueue.2

ArbitratedReadStreamC_0_Resource_granted.1
VirtualizeTimerC_0_Timer_stop.1
VirtualizeTimerC_0_Timer_stop.5

ArbitratedReadStreamC_0_Resource_granted.3
ArbitratedReadStreamC_0_Resource_granted.4

AdcStreamP_SingleChannel_multipleDataReady.1
AdcStreamP_SingleChannel_singleDataReady.1
AdcStreamP_SingleChannel_singleDataReady.2

VirtualizeTimerC_0_updateFromTimer_runTask.1
VirtualizeTimerC_0_updateFromTimer_runTask.6

AdcStreamP_readStreamDone_runTask.1
AdcStreamP_readStreamFail_runTask.2

Verification time (minutes) per assertion
D

ecision procedure runtim
e 2

Program
 unw

inding tim
e 2

D
ecision procedure runtim

e
Program

 unw
inding tim

e

 
Figure 11: Verification times for selected memory-violation assertions in Sense 

 
The CBMC runs are con!gured for 16-bit words, without making use of CBMC’s unwinding assertions 

feature, and with unwinding bounds set per loop (as described in Section 5.2, one higher than the number 
of loop iterations, e.g., written as a list of loop number:loop bound, e.g.: 

  --unwindset 0:9,1:2,2:2,3:2,4:9,6:1,7:17,8:17,9:9,[..]  



To give an idea of the complexity of the boolean program formula, for, e.g., the veri!cation of claim 
SchedulerBasicP_popTask.1 (an assertion over array SchedulerBasicP_m_next’s upper 
bound), the program formula has 80786 assignments, and a set of 18 independent veri!cation conditions 
(i.e. logical formulae) are generated by CBMC from the C program with annotated assertions. Table 6 
gives a fragment of such a veri!cation condition for the function where the above claim resides; on the 
left is the original C code for the function; on the right is the relevant succession of assignments of bit 
vectors in CBMC’s program translation into veri!cation conditions. Both listings end with giving the !nal 
claim, in C and boolean form, respectively.  
 
__inline static uint8_t SchedulerBasicP_popTask(void)  
{  
  if(SchedulerBasicP_m_head != SchedulerBasicP_NO_TASK) \guard#6 == !(SchedulerBasicP_m_head#8 != 255)  
  {  
    uint8_t id = SchedulerBasicP_m_head; id@2#1 == SchedulerBasicP_m_head#8        
    SchedulerBasicP_m_head = SchedulerBasicP_m_head#9 == 

      SchedulerBasicP_m_next[SchedulerBasicP_m_head];   SchedulerBasicP_m_next#12[SchedulerBasicP_m_head#8] 

    [..] [..] 

    SchedulerBasicP_m_next[id] = SchedulerBasicP_NO_TASK; SchedulerBasicP_m_next#13 == 

   (SchedulerBasicP_m_next#12 WITH [id@2#1:=255]) 

    return id; return_value_SchedulerBasicP_popTask$2@2#1 == id@2#1 

  } return_value_SchedulerBasicP_popTask$2@2#3 == 255 

  else return_value_SchedulerBasicP_popTask$2@2#4 == 

    return SchedulerBasicP_NO_TASK;   (!\guard#6 ?         

   return_value_SchedulerBasicP_popTask$2@2#1 

}   : return_value_SchedulerBasicP_popTask$2@2#3) 

[..] [..] 
Claim SchedulerBasicP_popTask.1: !\guard#4 && !\guard#8 && !\guard#10 => 

  line 5859 function SchedulerBasicP_popTask    (unsigned int)SchedulerBasicP_m_head#11 < 8 

  array ‘SchedulerBasicP_m_next’ upper bound   

  (unsigned int)SchedulerBasicP_m_head < 8  

Table 6: Fragment of verification condition for Sense 

When solving the overall program formula after bit blasting, the conjunctive normal form is a 357610-
variable, 1058725-clause formula.  
  We note that most assertions are veri!ed in a speedy manner, using close to zero time in the decision 
procedure, and a constant time for program unwinding. There are, however, notable exceptions for which 
the veri!cation time explodes—we used these time-consuming runs to bound CBMC’s unwinding depth: 
for, e.g., TestDissemination, some !ve-scheduler-loops veri!cation runs took up to 55 minutes. Such 
costly veri!cation runs are generally expected for OS-wide networked applications, due to the large state 
space added to the program by the network communication drivers.  

6.4. Discussion  

Support for other platforms. The tool chain is generally independent of platform support. This support is 
introduced through platform files, included at tos2cprover runs, and is essential for the source-to-
source transformation described in Table 2, Section 3.2.  
  The platform files are: 
 

• A header file defining new variables of appropriate types for registers and peripheral ports 
mapped at fixed numerical addresses, e.g.: 

 
unsigned short _R2;  /* R2/SR/CG1 Status Register */                                      



unsigned short _R4;  /* General Purpose Register */     
unsigned char  _IE1;  /* @0x0000 Interrupt Enable 1 */                                      
unsigned char  _P5OUT; /* @0x0031 Port 5 Output   */                             
unsigned short _TBR; /* @0x0190 Timer_B register  */                       

 
• A mapping file, i.e. a dictionary12 mapping fixed numerical peripheral addresses to the new 

variables defined above; this is automatically extractable from the header file above: 
 

MSP430_map = {                                                                              
  "0x0000":'_IE1',                                                                          
  "0x0190":'_TBR', 
  "0x0031":'_P5OUT',  
  [..] 
} 

• The latter mapping file also describes the new semantics for e.g. __asm("eint"); in terms of 
the new variable _R2 (enabling interrupts now amounts to setting a particular bit in _R2, as 
shown in Table 2). 

 
Thus, the tool being extended to other platforms is a matter of coming up with these platform-specific 
files (we chose MSP430 for this prototype tool due to previous experience with the platform). While the 
information for these files is easily extractable from the platforms’ data, other difficulties arise at the 
verification runs. We overview these in what follows. 
 
Difficulties and shortcomings. At a verification run, two issues related to manual instrumentation of the 
program become serious and limit the usability of the tool for large TinyOS programs. The first is in the 
need for manually giving a (whenever possible, sound) bound to every loop in the program: (i) with every 
new nesC component linked by the application to be verified, new loops need to be manually investigated 
for bounds, and (ii) even when the same program loops show up in different applications, the loops may 
need to be allowed different upper bounds to be sound. A simple example of the latter case is the basic 
memory-copying function, memset: it is called to initialize a task queue of 8 in Sense, one of 16 in 
TestDissemination, and one of 2 in Blink. 
  Other loops may remain identical among applications, yet are not trivial to bound soundly. A simple 
example is the busywaiting for the clock initialization: for(calib=0, step=0x800; step!=0; 
step>>=1) {[..]}. If this loop were bound to less than its true upper iteration limit, the program 
following the loop would be unreachable by the verification procedure. Thus, in such cases one needs to 
allow large loop bounds, unless the loop is not relevant to the subsequent behavior of the software and 
may be removed; the entire clock calibration procedure is such an example, and we comment it out for the 
purpose of verification. 
  Manually investigating the tens of loop bounds brought up by other large TinyOS applications is time 
consuming; in many cases this could be automated in a program analysis step. In regard to covering larger 
test cases, the difficulty of generating loop bounds becomes a serious usability issue for the tool. 
  The second issue is platform-specific: for a verification run, it is natural that the values of ADC and 
UART memories are left nondeterministic, to cover all environmental input; however, all other hardware 
registers and ports must also be initialized as part of the hardware emulation. Recovering appropriate 
values in this latter case, while keeping nondeterminism to a minimum, is not trivial. This is strictly an 
issue of knowledge of the platform workings; in porting the tool to different platforms and in testing on 
large applications, this is another bottleneck. 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
"#! $%&!'())&*+!,-./&-&*+0+,1*!12!tos2cprover!,3!,*!45+%1*6!



 

7. Related Work  

7.1. Runtime safety  

Most existing solutions to detect software errors in sensor operating systems act at runtime, are (unlike 
our method) strictly OS-dependent and platform-independent, and are intended to be used for deployed 
applications: the code is instrumented such that a statement which is semantically unsafe under its current 
execution context is detected before it is executed, and a certain diagnosis or recovery measure is taken 
(which usually consists in reporting the error and rebooting, as summarized in Table 7). While a 
necessary solution to ensure safe execution in all execution contexts, runtime error detection for 
deployments is potentially followed by the expensive redeployment of software, and could instead be 
preceded by compile-time means of error detection to save on redeployment efforts.  

 
Scheme (OS) Scope of errors Measure 
Safe TinyOS,  
Neutron (TinyOS) 

out-of-bounds array access, invalid-pointer 
dereference, integer-to-pointer cast 

report error location, reboot;  
Neutron: with state preservation 

Interface contracts (TinyOS) pre-/postconditions for nesC interface use LED-signal error location 
NodeMD (MantisOS) stack overflow, deadlock, livelock, 

application assertions 
report execution trace, remote queries 

Table 7. Runtime diagnosis and recovery solutions to software errors 

Safe TinyOS (Cooprider et al., 2007) detects memory and type violations in deployed TinyOS code, and 
transfers control to a fault handler, which either reboots or powers down after sending a concise failure 
report to its base station. The failure report identi!es the error type and its source code location (but does 
not give an execution trace clarifying the context which caused the error); the failure report is used to 
debug the code post-deployment. While the method allows the safe execution of existing TinyOS code, 
with little programmer effort and runtime overhead, debugging every error encountered involves the 
software’s redeployment.  

A drawback of Safe TinyOS’s Deputy code instrumenter is the fact that, unlike our automatic 
instrumentation with assertions, SafeTinyOS programmers must explicitly type-annotate e.g., a void 
*payload array with access bounds COUNT(len). The resulting program is !rst translated into C by 
the nesC compiler, and then into a program instrumented with, e.g., calls to a failure routine if(i >= 
len) deputy_fail(). Statements accessing a !xed address such as 0x0031 also need manual  
trusted cast annotations, TC(). Like SafeTinyOS though (and unlike earlier SafeTinyOS versions), we 
do not change the C data representation in the veri!cation process.  
  Neutron (Chen et al., 2009) adds a welcome update to Safe TinyOS, for applications coded in 
TinyOS’s TOSThreads API: instead of rebooting the node as a corrective measure to a memory violation, 
Neutron groups the application’s threads into recovery groups, and selectively restarts the threads in 
certain recovery units. Furthermore, it allows the preservation of the values held in “precious” memory 
locations between thread restarts.  
  The interface contracts (Archer et al., 2007) write speci!cation-like type annotations which de!ne the 
“correct” use of TinyOS 1.x nesC interfaces, just as Safe TinyOS annotates memory for safe use. In cases 
when the semantics of the interface dictates it being stateful, the contract is expressed in terms of the state 
of the interface: for the interface command Timer.start(), the contract states as precondition the fact 
that the timer’s state must be IDLE, and as a postcondition that the state of the timer changes (i.e., to ONE 
SHOT) if the command’s return value is SUCCESS. In other cases, the interface is stateless and the pre-



and postconditions are imposed upon the command’s arguments, which can themselves become stateful. 
This detects incorrect ordering of interface commands at runtime, e.g., a SendMsg.send() with a 
message buffer for which no SendMsg.sendDone() event was received to complete a previous send. 
On a related note, similar, stateful interface contracts are set over nesC commands and events in (Menrad 
et al., 2009); noting that state transitions, as programmed for interface contracts, can become lengthy, it 
devises an equivalent, more readable statechart notation, with the view towards a future automated (static) 
veri!cation for all TinyOS interfaces.  
  NodeMD (Krunic et al., 2007) detects runtime errors in MantisOS multithreaded, synchronous code. 
AVR-based applications are instrumented to check the stack pointer SP for over"ows at function-call 
time, and for the violation of application-speci!c assertions. The checks for deadlock and livelock involve 
a manually added timer to verify that each thread goes through its duty cycle.  
 

7.2. Hybrid approaches: runtime safety by emulation  

An important hybrid approach between runtime and static error detection consists of combining runtime 
safety systems (such as Safe TinyOS) with cycle-accurate hardware emulators such as Avrora (Titzer et 
al., 2005), MSPsim (Eriksson et al., 2007), and WSim (Fraboulet et al., 2007). A hardware emulator 
precisely simulates a platform in terms of its running assembly instructions; beside analyses of power and 
memory consumption, a precise timing analysis is also possible, given appropriate timing attached to the 
instructions. An overview of the current hardware support of emulators for sensor nodes is given in Table 
8.  
 

Emulator (OS) Microcontrollers Other chipsets 
WSim (OSless) TI MSP430, ATMega128 Chipcon CC1100, CC2420; Maxim serial 

ID DS2411; LEDs 
MSPsim (Contiki OS) TI MSP430 TelosB peripherals 
Avrora (OSless) Atmel AVR ATMega128 Mica2 peripherals 

Table 8. Sensor platform emulators 

While this combination does not provide full error traces the way a model-checking technique would, it 
does report the call stack at the point of the error, the way Safe TinyOS would; thus, real-time safety does 
not necessarily need to act at deployment-time.  

7.3. Veri!cation and simulation  

A weak form of static error detection is simulation. While it does not prove any guarantee on the 
program’s behaviour, testing allows for error detection and is particularly realistic in the case of e.g., 
TOSSIM (Levis et al., 2003), which accurately (yet not cycle-accurately) simulates TinyOS applications 
from their implementation.  

TinyOS’s nesC compiler has a basic built-in data-race detector, which warns when a global variable is 
updated from non-atomic asynchronous code without having been explicitly tagged with norace. 
While writing atomic asynchronous code is good practice for nesC, failure to do so only potentially 
causes a race, as programmers may have used other syncronization idioms (i.e., guards on variables). A 
suitable context model for race checking (Henzinger et al., 2004) then contributed an algorithm for the 
elimination of such false positives.  

A degree of compile-time veri!cation is reported by Bucur and Kwiatkowska (2009). While its scope is 
limited to TOSThreads applications written in C, it avoids some of the costs of system-wide veri!cation 
by writing models for the interfaces to system calls (in the style of the runtime interface contracts Archer 
et al. (2007)). Calling amRadioReceive(&msg, ...) from the application is modelled so that it 
preserves its original behaviour: the call returns any of a set of error codes, and the msg variable receives 



(possibly nondeterministic) data. Then, the method calls the SATABS model checker for multithreaded C 
programs to verify the programmer’s application on its own; the errors veri!ed pertain to interface use, or 
are application-speci!c.  
  SMT solvers are used as backends to ANSI-C model checkers, instead of SAT solvers in (Cordeiro et 
al., 2009a,b, 2010), to verify bounded instances of ANSI-C programs, such as those generated by BMC 
frontends. Satis!ability Modulo Theories (SMT) solvers employ decision procedures which check the 
satis!ability of a quanti!er-free formula in a !rst-order logic. To make SMT-based bounded model 
checkers applicable to checking realistic C, (Cordeiro et al., 2009b) provides translations from ANSI-C 
programs to SMT formulas as precisely as bit-accurate SAT-based procedures, and positively compares 
the performance of their model checker to that of CBMC and a previous SMT-based CMBC. New 
encodings are provided into existing SMT theories from ANSI-C scalar data types (with accurate 
arithmetic over"ow and under"ow), arrays and pointers, structures and unions; the test cases include 
array-heavy ANSI-C benchmarks such as sorting algorithms and Linux device-controlling applications. 
(Cordeiro et al., 2010) adds a statespace-reducing technique for the same veri!cation method; this looks 
at the modi!cations undergone by the system since its last veri!cation, and submits them to a partly static, 
partly dynamic “continuous” veri!cation process, guided by a set of test cases for coverage.  

Closer to our domain of sensor software, (Cordeiro et al., 2009a) gives a single case study of a 
veri!cation approach to part of a platform-speci!c embedded C monitoring software. This approach splits 
the 3500-LOC monitoring application, written as a set of modules, into platform-dependent and platform-
independent modules; like our method, all platform-dependent syntax is translated to standard C. The 
method then statically veri!es platform-dependent modules, one by one, using the co-veri!cation feature 
of CBMC, together with a Verilog model of the microcontroller and against the standard CProver-inserted 
assertions to check the sanity of the interaction between software and hardware. A system-wide checking 
procedure is simulated on a hardware emulator. The method’s advantages mostly lie in its ability to make 
good use of CBMC’s hardware co-veri!cation; its disadvantages lie in the amount of manual input 
needed to decide between the different veri!cation schemes for different software modules, and in its 
potential lack of generality.  

Recent contributions. Other veri!cation or high-coverage validation methods tackle the more difficult 
problem of static debugging for sensor network protocols.  

KleeNet (Sasnauskas et al., 2010) is a recent debugging environment for the high-coverage testing of 
networked sensor applications (case studied for Contiki OS), with the aim of discovering bugs that result 
from node interaction (by writing distributed assertions about the state of the network) and 
nondeterministic network events (such as loss, duplication and corruption of packets, or node failures). 
The latter aspects are especially difficult to observe in traditional testing mechanisms, or require manual 
effort by the developers to generate them.  

The base technique for KleeNet’s testing is the exploration of program paths in the virtual machine 
KLEE (Cadar et al., 2008): a distributed program is simulated in standard fashion until data "agged as 
’symbolic’ is reached (e.g., the contents of a network packet; this may be set to a nondeterministic value); 
at these points, the execution is branched (in the fashion of explicit-state model checking, with nodes 
forked on demand) and resumed for each such branch. This technique is then extended by KleeNet with 
failure models for both nodes and network communication, and assertions are written in distributed 
fashion. E.g., for a node A which just adds node B as a parentID in its routing table, the assertion:  

if (parentID != NULL) {  
assert(NODE(parentID, ’’isChild’’, myID)); }  

states that B should also have A registered as a child. parentID and myID are variables local to A, 
while isChild is a function called on B.  

KleeNet itself is platform-independent, but each sensor network OS requires a frontend to KLEE. It 
was able to discover four bugs in Contiki’s TCP/IP stack, one of which deadlocked a network node.  



On a similar note to KleeNet, T-Check (Li and Regehr, 2010) uses random walks and execution-driven, 
depth-bounded explicit-state model checking. It builds on the TOSSIM (Levis et al., 2003) simulator for 
TinyOS, and inherits its emulation of hardware at the TinyOS interface, rather than at the hardware 
register level; this precludes safety speci!cations related to, e.g., register contents, timing or interrupt 
preemption, but gains scalability. T-Check does, however, report that it “found TOSSIM to be too high-
level to support effective bug-!nding”, which led to its “extending the ADC, serial, and SPI subsystems 
to model more low-level behavior”, i.e. modelling the relevant interrupts, as in our work. Network and 
node nondeterminism is introduced, together with a TinyOS-speci!c nondeterminism related to event 
ordering. Their model checking is a stateless, depth-bounded, depth-!rst search with a partial order 
reduction based on the static presumption that a pair of transitions on different sensor nodes is 
independent unless the events are a matched send/receive pair. Both safety and liveness properties are 
checked against, the latter heuristically, by looking for sufficiently long program traces violating the 
property; a number of bugs are found in the TinyOS serial driver and some tree protocols.  
  Anquiro (Mottola et al., 2010) is a model-checking based veri!cation tool for Contiki applications; as a 
plus over our tos2cprover-based tool, it allows for a software engineering solution to slice the 
application code up to a desired level, e.g., either including code interfacing to the hardware as in our 
method, or remodelling network communication, similar to (Bucur and Kwiatkowska, 2009). LTL 
speci!cations are inputted to the Bogor model checker, and Anquiro is able to !nd a network 
con!guration in which a dissemination protocol does not reach all nodes.  

Other approaches. Insense (Sharma et al., 2009) designs a novel language for programming wireless 
sensor networks applications, which then compiles into Contiki C source code. With the aim of 
simplifying the complexity of both programming and the veri!cation of the resulted programs, the 
language hides from the programmer all language constructs regarding concurrency (e.g., for the various 
existing WSN-programming API: processes, threads, asynchronous events) and thread synchronization. 
An Insense application is instead programmed as a set of components, sharing no states and 
communicating through typed, synchronous channels. Selected hardware is modelled (similarly to our 
(Bucur and Kwiatkowska, 2009)) as Insense components and matching channels. For the purpose of 
veri!cation, the components and channels are translated into Promela and model checked against LTL 
properties by SPIN (Holzmann, 2003); their cases are limited to the veri!cation of properties of single 
channel operations in their translation from Insense to SPIN, such as “A send operation does not return 
until data has been written to a receiver’s buffer”.  

FSMGen (Kothari et al., 2008) takes another approach to error detection in TinyOS programs: it 
statically analyzes the program and derives automatically a !nite-state machine to describe the high-level 
application logic, thus aiding the programmer’s understanding of the application code. The method is 
applied over the demo applications available with TinyOS.  

8. Conclusions  

We have contributed a tool13 
and novel approach towards the static software veri!cation of embedded 

C sensor applications. Operating-system-wide sensor programs with an added explicit emulation of 
hardware interrupts are automatically given precise standard C models for the MCU’s direct memory 
access, and are then minimized in state space with the aid of a partial-order reduction technique. Safety 
speci!cations written as assertions and bounds for the program loops are inputted together with the 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!

13 Documentation and repository at http://www.daimi.au.dk/~doina/svtos.php. 

!



program into CBMC, which is then able to verify the program and report error traces. While no new bugs 
have been found, we were able to reproduce known bugs in a TinyOS driver, and we list as our main 
achievement the efficient, fully automatic method and tool bridging embedded C compilers for sensor 
platforms with the state of the art tools in C software veri!cation. 

References  

Archer, W., Levis, P., Regehr, J., 2007. Interface contracts for TinyOS. In: Proceedings of the International Conference on 
Information Processing in Sensor Networks (IPSN). ACM, pp. 158–165.  

Atmel, 2008. Atmel 8051 microcontrollers hardware manual. www.atmel.com.  
Bucur, D., Kwiatkowska, M., 2009. Bug-free sensors: The automatic veri!cation of context-aware TinyOS applications. In: 

Proceedings of the European Conference on Ambient Intelligence (AmI). Vol. LNCS 5859. Springer Verlag, pp. 101–105.  
Bucur, D., Kwiatkowska, M., 2010. Software veri!cation for TinyOS. In: Information Processing in Sensor Networks (IPSN). 

ACM, pp. 400–401.  
Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems 

Programs. OSDI 2008: 209-224. 
Chen, Y., Gnawali, O., Kazandjieva, M., Levis, P., Regehr, J., 2009. Surviving sensor network software faults. In: Proceedings of 

the Symposium on Operating System Principles (SOSP), pp. 235–246. ACM.  
Clarke, E. M., Kroening, D., Lerda, F., 2004. A tool for checking ANSI-C programs. In: TACAS. Vol. 2988 of LNCS. Springer, 

pp. 168–176.  
Clarke, E. M., Biere, A., Raimi, R., Zhu, Y., 2001. Bounded model checking using satis!ability solving. Formal Methods in 

System Design 19 (1), pp. 7–34. Kluwer Academic Publishers.  
Clarke, E. M., Grumberg, O., Peled, D. A., 2000. Model Checking. MIT Press.  
Cooprider, N., Archer, W., Eide, E., Gay, D., Regehr, J., 2007. Efficient memory safety for TinyOS. In: Proceedings of the 

conference on Embedded Networked Sensor Systems (SenSys). ACM, pp. 205–218.  
Cordeiro, L., Fischer, B., Chen, H., Marques-Silva, J., 2009a. Semiformal veri!cation of embedded software in medical devices 

considering stringent hardware constraints. In: Proceedings of the International Conference on Embedded Software and 
Systems, pp. 396–403. IEEE Computer Society. 

Cordeiro, L., Fischer, B., Marques-Silva, J., 2009b. SMT-based bounded model checking for embedded ANSI-C software. In: 
Proceedings of the IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 137–148.  

Cordeiro, L., Fischer, B., Marques-Silva, J., 2010. Continuous veri!cation of large embedded software using SMT-based 
bounded model checking. In: Proceedings of IEEE International Conference and Workshops on the Engineering of Computer-
Based Systems (ECBS), pp. 160–169.  

Corp., A., 2009. 8-bit AVR microcontroller with 128K bytes in-system programmable Flash. www.atmel.com, doc2467.pdf.  
Eriksson, J., Dunkels, A., Finne, N., Osterlind, F., Voigt, T., 2007. MSPsim – an extensible simulator for MSP430-equipped 

sensor boards. In: Proceedings of the European Conference on Wireless Sensor Networks (EWSN), Poster/Demo session. 
Fraboulet, A., Chelius, G., Fleury, E., 2007. Worldsens: development and prototyping tools for application speci!c wireless 

sensors networks. In: Proceedings of the 6th International Conference on Information Processing in Sensor Networks (IPSN). 
ACM, pp. 176–185.  

Gay, D., Levis, P., Culler, D., 2005. Software design patterns for TinyOS. In: Proceedings of the ACM SIGPLAN/SIGBED 
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES). ACM, pp. 40–49.  

Gay, D., Levis, P., von Behren, R., 2003. The nesC language: A holistic approach to networked embedded systems. In: ACM 
SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM, pp. 1–11.  

Henzinger, T. A., Jhala, R., Majumdar, R., 2004. Race checking by context inference. In: Proceedings of the Conference on 
Programming Language Design and Implementation (PLDI). ACM Press, pp. 1–13.  

Holzmann, G. J., 2003. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley.  
Klues, K., Liang, C.-J., Paek, J., Mus#loiu, R., Govindan, R., Terzis, A., Levis, P., 2009. TOSThreads: Safe and Non-Invasive 

Preemption in TinyOS. In: Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys). ACM, 
pp. 127-140.  

Kothari, N., Millstein, T., Govindan, R., 2008. Deriving state machines from TinyOS programs using symbolic execution. In: 
Proceedings of the International Conference on Information Processing in Sensor Networks (IPSN). IEEE, pp. 271–282.  

Kroening, D., Strichman, O., 2008. Decision Procedures: An Algorithmic Point of View. Springer.  
Krunic, V., Trumpler, E., Han, R., 2007. NodeMD: Diagnosing node-level faults in remote wireless sensor systems. In: 

Proceedings of the International Conference on Mobile Systems, Applications and Services (MobiSys). ACM, pp. 43–56.  
Levis, P., Gay, D., Handziski, V., Hauer, J.-H., Greenstein, B., Turon, M., Hui, J., Klues, K., Sharp, C., Szewczyk, R., Polastre, 

J., Buonadonna, P., Nachman, L., Tolle, G., Culler, D., Wolisz, A., 2005. T2: A second generation OS for embedded sensor 
networks. Tech. Rep. TKN-05-007, Technische Universität Berlin. 

Levis, P., Lee, N., Welsh, M., Culler, D. E., 2003. TOSSIM: Accurate and scalable simulation of entire TinyOS applications. In: 
Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys). pp. 126–137.  



Li, P., Regehr, J., 2010. T-Check: bug !nding for sensor networks. In: Proceedings of the 9th International Conference on 
Information Processing in Sensor Networks (IPSN). ACM, pp. 174–185.  

Menrad, V., Garcia, M., Schupp, S., 2009. Improving TinyOS developer productivity with statecharts. In: Proceedings of the 
Workshop on Self-Organising Wireless Sensor and Communication Networks.  

Moteiv Corporation, 2004. Telos. Ultra low power IEEE 802.15.4 compliant wireless sensor module. Revision B : Humidity, 
Light, and Temperature sensors with USB. http://www.moteiv.com.  

Mottola, L., Voigt, T., Osterlind, F., Eriksson, J., Baresi, L., Ghezzi, C., 2010. Anquiro: Enabling efficient static veri!cation of 
sensor network software. In: Proceedings of Workshop on Software Engineering for Sensor Network Applications (SESENA) 
ICSE(2).  

Sasnauskas, R., Landsiedel, O., Alizai, M. H., Weise, C., Kowalewski, S., Wehrle, K., 2010. KleeNet: discovering insidious 
interaction bugs in wireless sensor networks before deployment. In: Proceedings of the 9th International Conference on 
Information Processing in Sensor Networks (IPSN), pp. 186–196.  

Sharma, O., Lewis, J., Miller, A., Dearle, A., Balasubramaniam, D., Morrison, R., Sventek, J., 2009. Towards verifying 
correctness of wireless sensor network applications using Insense and SPIN. In: Model Checking Software, Vol. 5578 of 
LNCS, Springer, pp. 223–240.  

Sorensson, N., Eén, N., 2005. MiniSat — A SAT solver with con"ict-clause minimization. In: Proceedings of the 8th 
International Conference on Theory and Applications of Satis!ability Testing (SAT). Vol. 3569 of LNCS. Springer.  

Texas Instruments, 2006. MSP430x1xx family — user’s guide (Rev. F). www.ti.com.  
Titzer, B. L., Lee, D. K., Palsberg, J., 2005. Avrora: scalable sensor network simulation with precise timing. In: Proceedings of 

the 4th International Symposium on Information Processing in Sensor Networks (IPSN), Demo session. IEEE Press, pp. 67–
72.   

Underwood, S., 2003. Mspgcc—A port of the GNU tools to the Texas Instruments MSP430 microcontrollers. 
http://mspgcc.sourceforge.net/manual.  


