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A B S T R A C T 
Energy efficiency at the software level has gained much attention in 
the past decade. This paper presents a performance-aware frequency 
assignment algorithm for reducing processor energy consumption 
using Dynamic Voltage and Frequency Scaling (DVFS). Existing 
energy-saving techniques often rely on simplified predictions or 
domain knowledge to extract energy savings for specialized soft-
ware (such as multimedia or mobile applications) or hardware (such 
as NPU or sensor nodes). We present an innovative framework, 
known as EClass, for general-purpose DVFS processors by recog-
nizing short and repetitive utilization patterns efficiently using 
machine learning. Our algorithm is lightweight and can save up to 
52.9% of the energy consumption compared with the classical PAST 
algorithm. It achieves an average savings of 9.1% when compared 
with an existing online learning algorithm that also utilizes the 
statistics from the current execution only. We have simulated the 
algorithms on a cycle-accurate power simulator. Experimental 
results show that EClass can effectively save energy for real life 
applications that exhibit mixed CPU utilization patterns during 
executions. Our research challenges an assumption among previous 
work in the research community that a simple and efficient heuristic 
should be used to adjust the processor frequency online. Our 
empirical result shows that the use of an advanced algorithm such as 
machine learning can not only compensate for the energy needed to 
run such an algorithm, but also outperforms prior techniques based 
on the above assumption. 
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Highlights: 
 Adaptively adjusting the processor frequency can conserve 

energy in program execution. 
 Existing techniques are limited to simple heuristics due to the 

energy concern in computing heuristics. 
 We propose EClass, a supervised machine learning technique. 
 Experimentation shows that EClass conserves at least 9.1% more 

energy than simple heuristic techniques. 
 It demonstrates that advanced techniques can outperform simple 

techniques even though the former consume more energy them-
selves. 

1 Introduction 

Unlocking energy efficiency in performing activities is a 
universal step to deal with global warming and support our 
digital society. On the other hand, modern software applica-
tions have an increasing tendency to interact with various 
hardware components such as WiFi and GPU, or establish 
software networks (say, over the Internet) with other 
application components such as map services at run time. 
Such a usage trend may increase the resource utilization of a 
running application component. However, the delays incurred 
when communicating with other components or issuing 
commands to the underlying operating system followed by 
receiving the responses may not require a processor to run at a 
full speed, which provides various opportunities for an 
energy-aware task scheduling technique [5][11][22] to modify 
the resources allocated to the application component for com-
pleting a program execution. 

Dynamic Voltage and Frequency Scaling (DVFS) [2] is a 
technology originally developed for hardware processors that 
allows a change in processing speed by selecting an alternate 
processor frequency. For instance, by writing a value to a 
special-purpose processor register designated for setting up 
the processor voltage (and hence frequency) to one of the 
processor-supported configurations, an application may 
choose to slow down the clock frequency of its servicing 
processor during idle or low processor utilization periods of 
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the application. For example, on the Intel XScale platform, a 
desired processor frequency can be selected by writing a value 
to the Core Clock Configuration Register (CCCR) and setting 
the FCS bit of the CCLKCFG register to activate the change 
in processor frequency [19]. 

Running a process at a lower frequency may lengthen the 
overall execution time, which may not result in spending less 
energy as a whole when compared with setting the processor 
at a higher frequency to complete the same program 
execution. Hence, two fundamental problems in setting the 
above values are to determine (1) when a technique needs to 
adjust the processor frequency and (2) what the value of 
processor frequency should be. In general, there are static 
techniques and dynamic techniques, differing by whether 
dynamic monitoring of program executions is available. 

For ease of presentation, we refer to a set of inputs to a 
particular program as a test suite, and refer to a program that 
executes a test suite at run time as a task. We note that in the 
real-time systems community, a test suite is often referred to 
as a workload. Hence, to balance between the two com-
munities, we use the terms test suite and workload inter-
changeably. 

In general, static techniques [4][23][32] analyze the source 
code of a program, estimate the worst case timing require-
ments for all possible paths, and use such information to 
compute frequency values statically for different parts of the 
program. Such values can be used prior to the execution of the 
program for any workload. However, static techniques may 
fail to capture specific characteristics of particular executions 
of the program. Hence, an underlying processor may not be 
best tuned for a particular workload. Moreover, it is 
commonly known that static analysis cannot scale well 
enough to handle large applications. Dynamic techniques 
[2][9][35] complement static techniques by monitoring 
program executions to obtain more precise resource utilization 
statistics. However, they can only analyze the executions 
corresponding to a given workload. Based on a monitored 
portion of an execution, such a technique may apply various 
policies to predict the best frequency value for the next 
interval, such as by computing an optimal frequency for the 
current monitoring interval and deeming it to be the best 
[14][16]. Dynamic techniques are more scalable than static 
techniques in handling applications of a practical size. Never-
theless, they may slow down the original execution of a 
program by incurring execution monitoring and computation 
of an optimal frequency, and cannot be applied to an API-like 
framework that cannot be executed by its own. Despite these 
limitations, dynamic techniques have been widely practiced 
because of its ability to optimize the energy usage for general 
program executions, which is particularly attractive when 
aggressive energy conservation is mandatory. In this paper, 
we study dynamic techniques. 

A test suite for a program can be mapped to a set of 
program executions. The use of a portion of an execution to 
predict the frequency value for the remaining portion of the 
same execution may likely result in a locally optimal solution. 
For instance, for an execution with an increasing demand of 

computational needs until the very last few instructions of the 
execution, using a moving average or the latest value of the 
estimated optimal frequency value based on the monitored 
portion may be inadequate for predicting the frequencies for 
the unexecuted portion of the execution. Moreover, to reduce 
the performance overhead incurred by computing an optimal 
frequency, many existing techniques [2][16][35] use simple 
formulas such as doubling or halving the current value to 
compute a new frequency value based on an existing one. 
Although such simple formulas may empirically be effective 
in saving energy, their corresponding techniques do not cap-
ture the design rationale of such formulas. 

In this paper, we use three major insights to address the 
above problems in finding a solution. 

• First, a typical program is written to serve a particular 
purpose and is implemented as a set of program modules. 
Although a program tends to perform distinct activities in 
different executions, given a specific subset of a test suite, 
the program tends to execute similar sets of program 
modules of the same program, possibly in different orders 
and with different module occurrence patterns in various 
execution fragments. For instance, a program must contain 
a set of basis paths. Although different executions of the 
program may visit the same program module and run 
different sequences of statements in this particular module, 
such executions can be considered as different composi-
tions of these basis paths. 

• Second, although different orders and patterns may result 
in different nonfunctional program behaviors, we observe 
that even the most I/O-intensive (but typical) programs, 
such as file management programs, involve some periods 
of computational-intensive executions. Suppose we define 
I/O-intensive periods in these programs as less than 25% 
CPU utilization. In our empirical study, the probability of 
encountering such an I/O-intensive segment in the most 
I/O-intensive application is merely 9%, indicating that the 
probability of encountering k consecutive I/O-intensive 
segments is only 0.09k, or 0.00006561 when k is 4, which 
is a small number. Such a low probability shows that we 
may use short chains of fragments to model the program 
processor utilization that covers over 99.9% of all the 
scenarios encountered. 

• Third, the available number (n) of processor frequencies is 
a small number (such as 11 for XScale in [19]). Because 
of the presence of computational-intensive and I/O-
intensive modules in an interval, in many cases, they lead 
to the use of highest few and lowest few frequencies, 
respectively, as the optimal processor frequency. Hence, 
although there are theoretically nk possible combinations 
when modeling all such fragments, since the given value 
of k is small, the number of combinations is bounded in 
practice by a small value. Our empirical study confirms 
this hypothesis. Because of such a small number of 
combinations, our technique can keep the entire dataset of 
such values in the memory (rather than storing them in a 
database or on disk with an excessive amount of memory 
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page swapping) and locate the optimal frequency by a 
direct lookup approach. Such a lookup can be efficiently 
and simply implemented as a hash function provided that 
one can classify and consolidate utilization values into 
distinct patterns, and use them as keys to this function. 
The simplicity further reduces the chance of introducing 
faults in the implementation, thus enhancing the reliability 
of the approach. 

The net result is a technique that we call EClass, standing 
for Execution Classification. EClass is capable of using a 
small number of utilization patterns extracted from the execu-
tions of a small fraction of a workload to characterize almost 
all the scenarios of program execution fragments. Because of 
such a characteristic, EClass is able to provide a solution that 
empirically outperforms a solution based on a single execu-
tion. 

Based on executions on the same platform, EClass starts 
with a training phase for a task. CPU utilization and energy 
consumption values are collected during training executions 
in order to determine hardware- and task-specific parameters 
in the energy model. Utilization values are then clustered and 
the optimal frequencies for each distinct pattern (of a fixed 
length) are pre-computed according to the energy model, and 
stored offline for the frequency assignment algorithm. During 
online execution, the best frequency is predicted and the cur-
rent processor frequency is adjusted whenever the execution 
exhibits a known utilization pattern. The predicted frequency 
can also be fine-tuned linearly based on the desired execution 
time. We also adapt EClass to develop a complementary 
technique called Target. Target treats the execution time of an 
interval in previous runs of the same test case as if it were the 
execution time for the same interval in the current run for 
energy optimization. 

We evaluated EClass and Target on a cycle-accurate 
power simulator for a realistic hardware platform [17]. We 
compared them with two existing representative algorithms 
(which we call Online [14] and PAST [35]), and a random 
energy optimization strategy (denoted by Random) over three 
real-life medium-sized subject applications (minigzip, djpeg, 
and jikespg) from the CSiBE benchmark [15]. Experimental 
results show that for each subject, the savings achieved by 
EClass and Target are always better than that achieved by 
each of Online, PAST, and Random, and on average, EClass 
and Target can save 9.1% more energy in absolute terms 
compared with the peer techniques, and up to 52.9% savings 
for specific applications. The difference in energy savings 
between EClass and Target is less than 2.2% in all cases 
because EClass is able to operate in unseen executions 
whereas Target cannot. The evaluation results show that in 
terms of energy savings, EClass is the best among all five 
techniques studied in the experiment. The empirical results 
are inspiring in that although pattern classification can be 
much less efficient (and hence requiring more energy) than 
simply setting a value as in Online, this extra cost can be well-
compensated at the end. 

The main contribution of this work is threefold: (1) It 
demonstrates the use of a machine learning approach to 

effectively characterize program executions without excessive 
training data. (2) It proposes two new online strategies, 
namely EClass and Target, which efficiently use such charac-
terizations to predict optimal frequencies for execution 
fragments. (3) It reports an experiment that verifies the above 
insights and the proposed techniques. Our experimental 
results demonstrate that energy-awareness research can 
benefit significantly from advanced or search-based 
algorithms. 

The rest of the paper is organized as follows: Section II 
gives a motivating example. Section III describes our models 
and the details of the algorithm. Section IV presents the 
experimental results and an evaluation. Section V summarizes 
related literature on energy optimization. Section VI con-
cludes the paper. 

2 Motivating Example 

The following is a hypothetical example comparing the 
computational steps taken by two different frequency assign-
ment algorithms over a dedicated processor capable of run-
ning at 200, 266, 333, and 400 MHz. We assume that the 
algorithm reviews the CPU frequency at the end of each 100 
ms interval j. The program takes an integer parameter p and 
executes two different branches of the source code, depend-
ing on whether p is divisible by 3. If it is divisible by 3, the 
execution lasts for 7 intervals, repeating the instructions 
corresponding to intervals 1–3 for the duration of intervals 5–
7. In another execution where p is not divisible by 3, it 
executes the same instructions corresponding to the first 3 
intervals and then terminates. These two executions are 
detailed in Table 1(a) below: 

 

j 

CPU 
Time @ 

733 MHz 
(ms) 

I/O 
Time 
(ms) 

PAST [35] 
Frequency 
Prediction 

Scaled 
CPU 
Time 
(ms) 

Scaled 
Utilization 

Rate 
(MHz) 

1 17 83 200 62 43% 
2 16 84 200 59 41% 
3 39 61 200 142 70% 
4 91   9 266 252 97% 
5 Repeat interval 1 333 37 31% 
6 Repeat interval 2 333 35 30% 
7 Repeat interval 3 333 97 63% 

(a) Sample executions of a program using PAST 

 

j 
CPU Time @ I/O Optimal Utilization 
733 MHz (ms) (ms) Freq (MHz) Class 

1 17 83 266 Low 
2 16 84 266 Low 
3 39 61 333 Medium 
4 91   9 400 High 
5 Repeat interval 1 266 Low 
6 Repeat interval 2 266 Low 
7 Repeat interval 3 333 Medium 

(b) Sample executions of a program using EClass 

Table 1. Illustrative Example 

Let us take a look at the scenarios in Table 1(a): Consider 
a simplified version of the PAST algorithm [35], which starts 
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at the lowest frequency of 200 MHz, increases the frequency 
by 20% if the current CPU utilization rate (that is, CPU time 
of past period / (CPU + I/O time)) exceeds 70%, and 
decreases the frequency by 60% minus the current utilization 
if the current utilization drops below 50%. For an execution 
with p = 3, PAST stays at the lowest frequency for the first 
three intervals since the utilization after scaling to 200 MHz 
falls between 50% and 70%. At the end of the third interval, 
the utilization exceeds 70%. The frequency is increased to 
266 MHz in the fourth interval, which is executed only when 
the parameter p is divisible by 3. The frequency is further 
increased to 333 MHz for the rest of the execution repeating 
the instructions corresponding to intervals 1−3. 

The frequencies chosen by PAST in this example reveal 
two generic problems inherent in algorithms of its kind. First, 
the chosen frequency for intervals 1–3 is inconsistent with 
the frequency for intervals 5–7 even though the same set of 
instructions and statistics are observed. Second, the choice of 
frequency can only be the same as the previous interval or 
one step from it. As the frequency of the previous interval 
may have no relationship with the optimal frequency of the 
next interval, the frequency change may go in the wrong 
direction (as in interval 5 where the frequency should have 
matched interval 1), or in the right direction but is too subtle 
(compared with interval 4 of Table 1(b) discussed below). 

Table 1(b) shows the same example using an execution 
with p = 3 as an offline training instance for EClass. Here, 
we compute the optimal frequency and classify the utilization 
for each period using the empirically determined energy 
model1 and a clustering algorithm explained in detail in the 
next section. In this example, we assume that EClass has 
been setup to analyze two intervals of runtime statistics at a 
time. We refer to this configuration as a sliding window of 
size w = 2. 

As shown in the last column of Table 1(b), EClass eval-
uates the sequential changes in utilization classification every 
two intervals and produces the following rules: 

(1) Execute the first w intervals (w = 2) at 266 MHz to 
collect more runtime statistics for future intervals. 

(2) After the first w intervals, if the pattern Low, Low is 
matched, EClass predicts that the next interval will fall 
into the “Medium” utilization class. It then sets the 
frequency to 333 MHz (that is, use 333 MHz after 2 con-
secutive intervals of “Low” utilization class). 

(3) If the pattern Low, Medium is matched, EClass 
predicts that the next interval will fall into the “High” 
utilization class. It then sets the frequency to 400 MHz. 

(4) If the pattern Medium, High is matched, EClass 
predicts that the next interval will fall into the “Low” uti-
lization class. It then sets the frequency to 266 MHz. 

(5) If the pattern High, Low is matched, EClass predicts 
that the next interval will fall into the “Low” utilization 
class. It then sets the frequency to 266 MHz. 

                                                           
1 For the purpose of illustration, we assume the following parame-
ters for the energy model from Section IV: Poff = 0.35, C = 1, and m 
= 3. 

In this scenario, EClass addresses the previous two problems 
by defining rules based on the analysis of utilization patterns 
for prior executions and the corresponding optimal freq-
uencies. The choice of frequencies is consistent and optimal 
as per the training instance. We note that this illustrative 
example cannot represent all possible executions in face of 
the many hardware and software variables that affect utiliza-
tion behavior. However, it serves to demonstrate our design 
rationale supported by the experimental results in subsequent 
sections. 

Moreover, as there are nine possible permutations of 
Low, Medium, and High to form a sequence of two, EClass 
can produce four such sequences rather than always exhaust-
ing all possibilities. This reduced amount of space further 
allows the implementation to keep the data structure in the 
memory in the form of a hash function, which provides 
efficient lookup for the runtime prediction phase of EClass. 

3 Models and Algorithm 

3.1 Preliminaries 

In this section, we review the latency model proposed in 
[9]. A task is a sequence of instructions I whose execution 
causes some latency and energy dissipation. The number of 
instructions in I is denoted by |ܫ|. Different types of instruct-
ions may require different numbers of CPU cycles to execute. 
We define CPI as the mean number of CPU cycles required 
per instruction for the execution of I. Frequency is measured 
in hertz (Hz) or cycles per second. To understand the effects 
of CPU frequency changes on latency and energy spending, 
we partition the total execution time t of I into two compo-
nents: on-chip and off-chip, as shown in equation (1). ݐ = ୭୬ݐ 	offݐ	+ (1)

where ton is the on-chip execution time spent within the CPU 
including data dependencies, fetch dependencies, cache/TLB 
hits, and branch prediction, and its value is affected by the 
frequency of the processor; and toff is the off-chip execution 
time spent on non-CPU activities such as memory access due 
to cache/TLB misses, and other components synchronized to 
the bus clock. toff is not affected by the CPU frequency. 
While this breakdown can be inexact for processors that 
support instruction-level parallelism and out-of-order execu-
tions due to the overlapping of ton and toff, the resulting error 
in equation (1) is small relative to memory access latency, 
which is about two orders of magnitude greater than the 
latency typically associated with the execution of a CPU 
instruction [9]. 

As explained in Section 1, DVFS is achieved by writing 
to special processor registers that switch the CPU voltage and 
frequency to one of the supported configurations. The core 
frequency is expressed as a nonzero multiple of the external 
clock frequency (66.667 MHz in our evaluation). For Intel 
XScale processors, the set Z of available multiples is {3, 
4, …, 10, 11} [19]. In other words, eleven distinct core freq-
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uencies are supported on this platform from 200 MHz to 733 
MHz. 

Since toff is unaffected by processor frequency, we may, 
in the model, simply consider the effects of frequency on ton 
and the overall latency in finding the optimal frequency. 
Such latency can be calculated by multiplying the number of 
instructions by the mean number of CPU cycles required per 
instruction, and then dividing the value by the frequency 
used. For instance, let tonmax	be the on-chip latency when the 
processor runs at full speed ݂୫ୟ୶ . Then, ݐ୭୬୫ୟ୶  can be 
computed as (|ܫ|. (ܫܲܥ ݂୫ୟ୶⁄ . The on-chip execution time for 
the instruction sequence I at a reduced frequency ݂ோ can be 
deduced by ݐ୭୬	(݂ோ	, ݂୫ୟ୶	) as follows: 

 
,	(݂ோ	୭୬ݐ  ݂୫ୟ୶	) = .|ܫ| ோ݂ܫܲܥ = 	 tonmax	݂୫ୟ୶݂ோ  = ቀ	/	୭୬୫ୟ୶ݐ ௙ೃ௙ౣ౗౮ቁ, 

(2) 

 

which can be further simplified to 
(݂)୭୬ݐ  = tonmax௙ , where ݂ = ௙ೃ௙ౣ౗౮ (2' )

 

Equation (2) shows that in the model, the on-chip execution 
time varies linearly with the CPU frequency (which agrees 
with other authors such as Burd and Brodersen [7]). 
Substituting ݐ௢௡(݂)	from equation (2' ) into equation (1), we 
obtain 
(݂)ݐ  = 	 tonmax௙ 	+  off, (3)ݐ	

 

which is a parametric equation with parameter f. 
In order to achieve optimal energy efficiency for different 

execution hardware, our frequency computation is adaptive 
to the actual power model of the underlying hardware. Sup-
pose that P is the instantaneous electrical power, typically in 
watts (W). Given the duration of a task execution, the 
corresponding energy consumption can be computed as ܲ ∙ (݂)ݐ . To model energy consumption of frequency-
dependent components explicitly, we also partition P into on-
chip and off-chip components, and hence the system-wide 
energy consumption E for a task T is defined by equation (4), 
which is similar to other studies [20][38]. 
,݂)ܧ  ,୭୬ݐ = (offݐ ሾ ୭ܲ୬ +	 oܲffሿݐ(݂) = ሾ oܲff 	+ ௠ሿ݂ܥ	 ቀtonmax௙  .offቁݐ	+	

(4) 

 

where the terms are described in Table 2: 
 

Table 2. Energy Model Description 

Term Description 
Pon Frequency-dependent power consumed on-chip 
Poff Static power consumed off-chip 
f Processor frequency normalized to 1 at full speed 
t(f) Overall latency 
C Effective switching capacitance per processor clock cycle 
m Dynamic power exponent 

 

In CMOS based processors, power dissipation corres-
ponding to Pon occurs when charging and recharging internal 
capacitors at every gate [11]. It is characterized by C, the 
average switching capacitance per clock cycle, and is expo-
nentially related to f, where the exponent m is between 2 and 
3 depending on the hardware architecture. Without loss of 
generality, we assume m ≥ 2 without fixing its value in sub-
sequent derivations. Poff and C are task-dependent and can be 
determined empirically. We will describe the estimation 
process of these parameters in Section 4. Note that similar 
models are used in [20] and [38], but sometimes Poff is 
further decomposed into two terms, depending on whether 
the components can be put into sleep mode. In our model, we 
do not distinguish these two kinds of components because 
they are not relevant to the basic idea of this paper, which is 
to utilize a classification approach to predict the optimal freq-
uency for the next interval of an execution. 

For given task-specific latency parameters tonmax	and toff, 
we would like to determine the most energy-efficient fre-
quency f, which is referred to as the optimal frequency in this 
paper and denoted by f*. In order to determine f*, let us 
differentiate ܧ(݂, ,୭୬ݐ  :off) in equation (4) with respect to fݐ

݂݀ܧ݀  = 
 ݂݉௠ିଵݐܥoff+(݉ − 1)݂௠ିଶܥtonmax −	 tonmax	௉off௙మ . 

(5) 

 

f* can be computed by setting dE/df to zero and solving 
for f. Depending on the value of m, analytical solutions may 
be found. In our EClass technique, we solve equation (5) 
using the Newton-Cauchy framework [13], which runs 
efficiently with the discrete and limited domain of f. 

Taking the second derivative of ܧ(݂, ,୭୬ݐ  off), we obtainݐ
 ݀ଶ݂݀ܧଶ = 

 ݉(݉ − 1)݂௠ିଶݐܥoff +(݉ − 1)(݉ − 2)݂௠ିଷܥtonmax + ଶtonmax௉off௙య . 
(6) 

 

For m ≥ 2, f > 0, C > 0, tonmax > 0, and toff ≥ 0, the second 
derivative is always nonnegative, which verifies that ܧ(݂, ,୭୬ݐ  is a convex curve and has a minimum value	off)ݐ
when dE/df = 0 

3.2 EClass: Our Framework 

In this section, we present our technique EClass, which is 
a classification-based approach consisting of two phases: off-
line training and runtime prediction. 

3.2.1 Offline Training Phase 

In this phase, EClass collects the execution statistics of 
sample runs of a task. Suppose that there is a set of test cases 
TC. EClass executes every test case t in TC by setting its 
underlying processor at ݂௠௔௫. It results in a set of executions 
R. EClass divides each execution Ri ∈ R into a consecutive 
sequence of intervals, and collects a vector V of performance 
attribute values (such as the amount of memory used and the 
time taken for the interval) at the end of each interval. Let li 
denote the number of intervals for Ri, si,j denote the values of 
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V collected at the end of the j-th interval during the execution 
of Ri, and S denote the set of all such si,j collected. 

In our experiment to be presented in Section 4, we collect 
the set of attributes that are useful for the estimation of ton 

and toff, and are available to the simulator. Note that, in prin-
ciple, there is no restriction on the choice of statistics to be 
collected. 

EClass then divides S into subsets using a partition clus-
tering algorithm, and the optimal frequency for each interval, 
denoted as f*i,j, is computed from each value of si,j based on 
equation (5). The purpose of discretization is to identify 
major changes in utilization. Specifically, we define :	S →2ௌ	\∅ as a classification function that maps each si,j to one of 
the nonempty subsets of S. (In our experiment, we apply the 
Expectation-Maximization (EM) algorithm to implement Γ.) 
We denote ൫ ௜ܵ,௝൯ by ܥ௜,௝ . After applying Γ, EClass trans-
forms each training run Ri = ݎ௜,ଵ, ,௜,ଶݎ … ,  ௜,௟೔ into a series ofݎ

couples ൫ܥ௜,ଵ, ௜݂,ଵ∗ ൯, ൫ܥ௜,ଶ, ௜݂,ଶ∗ ൯, … , ൫ܥ௜,௟೔ , ௜݂,௟೔∗ ൯ . We denote 
the set of such series by R*. 

Table 3 extends the example in Table 1(b) with utilization 
values for three executions with different parameters p after 
the training phase. 

3.2.2 Runtime Prediction 

The prediction phase of EClass is performed online. Similar 
to the training phase, the performance statistics of V are col-
lected at regular intervals. Specifically, for every w intervals 
(where w denotes the size of the sliding window), the optimal 
frequency for the next interval is predicted by comparing the 
statistics collected within the current window period with 
that in R*. 
 
Table 3. Sample Records for Training Runs 

p 

Records in R* Actual 
frequency 

corres-
ponding 

to f*i,j 
(in MHz) 

Intuitive 
meaning 
(in terms 
of CPU 

utilization) 

i 
(execution) 

j 
(interval) 

Si,j 
(e.g., 
CPU 
time) 

Ci,j f*i,j 

3 1 

1 17 C1 0.36 266 Low 
2 16 C1 0.36 266 Low 
3 39 C2 0.45 333 Medium 
4 91 C3 0.55 400 High 
5 17 C1 0.36 266 Low 
6 16 C1 0.36 266 Low 
7 32 C2 0.45 333 Medium 

4 2 
1 18 C1 0.36 266 Low 
2 17 C1 0.36 266 Low 
3 35 C2 0.45 333 Medium 

5 3 
1 19 C1 0.36 266 Low 
2 16 C1 0.36 266 Low 
3 27 C2 0.45 266 Medium 

 
The basic idea is to search for a consecutive subsequence 

Ci,j, Ci,j+1, …, Ci,j+w of Ri matching the actual utilization 
detected in this phase, and then use f*i,j+w+1 as the predicted 
value. If multiple matching subsequences exist, the most pro-
bable frequency is used as the prediction. If two different 

frequencies have the same probability, one of the frequencies 
is chosen arbitrarily. 

Formally, we let C’ = Γ(s’1), Γ(s’2), …, Γ(s’w) = C’1, 
C’2, …, C’w be the sequence of statistics of V collected and 
then classified by Γ during an actual execution. The function 
Φ is defined as 

 Φ൫ܴ௜,௝, ,ᇱܥ ݂൯ = ቄ10 
if	ܥ௜,௝ = ᇱଵܥ ∧ ⋯ ௜,௝ା௪ܥ	∧ = ᇱ௪ܥ ∧ ݂ = ௜݂,௝ା௪ାଵ∗  otherwise

 for	݅ = 1, 2, … , |ܴ|, ݆ = 1, 2, … , ݈௜ − ݓ − 1. 
 

The frequency prediction for C’ is 
 argmax௙෍ ෍ Φ൫ܴ௜,௝, ,ᇱܥ ݂൯௝௜  (7) 
 

If more than one value satisfies equation (7), f is chosen 
arbitrarily from one of such values. 

In the example presented in Table 3, assuming that w = 2, 
the sequences of clustering results for R1, R2, and R3 are C1, 
C1, C2, C3, C1, C1, C2, C1, C1, C2, and C1, C1, C2, 
respectively. Suppose the actual collected statistics C’ = 
Γ(18), Γ(17) = C1, C1. The subsequence exists consecu-
tively in all training runs with two possible frequency predic-
tions f*1,3 = f*1,7 = f*2,3 = 333 and f*3,3 = 266. Because the 
frequency of 333 appears twice in R1 and R2, it maximizes 
the Φ function in equation (7), and is therefore the final 
prediction. If no consecutive subsequence in Ri is found to 
match C’, the frequency is unchanged to avoid the overhead 
of switching frequencies without sufficient justification. (We 
note that, in the absence of a matching subsequence, one may 
employ a hybrid technique such as running PAST. Such a 
strategy can give additional insights on top of EClass). At the 
beginning of the task execution when the interval count is 
less than w, the prediction model simply suggests the most 
frequently occurring frequency for that interval (i.e., the stat-
istics mode). In the running example, the model suggests the 
mode of f*1,1, f*2,1, and f*3,1, which is 266 for the first interval. 

Further optimization. After classifying all the training 
executions, further optimization can be achieved by exploit-
ing the predicted optimal frequencies of a subsequence of 
future intervals (f*i,k, k = j+w+2, j+w+3, ..., li). For instance, 
if the solution of equation (7) is f*i,j+w+2 for most values of i, 
we can use this frequency for an additional interval, thus 
reducing the overhead of solving equation (7) repeatedly. 

Flexibility optimization. To increase the flexibility of 
the implementation of EClass, we include a control parame-
ter α ∈ [0, 1] in the prediction phase. This parameter is an 
intuitive, linear control knob on the execution time, as it 
varies the execution time from the smallest value running at 
the highest frequency (α = 1) to the largest value running at 
the most energy efficient frequency (α = 0). A similar param-
eter has been used in [9] to control the amount of energy 
savings corresponding to a performance loss of roughly (1− 
α) in terms of execution time. 
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From equations (1) and (2), the adjusted execution time 
t(α) is 

(ߙ)ݐ  = ୭୬୫ୟ୶݂ݐ + ୭୤୤ݐ = ߙ ൬ݐ୭୬୫ୟ୶ − ∗୭୬୫ୟ୶݂ݐ ൰ + ∗୭୬୫ୟ୶݂ݐ +  ୭୤୤ݐ
 

Solving for the frequency f that achieves t(α), the frequency 
prediction can be expressed as 
 

 ݂ = ௙∗ఈ(௙∗ିଵ)ାଵ (8) 

3.3 EClass Algorithm 

To summarize the steps in both phases, the proposed 
frequency assignment algorithm EClass is shown as follows: 

 
Algorithm 1. Frequency Assignment Algorithm EClass 

1: Γ, R* ← the cluster algorithm and the training data from the training 
phase  

2: M ← mode(f*1), mode(f*2), …, mode(f*w–1) 
3: C’ ← ∅ 
4: call updateFreq(1) at the first interval 

 
5: procedure updateFreq(k) 
6:     s’ ← collect statistics for the past k intervals 
7:     if k > w then C’ ← C’ \ C’(1) end if 
8:     C’ ← C’ ∪ Γ(s’) 
9:     if k < w then f ← M(k) 
10:     else 
11:         f ← solve equations (7) and (8) for the prediction 
12:         if f = 0 then f ← getProcessorFrequency() end if 
13:     end if 
14:     if f ≠ getProcessorFrequency() then setProcessorFrequency(f) 

end if 
15:     call updateFreq(k+1) at the next interval 
 end procedure 
 

Lines 1−3 initialize the algorithm for a task. In line 2, 
mode(f*i) represents the most frequently occurring value in 
{f*1,i, f*2,i, …}. The procedure in line 5 is called at regular 
intervals. Runtime statistics are collected in lines 6–8 for the 
sliding window of w intervals. Due to possible frequency 
changes, the intervals are defined by cycles rather than by 
time. In line 9, if the length of C’ is insufficient for predic-
tion, the mode value corresponding to the interval count is re-
turned as the target frequency. The oldest statistics are shifted 
out at every call since only w sets of statistics are required by 
the model to make a frequency prediction. Lines 9−12 utilize 
the prediction model as described in the previous subsection. 
As explained earlier, a hash function is used to efficiently 
lookup the predicted frequency in this step. We first convert 
C’ into a string with each classification represented by an 
ASCII character. For instance, the characters A–C represent 
classifications C1–C3 in Table 3. The string “ABBC” thus 
represents the sequence C1, C2, C2, C3. We then use this 
string representation as the hash key to look up the desired 
frequency already mapped during the training phase. Line 14 
updates the processor frequency if necessary. Note that the 
retrieval and setting of the current processor frequency to f 
are denoted by getProcessorFrequency and 
setProcessorFrequency(f), respectively. 

4 Evaluation 

4.1 Research Questions 

In this section, we aim to answer three research questions 
to validate EClass. 

 

RQ1: Does EClass save more energy than existing 
techniques? 

RQ2: To what extent may EClass compete with existing 
techniques without extensive training? 

RQ3: To what extent can EClass be efficient and 
flexible in the tradeoff between performance and energy 
savings? 

4.2 Experimental Setup 

To accurately measure energy consumption, we adopted 
XEEMU [17], a cycle-accurate power simulator that simu-
lates executions of C programs on XScale processors. 
According to [17], the simulator achieves accurate energy 
consumption estimation to within 1.6% error on average 
compared with real hardware. One of the major advantages 
of using an accurate simulator rather than physical hardware 
is that it improves the reproducibility of the experimental 
results and facilitates fair comparisons with future research 
efforts. The frequency assignment algorithms are implement-
ed in Java, and executed once for each test case over a dedi-
cated instance of the simulator so that the statistics of each 
simulation correspond entirely and specifically to the execu-
tion of the test case. 

We extracted three types of performance attribute values 
V from the XEEMU simulator as parameters to our energy 
and prediction models: sim_cycle_*, sim_memory_dep, and 
sim_diss_*. First of all, sim_cycle_* is the total simulation 
time in cycles per frequency. As explained before, the simu-
lation time depends on frequency; this counter is an obvious 
choice to indicate the end of each interval for all algorithms 
in terms of the number of elapsed cycles. sim_memory_dep 
is the total number of stall cycles caused solely by the 
memory, which matches the definition of toff in equation (1). 
Similar events related to data stalls were used in other studies 
[11] and were shown to be effective for the estimation of on-
chip and off-chip duration and power consumption. 
sim_diss_* constitutes the basis of comparison between the 
algorithms. It is the total power dissipation per frequency (in 
watts), including power consumed by the processor and the 
memory. The reading represents the total power (Poff + Pon) 
in equation (4). We have reconfirmed our understanding of 
this counter by observing that the total energy consumption 
reported by the simulator always matches the sum of the 
values of sim_diss_* multiplied by sim_cycle_*. 

We modified the source code of the simulator so that it 
would pause at the end of each interval, output the running 
values of the first two statistics, and await new frequency set-
tings (if any). In the training phase, f*i,j is computed by solv-
ing equation (5) with m = 3 using the roots function in 
MATLAB. Note that the authors of [7][29][38][39] also 
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assumed cubic power models. If the computed solution lies 
between two frequencies supported by XEEMU, the more 
energy-efficient of the two (according to equation (4)) is 
used. We note that further energy savings may be achieved 
by running each frequency for part of the duration of the 
interval [29], but we have adopted the simpler approach to 
avoid additional overhead. The classification function Γ is 
initialized in the Expectation Maximization (EM) algorithm 
with automatic selection of the number of clusters n using 
cross-validation. The primary advantage of our choice of im-
plementation over other clustering algorithms is that it is 
well-established with a strong statistical basis, runs in linear 
time with respect to input size, and converges fast [12]. 
Clustering and classification is done using the EM clustering 
algorithm provided in Weka [36]. 

4.3 Task-Specific Parameters 

As discussed in the previous subsection, the statistics 
sim_diss_* represents Poff + Pon in equation (4), but in order 
to solve equation (5) in the training phase, the task-specific 
parameters Poff and C must be determined. Because there are 
no performance monitors in our test bed that can map indivi-
dually to these parameters, we need to estimate their values 
for all frequencies using the energy consumption statistics 
and execution times collected from training runs. For each 
task, suppose n test cases of the task are executed at q 
different supported speeds f1, f2, …, fq. We obtain the follow-
ing n×q (≥ 2) equations by expanding equation (4): 

௜,௙ܧ  = ௜,௙ݐ ୭ܲ୤୤ + ݅ ,௠݂ܥ௜,௙ݐ = 1, 2, … , ݊	and ݂ ∈ { ଵ݂, ଶ݂, … , ௤݂} 
 

where Ei,f is the energy consumption of the i-th instance at 
frequency f, and ti,f is the total time spent for that execution. 
These equations can be rewritten in matrix form: 
ݔܣ  = ܾ (9) 
 

where A ∈ ℝ௡௤×ଶ, x ∈ ℝଶ, and b ∈ ℝ௡௤, thus: 
 

ۈۉ
ۇۈۈۈ
ଵ,ଵݐ ଵ,ଵݐ ଵ݂௠⋮ ଵ,௤ݐ⋮ ଵ,௤ݐ ௤݂௠⋮ ௡,ଵݐ⋮ ௡,ଵݐ ଵ݂௠⋮ ௡,௤ݐ⋮ ௡,௤ݐ ௤݂௠ۋی

ቀۊۋۋۋ oܲffܥ ቁ =
ۈۉ
ۇۈۈۈ
ۋی௡,௤ܧ⋮௡,ଵܧ⋮ଵ,௤ܧ⋮ଵ,ଵܧ

 ( '9) ۊۋۋۋ

 

This system of equations is over-determined because there 
are nq equations with only two unknowns. Although it is 
very likely that there is no distinct vector x that will satisfy 
all of the equations, it is possible to find x that minimizes 
error (‖ܺܣ −  by rewriting equation (9) as follows (after (‖ܤ
[3]): 
ݔ  =  (10) ்ܾܣଵି(ܣ்ܣ)
 

It is not efficient to solve for Ax = b using equation (10), but 
we note that its solution is equivalent to fitting linear regres-

sion models in the form Ax = b for different frequencies in 
equation (9' ) while minimizing the least square errors. As a 
result, we used the matrix left division function in MATLAB 
to solve for x = (Poff, C) in our implementation, which 
computes the least squares solution using an efficient QR 
decomposition algorithm. 

4.4 Peer Techniques for Comparison 

To evaluate the effectiveness of EClass in conserving 
energy, we have faithfully implemented in Java the algo-
rithms PAST [35] and Online [14]. For ease of reproducing 
our results, we also report on the specific parameters used by 
these two algorithms. In the implementation of PAST, we 
defined CPU utilization as u, and excess as on-chip time × 
(1 − f ). Following the frequency adjustment parameters in 
[35], f is set to 1 if excess > off-chip time, increased by 20% 
if u > 70%, and decreased by 60% − u if u < 50%. f is map-
ped to the supported frequencies as described above. In the 
implementation of Online, the penalty for data cache miss 
(PEN) is set to two cycles since any higher value causes 
negative μ values in the algorithm presented in [14]. The 
frequency adjustment interval for both algorithms is set to 
match the original literature (10 ms) to facilitate realistic 
comparison. 

In our proposed algorithm EClass, the interval is cycle-
based. As our simulator is for XScale processors, we arbitra-
rily set the interval length to one million cycles and w = 4 for 
the size of the sliding window in the prediction model. We 
have conducted initial trials to observe the effect of setting 
different values of the interval length, and observed that 
different tasks and execution cases may favor shorter or 
longer intervals, but there is no definite advantage of one 
over another. We note that the effects of interval lengths and 
window sizes may be affected by the actual implementation. 
For instance, the interval length may be set as a multiple of 
the scheduler quantum if the technique is implemented in the 
OS kernel. Such effects may deserve further investigation in 
a separate study. In any case, the choice of one million cycles 
can draw meaningful comparisons in our experiment because 
f* is found consistently to be one of the three lowest 
available frequencies for the test cases of all subjects with 
different interval lengths. The overheads resulting from 
window sizes will be discussed in Section 4.8. 

To evaluate the effectiveness of the computed f* in 
EClass, we also included the results for running each training 
at f* for all intervals (denoted by Target), and a hypothetical 
Random algorithm, which is identical to EClass except that it 
assigns one of the supported frequencies randomly instead of 
using the computed f* in line 11 of Algorithm 1. 

Because merely selecting a frequency randomly may al-
ready have energy saving effect, Random does not only select 
an available frequency randomly. As described above, it 
reuses the implementation of EClass and merely nullifies the 
effect of the computed frequency by randomly reporting one 
of the available frequencies. This technique can serve as the 
lower bound of whether a classification approach (rather than 
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the implementation) may have any effect in achieving energy 
savings. In particular, the difference in energy savings bet-
ween EClass and Random can be used to quantify the net 
effect gained by our effective classification approach. 

Target can be useful in rerunning test cases on the same 
program. In such circumstances, the statistics profile can be 
reused for the reruns of the test cases. 

4.5 Subject Applications 

Three subject applications are selected from the CSiBE 
benchmark environment [15]: minigzip (version zlib 1.1.4), 
djpeg (6b), and jikespg (1.3). The scale of our experiment is 
comparable to those in some of the previous publications 
[2][14][21], which are evaluated on 2 to 4 related subjects 
under various configurations. While both synthetic bench-
marks [2] and real-life inputs (such as 8 movie fragments of 
roughly 20 s each in [21]) are used in these evaluations, we 
have opted to use real-life inputs to ensure the applicability 
of our results, and repeated each experiment with a con-
siderable input size (e.g., 1000+ files for minigzip) that can 
be completed in reasonable time. The subject applications 
have been tested to run properly in the XEEMU simulator 
[17], and have varying computation and I/O intensity so that 
the algorithms can be put under a fair comparison with 
different patterns of CPU utilization. The applications are 
written in standard C and are compiled for XEEMU using the 
Wasabi cross compiler tool chain [34] with optimization 
option –O3. minigzip (with 5576 lines of code2) is mostly 
memory-dominant, but its execution is nonetheless affected 
by the compressibility of the input. In our experiment, we 
found that moderately compressible input resulted in maxi-
mum latency with respect to the input size. On the other hand, 
djpeg (with 19500 lines of code), is a computation-intensive 
JPEG decompressor that utilizes many shift operations. 
jikespg (with 18064 lines of code) is a parser generator for 
the Jikes compiler that contains both computation and 
memory-dominant regions [17]. 

4.6 Procedures and Test Cases 

In the experiment, minigzip was used to compress plain 
text, images, and binary files in order to provide varying de-
grees of compressibility. djpeg was used to decompress 
JPEG images into PBMPLUS format in the experiment 
(which is also its typical use). jikespg was used to process 
the language grammar files for the Java language versions 
1.4 and 1.5. We have verified that these input files work 
properly with the application, and are publicly available on 
the Internet. 

To enhance the applicability of the experimental results 
so that they are relevant to real-life setting, documents and 
images were downloaded from the ten most popular websites 
on the Internet [26]. There are a total of 1016 test files (over 
100 Mb) for minigzip, 806 test files (3.88 Mb) for djpeg, 

                                                           
2 Counted using CLOC [10] for the C programming language 
excluding blank and comment lines 

and 5 Java language grammar files for jikespg. We chose 
this set of test cases with the belief that they can simulate dif-
ferent utilization patterns while the entire experiment can be 
completed in reasonable time. 

To answer RQ1, we ran EClass with the full set of test 
cases as training data, and then used the same set of test cases 
for the prediction phase and other peer techniques. We 
applied the same setting to TARGET and Random. Neither 
PAST nor Online requires any training phase. Hence, we 
simply applied the same test suite to them. 

For RQ2, to analyze the reliability of our approach to the 
training phase, EClass was executed first with the full set of 
test cases as training data, and then the same set of test cases 
was used for the prediction phase. We set the control 
parameter α = 1.0 to compare the techniques in terms of 
energy savings. We also applied the same set of test cases to 
every other technique. 

We then repeated the experiment by randomly selecting 
10% of the test cases (with a minimum of 2) for the training 
phase, and applied the remaining 90% of the test cases in the 
prediction phase. To facilitate comparison, α is unchanged 
and stays at 1.0. We also applied the same set of test cases 
(that is, the remaining 90%) to every other technique. 

To answer RQ3, we measured the hardware access time, 
predicted fetch time, and energy consumption, as well as the 
actual number of predictions generated for the sequential 
matching of utilization classes, which represented the storage 
and runtime overhead of the prediction phase of EClass. For 
the flexibility of performance tuning, we evaluate α in the 10% 
training / 90% testing experiment. We set α to 0, 0.5, and 1 
in separate parts of the experiment, and evaluate its effects 
against the cumulative execution time as each experiment 
progresses. 

4.7 Effectiveness Metrics 

In the subsequent discussion, we evaluate the algorithms 
in terms of the mean energy consumption of all test cases to 
determine their effectiveness. The energy needed to compute 
the optimized frequency values for the algorithms (except for 
the training phase) are also discussed. The results are pre-
sented in normalized values such that 100% represents the 
consumption of the EClass algorithm. 

4.8 Experimental Results and Discussions 

In this section, we analyze the data and answer each re-
search question. We first report the energy savings achieved 
by EClass: In our experiment, when compared with full 
speed executions without DVFS optimization, EClass still 
achieves 68.1%, 55.8%, and 55.2% energy savings for 
minigzip, djpeg, and jikespg respectively. As expected, 
more energy is saved running minigzip than djpeg because 
of the memory dominant property of minigzip. 

RQ1. Does EClass save more energy than existing 
techniques? Figure 1 shows the mean energy consumption of 
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each application running the algorithms using all the test 
cases for both training and testing. 

Compared with Online, EClass is able to achieve 9.1% 
more energy savings on average with a maximum of 12.2% 
for djpeg. In all cases, EClass outperforms Online. We find 
that the results on Target are 99.2%, 100.0%, and 102.2% of 
that of EClass, respectively. The results of both EClass and 
Target show that they can be encouraging alternatives to 
Online. 

As for jikespg, PAST is significantly less energy efficient 
than all other algorithms. In fact, we find that PAST executed 
jikespg at full speed most of the time. It shows that the 
heuristics used in PAST has an obvious limitation to a 
subclass of applications represented by jikespg. 

Moreover, we measure the difference in energy consump-
tion between EClass and Random, as indicated by the bar in 
the middle of each group. The normalized savings are 60.4%, 
40.5%, and 46.2%, respectively. The results show that the 
classification does have predictive ability to conserve energy. 
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normalized to 100% of EClass 

 
To understand the situation better, we examined the 

source code of the subjects and the data obtained from the 
experiment. For a memory dominant application such as 
minigzip, the optimal strategy to conserve energy may be to 
simply stay at the lowest frequencies. For the case of Online, 
once the current frequency is set to such a value, simply 
reusing the current frequency for the next interval may 
already suffice to produce good savings. On the other hand, if 
the average utilization is higher or more vibrant, the result on 
djpeg shows that it becomes more important to explore utili-
zation patterns and adjust the frequency adaptively. 

When compared with the algorithm Target, EClass per-
forms extremely close to the behavior as if f* was executed 
in all the intervals for all test cases. It shows that even if 
more precise information can be available, the resulting 
energy savings may not be significantly more than that alrea-
dy achievable by EClass. Target, on the other hand, is sim-
pler in implementation for its training phase, and its result is 

more predictable than EClass despite the requirement to run 
every test case once in the training phase. 

An interesting observation is that Random consumes less 
energy that PAST for both minigzip and jikespg. Such an 
observation reinforces our intuition that statistics based on 
the most recent history may not be an ideal energy conserva-
tion predictor of future utilization needs. 

Table 4 summarizes the mean and standard deviation 
values in terms of energy consumed. We find that EClass and 
Target are the best two techniques in terms of either measure. 
In essence, we attempt to predict the optimal frequency for 
an execution. Such a prediction cannot be precise. Let us use 
the standard deviation values as a rough measure of the accu-
racy achieved by a technique. Comparing the standard 
deviations achieved between Random and EClass shows that 
the accuracy achieved by EClass improves over that of 
Random by 39.0%, 20.1%, and 24.2%, respectively. In fact, 
as shown in the table, EClass can be almost as accurate as 
Target on average. The performance of PAST appears to be 
the least accurate because its achieved values are larger than 
the ones achieved by Random. It reconciles the intuition that 
we have discussed in the paragraph above. 

Table 4. Energy Consumption Summary for 100% Training 
 Target Random PAST Online EClass 

minigzip
Mean (J) 0.0112 0.0180 0.0186 0.0121 0.0112 

Std. Deviation 0.0025 0.0041 0.0057 0.0026 0.0025 
djpeg

Mean (J) 0.0022 0.0029 0.0036 0.0023 0.0022 
Std. Deviation 0.0161 0.0214 0.0313 0.0174 0.0171 

jikespg
Mean (J) 0.2483 0.3272 0.5210 0.2664 0.2408 

Std. Deviation 0.1610 0.2076 0.3240 0.1695 0.1574 

 
We note that there are instances where EClass slightly 

outperforms Target in terms of energy savings. We have in-
vestigated the causes. We conjecture that this is potentially 
caused by the estimation step in equation (9), resulting in 
suboptimal predictions for certain test cases. Another poten-
tial cause is that the original execution is slightly perturbed 
by the insertion of frequency switching instructions missing 
from the training runs. 

In conclusion, EClass saved the most energy for all three 
applications compared with the other algorithms studied, and 
Target is slightly more accurate. 

RQ2. To what extent may EClass compete with existing 
techniques without extensive training? Figure 2 shows the 
energy consumption in box and whisker plots for each of the 
algorithms. To make the plots more compact, we use T for 
Target, R for Random, PT for PAST, O for Online, and E for 
EClass. The results are presented with the median values 
marked by the (red) line in the middle of each box, and the 
whiskers extending to 1.5 times the inter-quartile range from 
the ends of each box. Like the observation on Figure 1, 
EClass and Target exhibit highly similar mean and median 
values. 
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Figure 3 shows the box and whisker plots for the case 
where only 10% of the test cases (with a minimum of 2) are 
used for training and the rest for the testing phase. 

We note that although the chosen test cases should only 
affect Target and EClass, we show the results in Figure 3 
using the same subset of test cases for all algorithms (exclud-
ing the 10% training cases) to ensure a fair comparison. This 
explains why Figures 2 and 3 are not identical even for 
Random, PAST, and Online. 

We observe that the results in Figure 3 appear very 
similar to those in Figure 2 in terms of the shape of the bars. 
For each test execution, we also plot the normalized energy 
consumption when using 10% of the test cases for training 
against that when using 100%. The results are shown in 
Figure 4. We find that the results have a linear relationship 

with both the slope and coefficient of determination (R2) 
close to 1 for each subject. This means that, with only 10% 
training, EClass is able to achieve energy savings similar to 
that of 100% training. 

Another insight gained from this observation is that even 
though EClass can be easily augmented by a feedback mec-
hanism to learn new utilization patterns online, such mechan-
ism may not bring much improvement as far as the experi-
ment is concerned because the results of using 10% of test 
cases for training is already very comparable to that of using 
100% of test cases for training. 

In general, EClass and Target result in smaller inter-
quartile ranges for energy consumption, and therefore gener-
ate energy savings more consistently. EClass also achieve the 
lowest median values for all three applications. Both EClass 
 

   

(a) minigzip (b) djpeg (c) jikespg 

Figure 2. Energy consumptions on subject programs (with 100% training and 100% testing) 

 
(a) minigzip (b) djpeg (c) jikespg 

Figure 3. Energy consumptions on subject programs (with 10% training and 90% testing) 
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Figure 4. Effect of EClass training on subject programs 
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and Target compete well with existing techniques without 
extensive training. 

RQ3. To what extent can EClass be efficient and 
flexible in the tradeoff between performance and energy 
savings? To answer this question, we evaluate the overheads 
related to accessing the Performance Monitoring Unit (PMU) 
to gather online statistics, and the time required to fetch the 
frequency prediction from the hash function implementation. 

The time to access the PMU via read/write is less than 1 
μs [9], which can be safely ignored as our prediction interval 
is in the order of milliseconds. In our experimental setup, 
timing statistics such as toff can be obtained directly from the 
PMU. We note that if such statistics on another hardware 
platform require non-trivial computations from multiple 
PMU values, additional overheads will be introduced in the 
training (offline) and prediction (online) phases. In this re-
gard, the complexity of the proposed technique may depend 
on the availability of PMU counters, while its effectiveness 
depends on the accuracy of the collected or computed timing 
statistics. Using XEEMU in our experiment with a hash table 
containing 7300 predictions and w = 4 (see minigzip in 
Table 5), the measured runtime overhead ranges from 89 to 
196 μs depending on the CPU frequency, which translates 
into 3.9% to 6.5% per interval of one million cycles. In terms 
of energy, the average overhead per prediction fetch ranges 
from 0.0207 to 0.0589 mJ, depending on the frequency. This 
translates into a range from 0.01% overhead for djpeg with 
an average of 4.2 fetches per execution, to 0.15% for 
minigzip with an average of 25.4 fetches per execution. 

The α value for performance fine-tuning is evaluated in 
the 10% training / 90% testing part of the experiment. Figure 
5 shows the effects of α on the three subject applications. 
When α is set to 1, the subject applications are always 
executed at maximum frequency resulting in the least cumu-
lative execution times. When α is set to 0, on the other hand, 
the most energy-efficient frequency is used and the execution 
time accumulates the fastest when compared with other 
values of α. When α is set to 0.5, the cumulative execution 
time always stays roughly midway in between the lines 
where α = 0 and α = 1 for all three applications. This means 
that the control parameter α introduced in EClass controls 
the tradeoff linearly between performance and energy 
savings with respect to execution time. 

The prediction model in EClass can become ineffective if 
the size w of the sliding window is too small. It may be ne-
cessary to increase the window size for certain applications 
but there is also an overhead of the order of O(zw) involving 
the storage of the prediction model, where z is the number of 
clusters in the training phase and w is the window size. 

Table 5 shows the number of clusters generated by the 
EM algorithm and the number of distinct predictions for each 
application when 100% of the test cases are used for training. 
Although the maximum (and theoretical) number of predic-
tions can be substantial, the actual number of predictions in 
practice ranges from 2.3% to 11.1% of the theoretical maxi-
mum. (We also note that it is possible to limit the number of 

clusters generated further by the EM algorithm.) Suppose 
that each prediction value on average takes 10 bytes, which 
include the storage required for the data and indexes. The 
amount of memory used is no more than 73 Kbytes. 
 

Table 5. Clusters and Prediction Overhead 

Application |S| z 
Theoretical # 
of Predictions 

Actual # of 
Predictions 

minigzip 40940 16 164 = 65536 7300 
djpeg 3920 8 84 = 4096 103 
jikespg 2663 15 154 = 50625 1162 

 

(a) minigzip 

(b) djpeg 

(c) jikespg 

Figure 5. Effects of α 
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In summary, EClass can be implemented with little 
runtime and energy overheads, and allows a flexible tradeoff 
between performance and energy savings. 

4.9 Threats to Validity 

In this study, we experimented with C programs from the 
CSiBE benchmark with test cases obtained from the public 
domain. Despite our efforts in choosing applications with dif-
ferent I/O and computation intensity, and conducting realistic 
evaluations on real-life applications and test cases, these app-
lications may not represent a full variety of possible program 
execution patterns. The experimental results may differ if the 
frequency assignment interval is changed, although many 
interval-based algorithms operate in fixed periods. It is 
always preferable to include more subjects in an experiment. 
To strike a balance between our effort and the scale of the 
experiment (which is already comparable to existing work 
[2][14] [21]), we settle for the scale reported in this paper. 

Another factor that may affect our results is the platform-
dependent parameters such as those in the energy model. For 
instance, if the off-chip energy consumption is unreasonably 
high on a hardware platform, the difference between DVFS 
techniques may become minimal because the on-chip energy 
consumption is relatively small. Our customization of 
XEEMU may also introduce faults into the simulator, even 
though we have spent our best effort to validate our experi-
mental results and related published results. 

We analyze the results through the energy savings 
achieved by individual techniques as reported by the simula-
tor. Using other simulators or metrics such as the temperature 
of the hardware may produce different results. 
 

5 Related Work 

Previous research tried to reduce energy consumption of 
different system components such as memory and wireless 
networking components by exploiting the low-power modes 
or execution behavior of these components [18][25][27][33] 
[37]. In many computing systems, however, CPU is still the 
most important core component and the primary power con-
sumer among components with multiple power operation 
modes. Previous research in cluster-wide power management 
also focuses on task scheduling over DVFS-capable proces-
sors [6]. 

Chen and Kuo [8] summarized numerous research results 
on DVS platforms for real-time systems in a survey paper. 
They categorized the techniques by the types of real-time 
jobs, scheduling, and processor architectures; the methodol-
ogy to extract slack time for energy savings; the scope of 
energy consuming components considered and options availa-
ble to reduce energy; the available information of workload 
characteristics; and the optimization objectives involved. The 
literature reviewed included analytical studies conducted 
earlier, optimal algorithms that run in exponential time, and 
heuristics algorithms that run in polynomial time with approx-
imation bounds. Among the heuristics algorithms reviewed, 

none of them was reported to utilize machine learning as the 
primary technique. Thus, we believe that machine learning is 
a novel extension to the study of energy-efficient task execu-
tions. 

Borrowing the terminology from software testing, existing 
approaches can be classified as “black-box” or “white-box”. 
Black-box approaches rely on different runtime statistics to 
predict future execution behavior, and are oblivious to pro-
gram structure. Although these techniques may not accurately 
predict changes in CPU utilization, they are usually praised 
for their ease of implementation and wide applicability. On 
the other hand, white-box approaches rely on the knowledge 
of program structure or implementation details. Program 
phases are identified using source code analysis or knowledge 
of execution behavior, and are used to assist frequency assign-
ment. Despite these requirements, white-box techniques are 
usually more fine-grained and perform better for the 
corresponding tasks. 

Recent research in the area of energy conservation of 
computing devices focus on high-level aspects such as opti-
mizing computing resources in a cloud by consolidating the 
tasks onto the minimum number of servers [30]. Another 
recent track of publications tackles the problem in specific 
domains such as data-flow applications [2], real-time systems 
[39], and services with well-defined energy and delay cost 
functions [1]. Little breakthrough has been achieved for 
energy conservation of computing tasks in a more general 
context. 

Energy-aware task scheduling in real-time embedded 
systems has also generated much attention in the past decade. 
Research in real-time systems usually incorporates other di-
mensions such as task completion deadlines [20] and relia-
bility [38]. 

5.1 Black-Box Approaches 

Classic examples of black-box frequency scheduling algo-
rithms are the PAST algorithm proposed by Weiser et al. [35] 
and its closely-related variant AVGN. The algorithms check at 
predetermined intervals the number of busy and idle CPU 
cycles, and assume that the CPU will behave similarly in the 
next interval. They differ in the sense that AVGN computes the 
exponential moving average of the previous N intervals with 
decay, whereas PAST simply considers the current interval. 

Grunwald et al. [16] evaluated these algorithms with three 
frequency switching policies: one, double, and peg. When uti-
lization exceeds or falls below predefined thresholds, one in-
crements or decrements frequency by one step; double tries to 
double or halve the frequency; and peg sets the frequency to 
the highest or lowest value. Experiments were conducted on 
four subject applications, but even the best heuristic policy 
(PAST + peg) could not achieve the best possible scheduling 
deduced manually by the authors. 

Choi et al. [9] examined the average CPU cycles and 
memory cycles per instruction computed from event counters 
in the Performance Monitoring Unit (PMU) on the processor. 
The ratio is used to estimate the optimal frequency for an in-
terval taking into account a user-defined performance loss 



14 

constraint. Similar to PAST, this technique relies on historical 
runtime statistics, but utilizes a better frequency switching 
heuristic than PAST. 

Alimonda et al. [2] focused their attention on data-flow 
applications assuming the multiprocessor systems-on-chip 
(MPSoC) architecture. This architecture allows frequency and 
voltage selection in several cores. Assuming the knowledge of 
the queuing pipeline such as the throughput gain of the input 
and output queues, their approach monitors the buffer occu-
pancy and makes frequency adjustments if it is below or 
above the desirable value in a nonlinear feedback loop. 

In another recent study, Dhiman and Rosing [14] 
developed an interval-based technique based on the statistics 
collected from a PMU capable of monitoring four hardware 
events at a time. They found that the “number of instructions 
executed” (INST), “data cache misses” (DCACHE), “cycles 
instruction cache could not deliver instruction” (ICACHE), 
and “cycles processor is stalled due to data dependency” 
(STALL) to be indicative of task characteristics. Runtime 
statistics are passed to an online learning algorithm in which 
each working voltage / frequency pair is related to an “expert” 
with a probability factor influenced by the statistics. At every 
interval, the algorithm updates the factors and chooses the 
expert (and the related voltage/frequency) with the highest 
probability. While this technique also relies on historical data 
from earlier intervals, it uses different statistics counters and 
frequency assignment policies based on online learning. Our 
approach is similar in that we also make use of runtime 
statistics, but instead of directly predicting the near future, we 
compare all the executions in a training period to identify the 
past and the most probable future utilization pattern. 

Liu et al. [23] considered energy-aware task scheduling 
for a special type of real-time embedded system with an 
energy harvesting module and an energy storage module. 
Their approach considers the Maximum Power Point (MPP) 
and overhead in charging and discharging the battery, and 
tries to minimize the system-wide energy cost and make better 
frequency assignments and charging decisions under different 
battery and workload conditions. Built on top of AS-DVFS 
task scheduling, their algorithm estimates the overall cost 
when the harvested energy is more than required according to 
a pre-determined energy model. Depending on the lowest cost, 
it will choose one of the following actions: store the addi-
tional harvested energy provided that the battery is not fully 
charged, speed up to the supported frequency immediately 
lower than the real-valued frequency (݂′) that utilizes the 
extra energy, or speed up to the supported frequency 
immediately higher than ݂′. 

Rizvandi et al. [29] approached the problem of slack recla-
mation for real-time tasks analytically using an optimal com-
bination of frequencies supported by the processor. They 
proved that optimal energy consumption can be achieved by 
at most two discrete, adjacent supported frequencies given 
that the relationship between frequency and energy is convex, 
and that power is positively correlated to voltage and fre-
quency. Their algorithm first computes the ideal real-valued 
frequency (fideal) by using all available slacks based on the task 

deadline. If the relationship between frequency and energy is 
convex, the task is simply executed at the supported frequen-
cies immediately lower and higher than fideal for computed 
durations. Otherwise, the supported set of frequencies is 
divided into two subsets: frequencies lower than fideal and 
those higher than fideal. The algorithm then searches for the 
two frequencies (one from each set) that combine to achieve 
the lowest energy consumption. 

5.2 White-Box Approaches 

Tiwari et al. [32] was the first to conduct power analysis on 
assembly code. Electrical current was measured when running 
each type of assembly instructions in infinite loops. Assembly 
programs were divided into basic blocks, where energy con-
sumption was estimated per instruction type within each block. 
Block-estimates were multiplied by the number of times each 
block was executed, and penalty for cache misses was added 
into the final overall estimate. They also studied the circuit 
state overhead when executing a pair of instructions costs 
more than the sum of executing the same instructions indivi-
dually. Although the analysis by Tiwari et al. focused on low-
level assembly code, their framework has been extended to 
higher level software components for energy optimization. 

Liu et al. [24] patched an existing Linux kernel to allow 
application programmers to adjust processor speed from 
inside the program according to specific needs of individual 
applications. They defined three application-independent 
steps (estimate demand, estimate availability, and determine 
speed) and utilized the power management architecture on va-
rious applications: an MPEG decoder, a videoconferencing 
tool, a word processor, a web browser, and a batch compila-
tion task. Programmers can access and define a preprocess 
frequency schedule through new system calls introduced by 
the kernel patches and new modules. The kernel scheduler 
will set the processor frequency accordingly when a managed 
task becomes active upon context switching. This technique 
has high flexibility because it allows different types of appli-
cations to take advantage of their own power saving oppor-
tunities. However it involves program modification and re-
compilation, which require expert knowledge and perhaps re-
testing of the affected modules. 

Another class of algorithms exploits the tradeoff between 
the quality of service/solution (QoS) and performance/energy 
by perturbing the computation. Baek and Chilimbi [4] 
developed a framework to improve performance and conserve 
energy for programs that can make use of approximations of 
expensive functions or loops such as the estimation of π. The 
framework requires that the programmer provide a function 
that computes QoS metrics given training function inputs or 
loop iteration counts. Approximation is carried out by running 
“light” versions of the expensive functions or fewer loop 
iterations based on QoS requirements and the computed 
metrics on QoS loss. To adapt to runtime performance 
variations, the framework also includes a recalibration 
mechanism to correct for deviations observed during 
executions. For programs suitable for controlled approxima-
tion, the performance improvements and energy savings of 
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this technique can be substantially greater than other tech-
niques discussed, as executions can be terminated prematurely 
depending on the QoS requirements. Our approach is different 
from the white-box approaches described above. First, it is a 
black-box technique and is independent of the underlying 
programming language. Second, our approach does not alter 
execution paths or program output, nor does it require expert 
customization of program executions. 

6 Conclusion and Future Work 

Energy efficiency is an important issue in many areas of 
computing. In this paper, we have presented a framework for 
an energy-aware frequency assignment algorithm for DVFS 
processors. It distinguishes program phases during training 
executions and utilizes such information to make online fre-
quency assignment decisions efficiently. We have presented 
an algorithm known as EClass. It samples intervals of execu-
tions and computes optimized frequencies for these intervals, 
followed by clustering the intervals into groups. During an 
online execution, EClass monitors the runtime statistics for 
the execution of an interval and uses a lookup approach to 
identify the best matched optimized frequency for the up-
coming interval of the execution. 

An EClass algorithm was implemented in Java and was 
evaluated against two existing algorithms on a cycle-accurate 
power simulator using three real-life applications. Results 
show that the proposed algorithm can, on average, save 9.1% 
more energy than another black-box algorithm based on 
online learning. Although our algorithm is general, the pre-
sence of a training phase requires some efforts prior to using 
the algorithm on the fly. An adapted algorithm Target is spe-
cifically customized for optimizing executions of the same 
test case. 

A particular contribution of this paper is that according to 
experimental results, although classification can be much less 
efficient (and hence requiring more energy) than simply 
setting a value as in Online, the cost can be well compensated. 
The results show that energy-awareness research can benefit 
from advanced algorithms. 

In the future, we will investigate whether the window size 
and checking interval can be automatically deduced and opti-
mized for a task. Previous work [28] has shown that program 
phases are more pronounced with shorter intervals. Finer 
granularity may improve the result of our technique provided 
that the overhead associated with traditional DVFS can be 
overcome. We are also eager to extend the technique to 
multi-threaded, multi-core, and virtualized environments. 
One of the major challenges is to model the aggregated 
execution behavior of threads running simultaneously on 
cores that share common resources such as L2 cache. Recent 
research on execution time over multi-core systems (such as 
[31]) usually requires detailed analysis of the hardware to 
achieve accurate runtime predictions. While accuracy is 
important in areas such as Worst-Case Execution Time 
(WCET) analysis, approximations may be sufficient for the 
purpose of energy-efficiency. A promising approach is to 
extend the training phase of our technique to estimate the 

aggregated execution behavior of various tasks with different 
utilization patterns. We also believe that cross-platform 
training can be interesting, albeit challenging.   

Our work and its experience have not considered the 
influences of power-saving features of existing operating sys-
tems and different hardware architectures. A future extension 
on this direction is useful. Moreover, the number of perfor-
mance parameters provided by an operating system is much 
richer than what we have used in our experiment. It will be 
interesting to develop a generic methodology to select a good 
combination so that our work can be automatically tailored 
for in a specific computing environment.  
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