
1

Postprint of article in Journal of Systems and Software 85 (4): 960–973 (2012)

EClass: an execution classification approach to improving
the energy-efficiency of software via machine learning *

Edward Y.Y. Kan a, W.K. Chan b
,†, T.H. Tse a

a Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong
b Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong

A B S T R A C T
Energy efficiency at the software level has gained much attention in
the past decade. This paper presents a performance-aware frequency
assignment algorithm for reducing processor energy consumption
using Dynamic Voltage and Frequency Scaling (DVFS). Existing
energy-saving techniques often rely on simplified predictions or
domain knowledge to extract energy savings for specialized soft-
ware (such as multimedia or mobile applications) or hardware (such
as NPU or sensor nodes). We present an innovative framework,
known as EClass, for general-purpose DVFS processors by recog-
nizing short and repetitive utilization patterns efficiently using
machine learning. Our algorithm is lightweight and can save up to
52.9% of the energy consumption compared with the classical PAST
algorithm. It achieves an average savings of 9.1% when compared
with an existing online learning algorithm that also utilizes the
statistics from the current execution only. We have simulated the
algorithms on a cycle-accurate power simulator. Experimental
results show that EClass can effectively save energy for real life
applications that exhibit mixed CPU utilization patterns during
executions. Our research challenges an assumption among previous
work in the research community that a simple and efficient heuristic
should be used to adjust the processor frequency online. Our
empirical result shows that the use of an advanced algorithm such as
machine learning can not only compensate for the energy needed to
run such an algorithm, but also outperforms prior techniques based
on the above assumption.

Keywords:
DVFS
Workload prediction
Energy optimization
Energy saving
Machine learning

Highlights:
 Adaptively adjusting the processor frequency can conserve

energy in program execution.
 Existing techniques are limited to simple heuristics due to the

energy concern in computing heuristics.
 We propose EClass, a supervised machine learning technique.
 Experimentation shows that EClass conserves at least 9.1% more

energy than simple heuristic techniques.
 It demonstrates that advanced techniques can outperform simple

techniques even though the former consume more energy them-
selves.

1 Introduction

Unlocking energy efficiency in performing activities is a
universal step to deal with global warming and support our
digital society. On the other hand, modern software applica-
tions have an increasing tendency to interact with various
hardware components such as WiFi and GPU, or establish
software networks (say, over the Internet) with other
application components such as map services at run time.
Such a usage trend may increase the resource utilization of a
running application component. However, the delays incurred
when communicating with other components or issuing
commands to the underlying operating system followed by
receiving the responses may not require a processor to run at a
full speed, which provides various opportunities for an
energy-aware task scheduling technique [5][11][22] to modify
the resources allocated to the application component for com-
pleting a program execution.

Dynamic Voltage and Frequency Scaling (DVFS) [2] is a
technology originally developed for hardware processors that
allows a change in processing speed by selecting an alternate
processor frequency. For instance, by writing a value to a
special-purpose processor register designated for setting up
the processor voltage (and hence frequency) to one of the
processor-supported configurations, an application may
choose to slow down the clock frequency of its servicing
processor during idle or low processor utilization periods of

* © 2012 Elsevier Inc. This material is presented to ensure timely
dissemination of scholarly and technical work. Personal use of this
material is permitted. Copyright and all rights therein are retained by
authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints
invoked by each author’s copyright. In most cases, these works may
not be reposted without the explicit permission of the copyright
holder. Permission to reprint / republish this material for advertising
or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from
Elsevier Inc.

** This work is supported in part by the General Research Fund
of the Research Grants Council of Hong Kong (project numbers
111410 and 717811) and a Strategic Research Grant of City
University of Hong Kong (project number 7002673).

† Corresponding author.
E-mail addresses: edkan@hotmail.com (E.Y.Y. Kan),

wkchan@cs.cityu.edu.hk (W.K. Chan), thtse@cs.hku.hk (T.H. Tse).

2

the application. For example, on the Intel XScale platform, a
desired processor frequency can be selected by writing a value
to the Core Clock Configuration Register (CCCR) and setting
the FCS bit of the CCLKCFG register to activate the change
in processor frequency [19].

Running a process at a lower frequency may lengthen the
overall execution time, which may not result in spending less
energy as a whole when compared with setting the processor
at a higher frequency to complete the same program
execution. Hence, two fundamental problems in setting the
above values are to determine (1) when a technique needs to
adjust the processor frequency and (2) what the value of
processor frequency should be. In general, there are static
techniques and dynamic techniques, differing by whether
dynamic monitoring of program executions is available.

For ease of presentation, we refer to a set of inputs to a
particular program as a test suite, and refer to a program that
executes a test suite at run time as a task. We note that in the
real-time systems community, a test suite is often referred to
as a workload. Hence, to balance between the two com-
munities, we use the terms test suite and workload inter-
changeably.

In general, static techniques [4][23][32] analyze the source
code of a program, estimate the worst case timing require-
ments for all possible paths, and use such information to
compute frequency values statically for different parts of the
program. Such values can be used prior to the execution of the
program for any workload. However, static techniques may
fail to capture specific characteristics of particular executions
of the program. Hence, an underlying processor may not be
best tuned for a particular workload. Moreover, it is
commonly known that static analysis cannot scale well
enough to handle large applications. Dynamic techniques
[2][9][35] complement static techniques by monitoring
program executions to obtain more precise resource utilization
statistics. However, they can only analyze the executions
corresponding to a given workload. Based on a monitored
portion of an execution, such a technique may apply various
policies to predict the best frequency value for the next
interval, such as by computing an optimal frequency for the
current monitoring interval and deeming it to be the best
[14][16]. Dynamic techniques are more scalable than static
techniques in handling applications of a practical size. Never-
theless, they may slow down the original execution of a
program by incurring execution monitoring and computation
of an optimal frequency, and cannot be applied to an API-like
framework that cannot be executed by its own. Despite these
limitations, dynamic techniques have been widely practiced
because of its ability to optimize the energy usage for general
program executions, which is particularly attractive when
aggressive energy conservation is mandatory. In this paper,
we study dynamic techniques.

A test suite for a program can be mapped to a set of
program executions. The use of a portion of an execution to
predict the frequency value for the remaining portion of the
same execution may likely result in a locally optimal solution.
For instance, for an execution with an increasing demand of

computational needs until the very last few instructions of the
execution, using a moving average or the latest value of the
estimated optimal frequency value based on the monitored
portion may be inadequate for predicting the frequencies for
the unexecuted portion of the execution. Moreover, to reduce
the performance overhead incurred by computing an optimal
frequency, many existing techniques [2][16][35] use simple
formulas such as doubling or halving the current value to
compute a new frequency value based on an existing one.
Although such simple formulas may empirically be effective
in saving energy, their corresponding techniques do not cap-
ture the design rationale of such formulas.

In this paper, we use three major insights to address the
above problems in finding a solution.

• First, a typical program is written to serve a particular
purpose and is implemented as a set of program modules.
Although a program tends to perform distinct activities in
different executions, given a specific subset of a test suite,
the program tends to execute similar sets of program
modules of the same program, possibly in different orders
and with different module occurrence patterns in various
execution fragments. For instance, a program must contain
a set of basis paths. Although different executions of the
program may visit the same program module and run
different sequences of statements in this particular module,
such executions can be considered as different composi-
tions of these basis paths.

• Second, although different orders and patterns may result
in different nonfunctional program behaviors, we observe
that even the most I/O-intensive (but typical) programs,
such as file management programs, involve some periods
of computational-intensive executions. Suppose we define
I/O-intensive periods in these programs as less than 25%
CPU utilization. In our empirical study, the probability of
encountering such an I/O-intensive segment in the most
I/O-intensive application is merely 9%, indicating that the
probability of encountering k consecutive I/O-intensive
segments is only 0.09k, or 0.00006561 when k is 4, which
is a small number. Such a low probability shows that we
may use short chains of fragments to model the program
processor utilization that covers over 99.9% of all the
scenarios encountered.

• Third, the available number (n) of processor frequencies is
a small number (such as 11 for XScale in [19]). Because
of the presence of computational-intensive and I/O-
intensive modules in an interval, in many cases, they lead
to the use of highest few and lowest few frequencies,
respectively, as the optimal processor frequency. Hence,
although there are theoretically nk possible combinations
when modeling all such fragments, since the given value
of k is small, the number of combinations is bounded in
practice by a small value. Our empirical study confirms
this hypothesis. Because of such a small number of
combinations, our technique can keep the entire dataset of
such values in the memory (rather than storing them in a
database or on disk with an excessive amount of memory

3

page swapping) and locate the optimal frequency by a
direct lookup approach. Such a lookup can be efficiently
and simply implemented as a hash function provided that
one can classify and consolidate utilization values into
distinct patterns, and use them as keys to this function.
The simplicity further reduces the chance of introducing
faults in the implementation, thus enhancing the reliability
of the approach.

The net result is a technique that we call EClass, standing
for Execution Classification. EClass is capable of using a
small number of utilization patterns extracted from the execu-
tions of a small fraction of a workload to characterize almost
all the scenarios of program execution fragments. Because of
such a characteristic, EClass is able to provide a solution that
empirically outperforms a solution based on a single execu-
tion.

Based on executions on the same platform, EClass starts
with a training phase for a task. CPU utilization and energy
consumption values are collected during training executions
in order to determine hardware- and task-specific parameters
in the energy model. Utilization values are then clustered and
the optimal frequencies for each distinct pattern (of a fixed
length) are pre-computed according to the energy model, and
stored offline for the frequency assignment algorithm. During
online execution, the best frequency is predicted and the cur-
rent processor frequency is adjusted whenever the execution
exhibits a known utilization pattern. The predicted frequency
can also be fine-tuned linearly based on the desired execution
time. We also adapt EClass to develop a complementary
technique called Target. Target treats the execution time of an
interval in previous runs of the same test case as if it were the
execution time for the same interval in the current run for
energy optimization.

We evaluated EClass and Target on a cycle-accurate
power simulator for a realistic hardware platform [17]. We
compared them with two existing representative algorithms
(which we call Online [14] and PAST [35]), and a random
energy optimization strategy (denoted by Random) over three
real-life medium-sized subject applications (minigzip, djpeg,
and jikespg) from the CSiBE benchmark [15]. Experimental
results show that for each subject, the savings achieved by
EClass and Target are always better than that achieved by
each of Online, PAST, and Random, and on average, EClass
and Target can save 9.1% more energy in absolute terms
compared with the peer techniques, and up to 52.9% savings
for specific applications. The difference in energy savings
between EClass and Target is less than 2.2% in all cases
because EClass is able to operate in unseen executions
whereas Target cannot. The evaluation results show that in
terms of energy savings, EClass is the best among all five
techniques studied in the experiment. The empirical results
are inspiring in that although pattern classification can be
much less efficient (and hence requiring more energy) than
simply setting a value as in Online, this extra cost can be well-
compensated at the end.

The main contribution of this work is threefold: (1) It
demonstrates the use of a machine learning approach to

effectively characterize program executions without excessive
training data. (2) It proposes two new online strategies,
namely EClass and Target, which efficiently use such charac-
terizations to predict optimal frequencies for execution
fragments. (3) It reports an experiment that verifies the above
insights and the proposed techniques. Our experimental
results demonstrate that energy-awareness research can
benefit significantly from advanced or search-based
algorithms.

The rest of the paper is organized as follows: Section II
gives a motivating example. Section III describes our models
and the details of the algorithm. Section IV presents the
experimental results and an evaluation. Section V summarizes
related literature on energy optimization. Section VI con-
cludes the paper.

2 Motivating Example

The following is a hypothetical example comparing the
computational steps taken by two different frequency assign-
ment algorithms over a dedicated processor capable of run-
ning at 200, 266, 333, and 400 MHz. We assume that the
algorithm reviews the CPU frequency at the end of each 100
ms interval j. The program takes an integer parameter p and
executes two different branches of the source code, depend-
ing on whether p is divisible by 3. If it is divisible by 3, the
execution lasts for 7 intervals, repeating the instructions
corresponding to intervals 1–3 for the duration of intervals 5–
7. In another execution where p is not divisible by 3, it
executes the same instructions corresponding to the first 3
intervals and then terminates. These two executions are
detailed in Table 1(a) below:

j

CPU
Time @

733 MHz
(ms)

I/O
Time
(ms)

PAST [35]
Frequency
Prediction

Scaled
CPU
Time
(ms)

Scaled
Utilization

Rate
(MHz)

1 17 83 200 62 43%
2 16 84 200 59 41%
3 39 61 200 142 70%
4 91 9 266 252 97%
5 Repeat interval 1 333 37 31%
6 Repeat interval 2 333 35 30%
7 Repeat interval 3 333 97 63%

(a) Sample executions of a program using PAST

j
CPU Time @ I/O Optimal Utilization
733 MHz (ms) (ms) Freq (MHz) Class

1 17 83 266 Low
2 16 84 266 Low
3 39 61 333 Medium
4 91 9 400 High
5 Repeat interval 1 266 Low
6 Repeat interval 2 266 Low
7 Repeat interval 3 333 Medium

(b) Sample executions of a program using EClass

Table 1. Illustrative Example

Let us take a look at the scenarios in Table 1(a): Consider
a simplified version of the PAST algorithm [35], which starts

4

at the lowest frequency of 200 MHz, increases the frequency
by 20% if the current CPU utilization rate (that is, CPU time
of past period / (CPU + I/O time)) exceeds 70%, and
decreases the frequency by 60% minus the current utilization
if the current utilization drops below 50%. For an execution
with p = 3, PAST stays at the lowest frequency for the first
three intervals since the utilization after scaling to 200 MHz
falls between 50% and 70%. At the end of the third interval,
the utilization exceeds 70%. The frequency is increased to
266 MHz in the fourth interval, which is executed only when
the parameter p is divisible by 3. The frequency is further
increased to 333 MHz for the rest of the execution repeating
the instructions corresponding to intervals 1−3.

The frequencies chosen by PAST in this example reveal
two generic problems inherent in algorithms of its kind. First,
the chosen frequency for intervals 1–3 is inconsistent with
the frequency for intervals 5–7 even though the same set of
instructions and statistics are observed. Second, the choice of
frequency can only be the same as the previous interval or
one step from it. As the frequency of the previous interval
may have no relationship with the optimal frequency of the
next interval, the frequency change may go in the wrong
direction (as in interval 5 where the frequency should have
matched interval 1), or in the right direction but is too subtle
(compared with interval 4 of Table 1(b) discussed below).

Table 1(b) shows the same example using an execution
with p = 3 as an offline training instance for EClass. Here,
we compute the optimal frequency and classify the utilization
for each period using the empirically determined energy
model1 and a clustering algorithm explained in detail in the
next section. In this example, we assume that EClass has
been setup to analyze two intervals of runtime statistics at a
time. We refer to this configuration as a sliding window of
size w = 2.

As shown in the last column of Table 1(b), EClass eval-
uates the sequential changes in utilization classification every
two intervals and produces the following rules:

(1) Execute the first w intervals (w = 2) at 266 MHz to
collect more runtime statistics for future intervals.

(2) After the first w intervals, if the pattern Low, Low is
matched, EClass predicts that the next interval will fall
into the “Medium” utilization class. It then sets the
frequency to 333 MHz (that is, use 333 MHz after 2 con-
secutive intervals of “Low” utilization class).

(3) If the pattern Low, Medium is matched, EClass
predicts that the next interval will fall into the “High”
utilization class. It then sets the frequency to 400 MHz.

(4) If the pattern Medium, High is matched, EClass
predicts that the next interval will fall into the “Low” uti-
lization class. It then sets the frequency to 266 MHz.

(5) If the pattern High, Low is matched, EClass predicts
that the next interval will fall into the “Low” utilization
class. It then sets the frequency to 266 MHz.

1 For the purpose of illustration, we assume the following parame-
ters for the energy model from Section IV: Poff = 0.35, C = 1, and m
= 3.

In this scenario, EClass addresses the previous two problems
by defining rules based on the analysis of utilization patterns
for prior executions and the corresponding optimal freq-
uencies. The choice of frequencies is consistent and optimal
as per the training instance. We note that this illustrative
example cannot represent all possible executions in face of
the many hardware and software variables that affect utiliza-
tion behavior. However, it serves to demonstrate our design
rationale supported by the experimental results in subsequent
sections.

Moreover, as there are nine possible permutations of
Low, Medium, and High to form a sequence of two, EClass
can produce four such sequences rather than always exhaust-
ing all possibilities. This reduced amount of space further
allows the implementation to keep the data structure in the
memory in the form of a hash function, which provides
efficient lookup for the runtime prediction phase of EClass.

3 Models and Algorithm

3.1 Preliminaries

In this section, we review the latency model proposed in
[9]. A task is a sequence of instructions I whose execution
causes some latency and energy dissipation. The number of
instructions in I is denoted by |ܫ|. Different types of instruct-
ions may require different numbers of CPU cycles to execute.
We define CPI as the mean number of CPU cycles required
per instruction for the execution of I. Frequency is measured
in hertz (Hz) or cycles per second. To understand the effects
of CPU frequency changes on latency and energy spending,
we partition the total execution time t of I into two compo-
nents: on-chip and off-chip, as shown in equation (1). ݐ = ୭୬ݐ 	offݐ	+ (1)

where ton is the on-chip execution time spent within the CPU
including data dependencies, fetch dependencies, cache/TLB
hits, and branch prediction, and its value is affected by the
frequency of the processor; and toff is the off-chip execution
time spent on non-CPU activities such as memory access due
to cache/TLB misses, and other components synchronized to
the bus clock. toff is not affected by the CPU frequency.
While this breakdown can be inexact for processors that
support instruction-level parallelism and out-of-order execu-
tions due to the overlapping of ton and toff, the resulting error
in equation (1) is small relative to memory access latency,
which is about two orders of magnitude greater than the
latency typically associated with the execution of a CPU
instruction [9].

As explained in Section 1, DVFS is achieved by writing
to special processor registers that switch the CPU voltage and
frequency to one of the supported configurations. The core
frequency is expressed as a nonzero multiple of the external
clock frequency (66.667 MHz in our evaluation). For Intel
XScale processors, the set Z of available multiples is {3,
4, …, 10, 11} [19]. In other words, eleven distinct core freq-

5

uencies are supported on this platform from 200 MHz to 733
MHz.

Since toff is unaffected by processor frequency, we may,
in the model, simply consider the effects of frequency on ton
and the overall latency in finding the optimal frequency.
Such latency can be calculated by multiplying the number of
instructions by the mean number of CPU cycles required per
instruction, and then dividing the value by the frequency
used. For instance, let tonmax	be the on-chip latency when the
processor runs at full speed ݂୫ୟ୶ . Then, ݐ୭୬୫ୟ୶ can be
computed as (|ܫ|. (ܫܲܥ ݂୫ୟ୶⁄ . The on-chip execution time for
the instruction sequence I at a reduced frequency ݂ோ can be
deduced by ݐ୭୬	(݂ோ	, ݂୫ୟ୶) as follows:

,	(݂ோ	୭୬ݐ ݂୫ୟ୶) = .|ܫ| ோ݂ܫܲܥ = 	 tonmax	݂୫ୟ୶݂ோ = ቀ	/	୭୬୫ୟ୶ݐ ௙ೃ௙ౣ౗౮ቁ,

(2)

which can be further simplified to
(݂)୭୬ݐ = tonmax௙ , where ݂ = ௙ೃ௙ౣ౗౮ (2')

Equation (2) shows that in the model, the on-chip execution
time varies linearly with the CPU frequency (which agrees
with other authors such as Burd and Brodersen [7]).
Substituting ݐ௢௡(݂)	from equation (2') into equation (1), we
obtain
(݂)ݐ = 	 tonmax௙ 	+ off, (3)ݐ	

which is a parametric equation with parameter f.
In order to achieve optimal energy efficiency for different

execution hardware, our frequency computation is adaptive
to the actual power model of the underlying hardware. Sup-
pose that P is the instantaneous electrical power, typically in
watts (W). Given the duration of a task execution, the
corresponding energy consumption can be computed as ܲ ∙ (݂)ݐ . To model energy consumption of frequency-
dependent components explicitly, we also partition P into on-
chip and off-chip components, and hence the system-wide
energy consumption E for a task T is defined by equation (4),
which is similar to other studies [20][38].
,݂)ܧ ,୭୬ݐ = (offݐ ሾ ୭ܲ୬ +	 oܲffሿݐ(݂) = ሾ oܲff 	+ ௠ሿ݂ܥ	 ቀtonmax௙ .offቁݐ	+	

(4)

where the terms are described in Table 2:

Table 2. Energy Model Description

Term Description
Pon Frequency-dependent power consumed on-chip
Poff Static power consumed off-chip
f Processor frequency normalized to 1 at full speed
t(f) Overall latency
C Effective switching capacitance per processor clock cycle
m Dynamic power exponent

In CMOS based processors, power dissipation corres-
ponding to Pon occurs when charging and recharging internal
capacitors at every gate [11]. It is characterized by C, the
average switching capacitance per clock cycle, and is expo-
nentially related to f, where the exponent m is between 2 and
3 depending on the hardware architecture. Without loss of
generality, we assume m ≥ 2 without fixing its value in sub-
sequent derivations. Poff and C are task-dependent and can be
determined empirically. We will describe the estimation
process of these parameters in Section 4. Note that similar
models are used in [20] and [38], but sometimes Poff is
further decomposed into two terms, depending on whether
the components can be put into sleep mode. In our model, we
do not distinguish these two kinds of components because
they are not relevant to the basic idea of this paper, which is
to utilize a classification approach to predict the optimal freq-
uency for the next interval of an execution.

For given task-specific latency parameters tonmax	and toff,
we would like to determine the most energy-efficient fre-
quency f, which is referred to as the optimal frequency in this
paper and denoted by f*. In order to determine f*, let us
differentiate ܧ(݂, ,୭୬ݐ :off) in equation (4) with respect to fݐ

݂݀ܧ݀ =
 ݂݉௠ିଵݐܥoff+(݉ − 1)݂௠ିଶܥtonmax −	 tonmax	௉off௙మ .

(5)

f* can be computed by setting dE/df to zero and solving
for f. Depending on the value of m, analytical solutions may
be found. In our EClass technique, we solve equation (5)
using the Newton-Cauchy framework [13], which runs
efficiently with the discrete and limited domain of f.

Taking the second derivative of ܧ(݂, ,୭୬ݐ off), we obtainݐ
 ݀ଶ݂݀ܧଶ =

 ݉(݉ − 1)݂௠ିଶݐܥoff +(݉ − 1)(݉ − 2)݂௠ିଷܥtonmax + ଶtonmax௉off௙య .
(6)

For m ≥ 2, f > 0, C > 0, tonmax > 0, and toff ≥ 0, the second
derivative is always nonnegative, which verifies that ܧ(݂, ,୭୬ݐ is a convex curve and has a minimum value	off)ݐ
when dE/df = 0

3.2 EClass: Our Framework

In this section, we present our technique EClass, which is
a classification-based approach consisting of two phases: off-
line training and runtime prediction.

3.2.1 Offline Training Phase

In this phase, EClass collects the execution statistics of
sample runs of a task. Suppose that there is a set of test cases
TC. EClass executes every test case t in TC by setting its
underlying processor at ݂௠௔௫. It results in a set of executions
R. EClass divides each execution Ri ∈ R into a consecutive
sequence of intervals, and collects a vector V of performance
attribute values (such as the amount of memory used and the
time taken for the interval) at the end of each interval. Let li
denote the number of intervals for Ri, si,j denote the values of

6

V collected at the end of the j-th interval during the execution
of Ri, and S denote the set of all such si,j collected.

In our experiment to be presented in Section 4, we collect
the set of attributes that are useful for the estimation of ton

and toff, and are available to the simulator. Note that, in prin-
ciple, there is no restriction on the choice of statistics to be
collected.

EClass then divides S into subsets using a partition clus-
tering algorithm, and the optimal frequency for each interval,
denoted as f*i,j, is computed from each value of si,j based on
equation (5). The purpose of discretization is to identify
major changes in utilization. Specifically, we define :	S →2ௌ	\∅ as a classification function that maps each si,j to one of
the nonempty subsets of S. (In our experiment, we apply the
Expectation-Maximization (EM) algorithm to implement Γ.)
We denote ൫ ௜ܵ,௝൯ by ܥ௜,௝ . After applying Γ, EClass trans-
forms each training run Ri = ݎ௜,ଵ, ,௜,ଶݎ … , ௜,௟೔ into a series ofݎ

couples ൫ܥ௜,ଵ, ௜݂,ଵ∗ ൯, ൫ܥ௜,ଶ, ௜݂,ଶ∗ ൯, … , ൫ܥ௜,௟೔ , ௜݂,௟೔∗ ൯ . We denote
the set of such series by R*.

Table 3 extends the example in Table 1(b) with utilization
values for three executions with different parameters p after
the training phase.

3.2.2 Runtime Prediction

The prediction phase of EClass is performed online. Similar
to the training phase, the performance statistics of V are col-
lected at regular intervals. Specifically, for every w intervals
(where w denotes the size of the sliding window), the optimal
frequency for the next interval is predicted by comparing the
statistics collected within the current window period with
that in R*.

Table 3. Sample Records for Training Runs

p

Records in R* Actual
frequency

corres-
ponding

to f*i,j
(in MHz)

Intuitive
meaning
(in terms
of CPU

utilization)

i
(execution)

j
(interval)

Si,j
(e.g.,
CPU
time)

Ci,j f*i,j

3 1

1 17 C1 0.36 266 Low
2 16 C1 0.36 266 Low
3 39 C2 0.45 333 Medium
4 91 C3 0.55 400 High
5 17 C1 0.36 266 Low
6 16 C1 0.36 266 Low
7 32 C2 0.45 333 Medium

4 2
1 18 C1 0.36 266 Low
2 17 C1 0.36 266 Low
3 35 C2 0.45 333 Medium

5 3
1 19 C1 0.36 266 Low
2 16 C1 0.36 266 Low
3 27 C2 0.45 266 Medium

The basic idea is to search for a consecutive subsequence

Ci,j, Ci,j+1, …, Ci,j+w of Ri matching the actual utilization
detected in this phase, and then use f*i,j+w+1 as the predicted
value. If multiple matching subsequences exist, the most pro-
bable frequency is used as the prediction. If two different

frequencies have the same probability, one of the frequencies
is chosen arbitrarily.

Formally, we let C’ = Γ(s’1), Γ(s’2), …, Γ(s’w) = C’1,
C’2, …, C’w be the sequence of statistics of V collected and
then classified by Γ during an actual execution. The function
Φ is defined as

 Φ൫ܴ௜,௝, ,ᇱܥ ݂൯ = ቄ10
if	ܥ௜,௝ = ᇱଵܥ ∧ ⋯ ௜,௝ା௪ܥ	∧ = ᇱ௪ܥ ∧ ݂ = ௜݂,௝ା௪ାଵ∗ otherwise

 for	݅ = 1, 2, … , |ܴ|, ݆ = 1, 2, … , ݈௜ − ݓ − 1.

The frequency prediction for C’ is
 argmax௙෍ ෍ Φ൫ܴ௜,௝, ,ᇱܥ ݂൯௝௜ (7)

If more than one value satisfies equation (7), f is chosen
arbitrarily from one of such values.

In the example presented in Table 3, assuming that w = 2,
the sequences of clustering results for R1, R2, and R3 are C1,
C1, C2, C3, C1, C1, C2, C1, C1, C2, and C1, C1, C2,
respectively. Suppose the actual collected statistics C’ =
Γ(18), Γ(17) = C1, C1. The subsequence exists consecu-
tively in all training runs with two possible frequency predic-
tions f*1,3 = f*1,7 = f*2,3 = 333 and f*3,3 = 266. Because the
frequency of 333 appears twice in R1 and R2, it maximizes
the Φ function in equation (7), and is therefore the final
prediction. If no consecutive subsequence in Ri is found to
match C’, the frequency is unchanged to avoid the overhead
of switching frequencies without sufficient justification. (We
note that, in the absence of a matching subsequence, one may
employ a hybrid technique such as running PAST. Such a
strategy can give additional insights on top of EClass). At the
beginning of the task execution when the interval count is
less than w, the prediction model simply suggests the most
frequently occurring frequency for that interval (i.e., the stat-
istics mode). In the running example, the model suggests the
mode of f*1,1, f*2,1, and f*3,1, which is 266 for the first interval.

Further optimization. After classifying all the training
executions, further optimization can be achieved by exploit-
ing the predicted optimal frequencies of a subsequence of
future intervals (f*i,k, k = j+w+2, j+w+3, ..., li). For instance,
if the solution of equation (7) is f*i,j+w+2 for most values of i,
we can use this frequency for an additional interval, thus
reducing the overhead of solving equation (7) repeatedly.

Flexibility optimization. To increase the flexibility of
the implementation of EClass, we include a control parame-
ter α ∈ [0, 1] in the prediction phase. This parameter is an
intuitive, linear control knob on the execution time, as it
varies the execution time from the smallest value running at
the highest frequency (α = 1) to the largest value running at
the most energy efficient frequency (α = 0). A similar param-
eter has been used in [9] to control the amount of energy
savings corresponding to a performance loss of roughly (1−
α) in terms of execution time.

7

From equations (1) and (2), the adjusted execution time
t(α) is

(ߙ)ݐ = ୭୬୫ୟ୶݂ݐ + ୭୤୤ݐ = ߙ ൬ݐ୭୬୫ୟ୶ − ∗୭୬୫ୟ୶݂ݐ ൰ + ∗୭୬୫ୟ୶݂ݐ + ୭୤୤ݐ

Solving for the frequency f that achieves t(α), the frequency
prediction can be expressed as

 ݂ = ௙∗ఈ(௙∗ିଵ)ାଵ (8)

3.3 EClass Algorithm

To summarize the steps in both phases, the proposed
frequency assignment algorithm EClass is shown as follows:

Algorithm 1. Frequency Assignment Algorithm EClass

1: Γ, R* ← the cluster algorithm and the training data from the training
phase

2: M ← mode(f*1), mode(f*2), …, mode(f*w–1)
3: C’ ← ∅
4: call updateFreq(1) at the first interval

5: procedure updateFreq(k)
6: s’ ← collect statistics for the past k intervals
7: if k > w then C’ ← C’ \ C’(1) end if
8: C’ ← C’ ∪ Γ(s’)
9: if k < w then f ← M(k)
10: else
11: f ← solve equations (7) and (8) for the prediction
12: if f = 0 then f ← getProcessorFrequency() end if
13: end if
14: if f ≠ getProcessorFrequency() then setProcessorFrequency(f)

end if
15: call updateFreq(k+1) at the next interval
 end procedure

Lines 1−3 initialize the algorithm for a task. In line 2,
mode(f*i) represents the most frequently occurring value in
{f*1,i, f*2,i, …}. The procedure in line 5 is called at regular
intervals. Runtime statistics are collected in lines 6–8 for the
sliding window of w intervals. Due to possible frequency
changes, the intervals are defined by cycles rather than by
time. In line 9, if the length of C’ is insufficient for predic-
tion, the mode value corresponding to the interval count is re-
turned as the target frequency. The oldest statistics are shifted
out at every call since only w sets of statistics are required by
the model to make a frequency prediction. Lines 9−12 utilize
the prediction model as described in the previous subsection.
As explained earlier, a hash function is used to efficiently
lookup the predicted frequency in this step. We first convert
C’ into a string with each classification represented by an
ASCII character. For instance, the characters A–C represent
classifications C1–C3 in Table 3. The string “ABBC” thus
represents the sequence C1, C2, C2, C3. We then use this
string representation as the hash key to look up the desired
frequency already mapped during the training phase. Line 14
updates the processor frequency if necessary. Note that the
retrieval and setting of the current processor frequency to f
are denoted by getProcessorFrequency and
setProcessorFrequency(f), respectively.

4 Evaluation

4.1 Research Questions

In this section, we aim to answer three research questions
to validate EClass.

RQ1: Does EClass save more energy than existing
techniques?

RQ2: To what extent may EClass compete with existing
techniques without extensive training?

RQ3: To what extent can EClass be efficient and
flexible in the tradeoff between performance and energy
savings?

4.2 Experimental Setup

To accurately measure energy consumption, we adopted
XEEMU [17], a cycle-accurate power simulator that simu-
lates executions of C programs on XScale processors.
According to [17], the simulator achieves accurate energy
consumption estimation to within 1.6% error on average
compared with real hardware. One of the major advantages
of using an accurate simulator rather than physical hardware
is that it improves the reproducibility of the experimental
results and facilitates fair comparisons with future research
efforts. The frequency assignment algorithms are implement-
ed in Java, and executed once for each test case over a dedi-
cated instance of the simulator so that the statistics of each
simulation correspond entirely and specifically to the execu-
tion of the test case.

We extracted three types of performance attribute values
V from the XEEMU simulator as parameters to our energy
and prediction models: sim_cycle_*, sim_memory_dep, and
sim_diss_*. First of all, sim_cycle_* is the total simulation
time in cycles per frequency. As explained before, the simu-
lation time depends on frequency; this counter is an obvious
choice to indicate the end of each interval for all algorithms
in terms of the number of elapsed cycles. sim_memory_dep
is the total number of stall cycles caused solely by the
memory, which matches the definition of toff in equation (1).
Similar events related to data stalls were used in other studies
[11] and were shown to be effective for the estimation of on-
chip and off-chip duration and power consumption.
sim_diss_* constitutes the basis of comparison between the
algorithms. It is the total power dissipation per frequency (in
watts), including power consumed by the processor and the
memory. The reading represents the total power (Poff + Pon)
in equation (4). We have reconfirmed our understanding of
this counter by observing that the total energy consumption
reported by the simulator always matches the sum of the
values of sim_diss_* multiplied by sim_cycle_*.

We modified the source code of the simulator so that it
would pause at the end of each interval, output the running
values of the first two statistics, and await new frequency set-
tings (if any). In the training phase, f*i,j is computed by solv-
ing equation (5) with m = 3 using the roots function in
MATLAB. Note that the authors of [7][29][38][39] also

8

assumed cubic power models. If the computed solution lies
between two frequencies supported by XEEMU, the more
energy-efficient of the two (according to equation (4)) is
used. We note that further energy savings may be achieved
by running each frequency for part of the duration of the
interval [29], but we have adopted the simpler approach to
avoid additional overhead. The classification function Γ is
initialized in the Expectation Maximization (EM) algorithm
with automatic selection of the number of clusters n using
cross-validation. The primary advantage of our choice of im-
plementation over other clustering algorithms is that it is
well-established with a strong statistical basis, runs in linear
time with respect to input size, and converges fast [12].
Clustering and classification is done using the EM clustering
algorithm provided in Weka [36].

4.3 Task-Specific Parameters

As discussed in the previous subsection, the statistics
sim_diss_* represents Poff + Pon in equation (4), but in order
to solve equation (5) in the training phase, the task-specific
parameters Poff and C must be determined. Because there are
no performance monitors in our test bed that can map indivi-
dually to these parameters, we need to estimate their values
for all frequencies using the energy consumption statistics
and execution times collected from training runs. For each
task, suppose n test cases of the task are executed at q
different supported speeds f1, f2, …, fq. We obtain the follow-
ing n×q (≥ 2) equations by expanding equation (4):

௜,௙ܧ = ௜,௙ݐ ୭ܲ୤୤ + ݅ ,௠݂ܥ௜,௙ݐ = 1, 2, … , ݊	and ݂ ∈ { ଵ݂, ଶ݂, … , ௤݂}

where Ei,f is the energy consumption of the i-th instance at
frequency f, and ti,f is the total time spent for that execution.
These equations can be rewritten in matrix form:
ݔܣ = ܾ (9)

where A ∈ ℝ௡௤×ଶ, x ∈ ℝଶ, and b ∈ ℝ௡௤, thus:

ۈۉ
ۇۈۈۈ
ଵ,ଵݐ ଵ,ଵݐ ଵ݂௠⋮ ଵ,௤ݐ⋮ ଵ,௤ݐ ௤݂௠⋮ ௡,ଵݐ⋮ ௡,ଵݐ ଵ݂௠⋮ ௡,௤ݐ⋮ ௡,௤ݐ ௤݂௠ۋی

ቀۊۋۋۋ oܲffܥ ቁ =
ۈۉ
ۇۈۈۈ
ۋی௡,௤ܧ⋮௡,ଵܧ⋮ଵ,௤ܧ⋮ଵ,ଵܧ

 ('9) ۊۋۋۋ

This system of equations is over-determined because there
are nq equations with only two unknowns. Although it is
very likely that there is no distinct vector x that will satisfy
all of the equations, it is possible to find x that minimizes
error (‖ܺܣ − by rewriting equation (9) as follows (after (‖ܤ
[3]):
ݔ = (10) ்ܾܣଵି(ܣ்ܣ)

It is not efficient to solve for Ax = b using equation (10), but
we note that its solution is equivalent to fitting linear regres-

sion models in the form Ax = b for different frequencies in
equation (9') while minimizing the least square errors. As a
result, we used the matrix left division function in MATLAB
to solve for x = (Poff, C) in our implementation, which
computes the least squares solution using an efficient QR
decomposition algorithm.

4.4 Peer Techniques for Comparison

To evaluate the effectiveness of EClass in conserving
energy, we have faithfully implemented in Java the algo-
rithms PAST [35] and Online [14]. For ease of reproducing
our results, we also report on the specific parameters used by
these two algorithms. In the implementation of PAST, we
defined CPU utilization as u, and excess as on-chip time ×
(1 − f). Following the frequency adjustment parameters in
[35], f is set to 1 if excess > off-chip time, increased by 20%
if u > 70%, and decreased by 60% − u if u < 50%. f is map-
ped to the supported frequencies as described above. In the
implementation of Online, the penalty for data cache miss
(PEN) is set to two cycles since any higher value causes
negative μ values in the algorithm presented in [14]. The
frequency adjustment interval for both algorithms is set to
match the original literature (10 ms) to facilitate realistic
comparison.

In our proposed algorithm EClass, the interval is cycle-
based. As our simulator is for XScale processors, we arbitra-
rily set the interval length to one million cycles and w = 4 for
the size of the sliding window in the prediction model. We
have conducted initial trials to observe the effect of setting
different values of the interval length, and observed that
different tasks and execution cases may favor shorter or
longer intervals, but there is no definite advantage of one
over another. We note that the effects of interval lengths and
window sizes may be affected by the actual implementation.
For instance, the interval length may be set as a multiple of
the scheduler quantum if the technique is implemented in the
OS kernel. Such effects may deserve further investigation in
a separate study. In any case, the choice of one million cycles
can draw meaningful comparisons in our experiment because
f* is found consistently to be one of the three lowest
available frequencies for the test cases of all subjects with
different interval lengths. The overheads resulting from
window sizes will be discussed in Section 4.8.

To evaluate the effectiveness of the computed f* in
EClass, we also included the results for running each training
at f* for all intervals (denoted by Target), and a hypothetical
Random algorithm, which is identical to EClass except that it
assigns one of the supported frequencies randomly instead of
using the computed f* in line 11 of Algorithm 1.

Because merely selecting a frequency randomly may al-
ready have energy saving effect, Random does not only select
an available frequency randomly. As described above, it
reuses the implementation of EClass and merely nullifies the
effect of the computed frequency by randomly reporting one
of the available frequencies. This technique can serve as the
lower bound of whether a classification approach (rather than

9

the implementation) may have any effect in achieving energy
savings. In particular, the difference in energy savings bet-
ween EClass and Random can be used to quantify the net
effect gained by our effective classification approach.

Target can be useful in rerunning test cases on the same
program. In such circumstances, the statistics profile can be
reused for the reruns of the test cases.

4.5 Subject Applications

Three subject applications are selected from the CSiBE
benchmark environment [15]: minigzip (version zlib 1.1.4),
djpeg (6b), and jikespg (1.3). The scale of our experiment is
comparable to those in some of the previous publications
[2][14][21], which are evaluated on 2 to 4 related subjects
under various configurations. While both synthetic bench-
marks [2] and real-life inputs (such as 8 movie fragments of
roughly 20 s each in [21]) are used in these evaluations, we
have opted to use real-life inputs to ensure the applicability
of our results, and repeated each experiment with a con-
siderable input size (e.g., 1000+ files for minigzip) that can
be completed in reasonable time. The subject applications
have been tested to run properly in the XEEMU simulator
[17], and have varying computation and I/O intensity so that
the algorithms can be put under a fair comparison with
different patterns of CPU utilization. The applications are
written in standard C and are compiled for XEEMU using the
Wasabi cross compiler tool chain [34] with optimization
option –O3. minigzip (with 5576 lines of code2) is mostly
memory-dominant, but its execution is nonetheless affected
by the compressibility of the input. In our experiment, we
found that moderately compressible input resulted in maxi-
mum latency with respect to the input size. On the other hand,
djpeg (with 19500 lines of code), is a computation-intensive
JPEG decompressor that utilizes many shift operations.
jikespg (with 18064 lines of code) is a parser generator for
the Jikes compiler that contains both computation and
memory-dominant regions [17].

4.6 Procedures and Test Cases

In the experiment, minigzip was used to compress plain
text, images, and binary files in order to provide varying de-
grees of compressibility. djpeg was used to decompress
JPEG images into PBMPLUS format in the experiment
(which is also its typical use). jikespg was used to process
the language grammar files for the Java language versions
1.4 and 1.5. We have verified that these input files work
properly with the application, and are publicly available on
the Internet.

To enhance the applicability of the experimental results
so that they are relevant to real-life setting, documents and
images were downloaded from the ten most popular websites
on the Internet [26]. There are a total of 1016 test files (over
100 Mb) for minigzip, 806 test files (3.88 Mb) for djpeg,

2 Counted using CLOC [10] for the C programming language
excluding blank and comment lines

and 5 Java language grammar files for jikespg. We chose
this set of test cases with the belief that they can simulate dif-
ferent utilization patterns while the entire experiment can be
completed in reasonable time.

To answer RQ1, we ran EClass with the full set of test
cases as training data, and then used the same set of test cases
for the prediction phase and other peer techniques. We
applied the same setting to TARGET and Random. Neither
PAST nor Online requires any training phase. Hence, we
simply applied the same test suite to them.

For RQ2, to analyze the reliability of our approach to the
training phase, EClass was executed first with the full set of
test cases as training data, and then the same set of test cases
was used for the prediction phase. We set the control
parameter α = 1.0 to compare the techniques in terms of
energy savings. We also applied the same set of test cases to
every other technique.

We then repeated the experiment by randomly selecting
10% of the test cases (with a minimum of 2) for the training
phase, and applied the remaining 90% of the test cases in the
prediction phase. To facilitate comparison, α is unchanged
and stays at 1.0. We also applied the same set of test cases
(that is, the remaining 90%) to every other technique.

To answer RQ3, we measured the hardware access time,
predicted fetch time, and energy consumption, as well as the
actual number of predictions generated for the sequential
matching of utilization classes, which represented the storage
and runtime overhead of the prediction phase of EClass. For
the flexibility of performance tuning, we evaluate α in the 10%
training / 90% testing experiment. We set α to 0, 0.5, and 1
in separate parts of the experiment, and evaluate its effects
against the cumulative execution time as each experiment
progresses.

4.7 Effectiveness Metrics

In the subsequent discussion, we evaluate the algorithms
in terms of the mean energy consumption of all test cases to
determine their effectiveness. The energy needed to compute
the optimized frequency values for the algorithms (except for
the training phase) are also discussed. The results are pre-
sented in normalized values such that 100% represents the
consumption of the EClass algorithm.

4.8 Experimental Results and Discussions

In this section, we analyze the data and answer each re-
search question. We first report the energy savings achieved
by EClass: In our experiment, when compared with full
speed executions without DVFS optimization, EClass still
achieves 68.1%, 55.8%, and 55.2% energy savings for
minigzip, djpeg, and jikespg respectively. As expected,
more energy is saved running minigzip than djpeg because
of the memory dominant property of minigzip.

RQ1. Does EClass save more energy than existing
techniques? Figure 1 shows the mean energy consumption of

10

each application running the algorithms using all the test
cases for both training and testing.

Compared with Online, EClass is able to achieve 9.1%
more energy savings on average with a maximum of 12.2%
for djpeg. In all cases, EClass outperforms Online. We find
that the results on Target are 99.2%, 100.0%, and 102.2% of
that of EClass, respectively. The results of both EClass and
Target show that they can be encouraging alternatives to
Online.

As for jikespg, PAST is significantly less energy efficient
than all other algorithms. In fact, we find that PAST executed
jikespg at full speed most of the time. It shows that the
heuristics used in PAST has an obvious limitation to a
subclass of applications represented by jikespg.

Moreover, we measure the difference in energy consump-
tion between EClass and Random, as indicated by the bar in
the middle of each group. The normalized savings are 60.4%,
40.5%, and 46.2%, respectively. The results show that the
classification does have predictive ability to conserve energy.

0%

50%

100%

150%

200%

250%

minigzip djpeg jikespg overall

Co
ns

um
pt

io
n

no
rm

al
ize

d
to

 1
00

%
 o

f E
CL

AS
S

Energy Consumption Compared with EClass

EClass
TARGET
RANDOM
PAST
ONLINE

Figure 1. Energy consumptions
normalized to 100% of EClass

To understand the situation better, we examined the

source code of the subjects and the data obtained from the
experiment. For a memory dominant application such as
minigzip, the optimal strategy to conserve energy may be to
simply stay at the lowest frequencies. For the case of Online,
once the current frequency is set to such a value, simply
reusing the current frequency for the next interval may
already suffice to produce good savings. On the other hand, if
the average utilization is higher or more vibrant, the result on
djpeg shows that it becomes more important to explore utili-
zation patterns and adjust the frequency adaptively.

When compared with the algorithm Target, EClass per-
forms extremely close to the behavior as if f* was executed
in all the intervals for all test cases. It shows that even if
more precise information can be available, the resulting
energy savings may not be significantly more than that alrea-
dy achievable by EClass. Target, on the other hand, is sim-
pler in implementation for its training phase, and its result is

more predictable than EClass despite the requirement to run
every test case once in the training phase.

An interesting observation is that Random consumes less
energy that PAST for both minigzip and jikespg. Such an
observation reinforces our intuition that statistics based on
the most recent history may not be an ideal energy conserva-
tion predictor of future utilization needs.

Table 4 summarizes the mean and standard deviation
values in terms of energy consumed. We find that EClass and
Target are the best two techniques in terms of either measure.
In essence, we attempt to predict the optimal frequency for
an execution. Such a prediction cannot be precise. Let us use
the standard deviation values as a rough measure of the accu-
racy achieved by a technique. Comparing the standard
deviations achieved between Random and EClass shows that
the accuracy achieved by EClass improves over that of
Random by 39.0%, 20.1%, and 24.2%, respectively. In fact,
as shown in the table, EClass can be almost as accurate as
Target on average. The performance of PAST appears to be
the least accurate because its achieved values are larger than
the ones achieved by Random. It reconciles the intuition that
we have discussed in the paragraph above.

Table 4. Energy Consumption Summary for 100% Training
 Target Random PAST Online EClass

minigzip
Mean (J) 0.0112 0.0180 0.0186 0.0121 0.0112

Std. Deviation 0.0025 0.0041 0.0057 0.0026 0.0025
djpeg

Mean (J) 0.0022 0.0029 0.0036 0.0023 0.0022
Std. Deviation 0.0161 0.0214 0.0313 0.0174 0.0171

jikespg
Mean (J) 0.2483 0.3272 0.5210 0.2664 0.2408

Std. Deviation 0.1610 0.2076 0.3240 0.1695 0.1574

We note that there are instances where EClass slightly

outperforms Target in terms of energy savings. We have in-
vestigated the causes. We conjecture that this is potentially
caused by the estimation step in equation (9), resulting in
suboptimal predictions for certain test cases. Another poten-
tial cause is that the original execution is slightly perturbed
by the insertion of frequency switching instructions missing
from the training runs.

In conclusion, EClass saved the most energy for all three
applications compared with the other algorithms studied, and
Target is slightly more accurate.

RQ2. To what extent may EClass compete with existing
techniques without extensive training? Figure 2 shows the
energy consumption in box and whisker plots for each of the
algorithms. To make the plots more compact, we use T for
Target, R for Random, PT for PAST, O for Online, and E for
EClass. The results are presented with the median values
marked by the (red) line in the middle of each box, and the
whiskers extending to 1.5 times the inter-quartile range from
the ends of each box. Like the observation on Figure 1,
EClass and Target exhibit highly similar mean and median
values.

11

Figure 3 shows the box and whisker plots for the case
where only 10% of the test cases (with a minimum of 2) are
used for training and the rest for the testing phase.

We note that although the chosen test cases should only
affect Target and EClass, we show the results in Figure 3
using the same subset of test cases for all algorithms (exclud-
ing the 10% training cases) to ensure a fair comparison. This
explains why Figures 2 and 3 are not identical even for
Random, PAST, and Online.

We observe that the results in Figure 3 appear very
similar to those in Figure 2 in terms of the shape of the bars.
For each test execution, we also plot the normalized energy
consumption when using 10% of the test cases for training
against that when using 100%. The results are shown in
Figure 4. We find that the results have a linear relationship

with both the slope and coefficient of determination (R2)
close to 1 for each subject. This means that, with only 10%
training, EClass is able to achieve energy savings similar to
that of 100% training.

Another insight gained from this observation is that even
though EClass can be easily augmented by a feedback mec-
hanism to learn new utilization patterns online, such mechan-
ism may not bring much improvement as far as the experi-
ment is concerned because the results of using 10% of test
cases for training is already very comparable to that of using
100% of test cases for training.

In general, EClass and Target result in smaller inter-
quartile ranges for energy consumption, and therefore gener-
ate energy savings more consistently. EClass also achieve the
lowest median values for all three applications. Both EClass

(a) minigzip (b) djpeg (c) jikespg

Figure 2. Energy consumptions on subject programs (with 100% training and 100% testing)

(a) minigzip (b) djpeg (c) jikespg

Figure 3. Energy consumptions on subject programs (with 10% training and 90% testing)

(a) minigzip (b) djpeg (c) jikespg

Figure 4. Effect of EClass training on subject programs

T R PT O E

0.01

0.02

0.03

C
on

su
m

p
tio

n
 (J

)

minigzip (10% training / 90% testing)

T R PT O E
0

1

2

3

4

x 10
-3

C
on

su
m

p
tio

n
 (J

)

djpeg (10% training / 90 % testing)

T R PT O E

0.1

0.2

0.3

0.4

C
on

su
m

p
tio

n
 (J

)

jikespg (10% training / 90% testing)

y = 1.0095x
R² = 0.9993

0

0.005

0.01

0.015

0.02

0.025

0 0.01 0.02 0.03

10
0%

 T
ra

in
in

g
/

90
%

 T
es

tin
g

10% Training / 90% Testing

y = 0.9996x
R² = 1

0

0.005

0.01

0.015

0.02

0 0.01 0.02

10
0%

 T
ra

in
in

g
/

90
%

 T
es

tin
g

10% Training / 90% Testing

y = 1.0809x
R² = 0.9989

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

10
0%

 T
ra

in
in

g
/

90
%

 T
es

tin
g

10% Training / 90% Testing

T

R

PT

O E

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
on

su
m

pt
io

n
(J

)
(J

)

Energy Consumption of jikespg

T R PT

O E

0.5

1

1.5

2

2.5

3

3.5

x 10

-3

C
on

su
m

pt
io

n
(J

)
(J

)
Energy Consumption of djpeg

T

R

PT

O

E

0.005

0.01

0.015

0.02

0.025

0.03

0.035

C
on

su
m

pt
io

n
(J

)
(J

)

Energy Consumption of minigzip

12

and Target compete well with existing techniques without
extensive training.

RQ3. To what extent can EClass be efficient and
flexible in the tradeoff between performance and energy
savings? To answer this question, we evaluate the overheads
related to accessing the Performance Monitoring Unit (PMU)
to gather online statistics, and the time required to fetch the
frequency prediction from the hash function implementation.

The time to access the PMU via read/write is less than 1
μs [9], which can be safely ignored as our prediction interval
is in the order of milliseconds. In our experimental setup,
timing statistics such as toff can be obtained directly from the
PMU. We note that if such statistics on another hardware
platform require non-trivial computations from multiple
PMU values, additional overheads will be introduced in the
training (offline) and prediction (online) phases. In this re-
gard, the complexity of the proposed technique may depend
on the availability of PMU counters, while its effectiveness
depends on the accuracy of the collected or computed timing
statistics. Using XEEMU in our experiment with a hash table
containing 7300 predictions and w = 4 (see minigzip in
Table 5), the measured runtime overhead ranges from 89 to
196 μs depending on the CPU frequency, which translates
into 3.9% to 6.5% per interval of one million cycles. In terms
of energy, the average overhead per prediction fetch ranges
from 0.0207 to 0.0589 mJ, depending on the frequency. This
translates into a range from 0.01% overhead for djpeg with
an average of 4.2 fetches per execution, to 0.15% for
minigzip with an average of 25.4 fetches per execution.

The α value for performance fine-tuning is evaluated in
the 10% training / 90% testing part of the experiment. Figure
5 shows the effects of α on the three subject applications.
When α is set to 1, the subject applications are always
executed at maximum frequency resulting in the least cumu-
lative execution times. When α is set to 0, on the other hand,
the most energy-efficient frequency is used and the execution
time accumulates the fastest when compared with other
values of α. When α is set to 0.5, the cumulative execution
time always stays roughly midway in between the lines
where α = 0 and α = 1 for all three applications. This means
that the control parameter α introduced in EClass controls
the tradeoff linearly between performance and energy
savings with respect to execution time.

The prediction model in EClass can become ineffective if
the size w of the sliding window is too small. It may be ne-
cessary to increase the window size for certain applications
but there is also an overhead of the order of O(zw) involving
the storage of the prediction model, where z is the number of
clusters in the training phase and w is the window size.

Table 5 shows the number of clusters generated by the
EM algorithm and the number of distinct predictions for each
application when 100% of the test cases are used for training.
Although the maximum (and theoretical) number of predic-
tions can be substantial, the actual number of predictions in
practice ranges from 2.3% to 11.1% of the theoretical maxi-
mum. (We also note that it is possible to limit the number of

clusters generated further by the EM algorithm.) Suppose
that each prediction value on average takes 10 bytes, which
include the storage required for the data and indexes. The
amount of memory used is no more than 73 Kbytes.

Table 5. Clusters and Prediction Overhead

Application |S| z
Theoretical #
of Predictions

Actual # of
Predictions

minigzip 40940 16 164 = 65536 7300
djpeg 3920 8 84 = 4096 103
jikespg 2663 15 154 = 50625 1162

(a) minigzip

(b) djpeg

(c) jikespg

Figure 5. Effects of α

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0% 50% 100%

C
u

m
u

la
ti

ve
 T

im
e

(m
s)

Executed Test Cases

Effect of α on minigzip

alpha=0alpha=0.5alpha=1

0

2000

4000

6000

8000

10000

0% 50% 100%

C
u

m
u

la
ti

ve
 T

im
e

(m
s)

Executed Test Cases

Effect of α on djpeg

alpha=0

alpha=0.5

alpha=1

0

500

1000

1500

2000

2500

3000

0% 50% 100%

C
u

m
u

la
ti

ve
 T

im
e

(m
s)

Executed Test Cases

Effect of α on jikespg

alpha=0
alpha=0.5
alpha=1

13

In summary, EClass can be implemented with little
runtime and energy overheads, and allows a flexible tradeoff
between performance and energy savings.

4.9 Threats to Validity

In this study, we experimented with C programs from the
CSiBE benchmark with test cases obtained from the public
domain. Despite our efforts in choosing applications with dif-
ferent I/O and computation intensity, and conducting realistic
evaluations on real-life applications and test cases, these app-
lications may not represent a full variety of possible program
execution patterns. The experimental results may differ if the
frequency assignment interval is changed, although many
interval-based algorithms operate in fixed periods. It is
always preferable to include more subjects in an experiment.
To strike a balance between our effort and the scale of the
experiment (which is already comparable to existing work
[2][14] [21]), we settle for the scale reported in this paper.

Another factor that may affect our results is the platform-
dependent parameters such as those in the energy model. For
instance, if the off-chip energy consumption is unreasonably
high on a hardware platform, the difference between DVFS
techniques may become minimal because the on-chip energy
consumption is relatively small. Our customization of
XEEMU may also introduce faults into the simulator, even
though we have spent our best effort to validate our experi-
mental results and related published results.

We analyze the results through the energy savings
achieved by individual techniques as reported by the simula-
tor. Using other simulators or metrics such as the temperature
of the hardware may produce different results.

5 Related Work

Previous research tried to reduce energy consumption of
different system components such as memory and wireless
networking components by exploiting the low-power modes
or execution behavior of these components [18][25][27][33]
[37]. In many computing systems, however, CPU is still the
most important core component and the primary power con-
sumer among components with multiple power operation
modes. Previous research in cluster-wide power management
also focuses on task scheduling over DVFS-capable proces-
sors [6].

Chen and Kuo [8] summarized numerous research results
on DVS platforms for real-time systems in a survey paper.
They categorized the techniques by the types of real-time
jobs, scheduling, and processor architectures; the methodol-
ogy to extract slack time for energy savings; the scope of
energy consuming components considered and options availa-
ble to reduce energy; the available information of workload
characteristics; and the optimization objectives involved. The
literature reviewed included analytical studies conducted
earlier, optimal algorithms that run in exponential time, and
heuristics algorithms that run in polynomial time with approx-
imation bounds. Among the heuristics algorithms reviewed,

none of them was reported to utilize machine learning as the
primary technique. Thus, we believe that machine learning is
a novel extension to the study of energy-efficient task execu-
tions.

Borrowing the terminology from software testing, existing
approaches can be classified as “black-box” or “white-box”.
Black-box approaches rely on different runtime statistics to
predict future execution behavior, and are oblivious to pro-
gram structure. Although these techniques may not accurately
predict changes in CPU utilization, they are usually praised
for their ease of implementation and wide applicability. On
the other hand, white-box approaches rely on the knowledge
of program structure or implementation details. Program
phases are identified using source code analysis or knowledge
of execution behavior, and are used to assist frequency assign-
ment. Despite these requirements, white-box techniques are
usually more fine-grained and perform better for the
corresponding tasks.

Recent research in the area of energy conservation of
computing devices focus on high-level aspects such as opti-
mizing computing resources in a cloud by consolidating the
tasks onto the minimum number of servers [30]. Another
recent track of publications tackles the problem in specific
domains such as data-flow applications [2], real-time systems
[39], and services with well-defined energy and delay cost
functions [1]. Little breakthrough has been achieved for
energy conservation of computing tasks in a more general
context.

Energy-aware task scheduling in real-time embedded
systems has also generated much attention in the past decade.
Research in real-time systems usually incorporates other di-
mensions such as task completion deadlines [20] and relia-
bility [38].

5.1 Black-Box Approaches

Classic examples of black-box frequency scheduling algo-
rithms are the PAST algorithm proposed by Weiser et al. [35]
and its closely-related variant AVGN. The algorithms check at
predetermined intervals the number of busy and idle CPU
cycles, and assume that the CPU will behave similarly in the
next interval. They differ in the sense that AVGN computes the
exponential moving average of the previous N intervals with
decay, whereas PAST simply considers the current interval.

Grunwald et al. [16] evaluated these algorithms with three
frequency switching policies: one, double, and peg. When uti-
lization exceeds or falls below predefined thresholds, one in-
crements or decrements frequency by one step; double tries to
double or halve the frequency; and peg sets the frequency to
the highest or lowest value. Experiments were conducted on
four subject applications, but even the best heuristic policy
(PAST + peg) could not achieve the best possible scheduling
deduced manually by the authors.

Choi et al. [9] examined the average CPU cycles and
memory cycles per instruction computed from event counters
in the Performance Monitoring Unit (PMU) on the processor.
The ratio is used to estimate the optimal frequency for an in-
terval taking into account a user-defined performance loss

14

constraint. Similar to PAST, this technique relies on historical
runtime statistics, but utilizes a better frequency switching
heuristic than PAST.

Alimonda et al. [2] focused their attention on data-flow
applications assuming the multiprocessor systems-on-chip
(MPSoC) architecture. This architecture allows frequency and
voltage selection in several cores. Assuming the knowledge of
the queuing pipeline such as the throughput gain of the input
and output queues, their approach monitors the buffer occu-
pancy and makes frequency adjustments if it is below or
above the desirable value in a nonlinear feedback loop.

In another recent study, Dhiman and Rosing [14]
developed an interval-based technique based on the statistics
collected from a PMU capable of monitoring four hardware
events at a time. They found that the “number of instructions
executed” (INST), “data cache misses” (DCACHE), “cycles
instruction cache could not deliver instruction” (ICACHE),
and “cycles processor is stalled due to data dependency”
(STALL) to be indicative of task characteristics. Runtime
statistics are passed to an online learning algorithm in which
each working voltage / frequency pair is related to an “expert”
with a probability factor influenced by the statistics. At every
interval, the algorithm updates the factors and chooses the
expert (and the related voltage/frequency) with the highest
probability. While this technique also relies on historical data
from earlier intervals, it uses different statistics counters and
frequency assignment policies based on online learning. Our
approach is similar in that we also make use of runtime
statistics, but instead of directly predicting the near future, we
compare all the executions in a training period to identify the
past and the most probable future utilization pattern.

Liu et al. [23] considered energy-aware task scheduling
for a special type of real-time embedded system with an
energy harvesting module and an energy storage module.
Their approach considers the Maximum Power Point (MPP)
and overhead in charging and discharging the battery, and
tries to minimize the system-wide energy cost and make better
frequency assignments and charging decisions under different
battery and workload conditions. Built on top of AS-DVFS
task scheduling, their algorithm estimates the overall cost
when the harvested energy is more than required according to
a pre-determined energy model. Depending on the lowest cost,
it will choose one of the following actions: store the addi-
tional harvested energy provided that the battery is not fully
charged, speed up to the supported frequency immediately
lower than the real-valued frequency (݂′) that utilizes the
extra energy, or speed up to the supported frequency
immediately higher than ݂′.

Rizvandi et al. [29] approached the problem of slack recla-
mation for real-time tasks analytically using an optimal com-
bination of frequencies supported by the processor. They
proved that optimal energy consumption can be achieved by
at most two discrete, adjacent supported frequencies given
that the relationship between frequency and energy is convex,
and that power is positively correlated to voltage and fre-
quency. Their algorithm first computes the ideal real-valued
frequency (fideal) by using all available slacks based on the task

deadline. If the relationship between frequency and energy is
convex, the task is simply executed at the supported frequen-
cies immediately lower and higher than fideal for computed
durations. Otherwise, the supported set of frequencies is
divided into two subsets: frequencies lower than fideal and
those higher than fideal. The algorithm then searches for the
two frequencies (one from each set) that combine to achieve
the lowest energy consumption.

5.2 White-Box Approaches

Tiwari et al. [32] was the first to conduct power analysis on
assembly code. Electrical current was measured when running
each type of assembly instructions in infinite loops. Assembly
programs were divided into basic blocks, where energy con-
sumption was estimated per instruction type within each block.
Block-estimates were multiplied by the number of times each
block was executed, and penalty for cache misses was added
into the final overall estimate. They also studied the circuit
state overhead when executing a pair of instructions costs
more than the sum of executing the same instructions indivi-
dually. Although the analysis by Tiwari et al. focused on low-
level assembly code, their framework has been extended to
higher level software components for energy optimization.

Liu et al. [24] patched an existing Linux kernel to allow
application programmers to adjust processor speed from
inside the program according to specific needs of individual
applications. They defined three application-independent
steps (estimate demand, estimate availability, and determine
speed) and utilized the power management architecture on va-
rious applications: an MPEG decoder, a videoconferencing
tool, a word processor, a web browser, and a batch compila-
tion task. Programmers can access and define a preprocess
frequency schedule through new system calls introduced by
the kernel patches and new modules. The kernel scheduler
will set the processor frequency accordingly when a managed
task becomes active upon context switching. This technique
has high flexibility because it allows different types of appli-
cations to take advantage of their own power saving oppor-
tunities. However it involves program modification and re-
compilation, which require expert knowledge and perhaps re-
testing of the affected modules.

Another class of algorithms exploits the tradeoff between
the quality of service/solution (QoS) and performance/energy
by perturbing the computation. Baek and Chilimbi [4]
developed a framework to improve performance and conserve
energy for programs that can make use of approximations of
expensive functions or loops such as the estimation of π. The
framework requires that the programmer provide a function
that computes QoS metrics given training function inputs or
loop iteration counts. Approximation is carried out by running
“light” versions of the expensive functions or fewer loop
iterations based on QoS requirements and the computed
metrics on QoS loss. To adapt to runtime performance
variations, the framework also includes a recalibration
mechanism to correct for deviations observed during
executions. For programs suitable for controlled approxima-
tion, the performance improvements and energy savings of

15

this technique can be substantially greater than other tech-
niques discussed, as executions can be terminated prematurely
depending on the QoS requirements. Our approach is different
from the white-box approaches described above. First, it is a
black-box technique and is independent of the underlying
programming language. Second, our approach does not alter
execution paths or program output, nor does it require expert
customization of program executions.

6 Conclusion and Future Work

Energy efficiency is an important issue in many areas of
computing. In this paper, we have presented a framework for
an energy-aware frequency assignment algorithm for DVFS
processors. It distinguishes program phases during training
executions and utilizes such information to make online fre-
quency assignment decisions efficiently. We have presented
an algorithm known as EClass. It samples intervals of execu-
tions and computes optimized frequencies for these intervals,
followed by clustering the intervals into groups. During an
online execution, EClass monitors the runtime statistics for
the execution of an interval and uses a lookup approach to
identify the best matched optimized frequency for the up-
coming interval of the execution.

An EClass algorithm was implemented in Java and was
evaluated against two existing algorithms on a cycle-accurate
power simulator using three real-life applications. Results
show that the proposed algorithm can, on average, save 9.1%
more energy than another black-box algorithm based on
online learning. Although our algorithm is general, the pre-
sence of a training phase requires some efforts prior to using
the algorithm on the fly. An adapted algorithm Target is spe-
cifically customized for optimizing executions of the same
test case.

A particular contribution of this paper is that according to
experimental results, although classification can be much less
efficient (and hence requiring more energy) than simply
setting a value as in Online, the cost can be well compensated.
The results show that energy-awareness research can benefit
from advanced algorithms.

In the future, we will investigate whether the window size
and checking interval can be automatically deduced and opti-
mized for a task. Previous work [28] has shown that program
phases are more pronounced with shorter intervals. Finer
granularity may improve the result of our technique provided
that the overhead associated with traditional DVFS can be
overcome. We are also eager to extend the technique to
multi-threaded, multi-core, and virtualized environments.
One of the major challenges is to model the aggregated
execution behavior of threads running simultaneously on
cores that share common resources such as L2 cache. Recent
research on execution time over multi-core systems (such as
[31]) usually requires detailed analysis of the hardware to
achieve accurate runtime predictions. While accuracy is
important in areas such as Worst-Case Execution Time
(WCET) analysis, approximations may be sufficient for the
purpose of energy-efficiency. A promising approach is to
extend the training phase of our technique to estimate the

aggregated execution behavior of various tasks with different
utilization patterns. We also believe that cross-platform
training can be interesting, albeit challenging.

Our work and its experience have not considered the
influences of power-saving features of existing operating sys-
tems and different hardware architectures. A future extension
on this direction is useful. Moreover, the number of perfor-
mance parameters provided by an operating system is much
richer than what we have used in our experiment. It will be
interesting to develop a generic methodology to select a good
combination so that our work can be automatically tailored
for in a specific computing environment.

References

[1] S. Albers. Energy-efficient algorithms. Communications
of the ACM, 53 (5): 86–96, 2010.

[2] A. Alimonda, S. Carta, A. Acquaviva, A. Pisano, and L.
Benini. A feedback-based approach to DVFS in data-
flow applications. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 28
(11): 1691–1704, 2009.

[3] H. Anton and C. Rorres. Elementary Linear Algebra:
Applications Version. Wiley, New York, NY, 2010.

[4] W. Baek and T.M. Chilimbi. Green: a framework for
supporting energy-conscious programming using con-
trolled approximation. In Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2010), pages 198–
209. ACM Press, New York, NY, 2010.

[5] V. Berten, C.-J. Chang, and T.-W. Kuo. Managing im-
precise worst case execution times on DVFS platforms.
In Proceedings of the 15th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems
and Applications (RTCSA 2909), pages 181–190. IEEE
Computer Society Press, Los Alamitos, CA, 2009.

[6] L. Bertini, J.C.B. Leite, and D. Mossé. Power optimiza-
tion for dynamic configuration in heterogeneous web
server clusters. Journal of Systems and Software,
83(4):585–598, 2010.

[7] T.D. Burd and R.W. Brodersen. Energy efficient CMOS
microprocessor design. In Proceedings of the 28th
Hawaii International Conference on System Sciences
(HICSS-28), volume 1, pages 288–297. IEEE Computer
Society Press, Los Alamitos, CA, 1995.

[8] J.-J. Chen and C.-F. Kuo. Energy-efficient scheduling
for real-time systems on dynamic voltage scaling (DVS)
platforms. In Proceedings of the 13th IEEE Interna-
tional Conference on Embedded and Real-Time Compu-
ting Systems and Applications (RTCSA 2007), pages 28–
38. IEEE Computer Society Press, Los Alamitos, CA,
2007.

[9] K. Choi, R. Soma, and M. Pedram. Fine-grained
dynamic voltage and frequency scaling for precise
energy and performance trade-off based on the ratio of
off-chip access to on-chip computation times. In Pro-

16

ceedings of the Conference on Design, Automation and
Test in Europe (DATE 2004), volume 1, pages 4–9.
IEEE Computer Society Press, Los Alamitos, CA, 2004.

[10] CLOC: Count Lines of Code. Available at
http://cloc.sourceforge.net/. Last access May 2011.

[11] G. Contreras and M. Martonosi. Power prediction for
Intel XScale processors using performance monitoring
unit events. In Proceedings of the 2005 International
Symposium on Low Power Electronics and Design
(ISLPED 2005), pages 221–226. IEEE Computer
Society Press, Los Alamitos, CA, 2005.

[12] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society: Series B
(Methodological), 39 (1): 1–38, 1977.

[13] J.E. Dennis, Jr. and R.B. Schnabel. Numerical Methods
for Unconstrained Optimization and Nonlinear
Equations. Classics in Applied Mathematics, Vol. 16.
Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1996.

[14] G. Dhiman and T.S. Rosing. Dynamic voltage
frequency scaling for multi-tasking systems using online
learning. In Proceedings of the 2007 International
Symposium on Low Power Electronics and Design
(ISLPED 2007), pages 207–212. ACM Press, New
York, NY, 2007.

[15] GCC Code-Size Benchmark Environment (CSiBE).
Department of Software Engineering, University of
Szeged. Available at http://www.inf.u-szeged.hu/csibe/.
Last access April 2011.

[16] D. Grunwald, C.B. Morrey III, P. Levis, M. Neufeld,
and K.I. Farkas. Policies for dynamic clock scheduling.
In Proceedings of the 4th Conference on Symposium on
Operating System Design and Implementation (OSDI
2000), volume 4, article no. 6. USENIX Association,
Berkeley, CA, 2000.

[17] Z. Herczeg, D. Schmidt, Á. Kiss, N. Wehn, and T.
Gyimóthy. Energy simulation of embedded XScale sys-
tems with XEEMU. Journal of Embedded Computing, 3
(3): 209–219, 2009.

[18] H. Huang, P. Pillai, and K.G. Shin. Design and imple-
mentation of power-aware virtual memory. In Proceed-
ings of the USENIX Annual Technical Conference
(ATEC 2003), article no. 5. USENIX Association,
Berkeley, CA, 2003.

[19] Intel XScale Core Developer's Manual. Intel Corpora-
tion, 2004. Available at http://www.intel.com/design/
intelxscale /273473.htm.

[20] E.Y.Y. Kan, W.K. Chan, and T.H. Tse. Leveraging
performance and power savings for embedded systems
using multiple target deadlines. The 1st International
Workshop on Embedded System Software Development
and Quality Assurance (WESQA 2010), in Proceedings
of the 10th International Conference on Quality

Software (QSIC 2010), IEEE Computer Society Press,
Los Alamitos, CA, pages 473–480, 2010.

[21] J. Kim, S. Yoo, and C.-M. Kyung. Program phase-aware
dynamic voltage scaling under variable computational
workload and memory stall environment. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 30(1):110–123, 2011.

[22] C. Lin and S.A. Brandt. Improving soft real-time perfor-
mance through better slack reclaiming. In Proceedings
of the 26th IEEE International Real-Time Systems Sym-
posium (RTSS 2005), pages 410–421. IEEE Computer
Society Press, Los Alamitos, CA, 2005.

[23] S. Liu, J. Lu, Q. Wu, and Q. Qiu. Load-matching
adaptive task scheduling for energy efficiency in energy
harvesting real-time embedded systems. In Proceedings
of the ACM/IEEE International Symposium on Low-
Power Electronics and Design (ISLPED 2010), pages
325–330. IEEE Computer Society Press, Los Alamitos,
CA, 2010.

[24] X. Liu, P. Shenoy, and M.D. Corner. Chameleon:
application-level power management. IEEE Transac-
tions on Mobile Computing, 7 (8): 995–1010, 2008.

[25] S. Misra, S.K. Dhurandher, M.S. Obaidat, P. Gupta, K.
Verma, and P. Narula. An ant swarm-inspired energy-
aware routing protocol for wireless ad-hoc networks.
Journal of Systems and Software, 83(11):2188–2199,
2010.

[26] Most Popular Websites on the Internet. Available at
http://mostpopularwebsites.net/. Last access April 2011.

[27] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy,
and D. Wetherall. Reducing network energy consump-
tion via sleeping and rate-adaptation. In Proceedings of
the 5th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2008), pages 323–
336. USENIX Association, Berkeley, CA, 2008.

[28] K.K. Rangan, G.-Y. Wei, and D. Brooks. Thread
motion: fine-grained power management for multi-core
systems. In Proceedings of the 36th Annual Interna-
tional Symposium on Computer Architecture (ISCA
2009), pages 302–313. ACM PRESS, New York, NY,
2009.

[29] N.B. Rizvandi, J. Taheri, and A.Y. Zomaya. Some
observations on optimal frequency selection in DVFS-
based energy consumption minimization. Journal of
Parallel and Distributed Computing, 2011. doi:
10.1016/j.jpdc.2011.01.004.

[30] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware
consolidation for cloud computing. In Proceedings of
the 2008 Conference on Power Aware Computing and
Systems (HotPower 2008). USENIX Association,
Berkeley, CA, 2008.

[31] R. Teodorescu and J. Torrellas. Variation-aware
application scheduling and power management for chip
multiprocessors. In Proceedings of the 35th Annual
International Symposium on Computer Architecture

17

(ISCA 2008), pages 363–374. IEEE Computer Society
Press, Los Alamitos, CA, 2008.

[32] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software: a first step towards software power
minimization. IEEE Transactions on Very Large Scale
Integration Systems, 2 (4): 437–445, 1994.

[33] M. Wang, Y. Wang, D. Liu, Z. Qin, and Z. Shao.
Compiler-assisted leakage-aware loop scheduling for
embedded VLIW DSP processors. Journal of Systems
and Software, 83(5):772–785, 2010.

[34] Wasabi Systems GNU Tools Version 031121 for Intel
XScale Microarchitecture. Intel Corporation, 2003.
Available at http://www.intel.com/design/intelxscale/
dev_tools/031121/wasabi_031121.htm. Last access
April 2011.

[35] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In Proceedings of
the 1st USENIX Conference on Operating Systems
Design and Implementation (OSDI 1994), article no. 2.
USENIX Association, Berkeley, CA, 1994.

[36] Weka 3: Data Mining Software in Java. The University
of Waikato. Available at http://www.cs.waikato.ac.nz/
ml/weka/. Last access April 2011.

[37] S.-L. Wu and S.-C. Chen. An energy-efficient MAC
protocol with downlink traffic scheduling strategy in
IEEE 802.11 infrastructure WLANs. Journal of Systems
and Software, 84(6):1022–1031, 2011.

[38] B. Zhao, H. Aydin, and D. Zhu. Reliability-aware
dynamic voltage scaling for energy-constrained real-
time embedded systems. In Proceedings of the IEEE
International Conference on Computer Design (ICCD
2008), pages 633–639. IEEE Computer Society Press,
Los Alamitos, CA, 2008.

[39] D. Zhu and H. Aydin. Energy management for real-time
embedded systems with reliability requirements. In
Proceedings of the 2006 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD 2006),
pages 528–534. ACM Press, New York, NY, 2006.

