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Abstract. We propose an improved preimage attack on one-block MD4
with the time complexity 294.98 MD4 compression function operations,
as compared to 2107 in [3]. We research the attack procedure in [3] and
formulate the complexity for computing a preimage attack on one-block
MD4. We attain the result mainly through the following two aspects
with the help of the complexity formula. First, we continue to compute
two more steps backward to get two more chaining values for compari-
son during the meet-in-the-middle attack. Second, we search two more
neutral words in one independent chunk, and then propose the multi-
neutral-word partial-fixing technique to get more message freedom and
skip ten steps for partial-fixing, as compared to previous four steps. We
also use the initial structure technique and apply the same idea to im-
prove the pseudo-preimage and preimage attacks on Extended MD4 with
225.2 and 212.6 improvement factor, as compared to previous attacks in
[20], respectively.
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1 Introduction

A cryptographic hash function takes an input message m of arbitrary length
and produces an output h of fixed length, i.e., h = HASH(m). Cryptographic
hash functions have many important applications, such as digital signatures,
message authentication codes, and random number generators. A cryptographic
hash function should have the following three properties.

– Preimage resistance: given a hash value h, it is hard to find a message m so
that h = HASH(m).

– Second preimage resistance: given a message m1, it is hard to find another
message m2 and m2 6= m1 so that HASH(m2) = HASH(m1).

– Collision resistance: it is hard to find two messages m1 and m2 (m1 6= m2)
so that HASH(m1) = HASH(m2).

MD4, which was introduced by Rivest in 1990 [17], is a cryptographic hash
function. Its design goals are security, speed, simplicity and compactness, and
favoring little-endian architectures, respectively. The design philosophy of the
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most used cryptographic hash function, such as MD5, SHA-1 and SHA-2, even
many of SHA-3 candidates, is original from MD4. Though the collision resistance
of MD4 was broken in 1996 [9], MD4 has still been applied in many aspects
because of its preimage resistance and speed. First, MD4 is used in ed2k URI
scheme and it provides a unique identifier for a file in the popular eDonkey2000
/eMule P2P networks. Second, MD4 is also used in the rsync protocol. Third,
MD4 is used in NT LAN Manager version one mainly employed in early versions
of Windows NT. Fourth, MD4 is used in the S/KEY one-Time Password System.

1.1 Related Works

We mainly introduce collision attacks on MD4 and preimage attacks on MD4-
family here. Merkle showed an unpublished collision attack on the first two
rounds of MD4. Den Boer et al. presented a collision attack on the last two
rounds of MD4 [8]. Vaudenay et al. also showed a collision attack on the first
two rounds of MD4 [22]. The first collision attack on the full rounds of MD4 was
presented by Dobbertin in 1996, as well as a collision of the slightly modified
variant of Extended MD4, where both lines have the same initial state [9]. The
very efficient collision attack on MD4 was published using the innovative method
by Wang et al. in Eurocrypt 2005 [24]. Sasaki et al. improved the collision attack
on MD4 using the different message difference in FSE 2007 [21]. Yu and Wang
presented a new type multi-collision attack on the compression function of MD4
in ICISC 2007 [26].

The result that the first two rounds of MD4 is not one way was proposed by
Dobbertin in FSE 1998 [10]. Kuwakado and Tanaka proposed a method to find
preimage on reduced MD4 which only consists of the first and third rounds in
1999 [13]. Yu et al. presented a kind of second-preimage attack on MD4 in CANS
2005 [25]. But it is effective only for very long messages with low complexity.
De et al. showed a preimage attack on 2 rounds and 7 steps of MD4 using SAT
solvers [6]. The first preimage attack on the full MD4 was proposed by Leurent in
FSE 2008 [15]. Its pseudo-preimage and preimage are with complexity of 296 and
2100.5, respectively. In SAC 2008, Aoki and Sasaki presented preimage attacks
on one-block MD4 with the complexity of 2107 and 63-step MD5 [3].

In SAC 2008, Aumasson et al. showed a preimage attack on 3-pass HAVAL
[4]. In CRYPTO 2008, Cannière and Rechberger presented preimage attacks on
49 steps of SHA-0 and 44 steps of SHA-1 [7]. Wang et al. presented a preimage
attack on the first 29 steps of RIPEMD in ISPEC 2009 [23]. Sasaki and Aoki
showed preimage attacks on 3-, 4-, and 5-pass HAVAL in ASIACRYPT 2008,
full MD5 in EUROCRYPT 2009, and the first 33 and intermediate 35 steps
of RIPEMD, full Extended MD4, et al. in ACISP 2009 [18,19,20]. Aoki and
Sasaki proposed preimage attacks on 52 steps of SHA-0 and 48 steps of SHA-1
in CRYPTO 2009 [2]. Isobe and Shibutani showed preimage attacks on 24 steps
of SHA-2 in FSE 2009 [12]. Aoki et al. presented preimage attacks on 43 steps
of SHA-256 and 46 steps of SHA-512 in ASIACRYPT 2009 [1].

Recently, Guo et al. presented preimage attack on MD4 with the time com-
plexity 299.7 and memory requirements 264 words [11]. Their time complexity
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is 278.4 and memory requirements are 281 words if 2128 precomputation is pro-
vided. Both of their preimage length is equal or greater than 250 blocks. They
also showed second preimage attack on MD4 with the time complexity 299.7 and
memory requirements 264 words. Suppose 2128 precomputation is provided, the
time complexity for second preimage is 269.4 and memory requirements are 272

words. Both of their second preimage length is equal or greater than 3 blocks.

1.2 Our Results

Table 1. Comparison of preimage attacks against MD4 and Extended MD4

Hash Attack
Pseudo-
preimage

Preimage Preimage Length
Memory
(words)

MD4

[15] 296 2102 Twenty Blocks 237

[15] 296 2100.5 Tens of Blocks 236

[11] 272 299.7 ≥ 250 Blocks 264

[11] 272 278.4, need 2128

precomputation
≥ 250 Blocks 281

[3] 2107 One-block 221 × 3
Our Results 294.98 One-block 235 × 7

Extended MD4
[20] 2229 2243.5 Two-block 227 × 11

Our Results 2203.8 2230.9 Two-block 252 × 12

We research the preimage attack procedure on one-block MD4 in [3], analyze
in detail how the attack complexity is acquired, and formulate the complexity
for computing a preimage attack on one-block MD4, and then get an observation
that we can continue to compute two more steps during backward computation
to get two more chaining values used for partial-matching additionally. This can
improve the complexity with 23.5 factor, as compared to the original one in [3].

We find two more new neutral words additionally in the second message
chunk. In order to utilize the new neutral words, we propose the multi-neutral-
word partial-fixing technique. This can skip ten steps during the partial-matching
and get more message freedom used for the meet-in-the-middle attack. The im-
provement by the method predominates in our results.

We apply the partial-matching and indirect partial-matching techniques si-
multaneously to match the chaining values during the meet-in-the-middle attack.
This slightly improves the complexity with less than 21 factor.

We improve the preimage attack on one-block MD4 with the complexity
294.98 using the above three methods.

We use the initial structure technique to get one more neutral word and ap-
ply the same idea to improve the preimage attack on Extended MD4 in [20].
This can get the improvement with 225.2 and 212.6 factor, as compared to the
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previous pseudo-preimage and preimage attacks on Extended MD4 in [20], re-
spectively. Meanwhile, we provide a corrected version of the swapping function
of the compression function of Extended MD4 in [20].

A summary of our results and previously published results is provided in
Table 1.

2 Specification of MD4 and Extended MD4

2.1 Specification of MD4

Qj-3 Qj Qj-1 Qj-2

Φj

Qj-2 Qj+1 Qj Qj-1

<<<sj

kj

mπ(j)

Fig. 1. The state update function of MD4.

The MD4 algorithm takes an input message whose length can be arbitrary
and produces an output 128-bit hash value. First of all, the input message is
padded, i.e., the message is appended a single 1 and some 0 so that the length
of the padded message becomes congruent to 448, modulo 512. Then, the length
of the original message before the padded bits were added is appended to the
already padded message. The MD4 algorithm uses the Merkle-Damg̊ard iterated
structure [5,16]. The compression function of MD4 has three rounds and every
round has 16 steps. Every step uses equation (1) to update the chaining variable.
π(j) is a function of MD4 message expansion. φj , sj , and kj are bitwise Boolean
function, const value, and left rotation, respectively. Equation (2) is contrary for
equation (1). π(j) and φj are shown in Table 2. sj and kj are shown in Table 3.
IV is the initial value defined in the specification. Equation (3) represents a run
procedure of compression function of MD4. Rj is the state update function of
MD4 as shown in Fig.1. Here, pj is an internal state and pj=(Qj−3, Qj , Qj−1,
Qj−2).

Qj+1 = (Qj−3 + φj(Qj , Qj−1, Qj−2) + mπ(j) + kj) ≪ sj , 0 ≤ j ≤ 47. (1)

Qj−3 = (Qj+1 ≫ sj)− φj(Qj , Qj−1, Qj−2)−mπ(j) − kj , 0 ≤ j ≤ 47. (2)

IV = (Q−3||Q0||Q−1||Q−2) = (0x67452301||0xefcdab89||0x98badcfe||0x10325476).




p0 = Hi,

pj+1 = Rj(pj ,mπ(j)), for j = 0, 9, ..., 47,

Hi+1 = p48 + p0.

(3)
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Notation
b−a
mi (or

b−a

Qi ) denotes the bits between the bth and ath bits of mi (or

Qi), and
all
mi (or

all

Qi) denotes the bits between the 31st and 0th bits of mi (or
Qi). Note that we start counting from the least significant bit.

Table 2. Message expansion and Boolean functions of MD4

j π(j) φj

0 1 · · · 15 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 (X ∧ Y ) ∨ (¬X ∧ Z)

16 17· · · 310,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15(X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z)

32 33· · · 470,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15 X ⊕ Y ⊕ Z

Table 3. Number of rotation and Magic constants of MD4

j sj kj

0 1 · · · 15 3,7,11,19,3,7,11,19,3,7,11,19,3,7,11,19 K0 = 0

16 17· · · 31 3,5,9,13,3,5,9,13,3,5,9,13,3,5,9,13 K1 = 0x5a827999

32 33· · · 473,9,11,15,3,9,11,15,3,9,11,15,3,9,11,15K2 = 0x6ed9eba1

2.2 Specification of Extended MD4

Rivest also proposed an extension version of MD4 with 256-bit hash values,
which is called Extended MD4 in [9], in order to satisfy higher security [17]. The
compression function of Extended MD4 is made up of two copies of compress
function of MD4 running in parallel. The first copy is the standard compression
function of MD4. The second copy differs only on the initial state and the magic
constants.

The initial state of the second copy is:

IV
′
= (0x33221100||0x77665544||0xbbaa9988||0xffeeddcc).

The magic constants of the second copy is:

K
′
0 = 0,K

′
1 = 0x50a28be6,K

′
2 = 0x5c4dd124.

The values of the A registers in the two copies are exchanged at the end of
the compression function. The final hash value is produced by concatenating
the results of the two copies. In order to explain the above exchange process,
we suppose that the output value of left copy of the compression function of
Extended MD4 is (AL

0 + AL
48, BL

0 + BL
48, CL

0 + CL
48, DL

0 + DL
48) and the out-

put value of right copy is (AR
0 + AR

48, BR
0 + BR

48, CR
0 + CR

48, DR
0 + DR

48). Then,
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after exchanged, the result of the compression function of Extended MD4 is
(AR

0 + AR
48, BL

0 + BL
48, CL

0 + CL
48, DL

0 + DL
48, AL

0 + AL
48, BR

0 + BR
48, CR

0 + CR
48,

DR
0 + DR

48).
In [20], the description about the exchange process in the two copies of the

compression function of Extended MD4, that the values of Q16, Q32 and Q48 in
the two copies are exchanged, does not correspond to the one in [17]. But this
hardly influence the complexity.

The swapping function of the compression function of Extended MD4, which
is used for interaction between two copies, is different from those of RIPEMD-256
and RIPEMD-320.

3 Related Techniques

Here, we introduce some related techniques.

3.1 Meet-in-the-Middle Attack

The meet-in-the-middle attack is a type of birthday attack and makes use of
a space-time tradeoff. The unbalanced meet-in-the-middle attack was proposed
first in [14]. The compression function computes forward to the given step and
gets a set of results, and then the compression function computes backward
and gets another set of results. The two sets of results are compared to search
a intersection. The two computation procedures must be independent on each
other so that the birthday attack rule can be applied.

3.2 Converting Pseudo-Preimage Attack into Preimage Attack

The method of converting a pseudo-preimage attack into a preimage attack was
proposed first in [14]. Because the initial chaining value of pseudo-preimage is
not the fixed IV, we hash a message block for connecting the fixed IV with
the initial chaining value. Searching the proper message block accords with the
birthday attack rule. If it takes 2k complexity to produce a pseudo-preimage in
a n-bit iterated hash function, then the total complexity to produce a preimage
is 21+ n+k

2 .

3.3 Splice-and-Cut Technique

The splice-and-cut technique is proposed first in [3]. During a preimage attack,
the hash value is given, and thus it is a constant. Therefore, the final output state
subtracted from the hash value is the initial internal state in the Davies-Meyer
mode. Thus we can regard the first and last steps as consecutive steps, and then
any step can be considered a starting step in the meet-in-the-middle attack.
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3.4 Initial Structure Technique

The initial structure technique was proposed first in [19]. The neutral words for
the two message chunks may mix in the beginning of the attack point so as to be
difficult to find two independent message chunks during the meet-in-the-middle
attack. This technique is used to solve the problem and helps to search better two
independent message chunks for a more successful meet-in-the-middle attack.

3.5 Partial-Matching, Partial-Fixing and Indirect-Partial-Matching
Techniques

The partial-matching and partial-fixing techniques are also presented first in [3].
The state update function does not update all of chaining variables of an internal
state. The partial-matching technique makes use of the property so that several
steps between two independent message chunks can be skipped.

If we can fix some bits of a neutral word in order to be able to continue to
compute, such technique is called the partial-fixing technique. The partial-fixing
technique is the partial-matching technique in nature.

The indirect-partial-matching technique, which is proposed first in [1], is an
extension of the partial-matching technique. If the computation of a matching
point can be decomposed the independent computation of the functions of the
neutral words, the indirect-partial-matching technique can be applied.

Table 4. Message word distribution for one-block MD4 in [3]

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2 3© 4 5 6 7© 8© 9 10 11 12 13 14 15

←− first chunk ←− −→ second chunk −→
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 0 4 8© 12 1 5 9 13 2 6 10 14 3© 7© 11 15

−→ second chunk −→ skip

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 0 8© 4 12 2 10 6 14 1 9 5 13 3© 11 7© 15

skip ←− first chunk ←−

4 How to Improve the Preimage Attack on One-block
MD4

The message word distribution for one-block MD4 in [3] is shown in Table 4. In

Table 4, the neutral word for the first chunk is m8 (
31−11
m8 are free). The neutral

words for the second chunk are m3 and m7 (
all
m7 are free). But the value of m3
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Table 5. Our Message word distribution for one-block MD4

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2 3© 4 5 6 7© 8© 9 10© 11 12© 13 14 15

←− first chunk ←− −→ second chunk −→
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 0 4 8© 12© 1 5 9 13 2 6 10© 14 3© 7© 11 15

−→ second chunk −→ skip

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 0 8© 4 12© 2 10© 6 14 1 9 5 13 3© 11 7© 15

skip ←− first chunk ←−

completely depends on that of m7 in order to form a local collision in the first
round. Therefore, the neutral word for the second chunk is only m7 in nature.
The general procedure of preimage attack on one-block MD4 in [3] is as follows.

We compute forward using all possible values of m8 (thereinto,
31−11
m8 are used to

compute as the free bits, and
10−0
m8 are fixed for partial-fixing) as a variable, and

store the values of (
all

Q27,
all

Q28,
all
m8) into the table L, then 221 pairs are produced.

Then, we compute backward using m7 (
all
m7 are free) as a variable and

7−0
m8 as

known values, and we get the values of (
10−0

Q27 ,
10−0

Q28 ) which are used to match
with the corresponding values in the table L.

Here, we introduce two propositions. The key idea of our improvements is
from the following two propositions.

Proposition 1. If any four successive chaining variables (Qi, Qi+1, Qi+2, Qi+3)
for the forward and backward computation are matched successfully during the
meet-in-the-middle attack on MD4, the chaining variables for the forward com-
putation succeed in connecting to the ones for backward computation.

Proof. According to equation (1), the value of Qi+4 can be fixed on by the
values of Qi, Qi+1, Qi+2, and Qi+3 during the forward computation. Similarly,
the values of Qi+5, Qi+6, · · · , Q48 can be fixed on.

According to equation (2), the value of Qi−1 can be fixed on by the values
of Qi, Qi+1, Qi+2, and Qi+3 during the backward computation. Similarly, the
values of Qi−2, Qi−3, · · · , Q0 can be fixed on.

Proposition 2. For one-block MD4, let f1 be the number of free bits of neutral
words for the second chunk, b1 be the number of free bits of neutral words for the
first chunk. Let f be the total number of all free bits of neutral words, then

f = f1 + b1. (4)

Let n1 be the number of the steps in the first chunk, n2 be the number of the
steps in the second chunk. Let t1 be number of the matched bits for the first
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matching, ti be number of the matched bits for the ith matching, ai be number
of the computing steps between the end of the (i− 1)th matching phase and the
start of the ith matching phase. The time complexity of the first attack procedure
(before repeated) is 2r, then

2r = 2f1× n1

48
+2b1× n2

48
+2f1+b1−t1× a1

48
+ · · ·+2f1+b1−

∑i
j=1 tj × ai

48
+ · · · . (5)

The computation in the right side of equation (5) ends with the condition that
any four successive chaining values (Qi, Qi+1, Qi+2, Qi+3) are compared, or
the quantity of 2f1+b1−

∑i
j=1 tj × ai

48 , compared to the complexity of other steps, is
negligible. The total time complexity to produce a preimage for one-block MD4
is

Cpreimage complexity = 2128−f+r. (6)

Proof. According to the procedure in the meet-in-the-middle attack, we know
the first attack procedure is made up of the computation of the first chunk
(i.e. backward computation), the computation of the second chunk (i.e. for-
ward computation), and the computation of the matching procedure. If any four
successive chaining variables (Qi, Qi+1, Qi+2, Qi+3) are matched entirety, the
meet-in-the-middle attack succeeds, otherwise, it fails and needs to repeat the
attack procedure. Furthermore, if the quantity of 2f1+b1−

∑i
j=1 tj × ai

48 , compared
to the complexity of other steps, is negligible, the quantity is not needed to
add to the time complexity. Therefore, the time complexity of the first attack
procedure (before repeated) is shown by equation (5). The attack is statistical.
Because the number of the bits of the chaining variables (Qi, Qi+1, Qi+2, Qi+3)
is 128, and the number of total free bits is f , the first attack procedure needs to
repeat 2128−f times. Thus the total time complexity to produce a preimage for
one-block MD4 is shown by equation (6).

We should make −f + r as little as possible according to Proposition 2,
moreover we can compute the optimal complexity by the program, as shown in
Appendix A, according to Proposition 2.

We explain how to improve the complexity through the following three ways.
The following three ways can be used independently, and also be combined to
improve the complexity.

4.1 Improvement One

According to Proposition 1, we can try to store the partial values of (Q25, Q26,
Q27, Q28) for comparing, instead of those of (Q27, Q28), in order to improve the
complexity. There is a statement in [3], that “In MD4, up to four steps can be
additionally skipped by the partial-fixing technique ”. But we discover that six
steps can be additionally skipped by the partial-fixing technique, i.e., we can
compute the partial values of Q30, Q29, Q28, Q27, Q26 and Q25 using the partial
value of m8 by the partial-fixing technique. In [3], they only compute the partial
values of Q30, Q29, Q28 and Q27 using the partial value of m8. We conjecture that



10 Jinmin Zhong, Xuejia Lai

the reason why the partial values of Q26 and Q25 are not continued to compute
in [3] is that the neutral word m7 is met when Q26 is computed. Though m7

is a neutral word for the second chunk, the value of m7 is known during the
backward computation, so we can still compute Q26 using m7. We combine the
above observation with the idea from Proposition 2 to improve the complexity.
We compute forward using all possible values of m8 (thereinto,

31−8
m8 are free and

7−0
m8 are fixed for partial-fixing) as a variable, and store the values of (

all

Q25,
all

Q26,
all

Q27,
all

Q28,
all
m8) into the table L, where 224 pairs produced are saved. Then, we

compute two more steps backward to get the values of
2−0

Q25 and
2−0

Q26, thus we

can compare (
2−0

Q25,
2−0

Q26,
7−0

Q27,
7−0

Q28) with the corresponding values in the table L.
This can improve the complexity with 23.5 factor compared to the original one
in [3].

4.2 Improvement Two

We know that the neutral word m7 for the second chunk has 32 free bits, while the
neutral word m8 for the first chunk only has 24 free bits, in Table 4. The number
of free bits of m8, which is less than that of m7, is a big bottleneck for improve
the complexity according to Proposition 2. We should manage to increase the
number of the free bits of the neutral words for the first chunk according to
Proposition 2 if we want to improve the complexity about preimage attack on
one-block MD4 further. Based on the above idea, we try to search new neutral
words for the first chunk. There are only six message words, i.e., (m3, m7, m11,
m15, m0, m8), in the skip interval in Table 4, where m3, m7 and m8 have been
used as neutral words. Thus, we test other message words, i.e., (m11, m15, m0),
and find they can not be used as neutral words. Therefore, we have no choice
but to extend the skip interval. We add m4, which is next to m8 in the third
round, to the skip interval. Then we test m4, and find that it cannot be used
as a neutral word for the first chunk. Anyway, we continue to test m12, which is
next two steps to m8 in the third round. Luckily, m12 can be used as a neutral
word for the first chunk. But we meet another problem that m12 is next two
steps to m8 in the third round, and how do we overcome the two steps? We
try to use the partial-fixing technique to deal with it, i.e., some bits of m12 are
fixed and the other bits of m12 are used as free bits so that we can continue to
compute backward with the fixed bits of m12 and get the free bits of m12 for
improving the meet-in-the-middle attack. As a result, it is feasible. In the same
way, m10 can also be used as a neutral word for the first chunk. Therefore, the
sum of the free bits which m8, m12 and m10 can provide is much more than
the one which m8 can do. Because m8, m12 and m10 are used as neutral words
for the first chunk, moreover, all of them are used by the partial-fixing. We call
the technique multi-neutral-word partial-fixing. The multi-neutral-word partial-
fixing technique is a variation of the partial-fixing technique, where multiple
neutral words in one message chunk are partially fixed to skip more steps for the
matching-part in the meet-in-the-middle attack and get more message free bits
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to improve the meet-in-the-middle attack. We can additionally skip ten steps
for the matching-part for the preimage attack on one-block MD4 (even eleven
steps for the matching-part for the preimage attack on Extended MD4) using
the multi-neutral-word partial-fixing technique, instead of four steps claimed in
[3]. We may find more neutral words and better message chunks using the multi-
neutral-word partial-fixing technique. These results are shown in Tables 5 and
6.

4.3 Improvement Three

We apply the partial-matching and indirect-partial-matching techniques simulta-
neously to compare the chaining variables during the meet-in-the-middle attack.
Though this can only slightly improve the complexity, we first show that the two
techniques can be applied simultaneously.

Q29 = (Q25 + φ28(Q28, Q27, Q26) + t2 + m3) ≪ 3. (7)

We cannot compute Q29 during the forward computation according to equa-
tion (7) as m3 is an unknown value. But we can compute X=Q25+φ28(Q28, Q27,
Q26)+t2. Then we can save (Q26, Q27, Q28, X), instead of (Q25, Q26, Q27, Q28),
in the table L. The procedures are shown in Steps 3b and 3c in Section 5.1. Note
that we can not store (Q25, Q26, Q27, Q28, X) into the table L for comparing. It
is because X is derived from Q25, Q26, Q27 and Q28, and the entropy of X exists
those of Q25, Q26, Q27 and Q28.

The following equation (8) is from Step 4i in Section 5.1.

13−0

Q29 = (
22−0

Q33 ≫ 3)− φ32(
22−0

Q32 ,
22−0

Q31 ,
13−0

Q30 )− all
m0 −

all
t3 (8)

Some bits of Q29 can be computed according to equation (8) and m3 is a

known value during the backward computation. Let
10−0

X = (
13−0

Q29 ≫ 3) − all
m3

such that we can compare (
8−0

Q26,
9−0

Q27,
9−0

Q28,
10−0

X ), instead of (
8−0

Q25,
8−0

Q26,
9−0

Q27,
9−0

Q28),

with (
all

Q26,
all

Q27,
all

Q28,
all

X) in the table L. The procedures are shown in Steps 4i ∼
4n in Section 5.1.

The method can provide two advantages. One advantage is that we can com-

pare more known bits of X (
10−0

X are known) than those of Q25 (
8−0

Q25 are known).
The other is that we can take less cost as X is computed and compared more
earlier than Q25 during the backward computation.

5 Preimage Attack on One-block MD4

5.1 Attack Procedure of One-block MD4

Assume that the given hash value is H.
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1. Set p48 = H − IV (p0).
Set C1, C2, C3 and C4 random values.
Set the MSB of m13 one, the others bits of m13 random value, m14 = 447
and m15 = 0 to satisfy the padding rule for one-block message.
Set

14−0
m8 ,

22−0
m10 ,

22−0
m12 and mi(i ∈ {9, 11}) random values.

Compute p47 = R−1
47 (p48,m15). (Note p48 and m15 are known.)

2. Compute the following equation,
(a) m0 = (C4 ≫ s0)−Q−3 − φ0(Q0, Q−1, Q−2)
(b) m1 = (C3 ≫ s1)−Q−2 − φ1(C4, Q0, Q−1)
(c) m2 = (C3 ≫ s2)−Q−1 − φ2(C3, C4, Q0)
(d) m4 = (0 ≫ s4)− C4 − C3

(e) m5 = 1− C3 − C3 = 1− 2C3

(f) m6 = (C2 ≫ s6)− C3

3. For all possible values of m8, m10 and m12 (thereinto,
31−15
m8 ,

31−23
m10 , and

31−23
m12

are free, so there are 35 (= 17 + 9 + 9) free bits in total), do the following,
(a) pj+1 = Rj(pj ,mπ(j)), for j = 8, 9, ..., 27.
(b) Let X = Q25 + φ28(Q28, Q27, Q26) + t2 (Note Q29 = (X + m3) ≪ 3)
(c) make the table L which saves (m8, m10, m12, Q26, Q27, Q28, X), and

the size of the table L is 235 × 7 words.

4. For all possible values m7 (
all
m7, 32 free bits in total), do the following,

(a) ∗ = (C1 ≫ s7)− φ7(C2, 1, 0)−m7

(b) m3 = (∗ ≫ s3)−Q0 − φ3(C3, C3, C4)
(c) pj = R−1

j (pj+1,mπ(j)), for j = 46, 45, ..., 38.

(d)
22−0

Q34 = (
all

Q38 ≫ 9)− φ37(
all

Q37,
all

Q36,
all

Q35)− 22−0
m10 −

all
t3

(e)
22−0

Q33 = (
all

Q37 ≫ 3)− φ36(
all

Q36,
all

Q35,
22−0

Q34 )− all
m2 −

all
t3

(f)
22−0

Q32 = (
all

Q36 ≫ 15)− φ35(
all

Q35,
22−0

Q34 ,
22−0

Q33 )− 22−0
m12 −

all
t3

(g)
22−0

Q31 = (
all

Q35 ≫ 11)− φ34(
22−0

Q34 ,
22−0

Q33 ,
22−0

Q32 )− all
m4 −

all
t3

(h)
13−0

Q30 = (
22−0

Q34 ≫ 9)− φ33(
22−0

Q33 ,
22−0

Q32 ,
22−0

Q31 )− 14−0
m8 −

all
t3

(i)
13−0

Q29 = (
22−0

Q33 ≫ 3)− φ32(
22−0

Q32 ,
22−0

Q31 ,
13−0

Q30 )− all
m0 −

all
t3

(j)
10−0

X = (
13−0

Q29 ≫ 3)− all
m3

(k)
9−0

Q28 = (
22−0

Q32 ≫ 13)− φ31(
22−0

Q31 ,
13−0

Q30 ,
13−0

Q29 )− all
m15 −

all
t2

(l)
9−0

Q27 = (
22−0

Q31 ≫ 9)− φ30(
13−0

Q30 ,
13−0

Q29 ,
9−0

Q28)− all
m11 −

all
t2

(m)
8−0

Q26 = (
13−0

Q30 ≫ 5)− φ29(
13−0

Q29 ,
9−0

Q28,
9−0

Q27)− all
m7 −

all
t2

(n) Compare (
8−0

Q26,
9−0

Q27,
9−0

Q28,
10−0

X ) with (
all

Q26,
all

Q27,
all

Q28,
all

X) in the table L,
and then 40 (= 9 + 10 + 10 + 11) bits take part in comparison, so 227

(= 232 × 235 × 2−40) pairs remain.
(o) If matched, compute all of bits of Q34 with the corresponding m10 in

the table L, Q33, all of bits of Q32 with the corresponding m12 in the
table L, Q31, Q30 with the corresponding m8 in the table L, and then
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compute all of bits of Q29 and X using the remained pairs, respectively.

Compare
31−11

X with X in the table L, i.e., compare the remained 21 bits
of X, and 26 (= 227 × 2−21) pairs remain.

(p) Compute Q28, Q27, and Q26, and then compare them with Q28, Q27 and
Q26 in the table L using the remained pairs. If all of bits are matched,
m0,m1, ..., m15 as a preimage returns, otherwise, repeat the attack pro-
cedure.

5.2 Complexity Analysis for Preimage Attack on One-block MD4

(We use CF to represent compression function operations.)

1. The cost in Step 1 and Steps 2a∼2f compared to that of other steps is
negligible.

2. The cost in Steps 3a and 3b is approximately 235 × 20+1
48 CF. The memory

requirements in Step 3c is 235 × 7 words.
3. The cost in Steps 4a, 4b, and 4c is 232 × 1

48 CF, 232 × 1
48 CF and 232 × 9

48
CF, respectively. The total cost in Steps 4d∼4m is 232 × 10

48 CF.
4. The cost in Step 4n is negligible. After comparison in Step 4n, 226 pairs

remain.
5. In Step 4o, the cost of computing Q34, Q33, Q32, Q31, Q30, Q29, and X is

227 × 7
48 CF. The cost in Step 4p is negligible.

6. The complexity is approximately 233.98 (≈ 235× 20+1
48 + 232× 21

48 + 227× 7
48 )

CF from Step 1 to Step 4m. 267 (= 235 × 232) pairs are produced in Steps
3 and 4 in total. Therefore, it needs to repeat 261 (= 2128−67) times. The
total complexity to produce a preimage of MD4 is 294.98 (= 233.98 × 261)
CF. The memory requirements are 235 × 7 words, i.e., the one in Step 3c.
The program codes, which are used to compute the optimal complexity of
preimage on one-block MD4, are in Appendix A.

6 Preimage Attack on Extended MD4

We still use the message word distribution shown in Table 5 as the one for
preimage on two-block Extended MD4. In order to facilitate comparison, we
also display the message word distribution shown in Table 7, which is used for
both preimage attack on two-block Extended MD4 in [20] and preimage attack
on two-block MD4 in [3].

For the preimage attack on two-block Extended MD4, we use the message
words (m3, m7) as the neutral words for the second chunk and (m8, m10, m12)
as the neutral words for the first chunk, while the neutral word for the second
chunk is m7 and the neutral word for the first chunk is m8 in [20].

We continue to analyze the message word distribution in Table 5 in order to
improve the complexity further. We check if it is possible to put m6 in round 3
into the skip interval and make it be a neutral word for the first chunk. However,
m6 in round 1 is in the first chunk. If we would regard m6 as a neutral word for
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Table 6. Our Message word distribution for two-block Extended MD4

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2 3© 4 5 6© 7© 8© 9 10© 11 12© 13 14 15

←− first chunk ←− initial
structure

−→ second chunk −→
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 0 4 8© 12© 1 5 9 13 2 6© 10© 14 3© 7© 11 15

−→ second chunk −→ skip

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 0 8© 4 12© 2 10© 6© 14 1 9 5 13 3© 11 7© 15

skip ←− first chunk ←−

Table 7. Message word distribution for two-block Extended MD4 in [20]

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
index 0 1 2 3 4 5 6 7© 8© 9 10 11 12 13 14 15

←− first chunk ←− −→ second chunk −→
Step 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
index 0 4 8© 12 1 5 9 13 2 6 10 14 3 7© 11 15

−→ second chunk −→ skip

Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
index 0 8© 4 12 2 10 6 14 1 9 5 13 3 11 7© 15

skip ←− first chunk ←−

the first chunk, we must try to put m6 in round 1 into the second chunk. We find
that m6 in round 1 is next to m7, which is a neutral word for the second chunk.
Hence, we can move the splitting point one step leftward and apply a 2-step
initial structure to m6 and m7 in round 1, as shown in Fig. 2, and then m6 is
changed with m7 in round 1 so that m6 can be a neutral word for the first chunk,
and m7 remains unchanged and is still a neutral word for the second chunk, as
shown in Table 6. Our preimage attack procedure on Extended MD4 is similar
to that on one-block MD4. The interaction between the copies of Extended MD4
is simple and easy to deal with according to the description in Section 2.2.

Finally, we improve the results about the pseudo-preimage and preimage
attacks on Extended MD4 at the complexity 2203.8 and 2230.9, respectively. The
detailed attack procedure is presented in next section.

6.1 Attack Procedure of Extended MD4

Assume that the given hash value is H, and Hexchange is the value of H ex-
changed, after the values of the A registers in the two copies are exchanged
according to Section 2.2.
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Q3 Q6 Q5 Q4

Φ6

Q4 Q7 Q6 Q5

<<<s6

m6

Φ7

Q5 Q8 Q7 Q6

<<<s7

m7

U1

U2

Fig. 2. The initial structure of Extended MD4.

1. Set the MSB of m13 one, the others bits of m13 random value, m14 = 1024−
65 and m15 = 0 to satisfy the padding rule for two blocks messages.
Set

9−0
m3 random value.

Set
25−0
m6 random value.

Set
10−0
m8 random value.

Set
19−0
m10 random value.

Set
18−0
m12 random value.

Set mi(i ∈ {0, 1, 2, 4, 5, 9, 11}) random values.
Set U1, U2, Q5 and Q6 random values.

2. For all possible values of m6, m8, m10, and m12, (
31−26
m6 ,

31−11
m8 ,

31−20
m10 , and

31−19
m12 are free, and there are 52 (= 6 + 21 + 12 + 13) free bits in total), do
the following,
(a) Q7 = (U1 + m6) ≪ s6

(b) Q8 = (U2 + φ7(Q7, Q6, Q5)) ≪ s7

(c) pj+1 = Rj(pj ,mπ(j)), for j = 8, 9, ..., 27.
(d) Let X = Q25 + φ28(Q28, Q27, Q26) + t2 (Note Q29 = (X + m3) ≪ 3)
(e) Make a table L which saves (m6, m8, m10, m12, Q26, Q27, Q28, X, Q

′
26,

Q
′
27, Q

′
28, X

′
), and the size of the table L is 252 × 12 words.

3. For all possible values m3 and m7 (
31−10
m3 and

31−0
m7 are free, and there are 54

(= 22 + 32) free bits in total), do the following,
(a) Q4 = U2 −m7

(b) Q3 = U1 − φ6(Q6, Q5, Q4)
(c) pj = R−1

j (pj+1,mπ(j)), for j = 5, 4, ..., 0.
(d) p48 = Hexchange − p0.
(e) pj = R−1

j (pj+1,mπ(j)), for j = 47, 46, ..., 39.

(f)
25−0

Q35 = (
all

Q39 ≫ 11)− φ38(
all

Q38,
all

Q37,
all

Q36)− 25−0
m6 −

all
t3

(g)
19−0

Q34 = (
all

Q38 ≫ 9)− φ37(
all

Q37,
all

Q36,
25−0

Q35 )− 19−0
m10 −

all
t3

(h)
19−0

Q33 = (
all

Q37 ≫ 3)− φ36(
all

Q36,
25−0

Q35 ,
19−0

Q34 )− all
m2 −

all
t3
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(i)
18−0

Q32 = (
all

Q36 ≫ 15)− φ35(
25−0

Q35 ,
19−0

Q34 ,
19−0

Q33 )− 18−0
m12 −

all
t3

(j)
14−0

Q31 = (
25−0

Q35 ≫ 11)− φ34(
19−0

Q34 ,
19−0

Q33 ,
18−0

Q32 )− all
m4 −

all
t3

(k)
10−0

Q30 = (
19−0

Q34 ≫ 9)− φ33(
19−0

Q33 ,
18−0

Q32 ,
14−0

Q31 )− 10−0
m8 −

all
t3

(l)
10−0

Q29 = (
19−0

Q33 ≫ 3)− φ32(
18−0

Q32 ,
14−0

Q31 ,
10−0

Q30 )− all
m0 −

all
t3

(m)
7−0

X = (
10−0

Q29 ≫ 3)− all
m3

(n)
5−0

Q28 = (
18−0

Q32 ≫ 13)− φ31(
14−0

Q31 ,
10−0

Q30 ,
10−0

Q29 )− all
m15 −

all
t2

(o)
5−0

Q27 = (
14−0

Q31 ≫ 9)− φ30(
10−0

Q30 ,
10−0

Q29 ,
5−0

Q28)− all
m11 −

all
t2

(p)
5−0

Q26 = (
10−0

Q30 ≫ 5)− φ29(
10−0

Q29 ,
5−0

Q28,
5−0

Q27)− all
m7 −

all
t2

(q) Compare (
5−0

Q26,
5−0

Q27,
5−0

Q28,
7−0

X ,
5−0

Q
′
26,

5−0

Q
′
27,

5−0

Q
′
28,

7−0

X
′
) with (

all

Q26,
all

Q27,
all

Q28,
all

X ,
all

Q
′
26,

all

Q
′
27,

all

Q
′
28,

all

X
′
) in the table L, and then 52 (= 2× (6+6+6+8))

bits take part in comparison, so 254 (= 252 × 254 × 2−52) pairs remain.
(r) If matched, compute all of bits of Q35 with the corresponding m6 in the

table L, all of bits of Q34 with the corresponding m10 in the table L, Q33,
all of bits of Q32 with the corresponding m12 in the table L, respectively,
and then compute Q31, Q30 with the corresponding m8 in the table L,
and then compute all of bits of Q29 and X using the remained pairs,

respectively. Compare
31−8

X and
31−8

X
′

with X and X
′

in the table L,
respectively, i.e., compare the remained 24 bits of X and X

′
, and 24

(= 252 × 2−24 × 2−24) pairs remain.
(s) Compute Q28, Q27, and Q26, and then compare them with Q28, Q27 and

Q26 in the table L using the remained pairs. If all of bits are matched,
m0,m1, ..., m15 as a preimage returns, otherwise, repeat the attack pro-
cedure.

6.2 Complexity Analysis for Preimage Attack on Two-block
Extended MD4

(We use CF to represent compression function operations of Extended MD4 in
this subsection.)

1. The cost in Step 1 compared to that of other steps is negligible.
2. The cost in Steps 2a, 2b, 2c and 2d is approximately 252× 1+1+20+1

48 CF. The
cost in Step 2e compared to that of other steps is negligible. The memory
requirements in Step 2e is 252 × 12 words.

3. The cost in Steps 3a and 3d is approximately 254 × 1
48 CF in all. The cost

in Steps 3b, 3c and 3d is approximately 254 × 1+6+9
48 CF. The total cost in

Steps 3f∼3p is 254 × 11
48 CF.

4. The cost in Step 3q is negligible. After comparison in Step 3q, 254 pairs
remain.

5. In Step 3r, the cost of computing Q35, Q34, Q33, Q32, Q31, Q30, Q29, and X
is 254 × 8

48 CF. The cost in Step 3s is negligible.
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6. The complexity is approximately 253.8 (≈ 252 × 23
48 + 254 × 1+16+11+8

48 ) CF
from Step 1 to Step 3r. 2106 (= 252 × 254) pairs are produced in Steps 2
and 3 in total. Therefore, it needs to repeat 2150 (= 2256−106) times. The
total complexity to produce a pseudo-preimage of Extended MD4 is 2203.8

(= 253.8 × 2150) CF. The complexity to produce a preimage of Extended
MD4 is 2230.9 (= 2

203.8+256
2 +1) CF. The memory requirements are 252 × 12

words, i.e., the one in Step 2e. The program codes for computing the optimal
complexity of preimage attack on Extended MD4 are in Appendix B.

7 Conclusion

This paper shows the improved preimage attacks on one-block MD4 and two-
block Extended MD4. We think that the idea used in the paper can be tried to
improve the preimage attacks on other hash functions in the MD4-family.

Acknowledgments. We would like to thank Yu Sasaki, Lei Wang, and Kazu-
maro Aoki for the very helpful comments and suggestions.
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A The Program Code for Preimage Attack on One-block
MD4

Listing 1.1. The program for computing the complexity of preimage attack on
one-block MD4

1 /∗ The program is used to computer the time complexity of preimage
2 attack on one−block MD4
3 ∗/
4

5 #include <iostream>
6 #include <cmath>
7 using namespace std;
8

9 const int si [9]={5,9,13,3,9,11,15,3,9};
10 const int n[9]={7,11,15,0, 8,4,12,2,10};
11

12 int Get Fixed Bit(int Q[], int i , int m[]);
13

14 int main(int argc, char∗ argv []) {
15

16 int Q[40], m[16];
17 int i , j , X;
18 int first free bits , second free bits , total free bits ,
19 match bits, remain bits;
20 double min=pow(2.0, 10.0), a, r, h;
21 int m8, m10, m12;
22

23 for(m10=18; m10<31; m10++)
24 for(m12=18; m12<31; m12++)
25 for(m8=10; m8<31; m8++)
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26 {
27 for( i=0; i<40; i++)
28 {
29 Q[i]=0;
30 }
31 for( i=0; i<16; i++)
32 {
33 m[i]=31;
34 }
35 m[10]=m10;
36 m[12]=m12;
37 m[8] =m8;
38

39 Q[38]=31;
40 Q[37]=31;
41 Q[36]=31;
42 Q[35]=31;
43 for( i=34; i > 25; i−−)
44 {
45 Q[i]=Get Fixed Bit(Q, i, m);
46 }
47

48 X=Q[29]−3;
49 match bits = X + Q[28] + Q[27] + Q[26] + 4;
50

51 second free bits =32 ∗ 3 − (m[10]+m[12]+m[8]+3);
52 first free bits =32;
53

54 total free bits = first free bits + second free bits ;
55 remain bits = total free bits − match bits;
56

57 a=pow(2.0, first free bits ) ∗ 21.0/48.0;
58 a=a + pow(2.0, second free bits) ∗ 21.0/48.0;
59 i=29;
60 j=0;
61

62 while((remain bits > 10) && (j < 4 ))
63 {
64 if (0==j)
65 {
66 a=a + pow(2.0, remain bits) ∗ 7.0/48.0;
67 remain bits=remain bits − (31−Q[i]) − 3;
68 }
69 else
70 {
71 a=a + pow(2.0, remain bits) ∗ 1.0/48.0;
72 remain bits=remain bits − (31−Q[i−j]);
73 }
74 j++;
75 }
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76 r=log(a)/log(2);
77 h=128 − total free bits + r;
78 if (min > h)
79 min=h;
80

81 }
82 cout<<"preimage="<<min<<endl;
83 return 0;
84 }
85

86 int Get Fixed Bit(int Q[], int i , int m[]) {
87 int k, high=0, temp=0;
88

89 k=i+4;
90 if (31==Q[k])
91 {
92 high=31;
93 }
94 else
95 {
96 high=Q[k]−si[k−30];
97 }
98 if (high<=0)
99 return 0;

100

101 if (m[ n[k−30] ] < 31 && m[ n[k−30] ] < high)
102 {
103 high=m[ n[k−30] ];
104 }
105 temp = Q[i+3] > Q[i+2] ? Q[i+2]:Q[i+3];
106 temp = temp > Q[i+1] ? Q[i+1]:temp;
107 high = high > temp ? temp:high;
108

109 return high;
110 }

B The Program Code for Preimage Attack on Extended
MD4

Listing 1.2. The program for computing the complexity of pseudo-preimage
and preimage attacks on Extended MD4

1

2 /∗ The program is used to computer the time complexity of
3 pseudo−preimage and preimage attacks on two−block Extended MD4.
4 ∗/
5
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6 #include <iostream>
7 #include <cmath>
8 using namespace std;
9

10 const int si [10]={5, 9, 13, 3, 9, 11, 15, 3, 9, 11};
11 const int n[10]={7, 11, 15, 0, 8, 4, 12, 2, 10, 6};
12

13 int Get Fixed Bit(int Q[], int i , int m[]);
14

15 int main(int argc, char∗ argv []) {
16 int Q[40], m[16], temp=0;
17 int i , j , x;
18 int first free bits , second free bits , total free bits ,
19 match bits, remain bits;
20 double min=pow(2.0, 10.0), a, r, h;
21 int m6, m8, m10, m12;
22

23 for(m6=25; m6<31; m6++)
24 for(m10=18; m10<31; m10++)
25 for(m12=18; m12<32; m12++)
26 for(m8=10; m8<32; m8++)
27 {
28 for( i=0; i<40; i++)
29 {
30 Q[i]=0;
31 }
32 for( i=0; i<16; i++)
33 {
34 m[i]=31;
35 }
36 m[6]=m6;
37 m[10]=m10;
38 m[12]=m12;
39 m[8] =m8;
40

41 Q[39]=31;
42 Q[38]=31;
43 Q[37]=31;
44 Q[36]=31;
45 for( i=35; i > 25; i−−)
46 {
47 Q[i]=Get Fixed Bit( Q, i, m);
48 }
49

50 for( first free bits =35; first free bits <=64;
first free bits ++)

51 {
52 x=Q[29]−3;
53 match bits = 2 ∗ ( x + Q[28] + Q[27] + Q[26]

+ 4);
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54 second free bits =32 ∗ 4 − (m[6]+m[10]+m
[12]+m[8]+4);

55 total free bits = first free bits +
second free bits ;

56 a=pow(2.0, first free bits ) ∗ 28.0/48.0;
57 a=a + pow(2.0, second free bits) ∗ 23.0/48.0;
58 remain bits= total free bits − match bits;
59 i=29;
60 j=0;
61 while((remain bits > 10) && (j < 4 ))
62 {
63 if (0==j)
64 {
65 a=a + pow(2.0, remain bits) ∗

(7.0+1)/48.0;
66 remain bits=remain bits − 2 ∗ ((31−

Q[i]) − 3);
67 }
68 else
69 {
70 a=a + pow(2.0, remain bits) ∗

1.0/48.0;
71 remain bits=remain bits − 2 ∗ (31−Q[

i−j]);
72 }
73 j++;
74 }
75 r=log(a)/log(2);
76 h=256 − total free bits + r;
77 if (min > h)
78 min=h;
79

80 }
81

82 }
83 cout<<"pseudo_preimage="<<min<<"; preimage="

<<(min+256.0)/2.0 + 1<<endl;
84

85 return 0;
86 }
87

88 int Get Fixed Bit(int Q[], int i , int m[]) {
89 int k, high=0, temp=0;
90

91 k=i+4;
92 if (31==Q[k])
93 {
94 high=31;
95 }
96 else
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97 {
98 high=Q[k]−si[k−30];
99 }

100 if (0==high)
101 return 0;
102 if (m[ n[k−30] ] < 31 && m[ n[k−30] ] < high)
103 {
104 high=m[ n[k−30] ];
105 }
106 temp = Q[i+3] > Q[i+2] ? Q[i+2]:Q[i+3];
107 temp = temp > Q[i+1] ? Q[i+1]:temp;
108 high = high > temp ? temp:high;
109 Q[i] = high;
110

111 return high;
112 }
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