
Accepted Manuscript

Title: Self-Tuning of Software Systems through Dynamic
Quality Tradeoff and Value-based Feedback Control Loop

Authors: Xin Peng, Bihuan Chen, Yijun Yu, Wenyun Zhao

PII: S0164-1212(12)00132-X
DOI: doi:10.1016/j.jss.2012.04.079
Reference: JSS 8932

To appear in:

Received date: 28-3-2011
Revised date: 6-4-2012
Accepted date: 27-4-2012

Please cite this article as: Peng, X., Chen, B., Yu, Y., Zhao, W., Self-Tuning of Software
Systems through Dynamic Quality Tradeoff and Value-based Feedback Control Loop,
The Journal of Systems and Software (2010), doi:10.1016/j.jss.2012.04.079

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

dx.doi.org/doi:10.1016/j.jss.2012.04.079
dx.doi.org/10.1016/j.jss.2012.04.079


Page 1 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

Self-Tuning of Software Systems through Dynamic Quality Tradeoff 
and Value-based Feedback Control Loop

Xin Peng1, Bihuan Chen1, Yijun Yu2, Wenyun Zhao1

1 School of Computer Science, Fudan University, Shanghai 201203, China
2 Department of Computing, The Open University, Milton Keynes, UK

{pengxin, 09210240005, wyzhao}@fudan.edu.cn, y.yu@open.ac.uk

Abstract. Quality requirements of a software system cannot be optimally met, especially when it is running 
in an uncertain and changing environment. In principle, a controller at runtime can monitor the change 
impact on quality requirements of the system, update the expectations and priorities from the environment, 
and take reasonable actions to improve the overall satisfaction. In practice, however, existing controllers 
are mostly designed for tuning low-level performance indicators instead of high-level requirements. By 
maintaining a live goal model to represent runtime requirements and linking the overall satisfaction of 
quality requirements to an indicator of earned business value, we propose a control-theoretic self-tuning 
method that can dynamically tune the preferences of different quality requirements, and can autonomously 
make tradeoff decisions through our preference-based goal reasoning procedure. The reasoning procedure 
results in an optimal configuration of the variation points by selecting the right alternative of OR-
decomposed goals and such a configuration is mapped onto corresponding system architecture 
reconfigurations. The effectiveness of our self-tuning method is evaluated by earned business value, 
comparing our results with those obtained using static and ad-hoc methods. 
Keywords: Feedback Control Theory; Preference; Goal-Oriented Reasoning; Self-Tuning; Earned 
Business Value

1. Introduction
Considering alternative architectures and designs, different quality attributes require different 

optimisations, and often the one better in certain quality dimensions is worse in others (Kazman et al., 2000). 
Such multi-objective optimisation problems aim to find a set of Pareto optimal solutions. A solution is called 
“Pareto optimal” if there is no other solution better than or equal to it in one of the objectives (Lukasiewycz 
et al., 2007). Hence, Pareto optimal solutions define a partial ordering, as opposed to the total ordering. In 
software engineering, tradeoff decisions for multiple quality requirements must take into account multiple 
factors such as stakeholders’ expectations, preferences and priorities (Mylopoulos et al., 2001). In addition, 
these factors are likely to change in an uncertain and dynamic environment, leading to the necessity to adapt 
the “optimal” decisions accordingly at runtime. 

For example, two conflicting quality requirements such as usability and performance can have quite 
different priorities in different situations. In “normal” situations, usability measures such as “themed look 
and feel” can be adopted without having apparently negative influence on performance. However, if the 
system is overloaded by large number of concurrent requests, its performance should be given a higher 
priority over its usability. Under such circumstances, it is reasonable to relax the satisfaction level of 
usability to ensure an acceptable satisfaction level of performance. Otherwise, a drastic degradation of 
performance will greatly damage the overall quality of the system: few would be able to use an online 
shopping system, however user-friendly the system is, with a response time of over 5 minutes for a simple 
operation, e.g., adding products to shopping cart.

Once deployed, software systems in production are no longer as easy to configure and change as they 
were inside the development houses. Therefore, self-tuning mechanisms with little human intervention are 
more practical to find Pareto optimal configurations for dynamic quality tradeoff. Self-tuning is a kind of 
self-management capabilities (Kephart and Chess, 2003). A general reference architecture for self-managing 
systems has been described by Cheng et al. (Cheng et al., 2009b) and Kramer et al. (Kramer and Magee, 
2009), which separates the design of such systems into three vertical layers for goals, plans and components.
Starting from the highest level, a requirements-driven system for applications is desired (Lapouchnian et al., 
2005, 2006, 2007) in the goal layer. Planning algorithms are applied to obtain from the high-level 
expectations a set of low-level components that can fulfil the requirements (Giorgini et al., 2002; Sebastiani 
et al., 2004) in the plan layer. At the lowest level, i.e., the component layer, the reference architecture
emphasizes the reuse of existing components (Peng et al., 2009), and the generation of highly configurable 
design (Yu et al., 2008). 



Page 2 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

Instead of using high-level requirements, however, most existing self-tuning mechanisms in the 
autonomic computing field except some architecture-based methods like Rainbow (Cheng, 2008) were using 
low-level performance indicators such as load, memory, bandwidth, and even characteristics of user profiles 
such as operational error rates (Kephart and Chess, 2003). There is clearly an uncertain gap between goal 
satisfaction and partially quantifiable metrics (Letier and Lamsweerde, 2004). Living with such uncertainty 
at runtime, several researchers proposed formal approaches to compensate, e.g., by analysing the problem 
context through monitoring the changing environment (Fickas and Feather, 1995; Salifu et al., 2007), or by 
diagnosing the root causes of components for failed goals (Wang et al., 2009).

To link the satisfaction of high-level requirements down to the tuning parameters of the running systems,
one key idea is to integrate stakeholder value considerations into runtime self-tuning decisions following the 
general principles of value-based software engineering (VBSE) (Boehm, 2006). The objective of self-tuning 
can be interpreted as to maximise the value proposition of stakeholders from the value-based perspective. 
Thus, if we can measure earned business value based on runtime data, the value measurement can be used as 
a quantitative indicator for the overall quality satisfaction.

The other key mechanism is to consider using feedback loops as proposed in software cybernetics (Cai et 
al., 2003). Earlier we have presented a framework to optimise software quality at runtime (Chen et al., 2009).
The self-tuning method proposed there was based on low-level control parameters. In this work, we combine 
goal models with feedback controllers to make dynamic tradeoff among conflicting softgoals (i.e., the goals 
with no binary satisfaction criteria). Reflecting the earned business value of stakeholders, our controller 
adjusts the preference ranks of softgoals on the basis of runtime feedback. The preference rank of a softgoal
S1 is defined by a priority number R1, indicating its importance relative to another softgoal S2 of rank R2: S1 is 
preferred to S2, if and only if R1 > R2. Intuitively, when it is impossible to meet all the expectations on the 
individual quality requirements, the softgoals with lower preference ranks will be conceded until the 
remaining softgoals are achievable. 

Having the traceability from goal models to design alternatives (Yu et al., 2005), intentional variability
expressed by OR-refinement of goals is used in our approach to support dynamic quality tradeoff among the 
alternatives. We integrate a preference-based goal reasoner to dynamically configure the goal model 
according to the preference ranks of softgoals adjusted by the feedback controller. Then, based on the goal 
configurations produced by the goal reasoner and the traceability links to components, an architecture 
configurator reconfigures the runtime architecture in response to the changing environment.

This paper is an extended version of our previous work (Peng et al., 2010). Besides more detailed 
description and explanation of the method, we extend the work with an implementation framework and an 
experimental study with quantitative evaluation of both the effectiveness of the method and its scalability to 
goal model size. In addition, we discuss the sensitivity and other issues in feedback control and the 
difficulties in value-based self-tuning, and compare our method with related work.

The remainder of this paper is organized as follows: Section 2 introduces the background on goal-
oriented reasoning and control theory. Section 3 presents our self-tuning method that integrates goal 
reasoning and feedback control algorithms. Section 4 evaluates the method by an experimental study on an 
online course registration system. Section 5 presents discussion about issues like sensitivity analysis, local 
tuning and threats to validity. Section 6 discusses and compares this work with related work before the 
conclusion in Section 7.

2. Preliminaries
Our requirements-driven self-tuning method is founded on goal-oriented reasoning and feedback control 

theory. Here, we explain briefly the basics before explaining our adaptations later.

2.1 Goal-Oriented Modelling and Reasoning

Stakeholders are usually modelled by agents or actors in requirements engineering. Their desired states 
prescribe goals that can be further refined into requirements on the system-to-be or expectations on the 
environment, depending on whether or not the agents are inside the boundary of system analysis. Once the 
relationships between agents and requirements are elicited, both the KAOS (Lamsweerde and Letier, 2002)
and the Tropos (Castro et al., 2002) methodologies converge to a goal-oriented model, representing 
AND/OR refinements of goals into requirements and expectations. Some requirements have clear-cut 
satisfaction criteria (modelled as hard goals and tasks) whilst others do not (modelled as softgoals). Most 
quality requirements are in the second nature, which has no optimal but only “good enough” (or satisficing1) 

                                                          
1 The term “satisficing” was coined by Herbert Simon (Simon, 1996).



Page 3 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

solutions. Such uncertainty of quality requirements makes softgoals suitable for expressing the criteria for 
comparing alternative design choices (Mylopoulos et al., 2001). 

Recently, several formal algorithms for evaluating quality requirements after goal-oriented requirements 
have been proposed. These algorithms can also be used during the elicitation process to provide the rationale 
for the milestones in design. For example, a bottom-up label propagation algorithm (Giorgini et al., 2003)
infers the quantified satisficing level of higher level goals by summing up both positive and negative 
evidence from the lower-level goal satisfaction labels assigned by designers. Researchers found that degrees 
of satisfaction of quality requirements have to be grounded on quantifiable metrics that are typically difficult 
to obtain and aggregate (Letier and Lamsweerde, 2004). We will come back to this point in Section 3. 

Another perhaps more general way of goal-based reasoning considers the entire goal model as a set of 
logic constraints in the conjunctive normal form, which encodes both refinement and contribution rules. The 
goal-based reasoning discretises a softgoal into propositions2 of four levels of satisfaction such that they can 
be reasoned together with the hard goals in proposition logic (Sebastiani et al., 2004). Before further 
explaining the encodings, we need to emphasise that the number of propositions to be used in discretisation 
is fully customisable. It depends on the number of states one would differentiate for a quality requirement. In 
practice, our domain experts often noted that a discretisation of more than 7  2 is against the rule of thumb 
(Simon, 1996) and should be avoided, or be replaced by introducing an additional level of categorisation. 
The encoding used in (Sebastiani et al., 2004) turns the whole elicited goal model into a set of logic 
constraints into the conjunctive normal form, which can be expressed by the following formula:

 = _facts  _rules
_rules = _labels  _refinements  _contributions (1)

where the term _facts encodes the given satisfaction levels of certain goals known before the analysis; the 
term _labels encodes the axioms that the fully satisfied (denied) goals always imply their partial 
satisfaction (denial); the term _refinements encodes the equivalence between the satisfaction (denial) of the 
AND-decomposed goal and the conjunction of the satisfaction (or disjunction of the denial) of the subgoals, 
similarly it also encodes the equivalence between the satisfaction (denial) of the OR-decomposed goal and 
the disjunction of the satisfaction (or conjunction of the denial) of the subgoals; finally the term 
_contributes encodes the implication rules between the satisfaction levels of hard goals to the different 
satisfaction levels of softgoals, depending on the types of contribution (Make, Break, Help, Hurt). The 
difference between Make and Help is that a satisfied hard goal cannot make the softgoal fully satisfied if the 
type of contribution is only Help; similarly, a satisfied hard goal cannot make the target softgoal fully denied 
by the Hurt contribution types.

Although this type of goal reasoning captures the satisfaction/denial levels of goals and requirements, for 
it to be connected to feedback control from low-level parameters, we will extend it with the notion of 
preferences and priorities in Section 3.

2.2 Feedback Control Theory and PID Controller

In control theory, a controller follows either a closed-loop control model or an open-loop control model. 
These two kinds of models differ in whether or not the output of a process influences the control process 
itself. A closed-loop control is also known as a feedback control. Although usually more complex and less 
stable, feedback control has several advantages over open-loop control, such as guaranteed performance, 
distinctly reduced process error, improved control precision, disturbance rejection, and reduced sensitivity to 
parameter variations (Franklin et al., 2006). 

The basic structure of a feedback control loop is presented in Fig. 1. Technical experts can specify a set 
point, i.e., the desired characteristics of the system or the monitored process. An output, or the controlled 
behaviour of a process, provides feedback to the controller. The controller tries to minimise the error, or 
delta, between the set point and output, to control the process such that the output is close to the set point.

                                                          
2 FullySatisfied (FS), PartiallySatisfied (PS), PartiallyDenied (PD), FullyDenied(FD)



Page 4 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

Controller∑ Processcontrolerrorset point output

feedback

Figure 1. Basic Structure of Feedback Control Loop

Central to the design of a feedback control loop is the choice of the controller. We adopt the PID
(proportional-integral-derivative) controller (Franklin et al., 2006) in consideration of its precision, stability, 
and responsiveness. By precision the average error is low; by stability the standard deviation of errors is low; 
and by responsiveness the response to an error is quick. Equation (2) is a formulation of the basic PID 
control: 

251658240
(2)

where u(t) is the control variable of the controller at time t, and e(t) = set point - output is the error signal at 
time t. An error signal is the triggering sensor of the control loop whilst the control variable here is the 
actuating executor of the control loop. Kp, Ki, and Kd are the parameters of proportional control, integral 
control and derivative control respectively, which deal with the current behaviour (reaction to the current 
error), the past behaviour (reaction based on the sum of the recent errors) and the future behaviour (reaction 
based on the rate at which the error has been changing) of the process (Franklin et al., 2006). All these 
control parameters are constants specified at design time (e.g., Kp = 0.5, Ki = 0.3, and Kd = 0.2). Their 
values reflect the tradeoff among the three performance factors of PID controller, i.e., precision, stability, 
and responsiveness. In practice, these parameters can be chosen usually by trial and error simulations and 
other methods (Shaw, 2003).

In absence of the knowledge of the underlying process, PID controllers usually are the best among other 
feedback loop controllers (Bennett, 1993). This fits our problem due to the uncertainty of a changing 
environment and a series of conflicting quality requirements. To achieve a desired level of satisfaction for 
quality requirements, PID controller takes into account the current behaviour through proportional control, 
the past behaviour through integral control, and the future behaviour through derivative control. In other 
words, it characterises the temporal behaviour of a process. PID controller synthesizes the benefits from P, 
PI and PD controllers and overcomes the drawbacks such as P controller’s low stability, PI controller’s high 
overshoot, and PD controller’s slow response (Franklin et al., 2006). In the domain of software tuning, PID 
controllers have already been applied successfully in scheduling in real-time operating systems (Steere et al., 
1999), automatic stress and load testing tools (Bayan and Cangussu, 2008) and performance optimisation 
(Chen et al., 2009).

Based on the numerical calculation theory, (2) can be transformed into Equation (3) for simplicity: 

  ))1()((*)(*)(*)( teteKdteKiteKptu (3)

However, (3) is related to all the past states of the process (sum of the past errors). 
To eliminate the accumulation of errors, (3) can be further transformed into Equation (4), the incremental 

formulation, which is only related to the past three error states: e(t), e(t-1), and e(t-2).

))2()1(*2)((*)(*))1()((*)1()(  teteteKdteKiteteKptutu (4)

3. Our Method

3.1 Method Overview

To implement a requirements-driven self-tuning system, our method needs to continuously seek 
opportunities to improve the overall quality satisfaction. Fig. 2 presents an overview. A running system 
together with the goal reasoner and the architecture configurator forms the process under control. Due to 



Page 5 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

conflicts among some softgoals, it is often impossible to optimise all the softgoals individually. Therefore a 
PID controller is used to dynamically adjust the tradeoff decisions, i.e., the preference ranks of related 
softgoals, to maximise the overall satisfaction based on runtime feedback. In order to provide a runtime 
feedback reflecting the overall satisfaction, we choose a measurable value indicator from the business 
perspective and monitor it at runtime. 

Intuitively, the controller is designed to prevent a softgoal from getting worse by increasing its 
preference rank such that different choice in the plans may be found. In other words, every softgoal has an 
approximately proportional relationship between its preference rank and satisfaction. For example, if the 
response time is getting too long, the rank of the softgoal “[minimal] response time” should be increased.
Given earned business value and quality measurements as feedbacks, our PID controller is designed to adjust 
the process by tuning the preference ranks of related softgoals to guide the goal reasoning and the following 
architecture reconfiguration. 

The Process

PID Controller

Preference Ranks of 
Softgoals

Running System

Preference-driven Goal Reasoner

Architecture Configurator

Goal Configurations

Architecture 
Reconfiguration

Feedback: Earned Business Value, Quality Measurement

Value Indicator

Runtime Data

Business 
Perspective

Figure 2. An Overview of Our Method

Following the dynamically tuned preference ranks, our goal reasoner first generates a set of 
configurations that optimise the achievement of high-ranked softgoals. Each configuration is a selection of 
the OR-decomposition goals. One “best” configuration can then be chosen by either the “minimum distance” 
principle (Wang and Mylopoulos, 2009) to make the adaptation smoother or the “maximum distance” 
principle to make the adaptation more aggressive. Actually, the choice between these two principles is 
specific to the requirements on adaptation mechanism itself. In this paper, we follow the “minimum 
distance” principle since stability is preferred. The distance between the next goal configuration and the 
current one is calculated based on the similarity of configurations, i.e., minimal or no change is required if 
the two configurations deliver the same level of overall satisfaction. Next the architecture configurator 
executes the adaptation by reconfiguring the runtime architecture according to the selected goals and the 
mappings between goals and architectural components. The components corresponding to newly selected 
goals are bound and integrated, while the components corresponding to those eliminated goals are removed. 
We assume that such architecture reconfigurations are supported by some kinds of component-based 
implementation techniques like the service-oriented architecture and a reflective component model such as 
Fractal (Bruneton et al., 2006). 

3.2 A Running Example and Its Requirements Model

The running example to illustrate our method is an online course registration system. It provides a Web-
based public service for examinees to register for periodically held public examinations in China3. Using the 

                                                          
3

A running version of the system can be found at: http://www.njzk.net.



Page 6 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

system, every examinee can register for a study programme to select courses before an examination deadline. 
The system consists of about 100K lines of code, including Java classes, HTML pages and database 
schemas. In our experiments, we use a reengineered and simplified version of the system for evaluation. The 
reengineering is aimed at turning the system into a service-oriented and high-flexibility implementation that 
supports component-based architecture reconfigurations.

Some functional and quality requirements of the system are shown in the goal model (Fig. 3). In a typical 
course registration scenario, an examinee first selects the courses to study (“Course Be Selected”), and then 
pays registration fees for the selected courses (“Course Be Paid”). Each course selection will be checked by 
examination rules, and only students who have their course registration fees successfully paid will be 
accepted by the system. This kind of timing constraints is a prerequisite for the execution of relevant tasks, 
and can be modelled by precedence links (Liaskos et al., 2010). A deviation of such timing constraints can 
be regarded as a potential failure, which can be handled by self-repairing mechanisms. As we focus only on 
self-tuning in this paper, we assume that timing constraints can be ensured by the implementation and 
therefore omit precedence links in the goal model.

There exist multiple alternatives to achieve these goals. For course selection, an examinee can submit a 
course registration form either by choosing from the course listed in a complex form (“List and Choose”) or 
by simply entering the course code in a text field (“Input Course ID”). For course payment, two third-party 
payment services “Pay by AbbPay” and “Pay by UnlPay” are currently available, and either of them 
supports online payment by credit or debit cards. Note that this OR-decomposition is actually an XOR-
decomposition, which means that only one of the sub-goals/tasks can be chosen at each time. The 
achievement of “Pay by AbbPay” and “Pay by UnlPay” also depends on the social commitments of the 
service providers (i.e., the third-party payment institutions). Such social relationships can be modelled by the 
social constructs in i* (Yu, 1997) such as actor dependency and commitment (Chopra et al., 2010). In this 
paper, we focus on the self-tuning of software systems within the scope of individual actors by switching 
among alternative solutions. Therefore, for our approach different service providers can be modelled as 
alternative solutions for specific goals. For example, if a new payment service is introduced, we can add a 
new task for it and corresponding contribution links to the goal model. Hence, we only use the basic 
concepts of goal models such as hard goals, softgoals, tasks, contribution links, and AND/OR 
decompositions. We do not yet consider the social constructs such as actors, dependencies, commitments 
and resources. Moreover, we use AND/OR decompositions instead of the means-end relationship in i*
diagrams (Franch et al., 2011) to link tasks and goals. AND/OR decompositions are simplified propositional 
logic construct for means-end links in i* diagrams. When description logic and ontology are used, such 
construct need and can be extended with little change to our algorithms.



Page 7 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

Course Be 
Registered

Course Be 
Selected

Record Be 
Audited

Course Be 
Paid

AND

AND

AND

AND
AND

AND AND

OR OR OR OR

response 
time

error 
rate

cost availability

security

HELP
HELP HELP HELPHURT HURT HURTHURT

HELP

Authenticate 
User

List and 
Choose

Input 
Course ID

Check 
Course

Check 
Credit

Pay by 
AbbPay

Pay by 
UnlPay

Account

Figure 3. Requirements of the Online Course Registration System

The system runs in a Software as a Service (SaaS) fashion: the system owner runs the system under a 
contract with the education administration and gains profits from every successful course registration. 
According to this business value proposition, four quality requirements have been elicited, shown as 
softgoals in Fig. 3. These softgoals contribute to earned business value from different perspectives: 
“[minimal] response time” is demanded for higher system throughput under a given bandwidth; “[minimal]
error rate” is aimed at higher rate of valid course selection; “[minimal] cost” is aimed at lower third-party 
cost; and “[maximal] availability” is targeted at higher success rate of payment transactions. The alternatives
identified for “Course Be Selected” or “Course Be Paid” can exert different influences (e.g., Help, Hurt) on 
these softgoals. For example, “List and Choose” provides rich client-side aid for users to make correct 
choices complying with the examination rules, thus helps with the “[minimal] error rate” softgoal, but hurts 
the “[minimal] response time” softgoal due to its large page size. On the contrary, the alternative “Input 
Course ID” provides simple mechanisms using a simple textbox for users to input course IDs which 
minimises the page size, thus helps with the “[minimal] response time” softgoal, but hurts the “[minimal]
error rate” softgoal. As third-party service providers, both AbbPay and UnlPay charge a fixed fee for each 
successful payment transaction. Because AbbPay charges a lower fee, it helps with the “[minimal] cost” 
softgoal; however the “[maximal] availability” of UnlPay is superior although it is more expensive.

Here the system has an explicit indicator for its earned business value, i.e., the course registration profit 
in unit time, which amounts to the gain of fees from successful course registrations subtracting the cost paid 
to third-party payment providers. 

Considering environmental changes to the load and the quality of third-party services, dynamic tradeoff 
decisions must be made to maximise earned business value. For example, when the load is heavy, this goal 
model may be configured to ensure “[minimal] response time” over “[minimal] error rate”; when the load is 
light, adverse tradeoff decision can be better for a better earned business value. Since there is an 
approximately proportional relationship between the preference rank of a softgoal and its satisfaction, we use 
a PID controller to tune the preference ranks dynamically according to the quality measurements, guided by 
earned business value.

3.3 Preference-based Goal Reasoning

One contribution of this work is the adaptation of existing qualitative goal reasoning frameworks to 
business value propositions that are quantitative. The preference ranks assigned to the softgoals form a 



Page 8 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

partial ordering of the quality requirements. The Preference Based Goal Reasoning algorithm, reduced to a 
Boolean Satisfiability problem, has been implemented in the new version of OpenOME4. The procedure 
takes as input the given goal model, including a set of hard goals and softgoals, the refinement and 
contribution relationships, as well as the quantitative labels of expected satisfaction. In addition to these 
input, dynamic quality tradeoff decisions are expressed by preference ranks of the softgoals because the 
algorithm does not differentiate two softgoals of the same rank. The preference ranks are changeable input 
tuned by the feedback controller. The algorithm first encodes the goal model elements into CNF
(Conjunctive Normal Form) proposition formulas to feed a SAT solver, and then uses an iterative step to 
invoke the solver for finite times, depending on the number of ranks needed to express the partial ordering.
The procedure tries initially to find a configuration that can accommodate all softgoals to reach their 
expectations. If not possible, the lowest ranked softgoals will be removed from the encoding so as to 
accommodate the remaining softgoals, and so on, until either a viable configuration is found or all softgoals 
have been removed. The algorithm terminates with a valid configuration because we assume that the root 
hard goal is satisfied by design. Note that the goal reasoning can always find the Pareto optimal solutions 
since it is reduced to a Boolean Satisfiability problem.

Our encoding extends the original goal reasoning work (Giorgini et al., 2003) by discretising both 
satisficing and denial of softgoals of 3 labels (fully, partially, unknown) into any N>3 labels, depending on 
the level of details one would tune. In practice, we find N = 5 a reasonable value, which means that the 
interval in [0, 1] is 0.1. As reported earlier (Letier and Lamsweerde, 2004), since goals are expressed as 
desired states of subject domains, different domains may require different degree of discrimination. In this 
experimental work, we aim to see whether a relatively small discrimination can still be helpful when the 
reasoning is combined with the PID controllers. 

Algorithm 1. Preference Based Goal Reasoning
input: a goal model with expectations, plus the updated preference ranks of some softgoals
 elements g, s: set of hard goals/softgoals
 decomposition relations d: g  g  { AND, OR }
 contribution relations c: : g  s  { +, - }  (0, 1]
 expectations e: g  s  [0, 1]
 labels l: s  [0, 1]
 preference ranks r: s  Z
output: a set of “good enough” configurations
 If any, output configurations o: 2 g  s

procedure
begin
1. Encode g, s, d, c, e, l into a CNF proposition formula  w.r.t. (Dalpiaz et al., 2009a)
2. solved = false; rank = 0
3. while not solved and rank < MAX(r) do
4.   solved = solve  using SAT solver
5.   if not solved then
6.      = remove rules in concerning q  s where r(q) < rank
7.   else
8.      o = decode propositions from  concerning satisfied elements in g  s
9.   end if
10. end do
11. if solved then return o
12. else return null end if
end

3.4 Modified-PID-based Preference Tuning

One challenge for our feedback controller is to balance the preference ranks of related softgoals while 
making the adaptation results smoother with less turbulence. To address the challenge, our Modified-PID-
based Preference Tuning algorithm takes as input earned business value and quality measurements, and 
returns the tuned preference ranks (given between 1 and 10, and initially set to 5) of softgoals in response to 
the changing environment. Then, the goal model reasoning module takes the tuned ranks to select a suitable 

                                                          
4 http://www.cs.toronto.edu/km/openome/



Page 9 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

alternative variant for every variation point at OR decompositions. And this control loop executes at regular 
intervals, for example in the range of the time for a few transactions to finish execution such that the 
feedback is useful. Too small intervals could defeat the purpose of feedback loop if none transaction can be 
finished within one interval.

Algorithm 2 Modified-PID-based Preference Tuning

input: value: earned business value in the last time unit, plus qm: monitored quality measurements in the last time unit

output: ranks: tuned preference ranks

procedure

begin
1. // calculate the delta of earned business value from its set-point
2. delta = (value – set-point) / set-point
3. update set-point as average of all the past earned business values
4.
5. // decide whether to perform the preference tuning or not
6. if delta < α then tuning = true
7. else tuning = false end if
8.
9. i = 0; length = the length of qm
10. while i < length do
11.   // calculate the error signals and control variables of quality measurements
12.   e(k)[i] = (set-points[i] - qm[i]) / set-points[i] * isPositive[i]
13.   c[i] += Kp * (e(k)[i] – e(k-1)[i]) + Ki * e(k)[i] +  Kd * (e(k)[i] – 2 * e(k-1)[i] + e(k-2)[i])
14.   
15.   // update the past error signals and set-points of quality measurements
16.   e(k-2)[i] = e(k-1)[i]; e(k-1)[i] = e(k)[i]
17.   update set-points[i] as average of all the past values of quality measurements
18. end do
19.
20. // tune the preference ranks
21. if tuning then
22.   while i < length do
23.     ranks[i] = 5 + c[i] * ranks[i]
24.     if ranks[i] > 10 then ranks[i] = 10
25.     else if  ranks[i] < 1 then ranks[i] = 1 end if
26.   end do
27.   return ranks
28. end if
29. return null

end

We made three adaptations to the PID control model introduced in Section 2 to fit our specific control 
problem. First, set points are initially unspecified, and then moved gradually from old values to newly 
specified ones that reflecting the actual status of runtime environment. Thus, we evaluate set points as the 
average of all the past values of corresponding indicators (Lines 3 and 17).

Second, the delta of earned business value is calculated as the percentage of increment/decrement (Line 
2), which determines whether to tune the preference ranks or not (Line 5-7). The error signal of a softgoal
represents the percentage of its deviation from set point (Line 12), and the control variable represents the 
percentage of increment/decrement of the preference rank based on the past error signals (Lines 13) using 
(4). It is worth to mention that some quality attributes are positive attributes (to be maximised, e.g.,
availability) while some others are negative attributes (to be minimised, e.g., response time). To unify them, 
we multiply negative attributes by -1 and positive attributes by 1 (Line 12). 

Third, a dead band5 of the delta of earned business value, or a tolerable range, is used to avoid 
oscillations in frequent architecture reconfigurations. Since earned business value should be as large as 
possible, the dead band shows an entire dead side ([α, +∞), the value of α will be discussed in Section 5) 
rather than a band between two values. More specifically, if the delta of earned business value is within the 
predefined dead band, then the preference ranks will not be tuned (Line 7). Otherwise, the preference ranks 
should be tuned based on the control variables (Line 20-28). For example, suppose the value of α is -0.05 
and the current set point is 200: when the monitored earned business value is 180, the delta is (180 - 200) / 
200 = -0.10, which is smaller than α (i.e., not within the dead band), then the preference rank should be 
tuned; when the monitored earned business value is 210, the delta is (210 - 200) / 200 = 0.05, which is larger 
than α (i.e., within the dead band), then the preference ranks will not be tuned.

                                                          
5 In control theory, a dead band refers to a range of the signal where no switching action is needed.



Page 10 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

4. Implementation and Experimental Study
We have implemented the proposed method in an extensible framework and validated the method using 

the online course registration system introduced in Section 3.

4.1 Implementation Framework

In order to provide a generic infrastructure for self-tuning applications, we implement the proposed 
method in an extensible framework as shown in Fig. 4. The framework provides an administrator console to 
configure and monitor the self-tuning process. A tuning controller together with the PID controller and goal 
reasoner are implemented in the framework. The PID controller accepts control parameters configured with 
the administrator console, and the users can also use default parameters. It periodically invokes the external 
feedback interface to obtain application-specific earned business value and quality measurements from the 
running system. The goal reasoner accepts goal models modelled by OpenOME as the basis of goal 
reasoning. And the tuning controller invokes the external architecture reconfiguration interface to map the 
goal configurations to architecture-level reconfigurations.

feedback PID 
Controller

OpenOME 
goal model

Administrator Console

softgoal
preference ranks Goal 

Reasoner
Tuning

Controller

softgoal
preference ranks

goal 
configurations

architecture reconfiguration

control
parameters

Figure 4. Implementation Framework

To separate the communication between framework and running system and make them distributed and 
stand-alone, we use RMI-IIOP (Oracle SDN) to program the two external interfaces as RMI interfaces.

When applying the framework, developers should provide their own implementation to the two external 
RMI interfaces. Implementation to the feedback interface depends on the ways of business implementation 
and on the characteristics of quality attributes. Typical feedback implementation includes computing earned 
value of business transactions and quality attributes by analysing the business database and log files.

Implementation to the architecture reconfiguration interface highly depends on the reconfigurable 
architecture style (Abowd et al., 1995) used in the target system. For example, service-based systems usually 
implement architecture reconfiguration by service selection and replacement, and component-based systems 
using reflective component model like Fractal (Bruneton et al., 2006) typically use control interfaces 
provided by the component infrastructure to implement component adding/removal, binding/unbinding, etc.
Some lightweight techniques like parameterization can also be used. For example, the experimental 
implementation of our online course registration system is based on parameterization and language-level 
reflection: the system instantiates service components using Java reflection at runtime, and the architecture 
reconfiguration implementation dynamically modifies the reflection configuration file according to the goal 
configurations and goal-component mappings.

4.2 Experimental Settings

Our experiment simulates a continuous running of the system based on scenarios reflecting the real-life 
data logged from the changing environments like concurrent load and operational error rates during the 
months of active usage of the online course registration system in 2009. The benchmark is encoded into a 
series of script files, which are used as a common environmental setting to compare our method with two 
alternative implementations that makes static design-time decisions and hard-coded adaptation respectively. 
The stress testing tool JMeter 2.3.4 is used to simulate concurrent accesses to the system. JMeter test plan 
bootstraps the whole execution process according to several data files like user password list and course ID 
selection list. To simulate the changing environment, we also devised the following fluctuant settings in the 
experiment scenario:
 Execution time of course selection. As a database-based function, execution time of course selection 

is highly relevant to the size of related business tables. A separate thread is designed to periodically 
insert or delete a batch of records from related tables to make a changing server-side execution time.



Page 11 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

 Rate of valid course selection. Stochastically distributed non-existent course IDs are included in the 
course ID file which is read by JMeter test plan.

 Failure rate of payment service. Execution profiles of both payment services include stochastically 
distributed failures with different density to reflect their failure rate.

Earned business value in terms of system profit in the experiment is collected by analysing the online 
course registration database. Besides, log file is also analysed at runtime to capture runtime environment 
parameters like response time and failure rate for effectiveness analysis.

In order to evaluate our method, the experiment is executed with three different kinds of solutions using 
the same environmental setting. 
 Static Configuration: This solution is the naive solution corresponding to static design decision made a 

priori, which uses a fixed variation configuration for all the variation points. 
 Hard-coded Adaptation: In an uncertain running environment experienced by the online course 

registration system, developers often need to use hard-coded and ad-hoc adaptation mechanism to guess 
a better performance. Therefore, this solution implements a simple runtime adaptation for the two 
variation points by introducing ECA (event-condition-action) rules. For “Course Be Selected”, the 
adaptation rule switches between “Input Course ID” and “List and Choose” according to whether the 
response time is larger than a given switch threshold. For “Course Be Paid”, a similar rule is specified 
to switch between the two alternatives according to the failure rate of payment service. 

 Requirements-driven Self-tuning: This solution employs our requirements-driven self-tuning algorithm. 
To further compare the feedback controller with single global value feedback and several local value 
feedbacks, we also execute this solution with local value feedbacks. By global we mean that one
earned business value is defined and measured for all transactions, by local we mean that multiple
values are defined and measured for different kinds of transactions.

Once deployed, the entire feedback control loop in our self-tuning process is timed and unsupervised. In 
the experiment, we use the ServletContextListener interface and the TimerTask class in standard Java library 
to implement the timing property.

4.3 Main Experimental Results and Comparisons

In each experiment with the three different solutions, we collect and analyse the average cumulative 
profit per 30 seconds in a continuous running of 40 minutes. Besides profit, we also analyse the valid 
throughput which denotes the amount of course registrations complying with examination rules but not 
necessarily successfully paid, since it is also an important factor for the overall profit. The valid throughput 
is calculated by analysing the online course registration database. All the experiments are executed with the 
same environmental settings, including hardware, network and execution scripts.

TABLE I. EXPERIMENTAL RESULTS OF VALID THROUGHPUT/PROFIT

Solution Valid Throughput Profit

Input Course ID & Pay by AbbPay 166.200 190.000

Input Course ID & Pay by UnlPay 165.233 198.150

List and Choose & Pay by AbbPay 165.246 187.664

List and Choose & Pay by UnlPay 164.905 197.667

Static
Configuration

Maximum 166.200 198.150

Hard-coded Adaptation 166.384 206.463

Requirements-driven Self-tuning 170.645 221.214

The first 5 rows in Table I show the results of the experiments with static variation configurations by 
design-time decisions, as well as the maximum. From the requirements model in Fig. 3, it can be seen that 
there are four different combinations for the two variation points. We execute the experiment for each 
configuration and obtain the data as presented in Table I. These results demonstrate that the four static 
configurations have similar but a little different valid throughput and profit. It should be noted that the 
maximum row derives from two different configurations, which actually indicates the inability of a static 
method to satisfy the optimal, i.e., with both the highest valid throughput and profit.

From the 6th row in Table I, we can see that even simple hard-coded adaptation can slightly outperform 
the best static configuration. The result of our self-tuning method is given in the last line. It can be seen that 
our method has a 2.56% improvement on valid throughput and a 7.14% improvement on profit compared 



Page 12 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

with the simple hard-coded adaptation. The improvements are 2.67% and 11.64% respectively if compared 
with the best static configuration.

4.4 Evaluation of the Detailed Results

From Table I, we can see that our method has notable improvement over static configurations and simple 
hard-coded adaptation. In order to further validate and evaluate the effectiveness of our method, we then 
analyse the self-tuning process of our method with respect to the simulated changing runtime environment. 
Since adaptive method is better than those of static decisions, we evaluate by comparing our self-tuning 
method with the hard-coded adaptations.

Fig. 5 and 6 record the adaptation process with the changes of profit for the two variation points 
respectively. The X axis denotes discrete time intervals of 30 seconds, while the Y axis denotes profit in each 
time interval. Switch points are identified as points on the curves. 

Fig. 5 shows the adaptation process for “Course Be Selected”, distinguishing the triangles denoting
switches from “List and Choose” to “Input Course ID” and the squares denoting reverse switches. Fig. 6
shows the adaptation process for “Course Be Paid” using a similar legend.

251658240

Figure 5. Profit VS. Time (“Course Be Selected”) (Requirements-Driven Self-Tuning vs. Hard-Coded Adaptation)

251658240

Figure 6. Profit VS. Time (“Course Be Paid”) (Requirements-Driven Self-Tuning vs. Hard-Coded Adaptation)

As for our method, there are mainly four situations: 
(1) “Course Be Selected” is reconfigured while “Course Be Paid” is not. E.g., at time 10, the profit is 

decreased probably because the error rate is too high, which drives the reconfiguration from “Input 
Course ID” to “List and Choose”. And this is consistent with the goal model, in which “Input Course 
ID” has a Hurt contribution to “[minimal] error rate” and “List and Choose” has a Help contribution to 
“[minimal] error rate”. 

(2) “Course Be Paid” is reconfigured whilst “Course Be Selected” is not. E.g., at time 8, profit is decreased 
probably because the cost is too high, which drives the reconfiguration from “Pay by UnlPay” to “Pay 
by AbbPay”, which is also consistent with goals. 

(3) Both variation points are reconfigured (e.g., at time 16), which means none of the current configuration 
of the two variation points is suitable for current environment. 

(4) None of the two variation points are reconfigured (e.g., at time 32), which means current configuration 
is already the best for the current environment although profit is decreased. However, this probably 
results from the fact that there is only one global earned business value to guide the reconfiguration of 



Page 13 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

all the variation points, and the relationship between earned business value and variation points is fuzzy 
and indirect. And extra tentative experiments were performed on our example concerning this problem, 
which will be discussed in Section 5. Furthermore, sometimes profit still decreased even after 
reconfiguration (e.g., at time 13, 17 and 19, totally 3 times), which probably still rises from the indirect 
and non-specific earned business value.

Comparing with the hard-coded method, there are three main differences: (1) as a whole, the self-tuning 
curve is a little higher than the hard-coded curve, which is already visible in Table I; (2) the frequency of the 
situation in which profit still decreases even after reconfiguration is less in our self-tuning method (totally 3 
times) than in hard-coded method (e.g., at time 11, 21, 27, 31 and 47 in Fig. 5, totally 30 times); (3) the 
frequency of reconfiguration of self-tuning method (totally 24 times) is less than that of hard-coded one 
(totally 59 times). In other words, self-tuning is more stable than hard-coded method.

4.5 Performance Evaluation

Although the worse-case analysis of the performance of the SAT solver algorithms for arbitrary 
proposition formula is NP-complete, in reality the performance results also depend on the structure of the 
knowledge bases which may be exploited by the SAT solvers. To evaluate an empirical evaluation of the 
time performance of the proposed preference-based reasoning algorithm, we conducted two sets of 
experiments with randomly generated goal models. The first set includes 8 experiments with a fixed density 
of softgoals (i.e., constant ratio between the number of softgoals and the number of goals), indicating that 
our method can be scaled to 28 quality requirements and 175 functional requirements. The second set 
contains 24 experiments with floating density of sofgoals, demonstrating that our method can also be 
applied to larger software systems provided that the number of softgoals is not too large. Note that every 
two softgoals are associated with a variation point (hard goal) with two alternative sub-goals/tasks.

TABLE II. REASONING PERFORMANCE WITH FIXED DENSITY OF SOFTGOALS

#G(#SG) 25(4) 50(8) 75(12) 100(16) 125(20) 150(24) 175(28) 200(32)

Average (s) 0.18 0.34 0.47 0.56 0.85 2.09 8.81 42.75

Maximum (s) 0.27 0.45 0.51 0.66 0.91 2.47 9.43 43.10

Table II reports the results of the first set of experiments, showing the worst cases reasoning 
performance at different scales. Row 1 in Table II lists the size of the goal model in terms of the number of 
goals (#G) and the number of the softgoals (#SG). Row 2 and 3 give respectively the average and 
maximum performance of the reasoning algorithm in seconds, including the time to encode the goal model 
and known facts into CNF proposition formula, as well as the time by the SAT solver to tackle the problem, 
plus the time to decode the SAT solutions back into goal model configurations. 

The first 5 experiments (column 2-6 in Table II) show it takes less than 1 second to find all the 
configurations when there are no more than 20 softgoals (10 variation points, 1024 configurations). As the 
size of goal model increases (column 7 and 8) (14 variation points, 16384 configurations), it takes less than 
10 seconds, which is still feasible in our method. As the size (column 9) climbs to 32 softgoals (16 
variation points, 65536 configurations), it took more than 43 seconds to produce the best configuration, 
making it infeasible in our method at this scale. Given that most systems have no more than 30 quality 
requirements to be trade-off (e.g., ISO 9126 standard lists 26 key quality requirements), our method is 
probably usable for medium-sized systems. To confirm this hypothesis, we conducted the second batch of 
experiments.

TABLE III. REASONING PERFORMANCE WITH FLOATING DENSITY OF SOFTGOALS

#SG      #G 75 100 125 150 175 200

8 0.34 (0.37) 0.36 (0.42) 0.38 (0.44) 0.40 (0.45) 0.41 (0.48) 0.44 (0.50)

12 0.47 (0.51) 0.49 (0.54) 0.51 (0.55) 0.52 (0.57) 0.56 (0.59) 0.60 (0.68)

16 0.51 (0.63) 0.56 (0.66) 0.58 (0.66) 0.60 (0.67) 0.64 (0.70) 0.68 (0.73)

20 0.75 (0.83) 0.81 (0.87) 0.85 (0.91) 0.87 (0.99) 0.97 (1.11) 1.01 (1.18)

Table III reports the results of the second set of experiments, showing the average (maximum) worst 
cases reasoning performance in seconds. Each row represents the time as the number of goals increases 
from 75 to 200, with a fixed number of softgoals. The elapsed time is mostly less than 1 second, and 
increases slowly and gently at different scales. According to these experiments, our reasoning algorithm is 



Page 14 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

scalable to larger goal model size when the number of softgoals is no larger than 20 (10 variation points, 
1024 configurations). 

Combining both Tables II and III, we conclude that our method can be applied to medium-sized 
systems, and can also be applied to large-sized systems provided that the number of softgoals in 
consideration is not very large. Furthermore, large-sized systems can be decomposed into medium-sized 
sub-systems that can apply our method. This is referred as local tuning, which will be discussed in Section 
5. In additional, since we use RMI-IIOP to implement the framework, it can be deployed separately from 
the running system. Hence, the affection to some quality attributes by enacting such a self-tuning 
framework can be ignored.

5. Discussion

5.1 Sensitivity Analysis

As mentioned in Section 3, the dead band, which is determined by the parameter α in our control 
algorithm, represents the tolerance of value fluctuation. Therefore, the parameter α is highly relevant to the 
sensitivity of the feedback controller. Intuitively, if it is too small, the controller may response too slow in 
tuning. Contrarily, if it is too big, the controller will be too sensitive, leading to the problem of oscillation.

To explore how to determine the parameter α, we conduct a series of experiments on the self-tuning 
method with different α and capture related data as shown in Fig.7, including average profit, standard 
deviation of profit, and frequency of system adaptation on either of the two variation points. From the 
frequency data, it can be seen unsurprisingly that the smaller α is, the less frequent self-adaptations are. 
Furthermore, the standard deviation data shows that smaller α can help to make more smooth system 
performance. From the most important profit curve, we can see that besides slow controllers, overly sensitive 
controllers also hurt the overall satisfaction. We believe this may be due to two causes. One is that too 
frequent adaptations cannot capture the essence of runtime evolution of the system well, and the other is the 
cost of runtime adaptation itself. Combining these factors, we believe for this experiment the best α should 
be around -0.05. We also believe the best α, or sensibility of the controller, is system dependent. It is relevant 
to the business goal and capability and should be determined accordingly by economic experts.

251658240

Figure 7. Average Profit, Frequency of System Adaptation, and Standard Deviation of Profit with Different Dead Band

5.2 Global Tuning versus Local Tuning

Concerning the increasing complexity of software systems, we believe that systems should be 
decomposed into sub-systems with medium size and for every sub-system a more direct and specific earned 
business value should be associated; on the other hand, multiple variation points are associated with every 
sub-systems. Thus, multiple earned business values that are relatively independent can be defined and 
measured at runtime to guide the feedback control on every sub-system.

For example, the two sub-systems of online course registration system are course registration and course
payment. Valid throughput is the earned business value for course registration sub-system and profit is the 
earned business value for course payment sub-system. To illustrate the motivation, we have modified our 
method to support multiple earned business values for local tuning, and conducted extra tentative 
experiments.



Page 15 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

Fig. 8 and 9 show how throughput changes within an uncertain environment where the response time and 
error rate is changing when the modified method is applied. Due to space limitations, the curves of profit, 
cost, and availability are not included in this paper. The reconfiguration time is marked at all of the three 
curves distinguishing switching points (reconfigured from “List and Choose” to “Input Course ID”) and 
switching points (reconfigured from “Input Course ID” to “List and Choose”). As shown in these figures, the 
reconfiguration happened almost always when throughput is at the bottom of the curve. In other words, 
earned business value is locally minimal. At the same time, one of the two quality requirements “[minimal]
response time” and “[minimal] error rate” is also violated, which is consistent with the goal model. For 
example, at the first switching point, throughput is decreased dramatically because the response time of the 
“List and Choose” is increased a lot. Thus, the “Course Be Selected” variation point is automatically 
reconfigured to “Input Course ID” which has a Help contribution to “[minimal] response time” and a Hurt
contribution to “[minimal] error rate”. Once the reconfiguration happens, throughput increases almost 
immediately. On the other hand, when the environment is relatively stable, for example, between time 26 
and time 41, no reconfiguration has happened. 

Compared with Fig. 5 and 6, the curves are smoother, and there are two main differences: (1) earned 
business value always increases after reconfiguration while earned business value sometimes still decreases 
even after reconfiguration (e.g., at time 17 in the hard-coded curve of Fig. 5, and at time 11 in the self-tuning 
curve of Fig. 6); (2) reconfiguration happens at the bottom of the curve while reconfiguration sometimes 
happens when earned business value is increasing (e.g., at time 13 in the self-tuning curve of Fig. 6, and at 
time 53 in the self-tuning curve of Fig. 5).

251658240

Figure 8. Throughput vs. Time (Local Tuning)

251658240

Figure 9. Response Time, Error Rate vs. Time (Local Tuning)

5.3 Threats to Validity

Value-based perspective (Boehm, 2006) is helpful to elicit a satisfaction indicator measuring the 
essential business value of stakeholders. Generally speaking, value-based feedback, usually by computing 
earned business value of successful transactions, is a reasonable indicator for self-tuning. However, when 
applying our value-based self-tuning method, whether a combined value measurement can be defined and a 
quick value feedback can be achieved are the two main threats to validity. The former determines whether a 
value indicator can be used as the feedback at runtime, while the latter determines whether the feedback is 
quick enough to indicate runtime tuning.



Page 16 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

A. Combined value measurement. A business system often provides a series of services and undoubtedly 
the value feedback should reflect a combined value measurement to all the different kinds of services. 
However, not all of the services have obvious value formulation on a common value basis, e.g., economic 
profits. For example, besides course registration, the online course registration system may provide other 
services like online consulting and course video preview. These services do not produce profits themselves, 
but they have indirect, sometimes important, influence on the final economic profits. For instance, some 
users may decide to register courses after they preview the course video or get questions answered by 
online consulting. Combined value measurement based on a common basis is essentially a business issue 
that should be solved from two aspects. For those highly relevant services, i.e., satisfaction levels of some 
services have significant influence on others, their combined value measurement may be formulated from 
the aspect of business and market analysis. For example, the relative value of course video preview and 
online consulting to course registration can be measured by answering the question “how much percentage 
of the users will register a course only after they preview the course video or get answers by online 
consulting”. This can be computed by a market investigation and user behaviour analysis. For those 
independent or loosely related services, local satisfaction indicators may be elicited for some critical quality 
tradeoff to enable local tuning if quick global feedback is not possible.
B. Slow value feedback. The value measurement may be too slow as feedback for self-tuning in some 
cases. A basic assumption behind value-based self-tuning is that variations of all the quality attributes can 
be transmitted to the value measurement, making it an instant feedback for self-tuning. However, the 
transmission cycle may be too long to be used as an instant feedback. For example, some quality 
degradation may hurt the reputation of the system, and then result in losing of customers. This, in turn, will 
greatly influence the business volume, but the influence is too late to be reflected in runtime value 
measurement. One possible solution to this problem is to capture and measure some early indication of 
long-term influences as part of the value measurement. For example, instant online customer complaints 
can be collected and considered as a negative factor to earned business value. Precise value measurement of 
this kind of early indication requires corresponding analysis and prediction model, e.g., customer 
complaints and business losing trend analysis.

In addition, lacking a clear traceability link between goals and architectural elements can also be a 
problem due to the well-known difficulty of mapping requirements and designs. Just as Wang et al. stated 
(Wang et al., 2009), if detailed traceability links between low-level elements are not available, higher level 
traceability links can still be used to relate high level goals to the components of larger-scale systems to 
exert a higher-level control. More than one layers of feedback controls can be used together to manage the 
complexity of large-scale systems (Kephart and Chess, 2003). In near future, we intend to perform the 
experiment on such a system.

Last but not the least, there may be difficulty in applying our method to a legacy system. On one hand, 
the system has to provide runtime data to facilitate the implementation of feedback interface; on the other 
hand, the system has to provide pre-defined interfaces or comply with specific architecture (e.g., service-
oriented system, component-based system) to facilitate the implementation of architecture reconfiguration 
interface. Possible solutions to this difficulty are to combine architecture-based self-adaptation method such 
as Rainbow (Cheng, 2008) or to reengineer the legacy system.

6. Related Work
Requirements-driven self-tuning. Our work falls in the area of requirements-driven self-managing 

systems (Cheng et al., 2009a, 2009b; Cheng and Altee, 2007; Kephart and Chess, 2003; Kramer and 
Magee, 2009; Lapouchnian et al., 2005). A desired self-managing systems can reconfigure to meet multiple 
runtime needs (self-reconfiguring (Dalpiaz et al., 2009b)); can adapt its solution in different contexts to 
maintain the core requirements (self-healing (Salifu et al., 2007)); can tune its key performance to 
accommodate quality requirements (self-optimising (Sadjadi et al., 2004)); and can protect it from attacks 
that may harm or cause damage to valuable assets (self-protecting (Chung, 1993)). These four self-* 
properties were first proposed by IBM autonomic computing (Kephart and Chess, 2003). Feedback loops of 
monitoring, analysis, planning and execution activities are seen as indispensable part for such self-
managing systems. Although a few requirements-driven self-reconfiguration and self-healing methods have 
been proposed (Dalpiaz et al., 2009a, 2009b; Salifu et al., 2007), it is our belief that connecting high-level 
requirements to low-level tuning parameters is a mandatory step for self-tuning. We do not intend to 
address all non-functional requirements such as including security ones. Although regarded as one kind of 
non-functional requirements (Glinz, 2007; Haley et al., 2008), security requirements are fully satisficed 



Page 17 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

through self-protecting instead of trading them offs with other quality requirements through self-tuning. In 
this work, we aim to address remaining quality requirements such as performance, usability, etc., those may 
let the system to trade off.

Architecture-based self-adaptation. Architecture-based self-adaptation methods tie high-level 
architecture elements with low-level quality indicators. Most of these methods support specific architecture 
styles and fixed quality attributes (Batista et al., 2005; Hinz et al., 2007); and little is general enough to be 
applied to different architecture styles and support flexible quality attributes (Cheng, 2008). These methods 
can support much more complex architecture reconfigurations, but do not consider dynamic tradeoff 
decisions for self-tuning at the requirements level. Hence, it is valuable to integrate our method with 
architecture-based self-adaptation methods to better support requirement-driven self-tuning with more 
sophisticated architecture reconfigurations.

Rationales behind quality requirements and goal reasoning. Measuring some quality attributes as 
“key performance indicators” may appeal to the quick-to-market development of self-tuning systems;
however, it is the lack of rationale behind these metrics makes it hard to explain why certain indicators are 
the “key” whilst others are not. Our work shows that the goals modelled from stakeholders can directly 
provide such a rationale and allows for various goal-based reasoning methods to be plugged into the self-
tuning framework. For the selection among alternatives, quality requirements have been used to perform 
both qualitative and quantitative reasoning (Giorgini et al., 2002; Sebastiani et al., 2004). Such automated 
goal reasoning algorithms can suffer from being too general to “good enough” criteria on domain-specific 
metrics, therefore it was suggested that they are to be performed partially (Letier and Lamsweerde, 2004).  
We address the limitation of discretising every softgoal uniformly into 3 labels by allowing more flexible 
encoding for domain-specific softgoals, which allows us to perform preference-based goal reasoning 
automatically on domain-specific softgoals. On the other hand, human intensive judgements for tradeoff 
decisions (Horkoff and Yu, 2008) are considered useful and necessary especially for eliciting mission-
critical quality requirements such as security (Eliha and Yu, 2009). One of the findings in (Eliha and Yu, 
2009) is that 10 degrees is often enough to discriminate different level satisfaction of softgoals. Our 
experiment also showed that an interval of 0.1 was sufficient for the example driven by relatively small 
number of quality requirements. Recently, a HTN (Hierarchical Task Networks) preference-based planer is 
used to efficiently search for alternatives that best satisfy the given preferences (Liaskos et al., 2010), 
which can in future be integrated into our framework to provide more efficient goal reasoning.

QoS management. In terms of applications, the proposed requirements-driven self-tuning can be used 
not only for traditional software systems. As shown in our experiments, quality of service (QoS) for Web-
based software systems can also benefit from it. Quality-driven self-adaptive methods have been widely 
used for runtime tuning, e.g., QoS-driven service selection and composition (Alrifai and Risse, 2009; 
Cardellini et al., 2009; Menasce and Dubey, 2007). However, most of these proposals do not account for 
the rationale behind the QoS. The most related work to us in this area is a requirements-driven self-
reconfiguration mechanism applied to business processes (Lapouchnian et al., 2007), which uses a variant 
of preference-based goal reasoning to adjust the parameters. The main difference is that we do not perform 
manual adjustment of the goal models preferences, instead, the PID controller can fully automatically apply 
increment/decrement of the preference rank to softgoals to make the switching more smooth and agile. 

Value-based software engineering. In terms of business values, our method shows that it is possible to 
integrate value calculations into the goal models (Boehm, 2006). Interestingly, value-based requirements 
engineering framework has been applied to model the business requirements for large finance organisations 
(Gordijn et al., 2006). In that work, complementary to us, spreadsheet formulas were used to metricise the 
goals to evaluate the give-and-take dependencies across organisations. In this work, we found it not always 
easy to find a precise calculation for every softgoal, in addition, a more precise calculation provided by 
domain experts can be plugged into our feedback control framework as set points. 

7. Conclusions
Runtime quality tradeoff algorithms based on the mapping from goals to architectural adaptations have 

been proposed to improve the overall satisfaction of requirements. In this paper, we proposed a 
requirements-driven self-tuning method that involves a feedback controller to tune the expected satisfaction 
levels of softgoals so as to configure hard goals accordingly. Architectural adaptations were conducted 
based on the linking between hard goals and architectural elements to dynamically optimise the overall 
satisfaction.



Page 18 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

Our experimental study on a Web-based system has shown that combining PID control theory with 
preference-based goal reasoning is effective in runtime self-tuning for a real-life software system. For our 
method to obtain quick feedback, a value-based perspective was applied to select more local satisfaction 
indicators. In future, we plan to further improve the work by customising different feedback control 
algorithms, and by applying our method to more open and uncertain systems such as SOA applications.

Acknowledgments
This work is supported by National Natural Science Foundation of China under Grant No. 90818009, 
National High Technology Development 863 Program of China under Grant No. SS2012AA010102, and 
the EU FP7 SecureChange project (http://securechange.eu).

References
Abowd. G., Allen. R., Garlan. D., 1995. Formalizing style to understand descriptions of software 

architecture. ACM Transactions on Software Engineering and Methodology 4 (4), 319-364.
Alrifai, M., Risse, T., 2009. Combining global optimization with local selection for efficient QoS-aware 

service composition. In: Proceedings of the 18th International Conference on World Wide Web, pp. 881-
890.

Batista, T., Joolia, A., Coulson, G., 2005. Managing dynamic reconfiguration in component-based systems. 
In: 2nd European Workshop on Software Architectures, pp. 1-17.

Bayan, M., Cangussu, J.W., 2008. Automatic feedback, control-based, stress and load testing. In: 
Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 661-666.

Bennett, S., 1993. A history of control engineering 1930 - 1955, 1st ed. Hitchin, Herts., UK, UK: Peter 
Peregrinus.

Boehm, B., 2006. Value-based software engineering: overview and agenda. In: Value-based software 
engineering, pp. 3-14.

Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B., 2006. The FRACTAL component model 
and its support in java. Software: Practice and Experience 36 (11-12), 1257–1284.

Cai, K., Cangussu, J.W., DeCarlo, R.A., Mathur, A.P., 2003. An overview of software cybernetics. In: 
Proceedings of the 11th Annual International Workshop on Software Technology and Engineering 
Practice, pp. 77-86.

Cardellini, V., Casalicchio, E., Grassi, V., Presti, F.L., Mirandola, R., 2009. QoS-driven runtime adaptation 
of service oriented architectures. In: Proceedings of the 7th joint meeting of the European software 
engineering conference and the ACM SIGSOFT symposium on The foundations of software 
engineering, pp. 131-140.

Castro, J., Kolp, M., Mylopoulos, J., 2002. Towards requirements-driven information systems engineering: 
the Tropos project. Information Systems 27 (6), 365-389.

Chen, B., Peng, X., Zhao, W., 2009. Towards runtime optimization of software quality based on feedback 
control theory. In: Proceedings of the First Asia-Pacific Symposium on Internetware, pp. 1-8.

Cheng, B.H.C., Atlee, J.M., 2007. Research directions in requirements engineering. In: Workshop on the 
Future of Software Engineering, pp. 285-303.

Cheng, B.H.C., de Lemos, R., Garlan, D., Giese, H., Litoiu, M., Magee, J., Muller, H.A., Taylor, R., 2009a. 
SEAMS 2009: software engineering for adaptive and self-managing systems. In: 31st International 
Conference on Software Engineering - Companion Volume, pp. 463-464.

Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B., Bencomo, N., 
Brun, Y., Cukic, B., Serugendo, G.M., Dustdar, S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., 
Karsai, G., Kienle, H.M., Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., 
Shaw, M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J., 2009b. Software engineering for self-adaptive 
systems: a research roadmap. In: Software Engineering for Self-Adaptive Systems [outcome of a 
Dagstuhl Seminar], pp. 1-26.

Cheng, S.W., 2008. Rainbow: cost-effective software architecture-based self-adaptation. PhD Thesis.
Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J., 2010. Modeling and reasoning about service-

oriented applications via goals and commitments. In: Proceedings of the 22nd International Conference 
on Advanced Information Systems Engineering, pp. 113-128.

Chung, L., 1993. Dealing with security requirements during the development of information system. In: 
Proceedings of Advanced Information Systems Engineering, pp. 234-251.



Page 19 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

Dalpiaz, F., Giorgini, P., Mylopoulos, J., 2009a. An architecture for requirements-driven self-
reconfiguration. In: Proceedings of the 21st International Conference on Advanced Information 
Systems Engineering, pp. 246-260.

Dalpiaz, F., Giorgini, P., Mylopoulos, J., 2009b. Software self-reconfiguration: a BDI-based approach. In: 
Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems –
Volume 2, pp. 1159-1160.

Elahi, G., Yu, E., 2009. Modeling and analysis of security trade-offs - a goal oriented approach. Data 
Knowledge Engineering 68 (7), 579-598.

Fickas, S., Feather, M.S., 1995. Requirements monitoring in dynamic environments. In: Proceedings of the 
2nd IEEE International Symposium on Requirements Engineering, pp. 140-147.

Franch, X., Guizzardi, R.S.S., Guizzardi, G., López, L., 2011. Ontological analysis of means-end links. In: 
Proceedings of the 5th International i* Workshop, pp. 37-42.

Franklin, G.F., Powell, J.D., Naeini, A.E., 2006. Feedback control of dynamic systems, 5th ed. Upper 
Saddle River, NJ, USA: Prentice-Hall.

Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R., 2002. Reasoning with goal models. In: 
Proceedings of the 21st International Conference on Conceptual Modeling, pp. 167-181.

Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R., 2003. Formal reasoning techniques for goal 
models. Journal on Data Semantics I 1 (1), 1-20.

Glinz, M., 2007. On non-functional requirements. In: 15th IEEE International Requirements Engineering 
Conference, pp. 21-26.

Gordijn, J., Yu, E., Raadt, B.V.D., 2006. E-service design using i* and e3 value modelling. IEEE Software 
23 (3), 26-33.

Haley, C.B., Laney, R.C., Moffett, J.D., Nuseibeh, B., 2008. Security requirements engineering: a 
framework for representation and analysis. IEEE Transactions on Software Engineering 34 (1), 133-
153.

Hinz, M., Pietschmann, S., Umbach, M., Meissner, K., 2007. Adaptation and distribution of pipeline-based 
context-aware Web architectures. In: The Working IEEE/IFIP Conference on Software Architecture, 
pp. 15-.

Horkoff, J., Yu, E, 2008. Qualitative, interactive, backward analysis of i* models. In: 3rd International i* 
Workshop, pp. 43-46.

Kazman, R., Klein, M., Clements, P., 2000. ATAM: method for architecture evaluation. Technical Report, 
CMU/SEI2000-TR-004, Software Engineering Institute, Carnegie Mellon University.

Kephart, J.O., Chess, D.M., 2003. The vision of autonomic computing. Computer 36 (1), 41-50.
Kramer J., Magee J., 2009. A rigorous architectural approach to adaptive software engineering. Journal of 

Computer Science and Technology 24 (2), 183-188.
Lamsweerde, A.V., Letier, E., 2002. From object orientation to goal orientation: a paradigm shift for 

requirements engineering. In: 9th International Workshop on Radical Innovations of Software and 
Systems Engineering in the Future, Revised Papers, pp. 325-340.

Lapouchnian, A., Liaskos, S., Mylopoulos, J., Yu, Y., 2005. Towards requirements-driven autonomic 
systems design. ACM SIGSOFT Software Engineering Notes 30 (4), 1-7.

Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J., 2006. Requirements-driven design of autonomic 
application software. In: Proceedings of the 2006 conference of the Centre for Advanced Studies on 
Collaborative Research, pp. 80-94.

Lapouchnian A., Yu, Y., Mylopoulos, J., 2007. Requirements-driven design and configuration management 
of business processes. In: Proceedings of the 5th International Conference on Business Process 
Management, pp. 246-261.

Letier, E., Lamsweerde, A.V., 2004. Reasoning about partial goal satisfaction for requirements and design 
engineering. In: Proceedings of the 12th ACM SIGSOFT International Symposium on Foundations of 
Software Engineering, pp. 53-62.

Liaskos, S., McIlraith, S.A., Sohrabi, S., Mylopoulos, J., 2010. Integrating preferences into goal models for 
requirements engineering. In: Proceedings of the 2010 18th IEEE International Requirements 
Engineering Conference, pp. 135-144.

Lukasiewycz, M., Glaβ, M., Haubelt, C., Teich, J., 2007. Sovling multi-objective pseudo-boolean 
problems. In: Proceedings of the 10th International Conference on Theory and Applications of 
Satisfiability Testing, pp. 56-69.



Page 20 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

Menasce, D.A., Dubey, V., 2007. Utility-based QoS brokering in service oriented architectures. In: 
Proceedings of the IEEE International Conference on Web Services, pp. 422-430.

Mylopoulos, J., Chung, L., Liao, S., Wang, H., Yu, E.S.K., 2001. Exploring alternatives during 
requirements analysis. IEEE Software 18 (1), 92-96.

Oracle SDN. Java RMI over IIOP. http://java.sun.com/products/rmi-iiop/.
Peng, X., Shen, L., Zhao, W., 2009. An architecture-based evolution management method for software 

product line. In: Proceedings of the 21st International Conference on Software Engineering & 
Knowledge Engineering, pp. 135-140.

Peng, X., Chen, B., Yu Y., Zhao, W., 2010. Self-tuning of software systems through goal-based feedback 
loop control. In: Proceedings of the 18th IEEE International Requirements Engineering Conference, 
pp.104-107.

Sadjadi, S.M., McKinley, P.K., Stirewalt, R.E.K., Cheng, B.H.C., 2004. Generation of self-optimizing 
wireless network applications. In: Proceedings of the 1st International Conference on Autonomic 
Computing, pp. 310-311.

Salifu, M., Yu, Y., Nuseibeh, B., 2007. Specifying monitoring and switching problems in context. In: 
Proceedings of the 15th IEEE International Requirements Engineering Conference, pp. 211-220.

Sebastiani, R., Giorgini, P., Mylopoulos, J., 2004. Simple and minimum-cost satisfiability for goal models. 
In: Proceedings of the 16th International Conference on Advanced Information Systems Engineering, 
pp. 20-35.

Shaw, J.A., 2003. The PID control algorithms: how it works, how to tune it, and how to use it, 2nd ed. 
Process Control Solutions.

Simon, H.A., 1996. The sciences of the artificial, 3rd ed. Cambridge, Mass. MIT Press.
Steere, D.C., Goel, A., Gruenberg, J., McNamee, D., Pu, C., Walpole, J., 1999. A feedback-driven 

proportion allocator for real-rate scheduling. In: Proceedings of the 3rd Symposium on Operating 
Systems Design and Implementation, pp. 145-158.

Wang, Y., McIlraith, S.A., Yu, Y., Mylopoulos, J., 2009. Monitoring and diagnosing software 
requirements. Automated Software Engineering 16 (1), 3-35.

Wang, Y., Mylopoulos, J., 2009. Self-repair through reconfiguration: A requirements engineering 
approach. In: Proceedings of the 24th IEEE/ACM International Conference on Automated Software 
Engineering, pp. 257-268.

Yu, E.S.K., 1997. Towards modeling and reasoning support for early-phase requirements engineering. In: 
Proceedings of the 3rd IEEE International Symposium on Requirements Engineering, pp. 226-235.

Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.C.S.P., 2008. From goals to high-variability 
software design. In: Proceedings of the 17th International Symposium on Foundations of Intelligent 
Systems, pp. 1-16.

Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A., Leite, J.C.S.P., 2005. Reverse engineering 
goal models from legacy code. In: Proceedings of the 13th IEEE International Conference on 
Requirements Engineering, pp. 363-372.


