
E

G

1

i
t
h
s
f
c
r
c

s
t
a
e
b
p
t
s
c
m
i
t
p
S
b
t
m
o
s

t
o
m
w
a
i
t
i
a
o

f
s
t
9

0
h

The Journal of Systems and Software 85 (2012) 2193– 2194

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss
ditorial

uest editors’ introduction to the special issue on automated software evolution
. Introduction

Research in software evolution and evolvability has been thriv-
ng in the past few years, with a constant stream of new formalisms,
ools, techniques, and development methodologies: on the one
and, the objective was to facilitate the way long-lived successful
oftware systems can be changed in order to cope with demands
rom users and the increasing complexity and volatility of the
ontexts in which such systems operate; on the other hand, the
esearch aim was to understand and if possible control the pro-
esses by which demand for these changes come about.

The theme of this special issue was “Automation in the context of
oftware evolution”, and papers were invited to present concepts,
echniques or methodologies that are automated or amenable to
utomation. The theme of automation in software evolution is
stablished in various fields: some software communities already
enefit from the automation of a subset of central tasks: for exam-
le, programming teams are relying more and more on automated
esting, when using test-driven development, especially regres-
ion testing, when a well-developed test suite of testing scripts is
omposed. Other communities have benefited for several years of
easures to automatically detect quality of a requirements spec-

fication document, in order to write the right requirements from
he early start of a project. Software maintenance and evolution
resent similar challenges: companies, governments, and Open
ource communities spend a great deal of resources on a continual
asis to fix, adapt, and enhance their software systems. The ability
o evolve software rapidly and reliably; and the ability to auto-

atically propose possible paths of evolution and enhancements,
r discover maintenance activities, represent major challenges for
oftware engineering.

We expected four types of submissions: articles dealing with
he automatic parsing of data for the evolution and maintenance
f software projects; articles describing state-of-the-art methods,
odels, and tools, supporting or improving the automation of soft-
are evolution and maintenance; empirical studies in the field,

ddressing one or many human, technical, social, and economic
ssues of how to automate software evolution through qualita-
ive and/or quantitative analyses; finally, industrial experiences,
ncluding good practices and lessons learned on automating the
ctivities of software evolution or maintenance in specific contexts
r domains.

The call for papers of this special issue attracted 36 submissions

rom nearly 20 different countries covering many topics related to
oftware evolution. Each paper was carefully evaluated by at least
hree experts in the field. After a rigorous peer review process, only

 high quality research papers were selected for this issue.

164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2012.05.074
2. Contributions

In the paper entitled “Using pig as a data preparation language
for large-scale mining software repositories studies: an experi-
ence report”, W. Shang, B. Adams and A.E. Hassan report on their
experience in using a web platform to support mining software
repositories (MSR) studies. They particularly focus on the automa-
tion of the data preparation phase, for which scalability constitutes
an important issue. The paper presents three case studies that,
while identifying some limitations, demonstrate the scalability and
exibility of pig for extracting, transforming and loading software
repository data. These results will certainly have a positive, con-
crete impact on the entire MSR research community, that develops
novel techniques and tools to analyze large software (eco)systems,
their development and their evolution.

The paper entitled “Towards automated traceability main-
tenance”, by P. Mäder, O. Gotel, concerns the maintenance of
traceability relations during the evolution of software systems. The
authors present an approach for supporting the semi-automated
update of traceability relations between requirements, analysis
and design models of software systems expressed in UML. This
approach is based on the analysis of change events captured dur-
ing the use of a modeling tool and is supported by a prototype tool.
An empirical study conducted with 16 students has shown that the
proposed approach can save tedious and error-prone work.

The paper titled “Dependency solving: a separate concern in
component evolution management” by S. Zacchiroli, P. Abate, R.
Di Cosmo and R. Treinen, focuses on the issue of dependencies
between large-grained components, and how to automatically
remove the dependency links between them, when building
and continuously updating the development of large software
systems. In large Open Source collections of components, the inter-
dependencies and the automatic solving of discrepancies between
components face several challenges: first, because the packages are
actually independent projects, developed and maintained by differ-
ent developers and asynchronously combined into a single, tested
and issue-free collection only at defined dates; second, because
solving discrepancies among these individual projects (or compo-
nents) has to take into consideration each component’s version
control repositories, and the component versions.

In their paper entitled “Identification and application of extract
class refactorings in object-oriented systems”, M. Fokaefs, N. Tsan-
talis, E. Stroulia and A. Chatzigeorgiou propose the use of a

clustering algorithm to identify extract class refactoring opportuni-
ties in object-oriented systems. This algorithm identifies and ranks
alternatives to split a class into different, more cohesive classes.
The result of the refactoring is measured with entity placement

dx.doi.org/10.1016/j.jss.2012.05.074
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
dx.doi.org/10.1016/j.jss.2012.05.074

2 s and

m
e
w
t
o
s
l
a
t

l
S
t
a
o
t
o
f
w
a
I

u
N
b
b
C
g
c

s
H
a
i
t
p
s
o
t

o
a
d
K
p
s
i
c

194 Editorial / The Journal of System

etrics to evaluate the design improvement/degradation. An
mpirical study conducted with software developers and soft-
are quality professionals on three software systems indicates that

he proposed approach is able to identify meaningful refactoring
pportunities and improve the design quality. This work repre-
ents a worthy contribution for the refactoring field since in the
iterature, there is still a lack of studies where the authors actu-
lly check whether the refactorings suggested by the experimented
echniques satisfy the software engineers’ expectation.

“Model-driven support for product line evolution on feature
evel”, by A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer and
. Kowalewski, focuses on product lines and how their evolu-
ion should be automatically supported. The paper presents an
pproach, called EvoFM based on two main features: the concept
f “fragment”, a group of related features in a feature model, and
hat are likely to change together; and the ability to describe the
perations that change the fragments with dedicated model trans-
ormations, as “evolution operations”. The approach is completed
ith a tool support based on an Eclipse plugin, and the validation is

lso performed based on the study of several versions of the Eclipse
DE itself.

The paper titled “Automated, highly-accurate, bug assignment
sing machine learning and tossing graphs” by P. Bhattacharya, I.
eamtiu and C.R. Shelton is a comprehensive study of the issue of
ug triaging among software developers: who is responsible for a
ug assignment? Can she toss such assignment to someone else?
an this process be automatically performed? The paper investi-
ates various machine learners and techniques to provide a timely
ontribution in the field of bug triaging.

“On the relationship between comment update practices and
oftware bugs”, by W.M. Ibrahim, N. Bettenburg, B. Adams and A.E.
assan, analyzes the link between the way source code comments
re updated over time and the probability of bugs. A comment can
ndeed be consistently or inconsistently updated with respect to
he associated source code. The authors study the comment update
ractices in three large open source software projects. Their results
how that these practices, when they are themselves inconsistent
ver time, can better explain and predict the introduction of bugs
han other indicators previously considered in the literature.

In order to help reduce the tedious and time consuming task
f detecting and fixing bugs, in their paper entitled “Towards
utomated debugging in software evolution: evaluating delta
ebugging on real regression bugs from developers’ perspectives”,
. Yu, M. Lin, J. Chen and X. Zhang evaluate delta debugging in

ractical settings using real regressions taken from mid-sized open
ource systems. Delta debugging is an automated approach for
solating changes that introduced failures using the divide-and-
onquer strategy. The authors conducted an empirical study to
Software 85 (2012) 2193– 2194

evaluate the costs and benefits of the application of delta debug-
ging. They showed that two thirds of isolated changes in the
systems analyzed provide direct or indirect clues in locating regres-
sions.

“Preserving knowledge in software projects”, by O.F. Alam, B.
Adams and A.E. Hassan, focuses on the issue of knowledge preser-
vation: with software projects growing in size and complexity, it
becomes essential not only to decide which elements or subsystems
are more important and central to preserve the overall knowledge
of the projects, but also to prioritize the preservation of the changes
on these elements, in case they have accumulated a long history of
such changes. The authors define the concept of “Foundationality”
of both subsystems and periods to identify, first, which subsystems
are more central to other subsystems, and second the temporal
periods when such foundational subsystems accumulated the most
relevant changes. Albeit it becomes clear that the foundational sub-
systems are those that are accessed more frequently by others, open
questions remain on how to derive a threshold to foundational peri-
ods, or how many of these periods should be kept in the knowledge
preservation scheme of a software project.

3. Acknowledgments

We would like to thank all the authors for their high-quality sub-
missions. We thank the anonymous reviewers for their constructive
feedback that significantly helped the authors in reaching this level
of quality. We warmly thank Hans van Vliet, editor-in-chief of JSS,
for his trust and for his support all along the editorial process. We
sincerely hope you will enjoy reading this special issue as much as
we enjoyed guest editing it.

Andrea Capiluppi ∗

DISC, Brunel University, London, UK

Anthony Cleve
PReCISE Research Center, University of Namur,

Namur, Belgium

Naouel Moha
Dèpartement d’informatique, Universitè du Quèbec à

Montréal, Montréal, Canada

∗ Corresponding author.
E-mail addresses: andrea.capiluppi@brunel.ac.uk

(A. Capiluppi), acl@info.fundp.ac.be (A. Cleve),

moha.naouel@uqam.ca (N. Moha)

25 May 2012
Available online 9 June 2012

mailto:andrea.capiluppi@brunel.ac.uk
mailto:acl@info.fundp.ac.be
mailto:moha.naouel@uqam.ca

