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Abstract

To support developers in writing reliable and efficient concurrent programs, novel concurrent programming abstractions have been
proposed in recent years. Programming with such abstractions requires new analysis tools because the execution semantics often
differs considerably from established models. We present a performance analyzer that is based on new metrics for programs
written in SCOOP, an object-oriented programming model for concurrency. We discuss how the metrics can be used to discover
performance issues, and we use the tool to optimize a concurrent robotic control software.
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1. Introduction

Avoiding concurrency-specific errors such as data races and
deadlocks is still the responsibility of developers in most lan-
guages that provide synchronization through concurrency li-
braries. To avoid the problems of the library approach, a num-
ber of languages have been proposed that integrate synchroniza-
tion mechanisms. SCOOP (Simple Concurrent Object-Oriented
Programming) (Meyer, 1997; Nienaltowski, 2007), an object-
oriented programming model for concurrency, is one of them.

The main idea of SCOOP is to simplify the writing of cor-
rect concurrent programs, by allowing developers to use famil-
iar concepts from object-oriented programming, but protecting
them from common concurrency errors such as data races. Em-
pirical evidence supports the claim that SCOOP indeed simpli-
fies reasoning about concurrent programs as opposed to more
established models (Nanz et al., 2011). The advantages of the
model are due to a runtime system that automatically takes care
of operations such as obtaining and releasing locks, without the
need for explicit program statements.

The complex interactions between concurrent components
make it difficult to analyze the behavior of concurrent programs.
Effective use of a programming model therefore requires tools
to help developers analyze and improve programs. Static anal-
ysis of models, e.g., Ostroff et al. (2008); Brooke et al. (2007);
West et al. (2010); Nanz et al. (2008), can establish some de-
gree of functional correctness. However, they fail to explain
why a particular execution is slow, and they do not help choos-
ing optimal execution parameters. Addressing such issues re-
quires adapting performance analysis techniques to the context
of concurrent, non-deterministic execution. Section 6 surveys
existing tools that address this goal in the context of thread-
ing and various other concurrency models. They are not appro-
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priate, however, for the semantics of SCOOP, which requires
different approaches for measuring and visualization. For ex-
ample, SCOOP programs go through synchronization steps to
lock resources and establish conditions on these resources; a
performance analyzer for SCOOP must take this into account.

We present a performance analyzer for SCOOP programs.
The main contributions are performance metrics for SCOOP
and a technique to compute them from event traces. The result-
ing tool has been integrated into the EVE development environ-
ment (ETH Zurich, 2012a), which we extended with support for
SCOOP; it can be downloaded from the SCOOP website (ETH
Zurich, 2012b). We evaluate the metrics and the tool on a num-
ber of example problems, as well as on a larger case study on
optimizing a robotics control software written in SCOOP. To
the best of our knowledge, this work is the first to suggest per-
formance metrics for SCOOP.

This article is structured as follows. Section 2 gives an
overview of the SCOOP model. Section 3 introduces the met-
rics and shows how to calculate them from events. Section 4 de-
scribes the tool built around the metrics. Section 5 analyzes the
time overhead of the tool and shows how to optimize a concur-
rent robotic control software using the tool. Finally, Section 6
provides an overview of related work and Section 7 concludes
with an outlook on future work.

2. SCOOP

This section gives an overview of SCOOP.

2.1. Introduction to SCOOP

The starting idea of SCOOP is that every object is associated
for its lifetime with a processor, called its handler. A processor
is an autonomous thread of control capable of executing actions
on objects. An object’s class describes the possible actions as
features. A processor can be a CPU, but it can also be imple-
mented in software, for example as a process or as a thread; any



mechanism that can execute instructions sequentially is suitable
as a processor.

A variable x belonging to a processor can point to an object
with the same handler (non-separate object), or to an object on
another processor (separate object). In the first case, a feature
call x.f is non-separate: the handler of x executes the feature
synchronously. In this context, x is called the rarget of the fea-
ture call. In the second case, the feature call is separate: the
handler of x, i.e., the supplier, executes the call asynchronously
on behalf of the requester, i.e., the client. The possibility of
asynchronous calls is the main source of concurrent execution.
The asynchronous nature of separate feature calls implies a dis-
tinction between a feature call and a feature application: the
client logs the call with the supplier (feature call) and moves
on; only at some later time will the supplier actually execute
the body (feature application).

The producer-consumer problem serves as a simple illustra-
tion of these ideas. A root class defines the entities producer,
consumer, and buffer. Assume that each object is handled by
its own processor. One can then simplify the discussion using
a single name to refer both to the object and its handler. For
example, one can use “producer” to refer both to the producer
object and its handler.

producer: separate PRODUCER
consumer: separate CONSUMER
buffer: separate BUFFER [INTEGER)]

The keyword separate specifies that the referenced objects may
be handled by a processor different from the current one. A
creation instruction on a separate entity such as producer will
create an object on another processor; by default the instruction
also creates that processor.

Both the producer and the consumer access an unbounded
buffer in feature calls such as buffer.put (n) and buffer.item. To
ensure exclusive access, the consumer must lock the buffer be-
fore accessing it. Such locking requirements of a feature must
be expressed in the formal argument list: any target of separate
type within the feature must occur as a formal argument; the
arguments’ handlers are locked for the duration of the feature
execution, thus preventing data races. Such targets are called
controlled. For instance, in consume, buffer is a formal argu-
ment; the consumer has exclusive access to the buffer while
executing consume.

Condition synchronization relies on preconditions (after the
require keyword) to express wait conditions. Any precondition
makes the execution of the feature wait until the condition is
true. For example, the precondition of consume delays the exe-
cution until the buffer is not empty. As the buffer is unbounded,
the corresponding producer feature does not need a precondi-
tion.

consume (buffer: separate BUFFER [INTEGER])
—— Consume an item from the buffer.
require
not (buffer.count = 0)

local

consumed_item: INTEGER
do

consumed_item := buffer.item
end

During a feature call, the consumer could pass its locks to the
buffer if it has a lock that the buffer requires. This mechanism
is known as lock passing. In such a case, the consumer would
have to wait for the passed locks to return. In buffer.item, the
buffer does not require any locks from the consumer; hence, the
consumer does not have to wait due to lock passing. However,
the runtime system ensures that the result of the call buffer.item
is properly assigned to the entity consumed_item using a mecha-
nism called wait by necessity: while the consumer usually does
not have to wait for an asynchronous call to finish, it will do so
if it needs the result.

2.2. SCOOP runtime

The SCOOP concepts require execution-time support, known
as the SCOOP runtime. The following description is abstract;
actual implementations may differ.

Each processor maintains a request queue of requests result-
ing from feature calls on other processors. A non-separate fea-
ture call can be processed right away without going through the
request queue: the processor creates a non-separate feature re-
quest and processes it right away using its call stack. When the
client executes a separate feature call, it enqueues a separate
feature request to the supplier’s request queue. The supplier
will process the feature requests in the order of queuing.

Special attention is required in the case of separate call-
backs, which occur for example if the buffer performs a sep-
arate feature call on the consumer, which already has a lock on
the buffer. Enqueuing a feature request on the consumer could
cause a deadlock if the separate callback is synchronous since
the consumer might already be waiting for the buffer. Figure
I illustrates this issue. The solution is to add such feature re-
quests, corresponding to separate callbacks, ahead of all others
in the request queue. This ensures that the consumer can pro-
cess the feature request right away and the buffer can continue.

consumer processor buffer processor

buffer.item_with_log (consumer)

consumer.id

Fig. 1: A deadlock scenario based on incorrect handling of separate callbacks

The runtime system includes a scheduler, which serves as
an arbiter between processors. When a processor is ready to
process a feature request in its request queue, it will only be able



to proceed after the request is satisfiable. In a synchronization
step, the processor tries to obtain the locks on the arguments’
handlers in a way that the precondition holds. For this purpose,
the processor sends a locking request to the scheduler, which
stores the request in a queue and schedules satisfiable requests
for application. Once the scheduler satisfies the request, the
processor starts an execution step.

Whenever the processor is ready to let go of the obtained
locks, i.e., at the end of its current feature application, it is-
sues an unlock request to each locked processor. Each locked
processor will unlock itself as soon as it processed all previous
feature requests. In the example, the producer issues an unlock
request to the buffer after it issued a feature request for put.

The scheduler used for this work is a dedicated thread of
control (Nienaltowski, 2007). It guarantees that a satisfiable
locking request gets approved before any other locking request
that arrives later. To ensure this, the scheduler iterates through
its queue until it finds a satisfiable locking request, in which
case it approves that request, removes the request, and contin-
ues. Once a processor unlocks, the scheduler restarts from the
beginning of the queue to give a chance to earlier locking re-
quests that now have become satisfiable. While this scheduler
ensures a basic level of fairness, its performance is suboptimal.
The scheduler approves two locking requests with disjoint sets
of locks one after the other, although it could approve them in
parallel. Furthermore, the scheduler is central and can thus be-
come a bottleneck. These runtime issues have an impact on
the performance of a program. To overcome some of the is-
sues, Eiffel Software (2012) recently proposed a decentralized
scheduler, to which we are currently applying this work.

3. Metrics

This section first defines the metrics for SCOOP along with
a discussion on how the metrics can be used to diagnose issues
in concurrent programs and find appropriate solutions. It then
describes a way to calculate the metric values.

3.1. Definitions

To define SCOOP-specific metrics, one must take a closer
look at the interactions in the runtime system. Consider a share
market application with investors, share issuers, and markets,
where integer identifiers represent the issuers. The following
listing shows the class that describes the investors. The market
and the investors are handled by different processors.

class INVESTOR feature
id: INTEGER

buy (market: separate MARKET; issuer_id: INTEGER)
—— Buy a share of the issuer on the market.
require
market.can_buy (id, issuer_id)
do
market.buy (Current, issuer_id)
end

sell (market: separate MARKET:; issuer_id: INTEGER)

—— Sell a share of the issuer on the market.

require
market.can_sell (id, issuer_id)

do
market.sell (Current, issuer_id)

end

end

An investor has features to buy and sell shares. To execute one
of these features, the investor must wait for the lock on the mar-
ket and for the precondition to be satisfied. In the feature call
to the market, the investor passes a reference to itself, which
triggers lock passing. This enables the market to query the in-
vestor’s identifier in a separate callback, but the lock passing
operation forces the investor to wait until the market finished.
Consider the following routine, which makes an investor buy a
share on a market. A log keeps a record of the transaction.

do_transaction (
investor: separate INVESTOR,;
issuer_id: INTEGER;
log: separate LOG
)
—— Make the investor buy a share of the issuer on a
market. Log the transaction.
require
not log.is_full
do
investor.buy (market, issuer_id)
log.add_buy_entry (investor.id, issuer_id)
end

Fig. 2 illustrates a possible execution with one timeline for each
processor. Looking at these timelines, one can deduce the time
metrics shown in Definition 1.

Definition 1 (Time metrics). The following time metrics ex-
ist:

e The lifetime of a processor: the time from when the pro-
cessor gets created until when it is no longer needed, at
which point it will be reclaimed by the runtime system.

e The queue time of a feature request: the time from the
feature call until the feature application can begin. For
non-separate feature calls the queue time is zero.

e The synchronization time of a feature request: the time
from the creation of the locking request until when the
locking request is approved. In other words, the synchro-
nization time is the time it takes to obtain all the required
locks and to satisfy the precondition.

e The execution time of a feature request: the time during
which the feature actually gets executed. It is divided into
the following parts:



00:06 - 00:35

execution time
00:00 - 00:06 00:06 - 00:11 00:11 - 00:29 00:29 - 00:35
synchronization time useful time waiting time useful time
application [ 00:00 - 00:06 00:06 - 0035
processor: [_sync do_transaction exec do_transaction
00:11 - 00:20 00:20 - 00:25 00:25 - 00:29
queue time synchronization time execution time
mvestor 00:12- 00:16 | 00:16-00:20 | 00:20-00:25 | 00:25 - 00:29
processor: sync buy exec buy sync id exec id
00:08 00:11
call buy callid

Fig. 2: Time intervals for the market example. The application first synchronizes (00:00 — 00:06) to get the locks on its arguments’ handlers and to ensure that the
log is not full. It then executes (00:06 — 00:35) two feature calls and waits for the second one to complete. Each feature call leads to a synchronization and execution

step in the investor.

— The waiting time is the sum of:

% the queue time, the synchronization time, and
the execution time of each feature request that
results from a synchronous separate feature call,
and

% the synchronization time of each feature request
that results from a non-separate feature call.

— The useful time: the remaining part of the execution
time in which the executing processor is not waiting.

e The measuring time of a processor: the time during which
the processor performs measuring related actions.

e The idle time of a processor: the time during which the
processor is not synchronizing, not executing, and not
measuring.

During a synchronization step, the scheduler might evaluate the
precondition multiple times until it finds it to hold. The sched-
uler used for this work processes locking requests in the order
in which they arrived; when a processor unlocks, the scheduler
starts from the beginning of the queue to check for earlier lock-
ing requests that now have become satisfiable. This algorithm
causes the scheduler to evaluate the precondition of a locking
request multiple times. To measure this, another metric counts
the number of precondition evaluations in a synchronization
step. Yet another metric counts the number of feature requests
that have been generated for a feature; it is useful to calculate
statistical values. These metrics are shown in Definition 2.

Definition 2 (Count metrics). The following count metrics
exist:

e The number of precondition evaluations of a feature re-
quest: the number of times the scheduler evaluates the pre-
condition in the synchronization step.

e The number of feature requests of a feature: the number of
feature requests that have been generated for the feature.

The term raw metrics covers the time and count metrics intro-
duced so far. With the number of feature requests one can con-
struct the mean and the standard deviation of all metrics that
are defined per feature request, i.e., queue time, synchroniza-
tion time, execution time, waiting time, useful time, and the
number of precondition evaluations. One can also sum up these
metrics to obtain aggregated values. The term derived metrics
covers the means, the standard deviations, and the aggregates
of the raw metrics.

3.2. Using the metrics to diagnose issues and find solutions

The raw metrics are useful to diagnose issues in concurrent
programs and find appropriate solutions. A large queue time of
a feature request indicates that it takes a long time for the re-
quest to be served by the responsible processor and that there-
fore this processor is too busy. This can be resolved by dis-
tributing the workload onto more processors.

A large synchronization time of a feature request can have
two reasons. If the feature request has a high number of pre-
condition evaluations, then the scheduler is able to get the re-
quired locks, but it has problems to satisfy the precondition. If
the feature request has a low number of precondition evalua-
tions, then the required locks are hard to obtain because it is
taking the scheduler a long time to even get to the point where
it can evaluate the precondition. In the first case, one can look
at the precondition to figure out why it is so hard to be satisfied.
In the second case, one can introduce additional processors that
replicate the roles of the congested processors.

A large execution time of a feature request is either due to a
large waiting time or a large useful time. To reduce the wait-
ing time, one can reduce the queue time, the synchronization



EVENT

+processor_id : INTEGER

+timestamp : DATE_TIME
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+feature_name : STRING

JAN

PROCESSOR_START_EVENT

I

MEASURING_EVENT

AN

PROCESSOR_END_EVENT

SEPARATE_FEATURE_REQUEST_EVENT

SYNCHRONIZATION_START_EVENT J

+caller_processor_id : INTEGER
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SEPARATE_FEATURE_CALL_EVENT

+called_processor_id : INTEGER
+is_synchronous : BOOLEAN

RETURN_EVENT

Fig. 3: Class hierarchy for events. The class EVENT is the parent of all event types. The class FEATURE_EVENT is the parent of all events that are related to metrics
for feature requests and features; the class MEASURING _EVENT is the parent of all measuring event types.

time, or the execution time of the performed synchronous fea-
ture calls. Alternatively, one can also eliminate some of the
synchronous feature calls altogether. For instance, one can in-
crease the concurrency granularity by synchronizing less often.
To reduce the useful time, one must optimize the feature itself.

A large measuring time can be influenced through parameters
of the measuring process (see Section 4 and Section 5).

A large idle time means that a processor is not busy enough
so that one can introduce more load for this processor. A large
number of feature requests for a feature in combination with
large queue times, synchronization times, or execution times
indicates that it is especially worthwhile to optimize the feature.

3.3. From traces to metric values

This section shows how to calculate the raw metrics from a
trace, i.e., a sequence of events corresponding to one execution
of a program. Each type of event is described by a class, as
shown in Fig. 3. An event has a timestamp and refers to one
processor.

For a feature request r on processor p, one has to calculate the
queue time, the synchronization time, the execution time, and
the number of precondition evaluations; the execution time is
divided into waiting time and useful time. The following events
facilitate these metrics. If r is a separate feature request that p
receives from another processor g, p records a separate feature
request event. This event contains g’s identifier. As soon as p
starts the synchronization step for r, p creates a synchronization
start event. Each such event contains the identifiers of the pro-
cessors whose locks p requests. Each time the scheduler evalu-
ates the precondition, it adds one precondition evaluation event
on behalf of p. As soon as the locking request is approved, p
starts with the execution. For this, p records an execution start
event. If p makes a feature call to a different processor ¢, then
processor p creates a separate feature call event. This event
stores ¢’s identifier and whether the feature call is synchronous
or asynchronous. One can use ¢’s identifier to find the events

on ¢ that are related to the resulting feature request by recon-
structing each processor’s request queue and call stack from the
sequence of events. With this, one can link the separate feature
call event on p to the related separate feature request event on g
and then match this event to the remaining related events on gq.
After p is done with the execution, p creates a return event.

Fig. 4 shows the metrics calculation for r in more detail. If
r is a separate feature request, then the queue time is the time
between the separate feature request event and the synchroniza-
tion start event; the queue time of a non-separate feature request
is zero. The synchronization time is the time between the syn-
chronization start event and the execution start event, and the
execution time is the time between the execution start event
and the return event. To calculate the waiting time of r, one
first looks for all synchronous separate feature call events that
p recorded during the execution step. The time between such
a separate feature call event and the matching return event on
the called processor is part of the waiting time. In addition, one
looks for synchronization start events that p recorded during
the execution step; these events belong to non-separate feature
calls. The time between the synchronization start event and the
matching execution start event is also part of the waiting time.
The useful time is the part of the execution time that is not wait-
ing time. The number of precondition evaluations is the count
of precondition evaluation events.

For a feature f, one only has to calculate the number of fea-
ture requests for the feature. This number is simply the count
of execution start events for f. Fig. 4 shows this calculation.

To calculate the lifetime of a processor p, p records an event
when it gets created and when it is about to be disposed. Proces-
sor p’s lifetime is the time difference between these two events.
To calculate the measuring time, p creates an event when a mea-
suring action starts and another event when the action ends. Fi-
nally, the idle time of p is its lifetime minus its measuring time
minus the synchronization time and execution time of each of
its feature requests. Fig. 4 shows this in more detail.
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Fig. 4: Definitions of metric values for a processor p, a feature request r, and a feature f. The notation #,(a) denotes the timestamp of the event with name n and
parameter a. The notation c¢,(a) denotes the count of events with name n and parameter a in the trace.

4. Tool overview

This section presents the tool that calculates and visualizes
the metrics from Section 3.

The SCOOP compiler automatically generates a statically
instrumented executable when it compiles a SCOOP project
where the performance analyzer is activated. The compiler
inserts indirect instrumentation code, augmenting the original
source code with calls to a performance analysis library. With
the help of the instrumentation code and the extended SCOOP
runtime, the tool performs exact monitoring: it collects its in-
formation consistently at specified places. This approach is dif-
ferent from statistical monitoring, where a tool collects its in-
formation by periodically sampling the program state. Statisti-
cal monitoring is not suitable for the SCOOP performance ana-
lyzer. Most of the proposed metrics are defined over intervals.
To compute an interval, it is essential to know when the inter-
val starts and when it ends. With statistical monitoring, how-

ever, this information would not be available reliably because
the tool could sample the program at the wrong points in time.
For metrics that capture a single point in time, the issue does not
occur. For instance, Cilk (Tallent and Mellor-Crummey, 2009)
measures the number of idle CPU cores and the percentage of
execution time used for management activities. Both of these
metrics aggregate over single points in time and are therefore
suitable for statistical monitoring. As an advantage, the over-
head can be controlled by adjusting the sampling rate; this is
not possible with exact monitoring.

The tool performs tracing: each processor keeps a log of ac-
tivities in the form of an event sequence in an own buffer. The
processor flushes the buffer to disk once the buffer is full. The
buffer size can be changed in the project’s configuration file.
Small buffers lead to frequent flushes; they are useful to analyze
non-terminating programs or to decrease the memory overhead
at the expense of the time overhead. Large buffers lead to in-
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Fig. 5: Processor view for the share market example. The first timeline belongs to the root that created the market and the investors. The second timeline belongs to

the market. The third and the fourth timelines belong to the two investors.

frequent flushes; they are useful to decrease the time overhead
at the expense of the memory overhead. The resulting trace is
not only useful to retroactively compute the metrics (see Sec-
tion 3.3); it is also useful to visualize the execution and attribute
the metric values to the different steps.

To reduce overhead, the tool does not analyze the trace on-
line; instead it performs a post-mortem analysis. After an ex-
ecution, the analyzer examines the trace. It first presents a list
of all available traces; each trace is identified by the timestamp
of its first event and its last event. For the chosen trace, the
analyzer shows an interface to choose a time segment to be ex-
amined. Then it examines the chosen time segment and creates
two views: the processor view and the feature view.

To explain the two views in detail, consider another trans-
action with one market, two investors, and one available share
from one issuer. Each of the two investors wants first to buy the
share and then to sell the share again.

do_transaction (
first_investor: separate INVESTOR;
second_investor: separate INVESTOR,
issuer_id: INTEGER

—— Make each of the two investors buy and then sell a
share of the issuer on a market.

do
first_investor.buy (market, issuer_id)
second_investor.buy (market, issuer_id)
first_investor.sell (market, issuer_id)
second_investor.sell (market, issuer_id)

end

After the execution of this transaction each investor has two
feature requests in its request queue: the first one for the buy
feature and the second one for the sell feature.

4.1. Processor view

The processor view has one timeline for each processor; each
of them shows all the actions performed by one processor.
Fig. 5 shows the processor view for the market application.

Each step is presented as a bar, whose length indicates the
duration of the action. The location of the bar in the timeline
indicates when the action happened. The following bars exist:

e Each synchronization step is shown as a synchronization
bar. This bar indicates the locked processors; it can be ex-
panded to see the precondition evaluations as precondition
evaluation marks.

e Each execution step is shown as an execution bar. This
bar shows the metric values of the corresponding feature
request. It can be expanded to see the feature calls: the
tool shows the synchronization and execution step for each
non-separate feature call and a separate feature call bar
for each separate feature call. The separate feature call bar
is linked to the resulting execution step; its length indicates
the waiting time. Expanding the separate feature call bar
shows the separate callbacks.

e Each measuring step is shown as a measuring bar.

Both investors sent a locking request for the execution of the
buy feature to the scheduler. Both locking requests ask for the
lock on the market and for the precondition of the buy feature to
be satisfied. From the shorter synchronization bar, one can see
that the scheduler approved the locking request of the second
investor. The precondition evaluation mark below the synchro-
nization bar indicates that the scheduler evaluated the precon-
dition only once. During its execution step, the second investor
performed a feature call to the buy feature on the market. This
separate feature call was synchronous, as indicated by the elon-
gated separate feature call bar below the execution bar. Be-
low the separate feature call bar, the tool shows how the market
made several separate callbacks to the id feature.

After the second investor finished the execution of the buy
feature, it released the lock on the market and went straight into
a second synchronization step for the sell feature. At this point,
the scheduler had two locking requests: one for the buy feature
of the first investor and one for the sell feature of the second in-
vestor. For fairness reasons, the scheduler first granted the lock
on the market to the first investor and then evaluated the pre-
condition. However, the scheduler was not able to satisfy the
precondition; the precondition required that the first investor
should have been able to buy a share. This was not possible
at this point, because the share has been sold to the second in-
vestor. Hence, the scheduler took away the lock from the first
investor and tried to satisfy the locking request of the second
investor. For this, the scheduler granted the lock to the second
investor and then evaluated the precondition. From the short
synchronization step, one can tell that this was successful.
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Fig. 6: Extract of the feature view for the market example. The measurements have been made on an Intel Core 2 Duo T9300 2.5 GHz CPU with 2 GB of RAM
running Windows 7 SP1 (32 Bit). The system time resolution is 1 ms. Section 4.4 translates this resolution to the shown measurements.

After the execution of the sell feature, the second investor
released the lock on the market processor. Finally, the scheduler
was able to satisfy the locking request of the first investor. The
processor view of the share market application does not list any
measuring steps because we defined a large buffer size so that
flushing does not happen in the shown time segment.

4.2. Feature view

The feature view groups feature requests according to the re-
quested features. Fig. 6 show an extract of the feature view for
the share market application.

The first column shows a number of trees; each tree corre-
sponds to one class. Each first level node of a tree belongs to
one feature of the class; such a feature node stands for a group
of feature requests. Each second level node belongs to one of
the feature requests; such a node is a feature request node. The
remaining columns contain the metric values in both raw and
derived form.

The tool highlights some of the metric values as hotspots. A
hotspot is a metric value that might be a good starting point to
optimize the program. There are two types of hotspots: worst
performers and imperfections. A worst performer is the worst
metric value in a metric column: the largest number of feature
requests, the largest number of precondition evaluations, the
biggest mean of precondition evaluations, and the smallest per-
centage of useful time. An imperfection is a metric value that
is not ideal: a queue time, synchronization time, or execution
time above zero, or a percentage of useful time below 100%.
Imperfections are not as grave as worst performers; most rea-
sonable features are imperfect. Thus, we suggest concentrating
on the worst performers when optimizing.

4.3. Using the tool to improve source code

This section presents a guideline on how to use the tool to
determine corrections in the source code. To start, one looks at
the measuring bars in the processor view to determine whether
the overhead is acceptable. If there are too many measuring
bars, one must adapt the buffer size. Once the overhead is ac-
ceptable, one looks for hotspots in the feature view to know
which feature to focus on. One then uses the processor view to
find the executions of the troubled feature. Using the discussion
from Section 3.2, one finds the issues and translates some of the
proposed solutions to the source code. For this, one starts by
opening the code of the troubled feature. The translation is not
always straightforward; it requires developers that are knowl-
edgeable about SCOOP. One might have to iterate over these
steps several times; at the moment, there is no automatic solu-
tion.

In Fig. 6 one can see that both features buy and sell from class
INVESTOR have on average 40% useful time. A low percent-
age of useful time is the result of waiting. For this, Section 3.2
suggests to look at the synchronous feature calls in buy and sell.
From the processor view, one can tell that buy and sell perform
synchronous feature calls to the market, causing separate call-
backs to id. The feature view reflects this in the number of
feature requests: the id feature has been called 20 times. This
setup decreases the performance of the program in two ways.
First, the feature call to the market is synchronous. Second,
the separate callbacks cause unnecessary communication. To
optimize the program, one can change the buy feature and the
sell feature so that the investors pass the identifier instead of the
investor object itself. This change turns the synchronous fea-
ture calls into asynchronous ones; the investors do not have to



wait any longer and the market does not have to perform any
separate callbacks.

4.4. Storing and loading events

Each processor keeps its events in its own buffer to avoid
expensive synchronization actions on a central storage during
the execution. The tool uses the timestamps to reconcile the
events. For the non-distributed implementation of SCOOP, it
was sufficient to use the system time for the timestamps. As a
consequence, the resolution of the time measurements depends
on the system where the tool runs. With a system time resolu-
tion of n ms, a measured point in time can have an error of +n/2
ms. Hence a value for a metric consisting of a single interval
can have an error of +n ms; a value for a metric consisting of m
intervals, such as the waiting time metric, can have an error of
+(m X n). On our system, the resolution is 1 ms.

For future distributed implementations, the timestamp could
be based on logical clocks such as Lamport clocks (Lamport,
1978) or vector clocks (Mattern, 1989) for the ordering of
events and synchronized clocks using the Network Time Pro-
tocol (Mills, 2010) for the approximation of durations. In prac-
tice, the Network Time Protocol could be precise enough to
order the events from different nodes.

Each processor writes the events from its buffer to the disk,
once the buffer is full. To write the events to disk, it serializes
the buffer with all its events; the result is one file that contains
the whole buffer. After the execution, one has a set of files from
each processor.

The analyzer finds the timestamp of the first event and the
last event in the trace so that developers can choose a time seg-
ment to be analyzed. To avoid that the analyzer must deserialize
all the buffers to find these timestamps, each processor encodes
in the file name the timestamps of the first and the last event.
The analyzer then looks at the file names to find out when the
execution starts and when it ends; it does not have to open any
of the files. Once the time segment is chosen, the analyzer iden-
tifies all files that contain events in the chosen time segment. To
find these files, it once again looks at the file names.

5. Evaluation

This section reports on the evaluation of the metrics and the
tool. The evaluation includes an analysis of the tool’s time over-
head in Section 5.1 as well as an application of the metrics and
the tool on a concurrent robotic control software in Section 5.2.

5.1. Time overhead analysis

A number of SCOOP solutions to well-known synchroniza-
tion problems (Downey, 2005) served as subjects to measure
the time overhead of the tool. We chose these programs be-
cause they represent various interactions that can take place in
concurrent programs. Furthermore, these programs do not de-
pend on external input, which makes them suitable for overhead
measurements. However, we do not claim that these programs
represent all possible interaction schemes. Fig. 7 shows the av-
erage time overhead for the programs over different buffer sizes.

The average overhead is more interesting than the overhead of
a single run because of the inherent nondeterminism in concur-
rent programs.
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Fig. 7: Average time overhead for different programs and varying buffer sizes.
Each point reflects the average over ten runs; the bars represent the standard
deviations. The baseline is the average of ten runs where the performance ana-
lyzer is disabled. A buffer size of zero means that there is no buffer; each event
gets immediately written to disk after creation. The experiments have been
conducted on an Intel Core 2 Duo T9300 2.5 GHz CPU with 2 GB of RAM
running Windows 7 SP1 (32 Bit).

Each of the programs produces a different time overhead.
The reason comes from the different number of events per sec-
ond: the more events a program produces per second, the higher
the time overhead is. The dining savages program is the most
intensive program because of the high number of exhibited in-
teractions. The other programs show a more consistent behav-
ior.

With growing buffer size, the time overhead of the programs
decreases modulo a few bumps. The time overhead results from
collecting the events in the buffers and from writing the buffers
to disk; the second part contributes most to the time overhead.
Since the buffer flush frequency decreases (non-strictly) with
growing buffer size, the time overhead decreases (non-strictly)
with growing buffer size as well. At some point the buffer size
is large enough to hold all generated events, so that the tool
can write all events at the end of the program; at this point
the overhead is minimal. One can observe this saturation espe-
cially well with the parallel workers program. The bumps can
be explained with the non-strictly decreasing flush frequency: a
bump is the result of an increasing time overhead due to a larger
buffer size that does not get compensated by a decreasing flush
frequency.

While the decentralized event collection would support an
increase of processors along with an increase of CPU cores, a
program with thousands of processors is not representative be-
cause the current central scheduler of SCOOP does not support



that many processors (see Section 2.2). Such a program would
also require a different approach to visualization: it would not
be reasonable for developers to analyze in detail the metric val-
ues for thousands of processors; instead, developers would re-
quire a high-level view on the metric values. On our system,
we found that the SCOOP scheduler is able to handle up to one
hundred processors, and we found that the tool remains usable.

In summary, one should always adapt the buffer size accord-
ing to the programs characteristics in order to minimize the time
overhead. For example, one can start with a small buffer size
and use the processor view to judge whether there are too many
measuring steps. One can then either increase or decrease the
buffer size. The biggest improvement can be expected from an
increase of the buffer size from zero to a bigger value.

5.2. Optimizing concurrent robotic control software

This section demonstrates how the metrics and the tool can
be used to optimize a concurrent robotic control software.
Robotic control software is especially suited for evaluation pur-
poses, as the SCOOP model has its main strength in expressing
concurrent interactions (handling the nondeterministic arrival
of events), rather than purely deterministic parallel algorithms.

5.2.1. Hexapod

Earlier work (Ramanathan et al., 2010) demonstrates that
SCOOP is suitable to implement concurrent robotic control
software in a way that the code has a close correspondence
to the behavioral specification. The hexapod robot, shown in
Fig. 8, serves as an illustration for this. The hexapod has six

Fig. 8: The hexapod has six legs with three degrees of freedom.

legs. Each leg has three actuators, which represent the three
degrees of freedom. The six legs are grouped into two tripods.
Each tripod consists of the middle leg on one side and the outer
legs on the other side; the legs in one tripod are synchronized
with each other. To determine whether a tripod is planted on the
ground, the tripod’s middle leg is equipped with a force sensor;
the tripod is on the ground whenever the load sensor reports a
weight. In addition to the load sensor, the middle leg also has
two angle sensors to detect when the tripod reached its extreme
positions in the back or in the front. The hexapod has a simple
interface to retrieve the sensor values and to send commands
to the actuators. This interface is accessible over an integrated
ZigBee wireless port.

The control software, shown in Fig. 9, runs on a PC with an
external ZigBee port that connects to the hexapod. At runtime,
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Fig. 9: The runtime structure of the hexapod controller. The thick separators
represent processor boundaries.

the controller has a sensor poller that periodically connects to
the hexapod to retrieve the latest sensor values. The sensor
poller updates two signalers, one for each tripod, that translate
the sensor values into meaningful queries. For example, two
such queries use the load sensor values to return whether the
tripod is on the ground or not.

Two pattern generators use the signalers to control the move-
ments of the two tripods by sending commands to the hexapod.
Each tripod executes an alternating sequence of protraction and
retraction. To initialize, the first tripod lifts, swings forward,
and drops. Then one normal iteration begins: the second tripod
lifts and swings forward while the first tripod pushes the body
forward using its foot as the pivot; the second tripod drops as
soon as the first tripod is done. The first tripod’s action is a pro-
traction; the second tripod’s action is a retraction. In the next
iteration, the two tripods change the roles.

Each pattern generator is responsible to execute the alternat-
ing sequence for one of the tripods. Each pattern generator has
one feature for each phase of an iteration. Each of these fea-
tures has a precondition to ensure that the tripods are in a state
to start the actions. For example, a retraction of a tripod can
only start when the tripod is on the ground and the other tripod
is raised; otherwise the hexapod will either trip or drag its legs.
The following feature shows this in detail:

execute_retraction (
my_signaler: separate SIGNALER;
partner_signaler: separate SIGNALER
)
—— Retract the tripod.
require
my _signaler.legs_down
partner_signaler.legs_up
do
tripod.retract (my_signaler.retraction_time)
end



5.2.2. Optimization

The synchronization times of the pattern generator features
relate to the smoothness of the hexapod’s gait: when the syn-
chronization time of a feature increases, then the corresponding
phase gets delayed, and the gait becomes more uneven. It is
therefore important to keep the synchronization time as low as
possible. There are two main influences on the synchronization
time: the hexapod’s mechanical and electronic constraints as
well as the polling frequency. The hexapod’s constraints cannot
be influenced by the controller; however, the polling frequency
can be changed.

When the polling frequency increases, then the controller
knows about the hexapod’s state sooner, which reduces the syn-
chronization time. On the other hand, the polling frequency
should be kept as low as possible to reduce the CPU time of
the sensor poller and to reduce the network traffic between the
controller and the hexapod. The optimal polling frequency is
therefore a trade-off.

The synchronization time metric can be used to find the opti-
mal polling frequency. For this purpose it is necessary to intro-
duce a delay into the code of the sensor poller. One can then use
the tool to measure the synchronization times of the pattern gen-
erator features and reduce the polling frequency until the syn-
chronization times increase. Fig. 10 shows the tool’s reported
average total synchronization time and the average polling fre-
quency for different delays in the sensor poller. The progres-

average total
synchronization
time (ms)
11000
10000 I‘W{
o T 2 1 o T 1
L 4 I
7000 —f gy
6000
5000
0 10 20 30 40 50 60 70 80 90 100 120 150 170 200
delay (ms)
average polling
frequency (Hz)
4.00
3.50 ‘—‘\"ﬁ‘\‘
00 } %‘N—o\,_&
2.50 ~—
2.00
0 10 20 30 40 50 60 70 80 90 100 120 150 170 200
delay (ms)

Fig. 10: Average total synchronization time and average polling frequency for
varying polling delays. Each point reflects the average over three walks, each
consisting of several iterations; the bars represent the standard deviations.

sion of the average polling frequency confirms that increasing
the delay indeed reduces polling. The course of the average to-
tal synchronization time shows that synchronization becomes
slower as the polling gets reduced. It is however interesting to
see that the first 20 ms of delay do not have a big impact on syn-
chronization. One can therefore reduce the polling frequency
with a minimal impact on the hexapod’s gait.

One concern remains to be answered: the tool is creating
overhead, and thus it is not immediately clear whether the re-
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sults are transferable to executions without the tool. In general,
the overhead could cause the scheduler to switch to a funda-
mentally different schedule. In the case at hand, however, the
scheduler has a limited choice. In the beginning, it can decide
which tripod can start. Due to the symmetry of the hexapod (3
legs on each side), this decision does not change the essence
of the schedule. Henceforth, the preconditions ensure that the
scheduler lets the tripods proceed in the predefined order. For
instance, the precondition of execute_retraction ensures that the
retraction of one tripod only starts after the other tripod has
lifted (see partner_signaler.legs_up). Similarly, another pre-
condition ensures that one tripod can only drop after the other
tripod has retracted. In fact, the only remaining scheduling am-
biguity is whether one tripod starts swinging forward before
the other tripod starts retracting, or the other way around. This
choice, however, also happens without the tool and does not
change the essence of the schedule.

The tool’s overhead, however, causes an additional delay in
the sensor poller. Due to this additional delay, the curves in
Fig. 10 must be shifted to the right to transfer the results to ex-
ecutions without the tool. Furthermore, the overhead coming
from the synchronization start events, the precondition evalu-
ation events, and the execution start events affect the average
total synchronization time. Hence, the curve with the average
total synchronization time must be shifted to the bottom. Note
that these two shifts are conservative in the sense that the above
conclusions still hold on executions without the tool.

The optimization of the controller is not limited to the sensor
poller. The number of feature requests also indicates that the
controller performs a lot of unnecessary separate feature calls
such as my_signaler.retraction_time in execute_retraction. As
this feature call returns a value that is constant over an execu-
tion, the value can be cached in the pattern generators, which
eliminates this and other similar calls. The tool is also helpful
to visually validate the gait by inspecting the processor view for
the controller.

6. Related work

This section compares the SCOOP performance analyzer and
its metrics to other work. Tallent and Mellor-Crummey (2009)
propose a performance analysis tool for Cilk (Blumofe et al.,
1995) using statistical monitoring. The tool has two main met-
rics: parallel idleness of a program unit is the number of CPU
cores that are idle during the execution; parallel overhead of
a program unit is the percentage of execution time that is used
for management activities. The metrics can be used to diag-
nose performance problems of a program unit. If the program
unit has both low parallel idleness and low parallel overhead,
then the parallelization is optimal. If only the parallel idleness
is high, then one should refine concurrency granularity. If only
the parallel overhead is high, then one should coarsen the con-
currency granularity. If both metrics are high, then one should
change the strategy; for instance, one can use a combination
of data and task parallelism instead of just one of them. These
metrics are well-suited for Cilk programs because concurrency



is triggered implicitly by the runtime; thus it is indeed impor-
tant to audit the runtime by measuring the CPU core utilization
and the imposed overhead. These measurements are less im-
portant in SCOOP because developers trigger concurrency ex-
plicitly. This difference has another implication: the SCOOP
performance analyzer breaks down the metric values along a
timeline to show the explicitly triggered concurrent executions.
In contrast, the Cilk performance analyzer shows the metric val-
ues along a call graph because developers do not need to know
in detail how the runtime executes.

Su et al. (2010) present a performance analysis tool for pro-
grams based on the Partitioned Global Address Space (PGAS)
model. A PGAS system has a global memory address space
that is partitioned among nodes; all nodes can access all parti-
tions. The proposed tool has an interface that PGAS systems
implement to provide the necessary measurements. The tool
offers metrics to measure the computational and storage load of
nodes as well as the communication between different nodes.
These metrics are well-suited for PGAS systems because they
have a direct correspondence to the model. These metrics are
also useful to describe the load and communication of SCOOP
processors. However, they do not capture other aspects of the
SCOQOP model such as synchronization.

Wolf and Mohr (2003) introduce a performance analysis tool
for MPI and OpenMP programs based on exact monitoring.
The tool offers a number of metrics to measure communication
inefficiencies, lock waiting time, barrier waiting time, and run-
time overhead. For instance, the late sender metric represents
the time wasted when a receiver executes a blocking receive op-
eration before the sender starts. The metrics relate directly to
concepts of the programming model and are thus helpful to find
issues in programs. The communication inefficiencies metrics
are similar to the queue time in the SCOOP performance an-
alyzer because both represent the gap between a sender and a
receiver; and the lock waiting time and the barrier waiting time
metrics have a similar purpose than the synchronization time
metric. These similarities are not surprising because most con-
current programming models have notions for communication
and synchronization, and these notions must be reflected in any
set of model-specific metrics.

Miller et al. (1995) present Paradyn — a performance analy-
sis tool for MPI-based and multi-threaded programs. The tool
uses dynamic instrumentation to perform statistical monitoring
on demand; it is therefore suitable to analyze long-running pro-
grams. It supports a number of metrics to analyze communi-
cation and synchronization. The SCOOP performance analyzer
uses static instrumentation due to lacking support in SCOOP;
Paradyn relies on Dyninst (Hollingsworth et al., 1994) to dy-
namically instrument executables.

The Intel Parallel Amplifier (Intel, 2012) is a performance
analysis tool for multi-threaded C++ and Fortran applications
based on statistical monitoring. The tool calculates various
architecture-specific metrics such as CPU core idleness and
number of wrong branch predictions. It also has metrics that
measure waiting of threads and locking of synchronization ob-
jects. The Intel tool is supported by a Performance Monitor-
ing Unit that is part of Intel CPUs. The AMD CodeAnalyst
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(AMD, 2012) provides similar functionality for programs writ-
ten in OpenCL, Java, .NET, C++, and Fortran running on AMD
CPUs. Just as the Parallel Amplifier, the SCOOP performance
analyzer keeps track of waiting on resources; it does so with
the synchronization time and the number of precondition eval-
uations metrics. However, it does not record idle CPU cores
and other architecture-specific values. Its metrics are all on the
level of the programming model to make it easier to relate the
metrics to the code.

Cai and Turner (1994) developed a monitor for programs
written in occam, a concurrent programming language based
on CSP (Hoare, 1985). The monitor minimizes the probe ef-
fect (the alteration of the system’s behavior due to the measure-
ment). It guarantees that in each execution the events are iden-
tical regardless of the monitor’s presence. The monitor uses a
variation of logical clocks (Lamport, 1978) to order events par-
tially. Every process has one logical clock that records the exe-
cution time minus the delay caused by the monitor. Whenever a
process wants to pick one channel from a set of available ones,
the monitor delays the decision until it finds the communication
partner that has a matching communication event with the low-
est logical clock timestamp. To apply this approach to SCOOP,
the scheduler would have to grant a locking request only when
it is sure that it will not receive a locking request with an earlier
timestamp. However, in SCOOP programs the set of processors
that will issue locking requests is generally unknown. Hence,
this approach is not directly applicable to SCOOP.

Hollingsworth and Miller (1992) present a quantitative tech-
nique to compare the effectiveness of concurrent performance
metrics in guiding developers. The authors use this technique
to compare the metrics of the following approaches:

e The IPS-2 approach (Miller et al., 1990) computes for each
method the useful CPU time.

The NPT approach (Anderson and Lazowska, 1990) cal-
culates for each method the time the executing process is
doing useful work divided by the number of processes do-
ing useful work at the same time. The approach suggests
optimizing the method with the longest execution time and
the largest number of processes that wait while the method
is being executed.

The critical path approach (Yang and Miller, 1988) deter-
mines the critical path and then sums up the useful CPU
time for each method on the critical path.

The Logical Zeroing approach (Miller et al., 1990) com-
pares for each method the total execution time of the orig-
inal critical path with the total execution time of the al-
ternative critical path, where the duration of the method
is set to zero. This gives an approximation of how much
the total execution time will change when the method is
optimized. The approach does not consider that the opti-
mization might cause event reordering.

The Slack approach (Hollingsworth and Miller, 1994) first
determines the critical path. For each method on the crit-
ical path, the slack value indicates how much the method



can be improved before the critical path will change. The
motivation is that an improvement of the longest executing
method on the critical path might not significantly improve
the total execution time because the critical path might
change to a path that is slightly shorter. The approach does
not work for applications where all paths are comparably
long. It also ignores situations in which a method on the
critical path is also on a secondary path and hence an im-
provement of the method will reduce the total execution
time of both paths.

The authors conclude that there is no single universal metric.
Performance analysis tools must support multiple metrics and
assist in the selection. The metrics can be applied to most con-
currency models. This makes them general, but also less ex-
pressive. For example, they are not designed to find synchro-
nization issues, as done in the analysis of the hexapod (see Sec-
tion 5). The SCOOP performance analyzer does not perform
critical path analysis; however, it would be straightforward to
calculate the critical path from the processor view.

The proposed metrics not only apply to SCOOP; they can
also be adapted to concurrent programming models that share
SCOOP’s core ideas, i.e., assignment of an object to one au-
tonomous thread of control along with a request queue and
atomic locking with preconditions that have wait semantics.
One such model is Cameo (Brooke and Paige, 2009), where
each object has its own thread of control and an associated re-
quest queue for feature requests from other objects. All feature
calls are synchronous unless the async keyword indicates oth-
erwise. To perform a remote feature call, a client adds a feature
request to the supplier’s request queue. The behavior of a lo-
cal feature call depends on the nature of the call: if the call is
synchronous, the object processes the call immediately; if the
call is asynchronous, the object adds a feature request to its own
request queue. Before executing a feature, an object locks the
actual arguments for the duration of the execution. It also de-
lays the execution until the feature’s wait condition is satisfied.
When one of its suppliers is in need of its locks, it temporarily
passes its locks to the supplier. The object implicitly obtains a
lazy lock on a supplier that is not a locked actual argument; the
lazy lock lasts just for the duration of the feature call on the sup-
plier. A lazy lock is semantically equivalent to a synchronous
feature call to a local wrapper with the same precondition as the
called feature.

To adapt the proposed metrics to Cameo, one must translate
from the SCOOP terminology to the Cameo terminology: sep-
arate feature calls become remote feature calls, non-separate
feature calls become local feature calls, and processors become
objects. In addition to these terminological changes, one must
make a number of semantic changes. The queue time metric
can be reused with a change: the queue time of a local feature
call is not always zero; for asynchronous local feature calls, it is
the time between the feature call and the beginning of the fea-
ture application. The synchronization time and execution time
metrics can be used without a change; however, a lazy lock
must be treated as an implicit local feature call with an own
synchronization and execution time. Lastly, the waiting time
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metric must exclude asynchronous local feature calls because
an object does not wait for itself to process such a call.

7. Conclusion

Different motivations exist for making a program concur-
rent: to optimize the performance, to increase the availability,
to bring convenience to users, and to profit from the model-
ing power of concurrent programming languages. To assess
concurrent programs with respect to the first goal, performance
analysis tools are critical. Novel models, such as SCOOP, re-
quire new performance analysis tools because the execution
semantics often differs considerably from established models.
We presented a tool to find performance issues in SCOOP pro-
grams, using a number of novel metrics that are specific to the
SCOOP model. For example, the synchronization time metric
represents the time it takes to obtain the locks and to satisfy the
precondition. In case of the robotic control example, this met-
ric relates directly to the smoothness of the robot’s gait. Using
this example, we showed that the metrics are useful to optimize
concurrent software. In future work, we want to introduce fur-
ther metrics such as the number of processors along with the
number of associated objects over time. We also want to in-
troduce a time metric that measures the time it takes to evalu-
ate a postcondition. For future distributed implementations of
SCOOP, it will be necessary to also measure the impact of the
network. For instance, latency could be shown as a percentage
of the queue time, synchronization time, and waiting time.
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