The Journal of Systems and Software 86 (2013) 905-933

Contents lists available at SciVerse ScienceDirect

of

=
i

The Journal of Systems and Software M"""HMMMWW

journal homepage: www.elsevier.com/locateljss [T

The crosscutting impact of the AOSD Brazilian research community

Uira Kulesza?, Sérgio Soares®*, Christina Chavez¢, Fernando Castor®, Paulo BorbaP®, Carlos Lucena¥,
Paulo Masiero€, Claudio Sant’Anna¢, Fabiano Ferrarif, Vander Alvesg, Roberta Coelho?,

Eduardo Figueiredo™, Paulo F. Pires', Fldvia Delicato', Eduardo PivetaJ, Carla Silva®, Valter Camargo’,
Rosana Braga®, Julio Leite4, Otavio Lemos¥, Nabor Mendonga!, Thais Batista?, Rodrigo Bonifacio®,

Nélio Cacho?, Lyrene Silva?, Arndt von Staad, Fabio Silveirak, Marco Tilio Valente?, Fernanda Alencar?®,
Jaelson CastroP, Ricardo Ramos™, Rosangela Penteadof, Cecilia Rubira™

2 Universidade Federal do Rio Grande do Norte, Brazil

b Universidade Federal de Pernambuco, Brazil

¢ Universidade Federal da Bahia, Brazil

d Pontificia Universidade Catélica do Rio de Janeiro, Brazil
¢ Universidade de Sdo Paulo - Sdo Carlos, Brazil

f Universidade Federal de Sdo Carlos, Brazil

& Universidade de Brasilia, Brazil

h Universidade Federal de Minas Gerais, Brazil

U Universidade Federal do Rio de Janeiro, Brazil

I Universidade Federal de Santa Maria, Brazil

k Universidade Federal de Séo Paulo - Sdo José dos Campos, Brazil
! Universidade de Fortaleza, Brazil

m Universidade Federal do Vale do Sdo Francisco, Brazil

N Universidade Estadual de Campinas, Brazil

ARTICLE INFO ABSTRACT
Article history: Background: Aspect-Oriented Software Development (AOSD) is a paradigm that promotes advanced sep-
Received 21 January 2012 aration of concerns and modularity throughout the software development lifecycle, with a distinctive

Received in revised form 18 June 2012
Accepted 14 August 2012
Available online 25 August 2012

emphasis on modular structures that cut across traditional abstraction boundaries. In the last 15 years,
research on AOSD has boosted around the world. The AOSD-BR research community (AOSD-BR stands
for AOSD in Brazil) emerged in the last decade, and has provided different contributions in a variety of
topics. However, despite some evidence in terms of the number and quality of its outcomes, there is no

. organized characterization of the AOSD-BR community that positions it against the international AOSD
Aspect-Oriented Software Development . . . s .
Modularity Research community and the Software Engineering Research community in Brazil.
Research impact Aims: In this paper, our main goal is to characterize the AOSD-BR community with respect to the research
developed in the last decade, confronting it with the AOSD international community and the Brazilian
Software Engineering community.
Method: Data collection, validation and analysis were performed in collaboration with several researchers
of the AOSD-BR community. The characterization was presented from three different perspectives: (i) a
historical timeline of events and main milestones achieved by the community; (ii) an overview of the
research developed by the community, in terms of key challenges, open issues and related work; and (iii)
an analysis on the impact of the AOSD-BR community outcomes in terms of well-known indicators, such
as number of papers and number of citations.
Results: Our analysis showed that the AOSD-BR community has impacted both the international AOSD
Research community and the Software Engineering Research community in Brazil.

© 2012 Elsevier Inc. All rights reserved.

Keywords:

1. Introduction

The emergence of a new research area is often closely asso-
ciated with problems and challenges faced by a relatively stable
community of practitioners and practices. Researchers depart from

* Corresponding author. well-established concepts and techniques to explore unknown

0164-1212/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.js5.2012.08.031

dx.doi.org/10.1016/j.jss.2012.08.031
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
dx.doi.org/10.1016/j.jss.2012.08.031

906 U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

territories and to discover new avenues that may lead to promising
solutions to existing problems. This is certainly a valid common
ground for research on Aspect-Oriented Software Development
(AOSD) (Filman et al., 2005).

AOSD is a new development paradigm that aims to promote
advanced separation of concerns and modularity throughout the
software development lifecycle. AOSD has emerged on the shoul-
ders of successive generations of software development paradigms,
each of them adhering to fundamental principles such as separa-
tion of concerns (Dijkstra, 1976) and modularity (Parnas, 1972),
and supported by programming languages, development methods,
practices, tools, body of knowledge, and community. In scenarios of
increasing complexity and unavoidable need for change, the gen-
eral goal of these paradigms has been to support the development
of software solutions to real-world problems, in a way that pro-
motes internal quality attributes such as understandability, ease of
change and reuse of software artifacts.

The object-oriented (O0) paradigm has played the role of the
dominant development technology for the last two or three
decades, with broadly recognized benefits. While the OO paradigm
overcomes the limitations of previous paradigms to modularize
concerns with respect to their support for encapsulation, infor-
mation hiding (Parnas, 1972), and polymorphism (Cardelli and
Wegner, 1985), it faces its own limitations for modularizing con-
cerns that address global constraints and systemic properties, such
as synchronization, persistence, error handling, logging mecha-
nisms, among many others. In fact, these limitations and difficulties
to modularize certain dimensions of concerns may not be spe-
cific to OO, but rather be part of a general problem that has been
coined “The Tyranny of Dominant Decomposition” (Tarr et al.,
1999).

Concerns that are difficult to modularize have been called
crosscutting concerns (CCCs) since they naturally cut across the
boundaries of modular units that implement other concerns.
Without proper means for separation and modularization, cross-
cutting concerns tend to be scattered over a number of modular
units and tangled up with other concerns, throughout software
development activities and across different artifacts. The natural
consequences are lower cohesion and stronger coupling between
modular units, and reduced degrees of comprehensibility, evolva-
bility, and reusability of software artifacts.

In the last 15 years, research on AOSD has boosted around
the world, with initial focus on programming languages and tools
(Tarr et al., 1999; Aksit et al., 1994; Bergmans and Aksit, 2001;
Harrison and Ossher, 1993; Lieberherr, 1996; Lieberherr et al.,
2001; Kiczales et al., 1997, 2001; Ossher and Tarr, 2001; Lopes,
2005). In the last decade, the focus has shifted towards different
software development activities (Filman et al., 2005). Recently,
research on AOSD has broadened its goals to address software
modularity in general, yet with a distinctive emphasis on modular
structures that cut across traditional abstraction boundaries (AOSD,
2011).

The AOSD-BR research community (AOSD-BR stands for AOSD
in Brazil) emerged in the last decade, and has contributed
to several Software Engineering (SE) research areas, including
requirements engineering, analysis and design, languages, imple-
mentation methods and techniques, modeling, testing, tools, and
assessment. In the last few years, this community has been involved
in collaborative research networks, inside and outside Brazil, has
published a number of papers in several top SE conferences,! and
has educated a new generation of researchers.

1 By top SE conferences, we mean conferences broadly recognized as major SE
venues. The conferences we considered are listed in Section4.2.1.

Our previous work (Chavez et al., 2011)2 provided a prelimi-
nary characterization of the research developed by the AOSD-BR
community in the last decade and presented initial evidence about
the impact of the AOSD-BR research outcomes. However, there
was no comprehensive analysis of such outcomes against those of
related counterparts, for instance, the international AOSD research
community and the Brazilian SE research community. Moreover,
the characterization of the overall contributions of the AOSD-BR
research, with respect to existing research challenges, open issues
and related work, could be enhanced.

In this paper, our main goal is to characterize the AOSD-BR com-
munity with respect to the research developed in the last decade,
confronting it with the AOSD international community and the
Brazilian Software Engineering community. This work extends the
scope, refines and organizes our previous characterization (Chavez
etal., 2011), providing improved analysis of the research outcomes
and lessons learned from the AOSD-BR research community.

Three research questions were defined to drive our character-
ization of the AOSD-BR research community achievements and
detailed comparisons:

(i) What is the impact of the research developed by the AOSD-
BR community compared to that of the international AOSD
research community ?

(ii) What is the impact of the research developed by the AOSD-BR
community compared to that of the Brazilian SE community in
the international context?

(iii) What is the impact of the research developed by the AOSD-BR
community compared to that of the Brazilian SE community in
the national context?

The expected contributions of this work are threefold. Firstly,
the documented knowledge about the creation of the AOSD-BR
research community and initiatives that promoted its evolution
can be generalized to serve as a roadmap for researchers willing
to foster new research areas and communities around the world.
Second, the enhanced, general characterization of the state-of-the-
art in some areas of AOSD can be useful for young researchers
that are starting their research on AOSD, by unveiling, for instance,
topics that have not been properly exploited yet. It can attract
new researchers and fundings for the area as well. Finally, those
interested in academic collaboration with Brazilian researchers can
benefit from our characterization of the state-of-art of AOSD-BR
research, to identify research groups, their main publications, and
opportunities for collaboration.

This paper is structured as follows. Section 2 presents, in more
detail, the AOSD-BR research community timeline, highlighting
important events and initiatives, such as the inception and orga-
nization of the 1st Brazilian Workshop on AOSD (WASP), held in
2004, and the organization of the 10th International Conference on
AOSD in Brazil, held in 2011, among others.

Section 3 presents an overview of the research work developed
by AOSD-BR community in several prominent SE areas. For each
research area, we highlight some key challenges, describe briefly
how they have been addressed by the AOSD-BR community and
related research conducted by the international community, and
finally, point out some open issues.

Section 4 presents a discussion on the growth, impact, and qual-
ity of the AOSD-BR research outcomes in terms of several indicators,
such as the number of publications in journals and conferences over
the last decade, the number of papers published in top international

2 This paper was published at the Special Track “SBES is 25” - organized to cel-
ebrate the 25th Anniversary of the Brazilian Symposium on Software Engineering
(SBES).

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933 907

SE conferences, and the number of citations to these papers. Several
original contributions are provided. A wide search was performed
in the proceedings of six major conferences, looking for AOSD-
related papers published since 1999 (year of the first Brazilian
publications about AOSD) and the number of citations, in order to
assess the AOSD-BR impact in the AOSD international context. The
data gathered allowed us to provide several additional analyses.

Finally, Section 5 presents our concluding remarks, highlighting
main results, presenting lessons learned and possible venues for
future work in the AOSD field.

2. AOSD-BR timeline

In the last 10 years, the AOSD Brazilian (AOSD-BR) research com-
munity has emerged and matured, having developed high-quality
research work in different AOSD-related research topics. This sec-
tion presents the AOSD-BR community timeline, highlighting its
main events and initiatives. Fig. 1 illustrates a timeline of these
events. The main milestones of the AOSD-BR community are pre-
sented above the axis, along with some important milestones of the
international AOSD community, which appear below the axis.

2.1. The first steps

Brazilian researchers have been working on AOSD-related topics
since 1998. The first AOSD-BR papers were published at the Brazil-
ian Symposium on Software Engineering (SBES) in 1999 (Sztajnberg
et al,, 1999b,a), just two years after the publication of the paper
on aspect-oriented programming (AOP) (Kiczales et al., 1997) at
ECOOP. In 2002, the first international conference on AOSD (2002)
was held in Europe. In that same year, the first international high-
quality paper from Brazilian researchers working on AOSD (Soares
et al.,, 2002) was published at OOPSLA. The year of 2004 hosted the
defenses of the first PhD theses on AOSD (Chavez, 2004; Garcia,
2004; Soares, 2004) in Brazil. Interaction among researchers was
limited to messages exchanged by means of the AOSD-BR list
(AOSD-BR, 2002), a mailing list created in 2002 to promote the
discussion of research and technical issues.

2.2. Bringing together AOSD researchers from different Brazilian
universities

The organization of the Brazilian Workshop on Aspect-Oriented
Software Development (WASP), in 2004, is probably the starting
milestone of the AOSD-BR community. That was definitely the first
effort to bring together the AOSD researchers from different Brazil-
ian universities in a single event. WASP (2004) was organized as
a one-day workshop at SBES. The workshop was a great success,
attracting a large number of participants (70) and submissions (40).
The technical program of WASP 2004 included the presentation of
technical papers and posters, and focused discussion groups. WASP
also featured an international keynote speaker, Professor Awais
Rashid from Lancaster University — UK, to foster the interaction
of the AOSD-BR community with renowned international AOSD
researchers.

WASP had a fundamental role in congregating the AOSD-BR
community and motivating researchers from different Brazilian
universities to create their respective research groups in this partic-
ular area of study. Another important outcome from WASP was the
definition of a catalog of Brazilian Portuguese terms for the main
AOSD concepts originally defined in English. Additional informa-
tionand a complete report on WASP can be found elsewhere (WASP,
2004).

2.3. Encouraging the cooperation between Brazilian research
groups

WASP 2004 provided a unique opportunity for several senior
and young Brazilian researchers to meet each other and their
respective research work by means of different discussion groups
organized as part of its technical program. Two more WASP work-
shops (WASP, 2005, 2006) were held at SBES 2005 (Uberldandia —
MG) and SBES 2006 (Florianépolis - SC), respectively. The invited
speakers actively participated in the discussions held at the work-
shops, providing key feedback and insights to AOSD-BR researchers.

WASP 2005 and WASP 2006 contributed to the consolidation of
new AOSD research groups in Brazil. In addition, they also encour-
aged the first collaborations between AOSD-BR research groups,
which opened the way to the publication of a series of inter-
esting research results in the following years. Examples of such
results are: (i) the development of several empirical studies that
focused on the quantitative comparison of aspect-oriented and
object-oriented implementations (Figueiredo et al., 2008a; Green-
wood et al., 2007), in a collaboration between PUC-Rio and UFPE
researchers; (ii) the development of aspect-oriented software
architecture languages and tools (Batista et al., 2006a,b; Garcia
et al, 2006; Chavez et al, 2007, 2009; Molesini et al., 2010),
in a joint effort involving PUC-Rio, UFBA and UFRN researchers;
and (iii) the development of aspect-oriented approaches to
modularize software frameworks and product lines (Kulesza
et al,, 2006b,d), in a collaboration between PUC-Rio and UFPE
researchers. Finally, cooperation among AOSD-BR research groups
also led to the organization, in 2005, of a special issue on AOSD
in the Journal of the Brazilian Computer Society (JBCS), the main
publication vehicle of the Brazilian Computer Science research
community.

2.4. Crossing the borders

In 2005, AOSD-BR members published their first two papers
(Garcia et al., 2005; Cole and Borba, 2005) at the AOSD conference.
In 2006, the first volumes of the Transactions on Aspect-Oriented
Software Development (TAOSD) journal (TAOSD, 2006) were pub-
lished with the edition and organization of renowned researchers
from the international community. It is interesting to notice that
the first volume of TAOSD (TAOSD, 2006) already had contributions
from the AOSD-BR community.

2.5. Promoting the cooperation between the AOSD-BR
community and their South America neighbors

In 2006, the Latin American Research Network on AOSD
(LatinAOSD, 2007) was created, involving several institutions from
Brazil (PUC-Rio, UFBA, UFMG, UFPE, UFRGS, UFR], UFRN, USP-Sdo
Carlos, IME-R]), Chile (UChile, UTFSM), Argentina (UNICEN, UBA)
and Colombia (UniAndes). LatinAOSD was funded by the Brazil-
ian National Council for Scientific and Technological Development
(CNPq). The main goal of LatinAOSD was to establish a forum to
promote the integration and cooperation between AOSD research
groups from South America. The LatinAOSD network pushed WASP
to a broader scope and, in 2007, WASP became LA-WASP, the Latin
American Workshop on AOSD, organized as a two-day workshop
at SBES 2007, held in Jodo Pessoa - PB. LA-WASP was also a great
success, receiving submissions from all the institutions that were
part of the LatinAOSD network. It is also important to mention that
many senior researchers from universities that were part of the
LatinAOSD network (from Chile, Argentina and Colombia) were
invited to join the technical and organizing committees of the
workshop.

908 U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

. First Brazilian Workshop

T First AOSD papers at SBES

. First AOSD-BR MSc
dissertation

First AOSD-BR PhD Theses +

on AOSD (WASP)

. First AOSD-BR
papers at AOSD
AL A 10th AOSD conference held
JBCS Special Issue on AOSD in Brazil (AOSD 2011)
_ Creation of the Latin America T
AOSD research network

. First international _ First Latin-American workshop
AOSD-BR paper on AOSD (LA-WASP 2007)
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
L First paper coining . Spring AOP
the term AOP released < First AOSD journal
(Transactions on AOSD)
L First AOP workshop L JBoss AOP
released

(ECOOP 1997)

. First AOSD book

CACM special issue on AOSD = (Aspect] in Action)
First AOSD conference = L Aspect] became an
Eclipse project

Fig. 1. AOSD and AOSD-BR timeline.

Table 1

Invited researchers to workshops organized by the AOSD-BR community.
Issue Invited speaker
WASP 2004 Awais Rashid (Lancaster University, UK)
WASP 2005 Cristina Lopes (University of California, Irvine)
WASP 2006 Mira Mezini (Darmstadt University, Germany)

LA-WASP 2007
LA-WASP 2007
LA-WASP 2008
LA-WASP 2008

Theo D’Hondt (Vrije Universiteit Brussel, Belgium)
Paulo Borba (Federal University of Pernambuco, Brazil)
Kevin Sullivan (University of Virginia, USA)

Marco Tulio Valente (Federal University of Minas
Gerais, Brazil)

Jon Whittle (Lancaster University, UK)

Alessandro Garcia (PUC-Rio, Brazil)

Eric Tanter (University of Chile, Chile)

Sergio Soares (Federal University of Pernambuco,
Brazil)

Mehmet Aksit (University of Twente, Netherlands)

LA-WASP 2009
LA-WASP 2009
LA-WASP 2010
LA-WASP 2010

LA-WASP 2011

2.6. Inviting international senior professors and researchers

The subsequent editions of LA-WASP were also held in con-
junction with SBES (2008, 2009, 2010 and 2011). These workshops
followed the same philosophy of the previous WASP and LA-WASP
workshops in promoting the interaction and cooperation between
senior and young researchers from different universities in South
America. In addition, one or two international keynote speakers
were invited to present their latest research results and to actively
participate in the workshop, which not only contributed to improve
the quality of the discussions, but also helped to promote interna-
tional cooperation with the AOSD-BR community. Table 1 shows
the complete list of international and national speakers of LA-WASP
and WASP along the years. Brazilian researchers were also invited
to give keynote talks due to the increasing importance of their
research in international settings.

Table 2
Submissions, acceptance rate and attendance at workshops organized by the AOSD-
BR community.

Issue Submissions Acceptance Participants
WASP 2004 41 41.46% 70
WASP 2005 21 42.86% 39
WASP 2006 26 53.85% 45
LA-WASP 2007 31 54.84 % 50
LA-WASP 2008 18 50.00 % 30
LA-WASP 2009 21 47.62 % 40
LA-WASP 2010 14 85.71% 44
LA-WASP 2011 19 36.84 % 33

Table 2 shows the numbers of submissions, acceptance rate and
participants of WASP and LA-WASP along the years.

2.7. Promoting the cooperation between the AOSD-BR
community and international research groups

The invitation of international AOSD researchers to give talks
at the LA-WASP and WASP series of workshops has contributed
to motivate and promote the cooperation between the AOSD-
BR community and international research groups. Many joint
research efforts were developed collaboratively between Brazil-
ian and international researchers, such as: (i) the development
of empirical quantitative case studies of AO and OO implemen-
tations (Figueiredo et al., 2008a; Greenwood et al., 2007; Fer-
rari et al,, 2010), in a collaboration between Lancaster University,
PUC-Rio, UFPE and USP-SC researchers; (ii) the assessment of
aspect-oriented implementations in Aspect] and Caesar] in the
modularization feature binding times (Andrade et al., 2011), in a
collaboration between Darmstadt University and UFPE researchers;
and (iii) the development of domain-specific languages to man-
age software variabilities (Zschaler et al., 2009; Alférez et al., 2009;
Heidenreich et al.,2010), in a collaboration between Lancaster Uni-
versity, New University of Lisbon and UFRN researchers.

In addition, the close interaction with international senior
researchers also promoted the active participation of many
Brazilian researchers in relevant international projects, such as:
(i) AOSD-Europe (AOSD-Europe Network of Excellence) (AOSD
Europe, 2002), a large research project funded by the European
Commission with the participation of nine European universities
and two industrial organizations that aimed at harmonizing and
integrating the research, training and dissemination activities of its
members in order to address fragmentation of AOSD activities in
Europe and strengthen innovation in areas such as aspect-oriented
analysis and design, formal methods, languages and applications of
AOSD techniques in ambient computing; and (ii) AMPLE (Aspect-
Oriented Product Line Engineering) (AMPLE, 2006), a three-year
research project funded by the European Commission that aimed at
proposing a development methodology to modularize variations in
software product lines through the integrated adoption of model-
driven engineering and aspect-oriented software development.

Brazilian post-graduate students have also benefited from this
cooperation, by joining international universities to develop their
PhD thesis (either in full or partially) or to work as post-doc
researchers after finishing their PhD thesis in Brazil.

Last but not least, AOSD-BR researchers now participate in pro-
gram committees of important international conferences (AOSD

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933 909

and ICSE) and have organized and participated in the technical pro-
gram committee of several workshops (Early Aspects, Assessment
of Contemporary Modularization Techniques - ACoM, Workshop
on Empirical Evaluation of Software Composition Techniques -
ESCOT) in conjunction with top SE conferences.

2.8. Hosting the AOSD conference in Brazil

In 2011, the AOSD-BR community had another important
milestone: the 10th International Conference on Aspect-Oriented
Software Development (AOSD, 2011) was held in Brazil (Porto de
Galinhas - PE). Several senior researchers from the AOSD-BR com-
munity were in charge of organizing AOSD 2011. The conference
had 138 attendees (slightly above the average attendance), of which
65 (47%) were from Brazilian institutions. The success of the AOSD
2011 conference coupled with the relatively large number of Brazil-
ian researchers in attendance are testimony to the important role
played by the AOSD-BR community in the international context.

3. AOSD-BR research areas

This section presents an overview of the research work devel-
oped in the context of Aspect-Oriented Software Development in
several prominent Software Engineering areas. The perspective
takenis from the synergies and interplay between aspects and other
SE areas, and thus it assumes that the interaction can be in both
directions with AOSD helping to address key issues in other SE areas
and vice-versa. In particular, this overview focuses on research top-
ics that have been exploited by the AOSD-BR community in the
last decade, organized in the following sections: Requirements and
Architecture, Modeling and Model-based Techniques, Exception
Handling, Refactoring, Testing, Metrics, and Software Product-lines.
Each of the following sections presents a research topic, some of its
associated challenges, a brief summary of research outcomes (from
AOSD-BR and also from the international AOSD community) and
open issues.

3.1. Early aspects

The term “Early Aspects” (EA)is used to describe issues related to
crosscutting concerns in both software requirements and software
architecture. Preliminary work on Aspect-Oriented Requirements
Engineering (AORE) (Grundy, 1999; Rashid et al., 2002; Moreira
et al.,, 2002) pointed out that several modeling approaches failed
to explicitly handle the crosscutting nature of some requirements.
These crosscutting concerns produce scattered and tangled rep-
resentations that are hard to understand, maintain, and reuse. In
this context, the Requirements Engineering community started
to address modularization of crosscutting concerns, stressing the
importance of its early awareness. Similarly, with the emergence
of AOSD, the Early Aspect Workshop started in conjunction with the
1st International Conference on Aspect-Oriented Software Devel-
opment, and its sub-title says: “Aspect-Oriented Requirements
Engineering and Architecture Design”. The need for explicitly
considering aspects in architecture was detailed in works such
as (Kande and Strohmeier, 2000; Katara and Katz, 2003; Mens,
2002).1tisimportant to represent crosscutting concerns at different
abstraction levels of the software process, and at the architectural
level this representation can help to avoid the architectural erosion
(Perry and Wolf, 1992) problem over the lifetime of a system. Also
the International Conference on Software Engineering (ICSE) pro-
moted, during several years, an Early Aspect Workshop with the
aim of fostering the maturation of Early Aspects as a discipline.

The main challenges, the AOSD-BR contributions and open
issues related to early aspects are following summarized.

3.1.1. Key challenges
There are many challenges ahead of early aspects research, espe-
cially in the context of:

(i) Crosscutting concerns identification and representation: Which
strategies should be used for the elicitation of crosscutting con-
cerns? How we could evaluate these strategies? What are the
representations that bridge the gap among requirements and
architecture as well as how we could integrate them with exist-
ing representations? Finally, questions regarding symmetrical
and asymmetrical approaches needed to be better evaluated.

(ii) Trade-offs in crosscutting concerns composition: Which methods
should be used for determining, at requirements and architec-
ture levels, the impacts of a given crosscutting concern over the
whole system? Which design techniques could be used in order
to avoid the preponderance of certain crosscutting concerns?

(iii) Management of architectural concerns, specially crosscutting
architectural concerns: What is the impact of the crosscut-
ting concerns with respect to the architectural evolution and
degradation? How do the crosscutting concerns (and their
representation at the earlier stages) influence the selection
of variants of a system? Questions arising from configura-
tion management of such representations do also need further
study.

(vi) Strategies to improve the traceability to other activities and
related models: Making aspects explicit in advance impacts the
complexity of requirements and architectural descriptions. As
such, which tools tools and automate support are necessary for
managing those descriptions? Questions on how to integrate
traceability features to such representations deserves special
attention.

3.1.2. Addressing the challenges

To address the aforementioned challenges, the AOSD-BR com-
munity has been working in different research projects dealing
with Early Aspects in two main areas: Aspect-Oriented Require-
ments Engineering (AORE) and Architectural Aspects. The research
works on these areas have investigated and explored the challenges
of identification, representation, composition and traceability of
crosscutting concerns in different ways of requirements and archi-
tectural specifications. In addition, the AOSD-BR community has
also contributed to address the challenge of management of archi-
tectural concerns. Next we present and discuss these research
works.

Aspect-Oriented Requirements Engineering: Sousa et al.’s
work Sousa et al. (2003) was the first one to address AORE in Brazil.
The authors used the NFR-Framework (Chung et al., 2000) along
with use cases to explicitly represent crosscutting requirements
separately from non-crosscutting ones and to compose them in a
non-invasive way.

Other researchers addressed the modeling (Silva and Leite,
2005a; Alencar et al., 2008) and the evaluation of AO require-
ments (Ramos et al., 2006), the mapping of crosscutting concerns
between different modeling languages, the reuse of crosscutting
requirements (do Prado Leite et al., 2005), and the elicitation of
crosscutting requirements (Sampaio et al., 2005; Antonelli et al.,
2010).

In the context of requirements modeling, an extension of the i*
(iStar) modeling language (Yu, 1997), called Aspectual i*, was pro-
posed to support the separation of crosscutting concerns (Alencar
et al., 2008). i* models capture social and intentional character-
istics, while Aspectual i* defines rules to systematically identify,
modularize and compose crosscutting concerns, reducing the com-
plexity of i* models and making their maintenance and evolution
easier (Alencar et al., 2008, 2010). A tool was proposed to identify

910 U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

crosscutting concerns in i* and evaluated using the Health Watcher
benchmark (Monteiro et al., 2007).

Aspectual i* was also used as the basis for the identification of
aspectual use cases, as described by Rojas et al. (2009), and, in the
Software Product Lines (SPL) context, to capture common and vari-
able features and thus to facilitate the selection among product
configurations (Silva et al., 2008).

In addition, Brazilian AORE researchers also contribute with
approaches (as well as tool support) for modularizing features in
both use case scenarios (Bonifacio and Borba, 2009) and business
processes models (Machado et al.,, 2011). Regarding the represen-
tation of features in use case scenarios, case studies and controlled
experiments revealed that, although the use of MSVCM (Modeling
Scenario Variability as Crosscutting Mechanisms) (Bonifacio and
Borba, 2009) improves the modularity of feature specifications, it
increases the time required to extract these feature specifications
from the requirements documents of existing products. Actually,
the benefits of MSVCM arise when evolving the specifications of
a product line, particularly when the analysts are experienced in
aspect-orientation.

Also regarding modeling, a meta-model for AO requirements
languages was defined (Silva and Leite, 2005a). Three modeling
languages were defined upon this meta-model:

(i) AO-BPM (Cappelli et al., 2009, 2010), which is an extension of
the BPM notation to describe business processes, to improve
modularity, and to make business processes easier to under-
stand and reuse;

(ii) AOV-graph (Silva and Leite, 2005b), which is an extension of
V-graph (a goal-oriented language used to model early aspects
(Yuetal.,, 2004)) to represent the relationships among require-
ments. AOV-graph added a new type of relationship, named
crosscutting relationship, in order to separate concerns prop-
erly. AOV-graph has been used in empirical studies with the
Health Watcher and Mobile Media benchmarks (Greenwood
et al., 2007; Figueiredo et al., 2009c; Chitchyan et al., 2009);
and

(iii) More recently, AOV-graph has been extended to PL-AOVgraph,
in a strategy to automatically map feature models in the con-
text of SPL - see also Section 3.7 — into PL-AOV-graph and vice
versa (Santos et al., 2011).

Regarding requirements evaluation, an approach to evaluate the
quality of AO requirements models was presented by Ramos et al.
(2006). In addition, aspect concepts have been used to reduce dupli-
cation, tangling and scattering in requirements documents (Ramos
et al., 2008).

Architectural aspects: The work from Batista et al. (2006a)
pioneered the discussions on some fundamental issues about
the integration of AOSD and architectural description lan-
guages (ADLs). The authors advocated that no new architectural
abstractions were needed to represent aspects and that regular
components could be used for this purpose.

They proposed a composition model based on existing architec-
tural abstractions — connectors and configuration - to support the
definition of crosscutting composition facilities and quantification
mechanisms. The Aspectual ACME (Garcia et al., 2006; Batista et al.,
2006b) AO ADL was developed following this approach. Aspectu-
alACME supports improved composability by means of aspectual
connectors.

More recently, AspectualACME has been extended to PL-
Aspectual ACME (Adachi et al., 2009; Barbosa et al., 2011), which
proposes an architectural style for the definition of software prod-
uct lines architectures and also a strategy for the instantiation of
specific products derived from the architecture. PL-Aspectual ACME
uses the original abstractions of ACME and Armani’s formal

constraints in order to guarantee well-formed descriptions. Specific
product line architectures can be derived from the architectural
style. PL-AspectualACME was evaluated with two realistic case
studies: Mobile Media (Figueiredo et al., 2009c) and GingaForAll
(Saraivaetal., 2010), the SPL architectural description of the Brazil-
ian Terrestrial Digital TV System middleware (Ginga).

In the context of software architecture evolution, Chavez et al.
(2009) proposed style-based composition, a new flavor of aspect
composition at the architectural level based on architectural styles
that addresses the pointcut fragility problem (Kellens et al., 2006).

The authors proposed style-based join point models and pro-
vided a pointcut language that supports the selection of join
points based on style-constrained architectural models. Stability
and reusability assessments of the proposed style-based composi-
tion model were carried out through three case studies involving
different styles (Chavez et al., 2009). The interplay of style-based
pointcuts and some style composition techniques was also dis-
cussed (Molesini et al., 2010) using four different architectural
styles applied to an evolving multi-agent architecture. The works in
Sande et al. (2006), Oliveira (2007) provided a notation to represent
and visualize architectural aspects.

Regarding how crosscutting concerns impact architectural evo-
lution and the selection of architecture alternatives, Sant’Anna et al.
(2007), Sant’Anna (2008) defined a suite of metrics that were used
to evaluate these two points. These metrics quantify attributes
such as concern scattering, concern tangling, concern interaction,
concern-based cohesion, and concern coupling based on informa-
tion from architecture descriptions. These metrics were used in
empirical studies which compared these attributes in different
architecture alternatives, mainly AO and non-AO architectures, of
the same systems (Sant’Anna et al., 2007; Sant’Anna, 2008). Also
these empirical studies compared how the crosscutting degree of
architectural concerns evolved as the systems evolved (Sant’Anna,
2008).

In the context of model transformations, a bidirectional
mapping between requirements (in AOV-graph) and software
architecture (in Aspectual-ACME) was defined by Medeiros et al.
(2007) and Silva et al. (2007) and implemented using the MARISA
tool (Medeiros et al., 2007).

In summary, the AOSD-BR community focused on applying
the benefits of aspect-orientation in the context of architectural
description languages, product line architecture, style-based com-
position, and the visualization of architectural aspects.

3.1.3. Comparison with research conducted by the international
community

The AORE Brazilian community has been working to address the
challenges related to the identification, representation and compo-
sition of crosscutting concerns at the requirements and architecture
abstraction levels. Participation in international forums, as well as
direct international collaboration has allowed a positive change
of ideas. Many Brazilian approaches were influenced by the work
of Rashid et al. (2002). In this work, the authors propose a gen-
eral model that supports separation of crosscutting functional
and non-functional requirements. Regarding the challenge (ii),
we can highlight the work presented by Moreira et al. (2005),
which proposes a technique to separate and compose require-
ments regardless of their functional or non-functional nature.
In particular, this work proposes a guide to perform analysis of
requirements-level trade-offs and provides insights into various
architectural choices available to fulfill a particular requirement.
The work presented by Rashid and Moreira (2006) is a step forward
in relation to the challenge (i), since the authors argue that domain
models have aspects which need to be identified and modularized
effectively.

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933 911

The drawbacks of syntax-based AO compositions have already
been discussed (Chitchyan et al., 2007) from the perspective of AO
requirements engineering. The similarities with our work are the
discussions about the disadvantages of syntax-based compositions
in contrast with the expressiveness of semantics-based composi-
tion in early aspects. Existing AO approaches at the architecture
level do not support style-based pointcut specifications.

Kellens et al. (2006) proposed model-based pointcuts to address
the fragile pointcut problem by replacing the intimate depend-
ency of pointcut definitions on the base program by a more stable
dependency on a conceptual model of the program. The authors
argue that the model-based pointcut definitions are less likely to
break upon evolution because they are no longer defined directly
in terms of the actual base code structure. Therefore, the fragile
pointcut problem is transferred to a more conceptual (and proba-
bly more stable) level and turned into a synchronization problem
between the conceptual model and the base code whenever this
code evolves.

The international AOSD community has proposed several AO-
ADLs, but most of them are heavyweight solutions, in contrast
with AspectualACME. An interesting survey on AO Analysis and
Design Approaches (Chitchyan et al., 2005) was delivered by the
AOSD-Europe network and cover such approaches. There are also
several approaches to represent and visualize architectural aspects
(Pinto and Fuentes, 2007; Krechetov et al., 2006) based on the UML
(Rumbaugh et al., 2004).

3.1.4. Open issues

Given the challenges enumerated previously, there are some
open issues in Early Aspects that deserve further discussion. The
issue of proper elicitation of requirements is an open issue per
se, and as such, it also reflects on eliciting requirements that are
of crosscutting nature, which, as well pointed by Silva and Leite
(2005a), are dependent on context, either of time or space. As a con-
sequence, architectures modeled with aspect modularity in mind
have to be prone to evolution, which again is an open issue in the
large and also with respect to Early Aspects.

Within these two broad issues, research is necessary not only
to have a better jump start, but as to maintain consistency along
the alignment of requirements and architecture in the context
of aspect-oriented modularization. Consistency maintenance for
binding requirements and architecture is very much related to the
recognition that the abstraction level of pointcuts must be lifted
(Kellens et al., 2006; Stein et al., 2006). Syntax-based pointcuts are
still typically used to select join points in different levels, expos-
ing artifacts to pointcut fragility and reusability problems. New
approaches should consider semantics-based solutions for com-
posing aspects.

Another open issue is related to the provision of AO architecture
modeling tools for the proposed methods and languages proposed
by the Brazilian community. The lack of tools hampers the broad
use and evaluation of the languages.

Last but not least, there is also a strong need for the assessment
of the impact of the adoption of Early Aspects techniques at the
requirements and architectural levels. To the best of our knowl-
edge, there is no existing controlled experiment that quantifies if
the adoption of Early Aspects approaches can really improve and
contribute to the the quality of the final system produced.

3.2. Modeling and model-based techniques

Aspect-Oriented Software Development and Model Driven
Development (MDD) (Schmidt, 2006) are useful and complemen-
tary techniques to achieve separation of concerns. Historically,
AOSD has focused on Aspect-Oriented Modeling (AOM) and the man-
agement of crosscutting concerns at the same abstraction level

(horizontal separation) whereas MDD has focused on the explicit
separation of platform independent from platform specific con-
cerns (vertical separation). As such, both AOSD and MDD can benefit
from each other to tackle the challenges of developing large and
complex software systems.

3.2.1. Key challenges

The main goal of research in Aspect-Oriented Modeling (AOM) has
been to provide developers with general means to express aspects
and their crosscutting relationships with other software artifacts.
AOM has mostly focused on notation and techniques for specify-
ing, representing, visualizing and communicating AO solutions at a
more abstract level (i.e., programming language-independent).

There are several challenges concerning AOM (2011) and MBT
in AOSD:

(i) Developing conceptual models for AOSD: Which are the essen-
tial characteristics of crosscutting concerns that need to be
modeled? Are there core concepts and relationships that char-
acterize “aspect-orientedness”?

(ii) Specifying AO concepts in UML (Rumbaugh et al., 2004): How can
aspects be specified and communicated using the UML?

(iii) Developing tools: Are there suitable tools for modeling and
managing the relationship between business elements and
crosscutting concerns? The lack of proper tools remains a
hindrance to the widespread adoption of software modeling
processes supporting AOSD.

(vi) Minimizing model degradation: How to minimize the negative
impact of model evolution in AO systems ?

(v) Promoting reuse: How to improve the limited reuse (Gybels and
Brichau, 2003) often achieved in AO systems?

3.2.2. Addressing the challenges

Aspect-Oriented Modeling: The AOSD-BR community has
investigated different solutions for modeling aspects and their
crosscutting relationships at the detailed design level. Such solu-
tions have addressed the aforementioned challenges (i) and (ii).
Furthermore, a novel approach for specifying and composing
aspects at the architectural level has addressed challenges (iv) and
(v).

Chavez (2004) proposed a conceptual model for AOSD. The main
motivation of having such a conceptual framework was to support
the characterization and comparison of existing AOSD approaches
and the development of new methods, languages and tools based
on unified terminology, concepts and properties. The proposed con-
ceptual model was used to characterize four representative AOSD
approaches (Chavez and Lucena, 2003) and to drive the design
of asideML, a new Aspect-Oriented Modeling language (Chavez,
2004).

The asideML language (Chavez, 2004) was proposed to address
challenge (ii). The asideML is a modeling language for specifying
and communicating AO designs. It provides notation, semantics,
and rules with the main purpose of addressing the conceptual
modeling and detailed design of a system in terms of aspects and
crosscutting within the UML Object Model - for structural and
behavioral models. The asideML language has been used by dif-
ferent research groups from Brazil (Cole et al., 2004; Kulesza et al.,
2005; Castor Filho et al., 2007) and abroad (Iborra et al., 2006).

The UML-AOF (Uetanabara et al., 2009) has also been pro-
posed to address challenge (ii). UML-AOF is a profile that explicitly
documents design characteristics of aspect-oriented frameworks
(AOFs). UML-AQF provides stereotypes and tagged values to rep-
resent design and architectural information commonly found in
AOFs, such as idioms (Hanenberg and Schmidmeir, 2003), patterns
(Camargo and Masiero, 2008) and extension mechanisms.

912 U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

Finally, Chavez et al. (2009) proposed style-based join point
models and a new pointcut language that supports the selection of
join points based on style-constrained architectural models. This
work is part of the style-based composition approach, presented in
Section, in which the stability (in face of change) and the reusability
of the style-based composition models were main drivers (Chavez
etal., 2009). Therefore, this work also addresses challenges (iv) and
(v).

Model-based techniques in AOSD: In the context of MBT in
AOSD, our community has investigated solutions for the aforemen-
tioned challenges (ii), (iii), (iv), and (v).

The lack of suitable tools for modeling and managing relation-
ships between business elements and crosscutting concerns has
been currently addressed by the Brazilian research community
through the development of an infrastructure named CrossMDA
(Alves et al., 2008a). CrossMDA encompasses a transformation
process as well as a set of services and associated supporting
tools. CrossMDA is based on the Model-Driven Architecture (MDA)
(Mellor et al., 2004) and aims at: (i) raising the abstraction level of
aspect modeling through the use of platform independent models
(PIM) representing crosscutting concerns independent of the busi-
ness models; (ii) promoting reuse of crosscutting concerns modeled
as PIM elements; (iii) automating the process of mapping the rela-
tionship of crosscutting concerns and business models through
automatic MDA transformations. CrossMDA encompasses a process
that provides a clear separation between the modeling elements
(aspects and business elements) and the different abstraction lev-
els (MDA models) contributes to promote artifact reuse. Model
based techniques are also being applied to handle problems that
arise in the presence of software evolution. As in other software
engineering approaches, AO systems are susceptible to software
degradation due to the coupling between aspects and base code.
One major source of degradation for AO systems is that the join
points intercepted by the aspects may unexpectedly change as the
system evolves. This may affect the pointcuts referring to such
evolved points, which become fragile. The main reason for point-
cut fragility is that, in most AOSD approaches, pointcut expressions
(PCEs) are specified at a low abstraction level, referring to syntax-
based join points specific to the system being developed (Koppen
and Stoerzer, 2004; Kellens et al., 2006).

To address the pointcut fragility problem and decrease the cou-
pling between aspects and base code, new research exploits the fact
that implicit rules for aspect composition must be explicitly repre-
sented, for instance, by using model-based pointcuts (Kellens et al.,
2006). The research community in Brazil has developed different
solutions to tackle the pointcut fragility problem using a model-
based approach. The model-based approach builds on the definition
of a conceptual model that describes structural and behavioral con-
cepts shared by an application domain and classifies elements of
the base model according to these concepts. Such a model is used
as an intermediary model that decouples the aspects from the base
model. The main distinctive feature of the solutions proposed by
the Brazilian AOSD community is their architecture-driven nature.
These solutions leverage the ideas of the model-based approach,
aligning it to the best practices of software development.

The first solution is an extension of the CrossMDA framework
(Alves et al., 2008a), named CrossMDA?2 (Fernandes et al., 2009),
built as a new instantiation of the Kellens approach to model-
driven pointcuts (Kellens et al., 2006). By integrating MDA with
the conceptual models approach, the solution seeks to provide
a development process that includes the specification and han-
dling of the conceptual model in the entire software development
life-cycle. The second solution (Pinto et al., 2009) also relies on
the use of model-based pointcuts (Kellens et al., 2006) and in the
definition of a conceptual model at the architectural level. How-
ever, in this solution three different layers in the definition of the

conceptual model are defined: the system layer, the domain-
specific layer and the application-specific layer. An MDD process
drives the definition of conceptual and aspect models, and their
instantiation and composition to generate the architectural base
model. The solution is implemented using AO-ADL (Pinto and
Fuentes, 2007), an aspect-oriented architecture description lan-
guage. Since in both solutions the proposed conceptual models
build on architectural patterns, which encapsulate total or par-
tial architectural solutions, such approaches facilitate the reuse of
concepts in different applications, minimizing the effort of speci-
fying a conceptual model for each application compared to other
model-based proposals.

3.2.3. Comparison with research conducted by the international
community

Wimmer et al. (2011) proposes a conceptual reference model
and uses it to evaluate several UML-based aspect-oriented design
modeling approaches. Besides this one, a number of conceptual or
reference models for AOSD concepts have been proposed in the
AOSD literature, such as the AOSD-Europe ontology (Berg et al.,
2005), Masuhara’s conceptual framework (Masuhara and Kiczales,
2003), and Everman’s (Evermann, 2007) reference model and pro-
file for Aspect] programs.

Wimmer et al. (2011) work also provides a comprehensive and
updated survey on UML-based aspect-oriented design modeling
approaches. Among them are two well-known approaches for AOM
and AOD (Chitchyan et al., 2005): Theme/UML (Clarke and Walker,
2005), a popular heavyweight approach used for aspect-oriented
design (AOD), and Join Point Designation Diagrams (JPDDs) (Stein
et al., 2006), a graphical visualization that expresses join point
selections in UML in which each visualization can be examined
with respect to the selection’s underlying conceptual model (con-
trol flow-oriented, data flow-oriented, or state-oriented conceptual
model).

The lack of suitable tools for modeling and managing relation-
ships between business elements and crosscutting concerns has
been currently addressed by international research that combines
the concepts of AOM with MDA. There are several proposals for
integrating crosscutting concerns in models by using MDA (Reina
and Torres, 2005; Simmonds et al., 2005; Solberg, 2005; Wampler,
2003). In these pieces of research, aspects and their relationships
with business elements are represented as first-class modeling ele-
ments.

There are mainly two different approaches that tackle the degra-
dation problem of AO systems that occurs when they evolve:
design-based pointcuts (Cazzola et al.,, 2006) and model-based
pointcuts (Kellens et al., 2006). Design-based approaches rely on
the premise that the problem to be solved is to provide point-
cut expressions that support selecting join points based on their
semantics (instead of their syntax), which must be explicitly rep-
resented by design information. Some researches represent design
information at the modeling level using UML (Cazzola et al., 2006),
while others do so at the coding level (Sullivan et al., 2005).
Although coupling is minimized by defining explicit design rules,
these rules are represented in a very low abstraction level (code),
being more application-specific and dependent on the implemen-
tation and AO languages. Moreover, their management is hard in
the presence of software evolution.

Kellens et al. (2006) proposed model-based pointcuts to address
the fragile pointcut problem by replacing the intimate depend-
ency of pointcut definitions on the base program by a more stable
dependency on a conceptual model of the program. The authors
argue that the model-based pointcut definitions are less likely to
break upon evolution since they are no longer defined directly in
terms of the actual base code structure. Therefore, the fragile point-
cut problemis transferred to a more conceptual (and probably more

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933 913

stable) level and turned into a synchronization problem between
the conceptual model and the base code whenever the latter code
evolves.

3.2.4. Open issues

There are several open issues that deserve further investiga-
tion in the context of modeling and model-based techniques for
AOSD. One such issue regards experimenting and assessing the
existent approaches in order to answer questions such as: Are AOM
approaches mature enough to be applied in real world scenarios?
What kind of assessment is still necessary? The area still lacks
experiments that evaluate practical aspects, such as the overhead
introduced in the software development process by the proposed
approaches.

For AOM, there is a need for a standard notation and approaches
to support aspect composition and interference, and the man-
agement of relationships between aspects and business elements.
AOSD-BR community initiatives such as CrossMDA focus on
addressing this issue. However, tools for modeling and manag-
ing the relationships between business elements and crosscutting
concerns remains as an obstacle to the wide-spread adoption of
software modeling processes supporting AOSD.

Research in model-based techniques in AOSD can be further
explored in different directions. One possible direction is to inves-
tigate the types of join points that can be suitably captured by
architecture-oriented approaches and those that cannot be cap-
tured (or even do not make sense to be).

3.3. Refactoring

Refactoring (Opdyke, 1992) is the process of improving the
design of software artifacts without changing their observable
behavior. AO refactoring, in particular, combines refactoring and
aspect-oriented programming techniques with the main aim of
modularizing or improving the design of CCCs. These techniques
can be used, for example, to restructure and improve the inter-
nal quality of OO systems by implementing CCCs with aspects. In
addition, AO refactoring also refers to quality improvement of AO
implementations, including behavior preserving changes to exist-
ing aspects and the study of extra conditions needed to assure that
typical OO refactorings are correctly applied in the presence of
aspects.

3.3.1. Key challenges

In this area, the key challenges are associated with each of the
typical refactoring activities that should be supported by refactor-
ing processes (Mens and Tourwe, 2004):

(i) Identification of refactoring opportunities: Which techniques can
be used to identify opportunities to apply AO refactorings?
How to structure and organize a catalog of AO refactorings?

(ii) Assessment of refactoring effects on software quality: What is
the impact of AO refactorings on the internal quality of soft-
ware systems? How can AO refactorings affect the stability and
robustness of existing evolving software systems?

(iii) Guaranteeing that behavior is preserved after refactoring: How
to guarantee behavior preservation during the application of
AO refactorings? How can formal approaches help with the
verification of behavior preservation in the context of aspect-
oriented languages and other properties?

These are similar to OO refactoring challenges, but in addition have
to consider a number of effects caused by the support of the more
powerful language mechanisms provided by AO languages.

3.3.2. Addressing the challenges

With the aim of addressing these challenges, the Brazilian com-
munity has worked on a number of initiatives, as detailed next,
separately for each challenge.

Identification of refactoring opportunities: Regarding the
identification of refactoring opportunities, the Brazilian commu-
nity has made several contributions, including the definition
of catalogs of code smells (Piveta et al.,, 2005; Bertran et al.,
2011), algorithms for code smell detection and suggestions of
refactorings for their removal (Piveta et al., 2006), design guide-
lines to reduce code smells in AO software (Piveta et al., 2007),
and a process for refactoring (including refactoring sequences)
(Piveta, 2009; Piveta et al., 2008). In the same line of research,
Bertran et al. (2011) present an analysis of code smells recur-
rently observed in a set of evolving aspect-oriented systems,
analysing instances of code smells previously reported in the
literature as well as describing new ones. Garcia et al. (2004) pro-
posed several refactorings for the manipulation of CCCs, including
Rename Pointcut, Collapse Aspect Hierarchy, and Collapse Pointcut
Definition.

Refactoring is also used to provide mechanisms for aspect min-
ing, in which code fragments related to CCCs are located and
extracted to aspects. However, the original (base) program often
has to be modified to fit these aspects properly. In this context, the
Brazilian community has proposed a catalog of OO transformations
(Valente et al., 2009) to associate crosscutting code with points of
the base program that can be captured using the pointcut model of
current AO languages. This catalog was evaluated on a case study
with medium-sized Java systems that have been aspectized using
Aspect].

Recent studies have pointed out that not all kinds of cross-
cutting concerns (CCCs) are harmful to the system quality
attributes, such as robustness (Ferrari et al., 2010) and stability
(Figueiredo et al., 2008a). Therefore, only harmful CCCs should be
factored out to aspects. Figueiredo et al. Figueiredo et al. (2008a)
showed, for instance, that aspectizing some optional or alternative
features of software product lines can produce mandatory features
whose implementing modules are less stable. Brazilian researchers
have documented (Figueiredo et al., 2009d) and proposed means
to modularize several patterns of CCCs recurrently observed in
software systems (Silva et al., 2009). One of the key findings of
Figueiredo et al. (2009d) is that crosscutting concerns following
some specific patterns may not be easily modularized, even with
the use of AOP mechanisms. The patterns of harmful CCCs can be
detected by means of a variety of resources, including visualization
environments (Carneiro et al., 2010), metrics and heuristic strate-
gies (Figueiredo et al., 2009a,b). Some of the heuristics defined by
Figueiredo et al. (2009b) are explained in Section 3.6.2.

Assessment of the effect of refactoring on software quality:
With respect to the challenge of assessing the effects of refactor-
ing on quality, AOSD-BR researchers have been developing tools
and concepts to improve the quality of AO software. One of these
tools is ConcernMetrics (Valente et al., 2010), an Eclipse plugin that
computes metrics commonly employed to evaluate the benefits
of AOP, without requiring explicit extraction of CCCs to aspects.
This tool was successfully used to evaluate the benefits of using
aspects in three small-to-medium sized Java systems (Valente et al.,
2010).

Valente et al. (2010) have also evaluated the implementation
of logging using aspects, as supported by Aspect]. They showed
that logging implementations require developers to call methods
from the logging API in several parts of the system, which justi-
fies the recurrent use of logging as an example of CCCs. However,
such calls usually have different strings as arguments, i.e., different
statements (one for each string argument) are needed to provide
logging behavior throughout the system. As a consequence, Aspect]

914 U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

developers cannot extract and merge the logging calls in a sin-
gle or in a small number of advices. In other words, the extracted
advices have a reduced degree of quantification, i.e., they affect
a small number of locations of the base program (in most cases,
just one location). In view of such circumstances, Valente et al.
argued that the refactored (aspectized) implementation of logging
does not present clear advantages, in terms of comprehensibility,
changeability, and independent development, when compared
with the original code.

A method for ranking refactorings according to quality
attributes was also proposed (Piveta et al.,, 2008). The relative
importance of each quality attribute with respect to the oth-
ers and the relative importance of the refactorings over quality
attributes is quantitatively expressed using the AHP multi-criteria
decision method (Saaty, 1990, 2003). Using this quantified infor-
mation, a ranking of refactorings in terms of their contribution to
ranked quality attributes can be automatically computed. The use of
such ranking can optimize the search for refactoring opportunities,
enabling the developer to focus on refactoring patterns that con-
tribute most to improve the required quality attributes of a piece
of software.

Guaranteeing that behavior is preserved after refactoring:
The AOSD-BR community has also played a pioneering role in
research focusing on guaranteeing that AO refactoring preserves
behavior. The first work in this area uses AO programming laws for
deriving refactorings for Aspect] (Cole and Borba, 2005; Cole et al.,
2005), aiming at verifying if the transformations they define pre-
serve behavior. These laws have been used to derive a catalog of
Aspect] refactorings, which can be employed to restructure appli-
cations and to extract variations in software product lines. In both
cases, the aspects were used as a modularization mechanism, either
for features (Alves et al., 2007) or for common CCCs such as distri-
bution and persistence. Most refactorings are implemented in an
industrial-strength refactoring tool (Calheiros et al.,2007) and have
been applied in the mobile game domain (Alves et al., 2008).

The AOSD-BR community has also extended the traditional
notion of program refactoring to software product lines (SPLs), in
which feature models (FMs) are refactored, in addition to source
code elements (Alves et al., 2006). A FM transformation is a refac-
toring when the resulting FM improves (maintains or increases) the
set of all possible configurations (products) of the initial FM. So, a
SPL refactoring not only improves code structure, but also the qual-
ity of the FM by maintaining or increasing the SPL configurability
in extractive or reactive scenarios (Krueger, 2001). We note that,
in the SPL context, in contrast to the usual definition of program
refactoring (whose scope involves only one program), semantics
preservation refers to the set of SPL products and means that pre-
viously existing products are not affected after the transformation.
Accordingly, semantics is preserved after FM refactoring because
previously existing configurations and corresponding products still
exist in the refactored FM and these have the same behavior. The
possibly new configurations and corresponding products do not
interfere with the semantics of the existing ones and simply indi-
cate the enhanced configurability of the FM, which is regarded as a
desirable property improved during refactoring motivated by the
recurring occurrence of the extractive and reactive SPL adoption
strategies.

3.3.3. Comparison with research conducted by the international
community

The AOSD international community has also proposed cata-
logs of code smells for AO software. Monteiro and Fernandes
(2006) describe three code smells for AO code, and Srivisut and
Muenchaisri (2007) describe a set of additional code smells that
can be found in AO software, along with algorithms to automate
their detection and suggestions of refactorings for their removal.

Additionally, several refactorings have been proposed to enable the
manipulation of code elements in AO software (Hanenberg et al.,
2003; Iwamoto and Zhao, 2003; Monteiro and Fernandes, 2004,
2005).

Iwamoto and Zhao (2003) discuss commonly used refactorings
for OO software and claim that few can be used in AO software
without adaptations. They propose refactorings for extracting and
creating advice and pointcut. Hanenberg et al. (2003) propose a
set of conflict resolution strategies in the context of refactoring
AO code written in Aspect], and a set of refactorings for aspect-
extraction and reestructuring of AO code. Monteiro and Fernandes
(2004, 2005, 2006) provide a comprehensive catalog of refactorings
for AO software.

Instead of working directly on the behavior preservation prop-
erty of AO refactorings, the international community focused so far
on the underlying formal semantics of AO languages. Besides the
operational semantics for method call interception (Limmel, 2002)
used by the Brazilian community to prove soundness of AO refac-
torings, a number of other approaches, based on different styles,
were proposed for formally reasoning about aspect-oriented pro-
grams in different languages (Douence et al., 2001; Andrews, 2001;
Wand et al., 2004).

3.3.4. Open issues

Future AO refactoring research work should focus on the anal-
ysis of behavior preservation when adopting other advanced
modularization techniques, and making sure that refactoring tools
correctly implement refactorings. In the context of software prod-
uct lines, for example, a formal notion of refactoring (Borba et al.,
2012) can help the development of analysis and testing tools that
contribute to the verification of specific properties when applying
successive refactorings. That kind of strategy can also be use-
ful in the context of virtual separation of concerns approaches
(Kastner et al., 2008). In addition, refactoring techniques should
also be applied and investigated in early phases of software devel-
opment in conjunction with visualization mechanisms or modeling
techniques that provide support for the separation of concerns
principle. The area also needs more empirical evidence of the ben-
efits and drawbacks of applying AO refactoring in more realistic
contexts.

3.4. Testing

The understanding and subsequent testing of AO programs
is one of the main ways to make the approach less costly and
more feasible in practice (Alexander, 2003). With this in mind, the
AOSD-BR research community has contributed to establish testing
approaches that address particularities of AO software.

3.4.1. Key challenges

We can enumerate five main challenges posed by AOP with
respect to the testing activity. Each challenge comes together
with associated questions. As described in the sequence, Brazil-
ian researchers have been addressing these challenges with focus
on some particular testing techniques. Note that, in a broader
view, they represent typical challenges tackled by software testing
researchers, however considering the specificities of AOP.

(i) Identifying new potential problems: What are the new sources of
faults? Which AO-specific concepts and programming mecha-
nisms impact the fault-proneness of the produced systems?

(ii) Defining proper underlying models: Which software artifacts can
be used to build models from which test requirements are
derived?

(iii) Customizing existing test selection criteria and/or defining new
ones: Are existing test selection criteria able to reveal

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933 915

AOP-specific types of faults? Do they require any adaptation?
Should new criteria be defined?

(vi) Providing adequate tool support: Is it possible to use existing
testing tools to support the adopted technique/criteria? What
else, in terms of automated support, is necessary?

(v) Experimenting and assessing the approaches: How mature are
AOP-related testing approaches? Are they ready to be applied
in real world scenarios? What kind of assessment is still neces-
sary?

3.4.2. Addressing the challenges

To address the aforementioned challenges, the Brazilian com-
munity has been investigating the three most widespread testing
techniques: functional-based, structural-based and fault-based
testing. Details are provided next.

Functional-based testing: Functional-based testing, particu-
larly state-based testing, which derives test cases by modeling a
class/aspect as a state machine, has been addressed by Silveira
et al. (2005). The emphasis of this work is on the importance of
developing a testing model for AO programs which can reveal a
new potential fault caused by aspect composition in both static
and dynamic weaving. METEORA (Silveira, 2007) is an extension
of the Aspectual State Model (ASM) (Xu et al., 2005) and Flattened
Regular Expression (FREE) (Binder, 1999) models. It is a new state-
based testing method for AO software which includes a model to
represent the dynamic behavior of aspect interactions, an extended
strategy to derive testing sequences, and a testing tool prototype to
support the method. This model introduces several extensions to
the previous ones, in order to enable the representation of added,
removed and/or changed states by aspects or aspects compositions
woven into classes.

Structural-based testing: Zhao (2002) published the seminal
piece of work related to structural testing of AO programs. Since
then, relevant AOSD-BR contributions have emerged, resulting in a
series of papers published in scientific events (Lemos et al., 2004;
Lemos and Masiero, 2008) and in high quality journals (Lemos
etal., 2007,2009; Lemos and Masiero, 2011). Contributions address
structural-based testing at the unit level (Lemos et al., 2004, 2007)
and the integration level (Lemos and Masiero, 2008, 2011; Lemos
etal., 2009). Control-flow and data-flow models have been formally
defined, from which a range of test selection criteria have been
devised. The control-flow criteria extended the all-nodes and all-
edges criteria to incorporate AO-specific properties like join points
and pointcuts. Similarly, the widely studied data-flow criteria, such
as all-defs and all-uses, were adapted to take into consideration
data that flows to and from aspectual elements like pieces of advice
and introductions. The applications of all these criteria is supported
by a tool named JaBUTi/AJ (Lemos et al., 2007, 2009; Lemos and
Masiero, 2011), which has been continuously evolved in the last
few years.

More recently, Lemos and Masiero (2011) have proposed
stronger control and data-flow criteria with an underlying model.
The model represents each advice integrated at each join point it
may affect, and the criteria require test cases to cover all nodes (or
statements), edges (or decisions), and def-use pairs of the advice at
each integration point. Besides this, Cafeo and Masiero (2011) pro-
posed an extension to the AO-based criteria that considers deeper
integration levels, since the previous approach only tackled 1-level
integrations.

Fault-based testing: Fault-based testing (Morell, 1990) requires
well-characterized fault types - usually organized as fault tax-
onomies - to be applied effectively. Such a taxonomy, also
called fault model, underlies the definition of fault-based testing
approaches. In this context, Alexander et al. (2004) had the first
initiative to define a candidate fault model for AO software. A few

years later, Brazilian researchers performed a systematic survey in
order to devise a comprehensive taxonomy (Ferrari et al., 2008). It
includes four categories of faults, each related to the main program-
ming mechanisms present in AO systems: pointcuts, introductions,
advices and the base code itself. Their subsequent studies investi-
gated the fault-proneness of evolving AO programs and revealed
that the taxonomy has the ability to classify the observed variety of
AOP-specific faults. These studies addressed, respectively, coarse-
grained (Ferrari et al., 2010) and fine-grained fault classifications
(Ferrari et al., 2010).

The taxonomy proposed by Brazilian researchers guided the def-
inition of a fault-based testing approach for Aspect]-like programs
(Ferrari et al., 2008). The approach explores the Mutant Analysis
criterion (DeMillo et al., 1978) and encompasses a set of mutation
operators that model several instances of fault types. Automation
is achieved with the Proteum/A] tool (Ferrari et al., 2010). It sup-
ports the full testing process, which starts with the derivation of test
requirements (i.e., the mutants), the execution of both the applica-
tion under test and the respective mutants, and the analysis of test
results.

3.4.3. Comparison with research conducted by the international
community

With respect to structural testing, the body of work produced by
the Brazilian community can be considered relevant in comparison
to the international context. For instance, to the best of our knowl-
edge, the seminal work published by Zhao (2002, 2003) did not
present implementations of the testing approaches. On the other
hand, all model and criteria proposed by the Brazilian researchers
were implemented in consecutive extensions of the JaBUTi tool.
Moreover, in quantitative terms, the national group has shown to be
highly active in comparison to other groups that have done research
on the same topic. Evidence on this can be found in an extensive sur-
vey of testing approaches for AO software documented elsewhere
(Ferrari, 2010).

The contributions of the AOSD-BR community with respect to
the fault characterization for AO programs has inspired some ini-
tiatives by the international community. The fault taxonomy for AO
programs (Ferrari et al., 2008, 2010) was applied to classify faults
observed in a range of AO applications in a series of metrics-related
studies (Burrows et al., 2010a,b, 2011). Furthermore, the muta-
tion operators defined by Brazilian researchers were applied by
Delamare et al. (2009) in a preliminary assessment of a novel test-
driven approach for AO software. Delamare et al. also developed
a tool named AjMutator (Delamare et al., 2009b) whose features
overlap with Proteum/AJ’s.

Regarding state-based testing, the Brazilian community has
a major focus on aspect composition, rather than aspect-class
composition. Abstractly, the idea of executing together software
elements created separately is called composition. The term aspect
composition refers to relationships among aspects woven into the
target system. Thus, composition has a different meaning from the
weaving and/or combination processes. The latter occur when one
or more aspects are woven into an application without necessarily
interacting with each other (Silveira et al., 2005).

3.4.4. Open issues

Experimentation and other types of evaluation comprise an
essential part of research. With this in mind, a major limitation to be
addressed by the community is the robust evaluation of the varied
testing approaches proposed in the last decade. Another promi-
nent research branch comprises hybrid approaches that combine
different testing techniques (e.g., structural and mutation testing,
or static and dynamic evaluation). Preliminary efforts have been
reported (Lemos et al., 2006; Coelho et al., 2009) and shall be further
revisited.

916 U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

There are other research topics concerning software testing that
have not yet been fully investigated in the AO context. For instance,
the testing of AO programs considering exception-handling con-
structs is a topic to be further studied. To date, there is little research
that deals with this problem, but still in a preliminary fashion
(Coelho et al., 2009). Another topic yet to be adequately explored is
the testing of AO programs considering the interaction of multiple
aspects at coincident points in the system. Aspect interaction and
composition is an important topic of AOSD that has not yet been
considered in this context.

Other open issues, regarding state-based testing, include: (i)
investigating the adaptability of current approaches to the excep-
tion model and to the response matrix, proposed by Binder (1999);
(ii) carrying out experiments using the concept of sneak paths; (iii)
extending current methods to deal with dynamic aspects; and (iv)
investigating the possibility of developing specific mutant opera-
tors to generate aspects with composition faults.

3.5. Exception handling

Exception handling (Goodenough, 1975) (EH) mechanisms are
one of the most frequently used techniques for modularizing the
error recovery concern. In modern languages such as Java and
Aspect], the actions taken to recover from errors are encapsulated
into handlers (try-catch blocks), and exceptions are represented
asobjects that are raised when an exceptional condition is detected.
Raising an exception interrupts the normal control flow of the pro-
gram; this is followed by a search for an appropriate exception
handler that deals with the raised exception. Although one of the
main goals of the EH mechanisms is to improve software modula-
rity by promoting explicit separation between code representing
normal behavior and EH code, the latter is a promising candidate
for the use of (AOSD) techniques since, in most programming lan-
guages, it is a scattered and tangled concern (Kiczales et al., 1997).

3.5.1. Key challenges

The main challenge in this area is to understand how aspect-
oriented techniques, both existing and new ones, can improve the
quality of EH code. In addition, aspects themselves create new prob-
lems in terms of error recovery and circumventing these problems
poses additional challenges.

(i) Improving the modularity of error handling code: Do aspects
improve quality attributes such as cohesion, conciseness, and
coupling? Are error handling aspects reusable? If there are ben-
efits in using aspects for EH, how can we incorporate them into
existing systems?

(ii) Understanding the impact of aspects on program reliability: Do
error handling aspects introduce new bugs in a system? How
can these bugs be characterized? What kind of tool support
can tackle existing problems?

(iii) New language constructs for error handling: What are the short-
comings of Aspect] for modularizing EH code? Which one
would be the best approach for EH: domain-specific or general-
purpose aspects?

3.5.2. Addressing the challenges

To address the challenges presented in the previous section, we
can divide research conducted by the Brazilian community in two
groups: (i) empirical studies; and (ii) new languages, techniques,
and tools. We explain both in the remainder of this section.

Empirical studies: Castor Filho et al. (2006) investigated the use
of aspects to modularize EH code by comparing object-oriented and
aspect-oriented versions of four different, non-trivial applications.
The two versions of each system were compared in terms of cou-
pling, cohesion, conciseness, and separation of concerns using a

number of source code metrics and a qualitative evaluation. This
study revealed that modularizing EH code into aspects, also called
Error Handling Aspects (Castor Filho et al., 2006) (EH Aspects), and
reusing these aspects is not straightforward. Instead, it depends
on a set of factors, such as the type of exceptions being handled,
what the handler does, and the amount of contextual informa-
tion needed. In addition, it makes the systems bigger, in terms of
number of lines of code. Later on, Castor Filho et al. (2007)
elaborated a catalog of best and worst practices related to the aspec-
tization of EH. This catalog aims to guide developers in deciding
when it is beneficial to extract error handling to aspects and when
it might have a negative impact on the quality attributes of the
resulting system. Taveira et al. (2009) continued the investigation
and found out that a considerable amount of error handling code
can be reused within a single application by using aspects. Nonethe-
less, the programming overhead associated with using aspects to
that end somewhat overshadows the reuse.

Coelho et al. (2008) performed an empirical study considering
the error-proneness of Aspect] constructs for handling exceptions.
The most important finding of the study was that EH Aspects,
even when used with great care, can introduce a number of bugs
that materialize as uncaught exceptions and unintended handler
actions. The conducted study could observe that, in a multitude
of scenarios where the EH Aspects were responsible for catching
exceptions, the exceptions remained uncaught. As a consequence,
they transparently propagate back to the program entry point,
causing the Java virtual machine to terminate. Furthermore, aspects
also cause exceptions to be mistakenly caught by an existing han-
dler on the base code (an EH bug very difficult to detect known as
Unintended Handler Action (Coelho et al., 2008)). One of the main
reasons for these phenomena was the need to soften exceptions in
Aspect], in order to bypass the static checks for exception interfaces
that the Java compiler performs. This led to the creation of a catalog
of bug patterns and an approach for preventing and automatically
detecting such bug patterns (Coelho et al., 2008).

New languages, techniques, and tools: Most of the findings of
the aforementioned studies indicate that the limitations of Aspect]
as a means to modularize EH code are not inherent to AOP. Tak-
ing that assumption as a starting point, Cacho et al. (2008) devised
a new EH model named EFlow that uses join points and advice
as means to generalize the concepts of EH context and exception
handler. This model was implemented as a domain-specific exten-
sion to Aspect] named EJFlow and solves most of the problems
pointed out by other studies. Later, Cacho et al. (2009) performed an
exploratory study to evaluate this new model and observed that it
was useful to foster the development of readable, weakly coupled,
and reliable software systems.

Furthermore, Brazilian researchers have recently devised test-
ing and static analysis approaches targeting the EH code of AO
systems (Bernardo et al., 2011; Coelho et al., 2011). Bernardo et al.
(2011) proposed an extension of the JUnit framework to check
whether the exception flows that take place in OO and AO systems
are the intended ones. The proposed tool relies on aspects to mon-
itor the exception flows of a system. Coelho et al. (2011) presented
a static analysis-based approach which allows AO developers to
describe the EH behavior of a system and automatically check it.
Both approaches target Java- and Aspect]-based systems.

3.5.3. Comparison with research conducted by the international
community

Lippert and Lopes (2000) pioneered the investigation of the use
of aspects to modularize EH code. In their work, they achieved a
considerable reduction in the amount of EH code in the AO version
of a reusable object-oriented framework. Moreover, they discov-
ered that error handling aspects can be “plugged”, thus improving
reusability. Since the seminal study, a substantial body of work has

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933 917

studied the effects of aspects on EH, from a number of different
perspectives. AOSD-BR researchers have conducted a considerable
part of this research.

Some researchers in the international community have
addressed the problem of performing the actual extraction of an
exception handler into an aspect. Most of this research is related
to refactoring. Laddad presents the “Extract Exception Handling”
refactoring. The refactoring centers around the effects of using it
to extract trivial error handling code, but does not explain when it
is useful (or possible) to apply it in practice. This refactoring was
latter implemented in a tool developed by Binkley et al. (2006).
While refactorings targeting error handling code concentrate on the
mechanics of moving a try-catch block to an aspect, the research
conducted by the Brazilian community identifies situations where
this is beneficial and situations where it is not.

In terms of new language constructs, Hoffman and Eugster
(2008) propose the concept of explicit join point (EJP) as a means
to reduce the amount of obliviousness of aspect-oriented pro-
grams. The authors believe that this approach results in improved
maintenance and understandability, at the costs of losing some
of the textual separation yielded by AOP. Even though EJPs are
a general-purpose concept that does not necessarily pertain to
exceptions, their work took as a starting point our studies (Castor
Filho etal.,2006,2007) on EH and aspects. Moreover, the evaluation
of their approach (Hoffman and Eugster, 2008) focuses mainly on
EH. Therefore, it presents a counterpoint to the EJFlow approach,
since it proposes a general purpose mechanism to solve some of
the problems that Aspect] creates when employed to modularize
error handling.

More recently, Figueroa and Tanter (2011) proposed the explicit
use of Execution Levels (Tanter, 2010) as a means to avoid many of
the bugs that error handling aspects introduce. These bugs were
uncovered and cataloged by research conducted by the Brazilian
research community (Castor Filho et al., 2006; Coelho et al., 2008).

3.5.4. Open issues

From the seminal work in 2000 to current research, we have
achieved a good understanding of the limitations of current EH
mechanisms when applied in the AOP context as well as the bene-
fits and drawbacks of AOP, in particular when used to modularize
the EH code. Hence, we can point out some issues that remain
open and can be addressed by future work in the area of advanced
mechanisms for software modularization.

First, almost all the previous studies on the use of aspects to
modularize EH has targeted the Aspect] language. This is not sur-
prising, since it was one of the first AOP languages and also the first
one that had an acceptably mature toolset. Therefore, even though
a number of new languages and techniques for aspect-oriented
programming have been proposed throughout the years, we do
not know whether they are useful to modularize error handling
code. Therefore, empirical studies targeting these approaches are
necessary.

In software product lines, separating normal and exceptional
behavior can enable developers to design software variability
related to different EH strategies. However, existing techniques that
are employed to design and implement variability in software prod-
uct lines do not consider the presence of exceptions and exception
handlers. This “exceptional variability” depends on the resources
available in each product, and is related to both the selection of
proper handlers, and the existence of different exception control
flows. Moreover, it involves guaranteeing that, despite the exist-
ence of variation points that might or might not be present in the
final product, exceptions are handled where they are intended to
be and no exception goes unhandled.

The Java language requires developers to either handle all the
checked exceptions that a method encounters or indicate in the

method’s throws clause (the exception interface of the method) the
ones that it does not. Some developers (Venners and Eckel, 2003)
argue that throws clauses hinder maintainability and even reliabil-
ity and, therefore, should be avoided as much as possible. Although
there are proposals to solve some of the problems of Java’s excep-
tion interfaces (van Dooren and Steegmans, 2005), they still require
exception interfaces to be scattered throughout the methods of
a system. AOP-like approaches for specifying exception interfaces
seem to be a promising way of overcoming such challenges (Cacho
et al., 2008, 2009). The aforementioned EJFlow model is an impor-
tant step in this direction (Cacho et al., 2008), although there is
much room for improvement. First, by decoupling the solution for
exception interfaces from Aspect]. Second, by specifying simple and
precise semantics.

Finally, recent advances in the area of mobile computing have
enabled the development of a wide variety of event-driven applica-
tions, such as context-aware and mobile applications that are able
to monitor and exploit dynamically changing contextual informa-
tion from users and surrounding environments. The treatment of
exceptional conditions in event-driven applications seems to indi-
cate a number of open issues. Most of those issues are related to the
fact that the design of EH mechanisms needs to be tightly integrated
with the underlying module system. Therefore as the advent of
specific middleware (Cugola and de Cote, 2005) and programming
languages (Kamina et al., 2011; Costanza and Hirschfeld, 2005;
Hirschfeld et al., 2011) is impacting on the way system modules are
structured and interact with each other, suitable EH abstractions
and mechanisms need to be investigated.

3.6. Metrics

As a new software development technique emerges, it is essen-
tial that empirical studies are carried out to investigate whether
and in which cases the advocated benefits are real. Since the
beginning of AOSD, it has been difficult to determine what is a
good design or implementation based on AO mechanisms. It is
not trivial to understand when to use aspects as architectural and
design solutions, unless for implementing obvious crosscutting
concerns, such as logging. The software engineering community
agrees that empirical studies are necessary to evaluate the use-
fulness of AOSD and associated design practices. Software metrics
provide a powerful means to make empirical studies more sys-
tematic and less subjective. Before the advent of AOSD, a number
of software metrics were available in the literature, e.g., number
of lines of code (Fenton and Pfleeger, 1998), McCabe’s complexity
metrics (Fenton and Pfleeger, 1998) and Chidamber and Kemerer
object-oriented metrics (Chidamber and Kemerer, 1994). However,
most of them required adaptations to be employed in the context
of aspect-oriented software.

3.6.1. Key challenges

The AOSD paradigm proposes new abstractions and new compo-
sition mechanisms. As a consequence, most of the existing metrics
were not suitable to be applied on AO software straight away. It
was necessary to devise new metrics for evaluating AO software.
Since AOSD promised improved separation of concerns, metrics for
quantifying the modularization of concerns were also required, in
order to verify this claim. In summary, the main challenges were
threefold:

(i) Developing modularity-related metrics suitable to AO software:
What kinds of metrics should be developed to deal with
AO composition mechanisms? Can existing object-oriented
metrics be adapted to be applied on AO software?

(ii) Developing metrics for quantifying attributes related to sepa-
ration of concerns: How can we measure concern scattering

918 U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

and tangling? Are there other attributes related to separation
of concerns that should be measured? What kinds of design
anomalies can be identified with this kind of metrics?

(iii) Conducting empirical studies to assess AO designs aiming at bet-
ter understanding the benefits and drawbacks of AOSD: How can
we use metrics to assess the impact of AOSD on the quality
of software design? When does AOSD improve the quality of
software design? When does AOSD hinder the quality of soft-
ware design?

3.6.2. Addressing the challenges

To address the aforementioned challenges, the AOSD-BR com-
munity has been developing significant work on AO metrics and
quantitative assessment of AO software.

Metrics for AO software: Regarding the development of AO
metrics, Sant’Anna et al. developed one of the first metrics suites
for quantifying modularity-related attributes in AO software, pub-
lished in an SBES paper (Sant’anna et al., 2003). The suite included
coupling, cohesion, and size metrics adapted from existing OO
metrics to deal with AO abstractions and mechanisms. For instance,
they adapted Chidamber and Kemerer’'s Coupling Between Objects
(CBO) metric (Chidamber and Kemerer, 1994) in order to addi-
tionally take into account AO composition mechanisms that cause
dependency between aspects and classes. For instance, the new
coupling metric, named Coupling Between Components (CBC), con-
siders that an aspect A is coupled to a class C when A defines a
pointcut that refers to C.

Metrics for quantifying separation of concerns: The suite
proposed by Sant’anna et al. (2003) also encompassed innovative
concern-driven metrics, aimed at quantifying different facets of
separation of concerns. Concern-driven metrics promote the notion
of concern as a measurement abstraction. This kind of metric allows
the identification of specific design flaws or design degeneration
caused by the poor modularization of concerns. Most of the existing
concern-driven metrics focus on quantifying the degree of con-
cern scattering and tangling. Concern-driven metrics are based
on a concern-to-design (or concern-to-code) mapping. The map-
ping consists of assigning a concern to the corresponding design
elements that realize it. Therefore, before computing concern-
driven metrics, it is necessary to identify and document the design
elements or pieces of source code responsible for implementing
each concern in the system. For instance, one of the most popu-
lar concern-driven metrics is Concern Diffusion over Components
(CDC) (Sant’anna et al., 2003). CDC counts the number of compo-
nents (classes and aspects) whose purpose is to totally or partially
contribute to the implementation of a particular concern. In other
words, CDC, for a given concern, counts the number of components
in the system that contain attributes, methods, or lines of code to
which the concern is mapped. It enables the designer to assess the
scattering degree of a concern.

Subsequent work undertaken by the Brazilian community
focused on further investigating concern-driven measurement.
Sant’Anna et al. (2007) and Sant’Anna (2008) extended the metrics
suite defined in Sant’anna et al. (2003) with new concern-driven
metrics. Besides concern scattering and tangling, these new metrics
also quantify concern interaction, concern-based cohesion, and
concern-sensitive coupling. This work also adapted concern-driven
metrics to be applied on architectural design. The architectural
metrics were used in some empirical studies (Sant’Anna et al.,
2007,2008; Greenwood et al.,2007; Sant’Anna, 2008). The concern-
driven metrics were later formalized by means of a conceptual
framework (Figueiredo et al., 2008b) that supports not only the
formalization but also the instantiation and comparison of concern
measures. It subsumes the definition of terminology and criteria

in order to foster the definition of meaningful and well-founded
concern measures.

Figueiredo et al. (2009b) defined heuristic rules based on
concern-driven metrics aiming at exploiting concerns as explicit
abstractions in the holistic assessment process. The heuristic rules
aim to support concern-driven analysis of software design. First,
a basic set of heuristics identifies and classifies crosscutting con-
cerns according to their primitive properties, such as their degrees
of tangling and scattering. Then, a second set of heuristics identi-
fies specific crosscutting patterns according to more sophisticated
properties of crosscutting concerns, such as coupling and inheri-
tance relationships. Finally, a third set of heuristics aims to detect
classical bad smells (Fowler et al., 1999) that are often sensitive to
the way concerns are realized in the source code, such as feature
envies and god classes.

Empirical studies: Several empirical studies used the suite of
AO metrics and heuristics (Sant’anna et al., 2003; Figueiredo et al.,
2009b) to assess AO systems of different domains and nature. A
first empirical study relied on the suite of metrics to compare Java
and Aspect] implementations of a multi-agent system (Sant’anna
etal.,, 2003; Garcia, 2004). Empirical studies (Sant’Anna et al., 2004;
Garcia et al., 2005, 2006b) compared the modularity of Java and
Aspect] solutions to implement the 23 design patterns proposed
by the Gang of Four (Gamma et al., 1995). Another study systemat-
ically investigated how AOP scaled up to deal with modularization
of design patterns in the presence of pattern interactions (Cacho
et al., 2006). The authors made both quantitative and qualitative
assessments of 62 pair-wise compositions of patterns taken from 3
medium-sized systems implemented in the Java and Aspect] pro-
gramming languages. Cacho et al. (2006) assessed the use of AOP
for improving the modularity of a reflective middleware platform.
Kulesza et al. (2006a) conducted an empirical study in which they
quantified the effects of AOP in the maintainability of a web-based
information system. Figueiredo et al. (2008a) undertook an empir-
ical study for evaluating whether AOP promotes better modularity
and changeability of product lines than conventional variability
mechanisms, such as conditional compilation. Silva et al. (2009b)
performed an empirical study to assess whether AO solutions for
agent-oriented design patterns improve the separation of pattern-
related concerns. Piveta et al. (2012) provided rigorous definitions,
usage guidelines, analytical evaluation, and empirical data from
ten open source projects, determining the value of six metrics for
aspect-oriented software. They also discussed how each of these
selected metrics can be used to identify shortcomings in existing
software systems.

3.6.3. Comparison with research conducted by the international
community

Other researchers proposed AO modularity-related metrics.
Zhao and Xu also proposed metrics for quantifying coupling and
cohesion in AO software (Zhao, 2004; Zhao and Xu, 2004). Their
metrics are based on a dependence model for AO software that con-
sists of a group of dependence graphs. Each graph can be used to
explicitly represent various dependence relationships at different
levels of an AO program. Ceccato and Tonella (2004) also proposed
a suite of AO metrics. For instance, their suite includes metrics such
as Crosscutting Degree of an Aspect (CDA) and Coupling on Advice
Execution (CAE). Their metrics are more specific since they consider
certain constructs of some AO languages, such as pointcut, advice,
and intertype declarations. Moreover, all these AO metrics can be
seen as complementary to the metrics proposed by the AOSD-BR
community and measure different facets of AO software modula-
rity.

Researchers from the international community also proposed
metrics for quantifying separation of concerns. Apart from the suite
proposed by Sant’anna et al. (2003), one of the most significant

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933 919

works on this topic was conducted by Eaddy et al. (2008). They pre-
sented two concern-driven metrics that capture different facets of
what they call concern concentration and component dedication:
Degree of Scattering and Degree of Focus. These metrics can be
employed at different granularity levels ranging from lines of code
to architectural software components Eaddy et al. (2008) also car-
ried out an experiment which involved their metrics and two of the
metrics proposed by Sant’anna et al. (2003): Concern Diffusion over
Components (CDC) and Concern Diffusion over Components (CDO).
Their experiment aimed at testing the hypothesis that the more
scattered a concern’s implementation is, the more likely it is to
have defects. They found a moderate to strong correlation between
CDC and CDO metrics and defects, which suggested that scattering
may cause or contribute to defects. In fact, they found a stronger
correlation for CDC and CDO than for their own metrics.

3.6.4. Open issues

There are several opportunities for future work on concern-
driven measurement. First, there is still a need for empirically
validating concern-driven metrics in terms of their correlation with
external quality attributes, such as change-proneness (Silva et al.,
2011). The use of visualization techniques to support concern-
driven measurement has already been exploited (Carneiro et al.,
2010). For instance, a tool called SourceMiner provides four cate-
gories of code views for concern properties, namely: (i) concern’s
package-class-method structure, (ii) concern’s inheritance-wise
structure, (iii) concern dependency, and (iv) concern dependency
weight. However, there is still much to be done in the area of con-
cernvisualization. For instance, additional enhanced views could be
provided and studies could be conducted to verify whether visual
support helps in software development and maintenance tasks.

3.7. Product-lines and frameworks

A Software Product Line (SPL) is a set of software intensive sys-
tems that share a common, managed set of features satisfying the
specific needs of a particular market segment or mission, and that
are developed from a common set of core assets in a prescribed way
(Clements and Northrop, 2001). Within SPL architectures, frame-
works are a usual implementation technique used to modularize
core assets. A framework is defined as a reusable, “semi-complete”
application that can be specialized to produce custom applications
(Fayad and Schmidt, 1997). Since the modularization of features
in SPLs tends to have crosscutting and tangled implementation
(Mezini and Ostermann, 2004) over code assets, AOSD has been
explored as a possible implementation strategy for SPLs in order
to provide modular feature implementation. Indeed, the AOSD-
BR community has conducted research leveraging AO concepts,
techniques, and tools in order to address key challenges in SPL
and framework development. Conversely, this community has also
explored how AOSD benefits from SPL and framework concepts,
techniques, and tools.

3.7.1. Key challenges
Key research challenges in the interplay between SPLs, frame-
work development, and AOSD are the following:

(i) Variability management: How can aspects help with the modu-
larization, composition and customization of SPL core assets in
terms of features to address different product configurations?
How can aspect-based tools help to manage the inherent com-
plexity of handling a potentially vast number of SPL variants?

(ii) Adoption strategies: If an organization decides to shift to SPL
development, how should it proceed? Would it leverage exist-
ing products? If so, how should this be implemented and what

is the role played by aspects? Once an SPL is in place, how
should it evolve? How should aspects within this SPL evolve?

(iii) Taxonomy and development of frameworks: What are the other
framework types in the AOSD context ? Are there specific
guidelines for the design and implementation of these kinds
of frameworks? How should an application framework devel-
oped with the support of AOP be characterized?

3.7.2. Addressing the challenges

In order to tackle the issues mentioned previously, the AOSD-
BR community has provided: (i) aspect-oriented implementation
guidelines and tool support for dealing with the variability manage-
ment and SPL adoption strategies challenges; and (ii) a taxonomy
and development approaches for addressing the challenges associ-
ated with the adoption of aspect-oriented techniques in framework
implementation. Details about these research works are presented
in the following.

SPL implementation guidelines: The AOSD-BR community has
addressed portability issues in industrial-strength mobile game
development (Alves et al., 2005, 2007). These works propose the
use of aspects to modularize the implementation of device-specific
features by presenting guidelines on how to systematically apply a
catalog of code-level refactorings to bootstrap and evolve a product
line. This catalog and the associated strategy to apply it were eval-
uated in case studies involving three mobile game SPLs and were
later extended to feature model and configuration knowledge lev-
els. Additional evaluation was performed on different domains such
as media management on mobile devices and automatic test case
generation tools (Alves et al., 2006; Neves et al., 2011).

Additionally, Pacios et al. (2006) proposed guidelines to use AOP
to implement the functional features of an SPL in an incremen-
tal way. This work was further evolved into an approach named
AIPLE-IS (Braga et al., 2007), with focus on the information systems
domain. The basic idea is to start by developing the SPL core assets
and then incrementally build optional and alternative features
using AOP. A case study in the domain of systems for psychology
clinics was performed and the resulting SPL has been built in three
incremental steps, with a clear separation of several variant fea-
tures using AOP. Further empirical work has assessed the benefits
and drawbacks of AOP in evolving SPLs (Figueiredo et al., 2008a).

Tool support: Tools are essential to support the use of AOP in SPL
development. Indeed, the task of instantiating SPLs is particularly
complex and error-prone, especially when details about crosscut-
ting aspects are required. Brazilian researchers have contributed to
addressing this critical issue. Captor-AO is a configurable applica-
tion generator thatimplements AOP concepts and is used to support
the development of domain-specific systems (Pereira et al., 2008).
Captor-AO is also used in an approach where aspects are employed
to implement SPL crosscutting features with the goal of improved
reuse not only within the SPL domain, but also across different
domains (Braga et al., 2010). The idea is to isolate these crosscut-
ting features into ‘crosscutting domains’, so that features scattered
across different SPLs are easily located and reused. Captor-AO was
evaluated through the instantiation of SPLs from several domains,
such as: a business resource management SPL — an SPL that encom-
passes sub-domains such as sales, rental and repair of goods and
services; and MobileMedia - an SPL that provides functionalities of
media management on mobile devices (Figueiredo et al., 2008a).

Additionally, the FLiP tool was developed to implement the pre-
viously mentioned catalog of AO-based refactoring templates and
the associated strategy to support the extractive and the reactive
SPL adoption strategies. The tool provided semi-automated support
for the task of modularizing portability-based features in three case
studies involving industrial-strength mobile games (Alves et al.,
2008; Soares et al., 2008).

920 U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

Framework taxonomy: Addressing variability management
implies properly organizing and classifying core and variant assets.
In particular, the interplay of aspects and frameworks primar-
ily demands an appropriate taxonomy. Despite the number of
research works conducted exclusively on frameworks in the con-
text of AOP, most of them refer to this kind of framework using
different terms, such as “aspect-oriented frameworks”, “aspect
frameworks”, “aspect-based frameworks”, “framework of aspects”,
“reusable aspects” and “aspect-oriented application frameworks”.
The lack of consensus about the real meaning of these terms leads
researchers to use the same term to represent different things or
different terms to represent the same thing. The AOSD-BR commu-
nity has addressed this issue. In particular, Camargo and Masiero
(2005) proposed a classification and terminology for frameworks
developed within the AO context.

The root term of the terminology is “aspect-oriented frame-
work”, which designates any framework that uses aspects in its
internal structure. This category is broken down into two others:
Aspect-oriented Application Frameworks (AOAFs) and Crosscut-
ting Frameworks (CFs). AOAFs are frameworks whose instantiation
process generates a complete application and use aspects in their
architectures to modularize specific concerns. On the other hand,
CFs encapsulate in a flexible and abstract way a specific crosscutting
concern, such as persistence, distribution, concurrency, business
rules, and design patterns. The idea is to make the reuse of this kind
of concern a more systematic and controlled task (Camargo and
Masiero, 2008). CFs are further divided into Context-Dependent
CFs (CD-CF) and Context-Independent CFs (CI-CF) (Camargo and
Masiero, 2005). The CI-CFs are those that do not need to capture
data from the base code to work properly. In general, this kind of
CF acts as an observer, as it simply crosscuts the base code with-
out interfering or interacting with it. However, CD-CFs need to
capture values or objects from specific points of the base code to
work properly. Examples of CD-CFs are a Caching CF that needs
to capture the objects from the base code which need to be reg-
istered and stored into the cache, and a Pooling CF that needs
to capture Connection objects from the base code to populate a
repository.

The AOSD-BR community has proposed two different
approaches to the development of AOAFs and CFs, which are
detailed next.

Framework modularization and development guidelines: In
order to promote the modularization of AOAFs, a novel approach
has been proposed to address the design and implementation of
object-oriented frameworks with aspects (Kulesza et al., 2006d,b).
It contributes to deal with the following framework modulariza-
tion challenges: (i) difficulty in modularizing optional features in
00 frameworks; (ii) crosscutting feature compositions in frame-
work integration; and (iii) complexity of object collaboration. In
the proposed approach, an OO framework is responsible for speci-
fying and implementing not only its common and variable behavior
using OO classes: it also exposes a set of extension join points
(EJPs), which can be used to also extend its core functionality.
These join points can be used with three different purposes: (i)
to expose a set of framework events that can be used to notify
or to facilitate a crosscutting integration with other software
modules (such as frameworks or components); (ii) to offer pre-
defined execution points spread and tangled in the framework
that can be included in the implementation of optional features;
and (iii) to expose a set of join points in the framework classes
that can have different implementations of a crosscutting vari-
able functionality. Explicit guidelines on how to implement EJPs in
the Aspect] language have been provided (Kulesza et al., 2006b).
EJPs enforce design rules between OO core and aspect-based
assets and prevent architectural erosion in framework-based SPLs.
Finally, Kulesza et al. (2006c¢, 2007) also propose a complementary

model-based generative approach that enables the systematic
derivation of aspect-oriented application frameworks or product
lines by defining how to map crosscutting features to aspects across
different artifacts.

Regarding the design of CFs, a set of guidelines (Camargo and
Masiero, 2004) and a UML profile were also proposed (Uetanabara
etal.,, 2009, 2010). Besides, a pattern called Data Catcher (Camargo
and Masiero, 2008) was created specifically for designing CD-CFs.
When this pattern is used, the framework architecture is explicitly
separated into two parts: one that deals with the composition
mechanisms and another that deals with the functional vari-
abilities. In the composition part, there are several composition
alternatives facilitating coupling with existing base code. The func-
tional part can be designed using classical OO patterns. When using
this pattern, the reuse process is facilitated because the application
and the domain engineer can deal with both composition and
functional parts separately.

3.7.3. Comparison with research conducted by the international
community

Regarding guidelines, prior research also investigated the use of
AOP for building SPLs (Anastasopoulos and Muthig, 2004). AOSD-BR
research complements this work by considering the modular-
ization of features in industrial-strength applications, explicitly
specifying refactorings to build and evolve SPLs, and raising issues
in Aspect] that need to be addressed to foster widespread appli-
cation in the mobile games domain. Feature modularization with
aspects has also been addressed elsewhere (Lee et al., 2006) with
a focus on domain analysis and handling feature dependencies,
but not addressing adoption strategies as Brazilian researches do.
Another important observation is that other works that use AOP to
modularize features, such as (Mezini and Ostermann, 2004), deal
with a single SPL targeting a specific domain. On the other hand,
the AOSD-BR community has dedicated effort to address multiple
domains (multiple SPLs), easing the evolution of products in several
domains at the same time (Pereira et al., 2008; Braga et al., 2010).
Another approach concerning feature modularization is Feature
Oriented Programming (FOP) (Prehofer, 1997), which essentially
consists of non-quantifiable aspects. FOP and AOP were later sys-
tematically compared and a symbiosis proposed (Apel et al., 2005,
2008).

In terms of framework modularization, EJPs (Kulesza et al,,
2006b) are a kind of specialization of the concept of crosscutting
interfaces (XPIs) (Sullivan et al., 2005) that establishes extension
contracts between the framework classes and a set of aspects
extending the framework core functionality. Although there are
several works that use frameworks in the AOP context (Pinto et al.,
2002; Lobato et al., 2008; Batra and Dahiya, 2009; Mortensen and
Ghosh, 2006; Kulesza et al., 2006d; Santos et al., 2007; Rashid
and Chitchyan, 2003; Cunha et al.,, 2006; Bynens et al., 2010),
most of them lack an accurate and consistent definition of AOP-
based framework terminology. Besides, the guidelines (Camargo
and Masiero, 2004), patterns (Camargo and Masiero, 2008) and
UML profiles (Uetanabara et al., 2009, 2010) proposed to design CFs
complement other research work found in the literature. For exam-
ple, the profile presented by Uetanabara (Uetanabara et al., 2009,
2010) extends Evermann’s profile (Evermann, 2007) with intrinsic
CFs characteristics.

Incremental development processes focused on AOP have also
been proposed by the international community. Examples include
the works of Loughran et al. (2004) and Apel et al. (2006). The
first proposes an approach that joins framing and AO techniques
to integrate new features in product lines. This solution pro-
vides parameterization and reconfiguration support for the feature
aspects, although the framing technology has the disadvantage
of being less intuitive, requiring previous knowledge about the

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933 921

25

+
20 ® Journals (total of 52)
15 +—F 4
=+ International conferences
+ (total of 106)
10 +
® Brazilian conferences
s ® X% @ x ® o © (total of 83)
X X []] X X
¢+ 4 X SBES (total of 52)
X
o & & x

1999 2001 2003 2005 2007 2009 2011

Fig. 2. AOSD-BR publications.

subsequent features. An advantage is to parameterize aspects at
runtime. The second one (Apel et al., 2006) proposes the integration
of aspects and features at the architectural level through aspectual
mixing layers (AMLs), also aiming at incremental software devel-
opment. The approach proposed by AOSD-BR (AIPLE-IS) is more
focused on the process itself rather than on the architecture, and
there is no need to anticipate features, as every step revisits the
previous model before integrating new features.

3.7.4. Open issues

Prospective research on the interaction between AOSD and SPL
engineering includes providing sound and evidence-based guide-
lines and tools on how to combine different strategies for designing
and implementing features. The main reasons for that are to reach
feasible feature modularity, good stability of SPL assets, and low
cost of usage and stability. In particular, the benefits of virtual
separation of concerns (Kdstner et al., 2008) are currently being
investigated by an automated approach (Valente et al., in press).
The idea is that, from code-level seeds specified by the developer
or architect, the code related to a feature is colored. The feature
is then assigned a particular color, which the developer may or
not want to see, depending on his/her interest. Another promising
research thread is exploring the use of formal methods to ensure in
a scalable way the checking of properties, such as type safety and
non-functional requirements of SPL artifacts at different abstrac-
tion levels (Apel et al., 2010; Siegmund et al., 2011; Ghezzi and
Sharifloo, 2011). In this direction, there is a preliminary work from
the AOSD-BR community addressing safety of SPL composition
(Teixeira et al., 2011).

4. AOSD-BR research impact

In this section, we quantify and assess the efforts of the AOSD-BR
community in several areas, such as publications and their impact,
and training of human resources (Section4.1). We also compare
the scientific production of the AOSD-BR community with that
of the international AOSD and the Brazilian software engineering
research communities (Section 4.2). Data gathering and validation
has been performed with the help of AOSD-BR researchers (AOSD-
BR-Community, 2011).

4.1. Intellectual production, collaboration, and human resources
training

Table 3 depicts raw/absolute numbers related to AOSD research
in Brazil, including publications, theses, and international coop-
eration projects. The selected papers: (1) had at least one author
working in a Brazilian institution when the paper was written;
(2) brought contributions to AOSD or related topics; and (3) are
indexed by Google Scholar. The growth of the AOSD community
can be noticed by the number of international research projects
developed in cooperation among Brazilian and foreign groups, as
well as an increase in the number of papers resulting from such

12

|
10 ™
8 -]
u
6 & i—— @ Theses(total of 22)
4 > W Dissertations (total of 60)
¢ B o 'Y
2 °
n B B *
0 o—o—o—H TS

200

S

2002 2004 2006 2008 2010 2012

Fig. 3. AOSD-BR theses and dissertations.

cooperative research. This is more evident when looking at the
number of conference papers (Table 3) - more than 50% were
accepted by international conferences.

Figs. 2 and 3 depict publications and theses growing from the
AOSD-BR community over the years. It is interesting to notice: (i)
the increase in the number of publications and theses since the
formation of AOSD-BR community in 2004; and (ii) the high num-
ber of international publications that, since 2006, has been greater
than the number of publications at Brazilian venues, showing once
more the internationalization process of this community. Fig. 2 also
shows the number of SBES papers from the AOSD-BR community.
The growth of the community and its research can be clearly seen by
the increase in the number of AOSD-related papers at SBES over the
years. In fact, most of the national AOSD-BR papers were published
at SBES (53 out of 86 papers), as shown in Table 3.

4.2. Research impact quantification

The research impact of the AOSD-BR community can be quanti-
fied in terms of: (i) the increasing number of accepted papers in top
SE conferences around the world; (ii) the number of citations; and
(iii) the number of best paper awards and nominations received
in international and national conferences. In addition, other rele-
vant results are reported, such as the adoption of AO applications as
benchmarks by the AOSD research community, and the participa-
tion of Brazilian researchers in program and organizing committees
of several international conferences and workshops.

In the next sections we perform an analytical analyses based
on numbers collected from several top SE conferences that publish
AOSD-related papers.

4.2.1. Analyzing the international impact of the AOSD-BR
community

In order to allow the analysis of the scientific production of the
AOSD-BR community in the international context, we investigated
the following research question: What is the impact of the AOSD-
BR community compared to the AOSD international research work?
The answer for this question was developed by analyzing the num-
ber of papers and citations of the AOSD-related papers in top SE
conferences from the AOSD-BR community and the other interna-
tional AOSD research groups. This analysis helped us to evaluate
the impact and quality of the AOSD-BR international papers.

When conducting our analysis, we looked for the number of
citations of AOSD-related papers from 1999 to 2011 in six top
SE conferences: International Conference on Software Engineer-
ing (ICSE), International Conference on Software Maintenance
(ICSM), Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), European Conference on Object-Oriented
Programming (ECOOP), Foundations on Software Engineering
(FSE), and Aspect-Oriented Software Development (AOSD). We
selected, from these conferences’ proceedings, only papers that

922 U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

Table 3
AOSD-BR in numbers.

Journal papers Conference papers SBES papers Theses Dissertations Int’l cooperation projects
52 189 53 22 60 12
" 103 at international conferences, 86 at national ones (including SBES).

Table 4

address non-conventional modularization techniques.? For the
AOSD conference, we considered all the papers because they are
related to advanced modularization techniques. The complete list
of the search result is available elsewhere (AOSD-BR-Community,
2011). With this data, we compared AOSD-BR publications against
those from research groups from other countries, in terms of the
numbers of papers and citations. The collected results show a high
international impact of the AOSD-BR community in the interna-
tional AOSD context.

Fig. 4 depicts the number of AOSD-related papers per country.
In order to quantify such number, we considered the first author’s
affiliation country (AOSD-BR-Community, 2011). The figure shows
that papers from USA and Canada institutions are hegemonic in
these conferences, but there is a significant number of papers from
Brazilian institutions. It is interesting to notice the high number
of AOSD-BR papers at the AOSD and ICSM conferences. They are
greater than several major European countries and always the
greatest among Latin-American countries.

We also investigated the number of citations of the selected
AOSD-related papers from the six top SE conferences in order to
assess the impact of the AOSD-BR scientific production compared
to the international community (AOSD-BR-Community, 2011). Figs.
5-9 depicts the top 10 cited papers, according to Google Scholar, at
each of the conferences, except for FSE, where no AOSD-BR appears
among the 10 most cited papers. The figures show that there is at
least one AOSD-BR paper in each list.# This suggests that research
conducted by the AOSD-BR community has given significant con-
tributions to the AOSD international community. In addition, for
the OOPSLA, ICSM and AOSD conferences, the AOSD-BR papers rank
among the top 5 most cited AOSD-related papers, thus providing
even more evidence of the aforementioned significance.

Finally, Fig. 10 shows the list of authors that have published
more often at the AOSD conference. We show only the top-18
authors, which are the ones with 4 or more papers published. It
is very exciting to note that the researcher that published the most
papers at AOSD is Professor Alessandro Garcia from PUC-Rio, one
of the most active researchers of the AOSD-BR community. The list
was specified by considering all the authors of every paper from all
editions of the AOSD conference (AOSD-BR-Community, 2011).

4.2.2. Analyzing the impact of the AOSD-BR community
compared with the SE Brazilian community

In our analysis, we also collected data to investigate the results
and impact of the AOSD-BR community when compared with the
overall SE Brazilian community. Our analysis was guided by the
following research questions: (i) What is the impact of the AOSD-
BR community when compared with the SE Brazilian community in
the international context? and (ii) What is the impact of the AOSD-BR
community when compared with the SE Brazilian community in the
national context? The next two subsections explore the analysis of
the collected results for these questions, respectively.

3 The ACM and IEEE digital libraries and DBLP bibliography were used to browse
and to read the content of the papers in order to determine if they are AOSD-
related papers or not. In addition, Google Scholar was used to quantify the number
of citations of each paper.

4 Such papers are indicated by the “(AOSD-BR)” label.

Brazilian papers on top SE conferences.

Top SE Average paper Papers from the Papers (percentage) from
conferences acceptance Brazilian Community AOSD-BR Community
(1999-2011) (1999-2011)

AOSD 24% 9 9 (100%)

ECOOP 17% 3 2 (67%)

FSE 19% 2 1(50%)

ICSE 15% 4 2 (50%)

ICSM 34% 9 4 (44%)

OOPSLA 24% 2 1(50%)

Impact of AOSD-BR and Brazilian SE communities in the interna-
tional context

In order to analyze the impact and relevance of the AOSD-BR
research results compared with the SE Brazilian community in the
international context, we quantified the visible increase of accepted
papers in top SE conferences over the last years. Table 4 shows the
number of papers published by the Brazilian research community
from 1999 to 2011 in top SE conferences.? In addition, it also illus-
trates the general acceptance rate of the conference, the number
and percentage of the total number of these Brazilian papers that
are a contribution from the AOSD-BR community.

In most cases, as we can see in Table 4, the contribution of our
community is equal or superior to 44% of the total number of papers
published by Brazilian researchers in these conferences. In this
way, we can observe that AOSD-BR has significantly contributed
to improve the acceptance rate of Brazilian papers in these con-
ferences. We can also notice that the AOSD-BR community has
gradually increased the number of accepted papers in the premier
AOSD conference from 2002 to 2011. It is important to empha-
size that all these conferences have a strict acceptance rate and
the papers published there represent the state-of-the-art of out-
standing and high-quality research developed worldwide. These
publications also demonstrate the maturity and quality of research
work developed by the AOSD-BR community.

Another view of such papers is presented by Table5, which
accounts their citation numbers (AOSD-BR-Community, 2011). We
mark AOSD-BR papers with the label (AOSD-BR). It is interesting
to note that, except for FSE, the most cited Brazilian paper in each
conference is always a paper from the AOSD-BR community. Also
note that we excluded AOSD papers from this table since all AOSD
Brazilian papers are from the AOSD-BR community.

Impact of AOSD-BR and Brazilian SE communities in the national
context

The analysis of the impact and relevance of the AOSD-BR
research production compared with the SE Brazilian community
in the national context was conducted using data collected from
the Brazilian Symposium on Software Engineering (SBES), the main
SE scientific conference in Brazil. The analysis was performed by
quantifying: (i) the number of international citations for all papers
published in SBES since its first edition in 1987; and (ii) the most
prolific SBES authors in all editions.

Table 6 shows SBES top-10 cited papers, where AOSD-BR papers
titles are labeled as (AOSD-BR). One of these papers, “On the

5 Only papers with at least one author from a Brazilian institution were consid-

ered.

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

37 AOSD FSE
28 14
20 g
9 3
7 s 2 1 1
4 4 3 5 3 J
11 1 1 1 1 N -
|I II II II ll .l H . e e s s e . !
F PR F AL S DD P D o b v o F P s & &
LN S 2 & & & e & & & A & & & L LS
N -aeo,,g@o,,q,&\\-acy\&@_@oqpo\e@@\ & &
& & T ES & & & o Yoo s;o*g & &
& = &
ECOOP ICSE
9 21
6
5 G
I x 222 3 3111 1 11 l 4 4 3 3 3 3 1 1 1112
T : e : . B N e
FPRP AP EFCIAN LSSt e LSS F ¥ S &L S D F R e S
T & & TF TELSITEE F I & & w‘é‘ & o & &
@ & év-‘\ B 54 ¥ \2* \ 9
s X ep &
ICSM OOPSLA
9
6
505 4 o4, 6 .
I 2 2 2 4 4 1 1 1 2.2 2 4 1 1111 1 1 1 1
i B H H N NN e e
& P S (r.\ & > ob o & & P & \\5{- @ &L D A® & & Qb
s Q? i\"\b < Q@Q & qﬁq’ B Qo&@ & -\’3*“(0 \"q}é@ c,‘ba \@ & s’v" é' & & Qo "'D \'°Q g
eﬁy o GSQ (<) & o QSF &

Fig. 4. AOSD-related papers at top SE conferences per country.

AOSD

Modularisation and composition of aspectual requirements S 421
Advice weaving in Aspect! [321
Conquering aspects with Caesar [319
JAsCo: an aspect-oriented approach tailored for component based software development [297
(AOSD-BR) Modularizing design patterns with aspects: a quantitative study J——— 273
abc: an extensible Aspect! compiler J———— 263
Composition, reuse and interaction analysis of stateful aspects [SS 236
Navigating and querying code without getting lost s 227
Arranging language features for more robust pattern-based crosscuts s 217
Just-in-time aspects: efficient dynamic weaving for Java S 210

Fig. 5. Top 10 cited papers at AOSD, according to Google Scholar.

ECOOP

An Overview of Aspect)

Load-Time Structural Reflection in Java

Open Modules: Modular R ing About Advice |

Modeling Crosscutting in Aspect-Oriented Mechanisms

AOP: Does It Make Sense? The Case of Concurrency and Failures

Expressive Pointcuts for Increased Modularity

(AOSD-BR) On the Impact of Aspectual Decompositions on Design Stability: An Empirical Study
Supporting Unanticipated Dynamic Adaptation of Application Behaviour

Evaluating Support for Features in Advanced Modularization Technologies

Dynamically Composable Collaborations with Delegation Layers

2931

Fig. 6. Top 10 cited AOSD-related papers at ECOOP, according to Google Scholar.

ICSE

N degrees of separation: multi-dimensional separation of concerns

Concern graphs: finding and describing concerns using structural program dependencies
Theme: an approach for aspect-oriented analysis and design

Aspect-oriented programming and modular reasoning

An initial assessment of aspect-oriented programming

Granularity in software product lines

(AOSD-BR) Evolving software product lines with aspects

Building product populations with software components

Autonomous adaptation to dynamic availability using a service-oriented component model
Feature oriented refactoring of legacy applications

1437

Fig. 7. Top 10 cited AOSD-related papers at ICSE, according to Google Scholar.

923

924

reuse and maintenance of AO software: An assessment framework”
(Sant’anna et al., 2003), presents a metrics suite to compare
AO and OO implementations, including new and original sep-
aration of concerns (SoC) metrics. As shown in the table, this
is the most cited SBES paper considering all SBES editions. It

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

ICSM

Using coupling measurement for impact analysis in object-oriented systems 123
Using pointcut delta analysis to support evolution of aspect-oriented | 104
An evaluation of clone detection techniques for crosscutting concerns s 103
(AOSD-BR) Quantifying the Effects of Aspect-Oriented Programming: A 76
Automated refactoring of object oriented code into aspects s 55
A novel approach to measuring class cohesion based on dependence analysis 46
A classification of crosscutting concerns s 33
Migrating interface implementations to aspects W 28
Improving maintenance in AOP through an interaction specification W 27
Isolating idiomatic crosscutting concerns W 26

Fig. 8. Top 10 cited AOSD-related papers at ICSM, according to Google Scholar.

OOPSLA

Design pattern implementation in Java and aspect] S 639
(AOSD-BR) Implementing distribution and persistence aspects with aspect) s 299
Adding trace matching with free variables to Aspect] s 279
Subject-oriented design: towards improved alignment of requirements, design, and code Jssss 187
liazzi: new-age components for old-fasioned Java s 182
Role model designs and implementations with aspect-oriented programming s 155
Scalable extensibility via nested inheritance & 116
Partial behavioral reflection: spatial and temporal selection of reification W 115
Integrating independent components with on-demand remodularization &% 110
Resolving feature convolution in middleware systems =& 96

Fig. 9. Top 10 cited AOSD-related papers at OOPSLA, according to Google Scholar.

_{by-'\by-'b TP v O e N s & Z
SN M & S
o O (@ A 2
© ‘23’0@,*3\\‘}:;6 SECERCHEN “;&Q

Fig. 10. Number of papers of the top-18 authors at the AOSD conference.

illustrates that a paper published in SBES can be read and rec-
ognized by the international SE research community. Many of
the empirical assessments developed by the AOSD-BR community
(Figueiredo et al., 2008a; Greenwood et al., 2007) adopted this
metrics suite and helped to disseminate the development of several

Table 5
Brazilian papers citation on top SE conferences, according to Google Scholar.
Conference Paper title Citations
ECOOP’'07 (AOSD-BR) On the Impact of Aspectual Decompositions on Design Stability: An Empirical Study 139
ECOOP'03 A Refinement Algebra for Object-Oriented Programming 49
ECOOP’08 (AOSD-BR) Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 39
FSE'04 How a good software practice thwarts collaboration: the multiple roles of APIs in software development 74
FSE’06 (AOSD-BR) Exceptions and aspects: the devil is in the details 56
ICSE’08 (AOSD-BR) Evolving software product lines with aspects: an empirical study on design stability 174
ICSE'08 An empirical study of software developers’ management of dependencies and changes 40
ICSE’'10 (AOSD-BR) An exploratory study of fault-proneness in evolving aspect-oriented programs 9
ICSE’08 Improving the handsets network test process via DMAIC concepts 2
ICSM’06 (AOSD-BR) Quantifying the Effects of Aspect-Oriented Programming: A Maintenance Study 76
ICSM’'04 RefaX: A Refactoring Framework Based on XML 19
ICSM’05 Comparative Analysis of Porting Strategies in]2ME Games 18
ICSM'07 (AOSD-BR) Extracting Error Handling to Aspects: A Cookbook 17
ICSM’05 A Risk Taxonomy Proposal for Software Maintenance 15
ICSM'07 (AOSD-BR) JAT: A Test Automation Framework for Multi-Agent Systems 7
ICSM’'08 (AOSD-BR) Non-invasive and non-scattered annotations for more robust pointcuts 1
ICSM'11 (AOSD-BR) Identifying overly strong conditions in refactoring implementations 0
ICSM'11 (AOSD-BR) Structural conformance checking with design tests: An evaluation of usability and scalability 0
OOPSLA’02 (AOSD-BR) Implementing distribution and persistence aspects with Aspect] 299
OOPSLA™99 Detecting Defects in Object-Oriented Designs: Using Reading Techniques to Increase Software Quality 148

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933 925

Table 6
Top-10 cited SBES papers, according to Google Scholar.

Year Paper title Citations

2003 (AOSD-BR) On the Reuse and Maintenance of Aspect-Oriented Software: An Assessment Framework 191

2001 CRE: A Systematic Method fot COTS Components Selection 96

2000 Ambientes de Desenvolvimento de Software Orientados a Dominio 52

1994 Constrained Mutation in C programs 37

2001 Using Objects and Patterns to Implement Domain Ontologies 32

1992 Estrategia data-driven no desenvolvimento de software 31

1997 Um modelo Fuzzy para avaliacao da qualidade de software 30

2002 Formalizing Object-Oriented Design Metrics upon The UML Meta-Model 25

2003 (AOSD-BR) Adapting the NFR Framework to Aspect-Oriented Requirements Engineering 24

2005 (AOSD-BR) Taming Heterogeneous Aspects with Crosscutting Interfaces 24

40 SBES
8879797377777
& Cr . A < . N O %
Vet atic E \“'\?‘b“‘ ,;@\)‘b 6\“9)?‘9‘” o *‘w“ V%‘f\@}"ﬁ v e
'O 2 \-\&o-.ﬁ’s@?“‘ o S ot @ g 2 S
2 & @ o Y & P \\\-\‘&\ol'b(j“ 0 9\o\v D
& & & X 7 & P & @@,Ob‘(a\v 6" & &
¥ W F D S T N & o o P o &
‘l:}qﬁ \@Q’@ Q;Q' gQ‘ﬂ%@.b(f & \ N
R 9 e N & ®
F¥ SFFEF & F P S & & &
FF E@F N ¥ ¥ N o o
LS8 YN @-0,,0” & 3
R\s & N3
Fig. 11. Publications per author at SBES.

quantitative comparative studies between AO and OO implementa- et al, 2002; Garcia et al., 2006b) from the community have

tions. Besides the most cited SBES paper, the AOSD-BR community
has other two papers among the top-10 most cited papers, as shown
in Table 6.

We also analyzed the data collected from SBES to identify

received almost 300 citations® each. The first one (Soares et al.,
2002) is a contribution from the Software Productivity Group

(SPG) of UFPE that illustrates the modularization of the persis-

tence and distribution crosscutting concerns using Aspect]. The

the authors that have published most often at this conference second one (Garcia et al.,, 2006b) was the first relevant inter-

since its first edition (1987). Fig. 11 depicts the list of the 30
researchers that have more papers published in the SBES con-
ference (AOSD-BR-Community, 2011). A total of 16 researchers
from this list are active authors from AOSD-BR community;
the label (AOSD-BR) prefixes their names. It is important to
mention that we account all papers from each author, not

only AOSD-related papers. The number also shows that the have been published only recently.

AOSD-BR community comprises experienced and very active
researchers. This might be one of the reasons for the community
success.

Last but not least, there is an impressive number of AOSD-BR
papers in SBES. A total of 52 papers have been published in SBES
between 1999 and 2011. This number represents about 18% of the
290 papers published in SBES from 1999 to 2011, and 9.5% of the
547 papers published in the lifetime of SBES. In addition, if we con-
sider only the papers published since the birth of AOSD-BR, from

national publication of the SE Laboratory (LES) from PUC-Rio,
which quantifies and compares OO and AO implementations
of classical design patterns using software internal metrics.
There are also several papers (Figueiredo et al.,
wood et al., 2007; Sant’anna et al., 2003) from our community that
have received more than 100 citations, even though many of them

2008a; Green-

Several other papers written by our community and published
in international SE conferences have received between 40 and 100

citations. Finally, many papers published in SBES have been cited by

2004 to 2011, this percentage increases to 22.4% of all SBES papers Academic Search engine.

in this period. Again, it reflects the active presence of the AOSD-
BR community over the last years at the main SE conference in
Brazil.

4.2.3. AOSD-BR most cited papers, awards & benchmarks

other international and national papers. A complete list of citations
to papers from the AOSD-BR research community can be found
elsewhere (AOSD-BR-Community, 2011). Also, as a result of this
high number of citations to their publications, researchers from the
AOSD-BR community are listed in the Top-100 SE research ranking
considering the citations over the last five years in the Microsoft

A number of AOSD-BR papers have been nominated to the best
paper award in the SBES - the main Brazilian SE symposium. Our

community has received 12 nominations for the SBES best paper
award along the last decade (2001-2011), and received the best
paper award on three occasions (Sant’Anna et al., 2004; Chavez

Another important quality indicator for the research con-
ducted by the AOSD-BR community is the number of citations
of papers published by this community in international and
national SE conferences. Two research contributions (Soares 6 Source: Google Scholar.

et al.,, 2005; Carneiro et al., 2010). This reflects the high quality and

926 U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

recognition that research work conducted by AOSD-BR groups has
garnered. A list of all awards received by AOSD-BR research work
is available elsewhere (AOSD-BR-Community, 2011).

The AOSD-BR community has been involved in the develop-
ment and evolution of two application benchmarks used by several
researchers around the world: HealthWatcher (Soares et al., 2002)
and MobileMedia (Figueiredo et al., 2008a). HealthWatcher (Soares
et al,, 2002) is a real web information system that stores infor-
mation about the public health system and registers complaints
from citizens. HealthWatcher was first implemented in Java, and
the Software Productivity Research Group from UFPE derived an
Aspect] implementation from it. From this point, both Java and
Aspect] versions were evolved, resulting in several versions that
have been used in several studies at Brazilian and foreign institu-
tions. For example, Health Watcher was the recommended case
study for the papers submitted to the Early Aspects workshop
at ICSE 2007 (Workshop in AO Requirements Engineering and
Architecture Design). Currently, HealthWatcher encompasses nine
subsequent releases that provide support for the execution of
AO maintainability studies. Our main partner in the evolution of
HealthWatcher is the Lancaster University, where the versions of
HealthWatcher are publicly available’.

MobileMedia (Figueiredo et al., 2008a) is a Software Product
Line (SPL) for media management on mobile devices. Mobile-
Media was first implemented in Java and Aspect] by Brazilian
students at Lancaster University. After a few years, the current
version of MobileMedia gathered contributions from a set of 16
institutions, in many different ways. For example, some institu-
tions’ members directly provided initial MobileMedia artifacts that
followed AO design guidance cooperatively developed by them.
Other partners contributed by reviewing the artifacts according to
their area of expertise. Experts have contributed with the use of
specific techniques to produce the MobileMedia artifacts, such as
goal models and architecture descriptions. Currently, MobileMedia
encompasses eight subsequent releases that support the execu-
tion of studies of AO SPL maintainability. In addition, MobileMedia
has already been successfully used in a number of assessments of
AOSD (Figueiredo et al., 2008a, 2009c¢; Burrows et al., 2010b; Fer-
rari et al., 2010).

5. Conclusions

This paper reported on a study to characterize the AOSD-
BR research community in terms of its impact on SE research
in Brazil and AOSD research abroad. This characterization has
been performed with respect to three research questions that
were presented previously and from three different perspec-
tives.

First of all, we have presented a timeline for the AOSD-BR
community, a historical chronology highlighting important mile-
stones conquered by the community. This chronology can be
used as a roadmap to help the development and evolution of
new research communities around the world. In addition, it also
contributes to illustrate how our community has evolved over
the last decade together with the AOSD international commu-
nity;

An overview of the research developed by our community in
several prominent SE topics was also reported, and confronted with
AOSD challenges, related work from international partners and
open research issues. The research overview summarizes the main
contributions of the AOSD-BR community, so far, and can be useful

7 http://bit.ly/HealthWatcher.

to guide newcomers and to identify gaps and new opportunities for
AOSD research.

Finally, the impact of the research developed by the AOSD-BR
community was quantified in terms of the number of accepted
papers in top SE conferences around the world, the number of
citations, and the number of best paper awards and nominations
received in international and national conferences, among others.
This perspective provided an objective view about the importance
of the AOSD-BR community in terms of the quality and quantity of
its more relevant contributions.

Besides these three dimensions of assessment and related con-
tributions, the study methodology can itself be used as guidance to
support similar studies in other research areas.

5.1. Main results

In Section 1, three research questions were presented and dis-
cussed throughout the paper. The highlights of our study, in terms
of the results for such questions are:

(i) International IMPACT of the AOSD-BR community. In the
international context, the AOSD-BR community has given
influential contributions to six top SE engineering conferences.
Our analysis has revealed that many of the AOSD-BR technical
papers published in these conferences are listed among the top
10 most cited AOSD-related papers from 1999 to 2011. Finally,
we found that Professor Alessandro Garcia from PUC-Rio/Brazil
is the author with the highest number of publications in the
AOSD conference, the premier international conference on
modularity.

(ii) Impact of AOSD-BR and Brazilian SE communities in the
international context. Regarding the impact of the AOSD-BR
community against other SE Brazilian researchers, our analy-
sis has shown that at least 44% of the total number of Brazilian
publications in six top SE conferences was a direct result of the
scientific production of the AOSD-BR community. Considering
all the papers written by Brazilian researchers in these top SE
conferences, from 1999 to 2011, we also found out that the
AOSD-BR papers have a more expressive number of citations
than the non-AOSD Brazilian papers (AOSD-BR-Community,
2011), except for FSE.

(iii) Impact of AOSD-BR and Brazilian SE communities in the
national context. We have also analyzed data collected from
SBES - the main Brazilian SE conference - in order to charac-
terize the impact of AOSD-BR in the national context. Our main
findings were: (i) the most cited paper from all SBES editions
was written by AOSD-BR researchers, and two other papers
from our community are listed as top 10 most cited; and (ii) an
impressive number papers (52) were published by the AOSD-
BR community at SBES from 1999 to 2011, which represents
18% of SBES papers published in the same period and 9.5% of
all SBES papers published since the first edition of the confer-
ence in 1987. Finally, we have also found that 16 researchers
from the list of top 30 most prolific authors of SBES are AOSD-
BR members and have significantly contributed to the growth,
consolidation and qualified production of the community.

5.2. Lessons

This study has also taught us important lessons which, we
believe, should be considered by young and senior researchers
when proposing and developing new research communities.

Support from established forums. The major forum that has
fostered the AOSD-BR community and related research is the Brazil-
ian Symposium on Software Engineering (SBES). Most of the AOSD
research work in Brazil has been published at SBES and most of

http://bit.ly/HealthWatcher

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933 927

the AOSD-BR researchers have active participation in the SBES
conference. Since 2004, SBES (now CBSoft8) hosted the WASP/LA-
WASP workshops. These workshops provided the elements that
allowed the community to emerge, become mature, active, highly
collaborative, and internationalized.

Presence of experienced researchers. The AOSD-BR commu-
nity aggregates several experienced and very active researchers
from different software engineering subareas since its initial steps.
This might be one of the reasons for the success of the community.

International “exposure”. A paper published at SBES can be
read and recognized by the international SE research community
(Sant’anna et al., 2003), specially if it is written in English. This is
an issue that some countries have to discuss: the language used to
write papers and theses in order to make their research public and
useful worldwide.

Interaction fosters collaboration. The AOSD-BR experience
demonstrates that a rich interaction might promote great opportu-
nities gathering researchers from different universities, countries
and subareas. This paper is important proof for that.

5.3. Future work

AOSD research has been a hot topic for almost 15 years world-
wide and more than 10 years in Brazil, with a growing number
of high-quality publications, academic theses and projects, and
increasing international impact. Several challenges were presented
for different subareas in which the AOSD-BR community has con-
centrated its research efforts.

Aspect-Oriented Software Development has always been
related to advanced modularity techniques that promote the sep-
aration of concerns principle in the development of complex
software systems. From this perspective, itis fundamental to spread
the message: AOSD is not only related to the modularization of
crosscutting concerns at different abstraction levels, which was the
main focus of most research work in the area over the last 15 years.
In this sense, since the AOSD 2011 conference, the AOSD interna-
tional community has motivated the presentation of modularity
approaches that propose new and innovative ideas in a special track
called “Modularity Visions”.

Recent research work has proposed and evaluated these new
modularity ideas. Two prominent approaches are Mylin and CIDE.
Mylin® (Kersten and Murphy, 2005, 2006) is a task management
tool that allows developers to work efficiently with their differ-
ent tasks by providing and automatically organizing the context
(for example, different slices of implementation artifacts) that are
related to each task. On the other hand, CIDE'? (Kistner et al.,
2008) is a tool that provides support for virtual separation of
concerns by allowing the visual annotation of features instead of
physically extracting variable features in software product lines
implementations. Both tools can be seen as concrete approaches
thatreflect the community vision on new modularity proposals and
that contribute to improve the quality and productive development
in software engineering founded on the separation of concerns
principle. Senior and young AOSD researchers should take into
consideration these new modularity perspectives when develop-
ing research work to address most of the open issues presented for
different AOSD areas (Section 3).

A necessary and challenging path for the AOSD community to
follow is to address practical problems in industry. The research

8 Since 2010, the Brazilian SE community has integrated all the software engineer-
ing scientific conferences in a unique event called CBSoft — Brazilian Conference on
Software: Theory and Practice.

9 http://www.eclipse.org/mylin.

10 http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide.

community needs to look over real problems, and apply AOSD
solutions to these problems. On the other hand, the AOSD-BR com-
munity might have influenced one of the most successful industry
cases of AOSD in practice, SpringSource.!! The OOPSLA 2002 paper
from Soares et al. (2002), the most cited paper from the AOSD-BR
community, presented a way to use aspects to implement database
transactions. Currently, Spring integration framework still uses a
similar approach. This is evidence that the Brazilian community
needs to better exploit the existing synergy between goals and chal-
lenges related to AOSD and problems in industry, thus contributing
to increase the number of applications, tools, and users.

Acknowledgements

This work was partially supported by the National Institute of
Science and Technology for Software Engineering (INES), grants
573964/2008-4 (CNPq) and APQ-1037-1.03/08 (FACEPE).

References

Adachi, E., Batista, T., Kulesza, U., Medeiros, A.L., Chavez, C., Garcia, A., 2009. Vari-
ability management in aspect-oriented architecture description languages: an
integrated approach. In: Proceedings of the 2009 XXIII Brazilian Symposium on
Software Engineering, SBES 09, IEEE Computer Society, Washington, DC, USA,
pp. 1-11, ISBN 978-0-7695-3844-0.

Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa, A., 1994. Abstracting object
interactions using composition filters. In: Guerraoui, R., Nierstrasz, O., Riveill,
M. (Eds.), Workshop on Object-Based Distributed Programming at ECOOP’93,
Springer-Verlag, pp. 152-184, citeseer.nj.nec.com/aksit94abstracting.html.

Alencar, F., Castro, J., Moreira, A., Aradjo, J.a., Silva, C., Ramos, R., Mylopou-
los, J., 2008. Integration of aspects with i* models. In: Proc. 8th Int’l
Bi Conf. on Agent-oriented Inf. systems IV (AOIS 2006). pp. 183-201.
http://portal.acm.org/citation.cfm?id=1787479.1787493. ISBN 3-540-77989-2,
978-3-540-77989-6.

Alencar, F., Castro,]., Lucena, M., Santos, E., Silva, C., Aradjo, J.A., Moreira, A., 2010.
Towards modular i* models. In: 25th Annual ACM Symp. on Applied Computing
(ACM SAC 2010), ACM, New York, NY, USA, pp. 292-297, ISBN 978-1-60558-
639-7.

Alexander, R.T., et al., 2004. Towards the Systematic Testing of Aspect-Oriented Pro-
grams. Tech. Report CS-04-105, Dept. of Computer Science. Colorado State Univ.,
Fort Collins, CO, USA.

Alexander, R., 2003. Aspect-oriented programming: the real costs? IEEE Software 20
(6), 90-93.

Alférez, M., Santos,].P., Moreira, A., Garcia, A., Kulesza, U., Aratjo, J., Amaral, V.,
2009. Multi-view composition language for software product line requirements.
In: Software Language Engineering, Second International Conference, SLE 2009,
Denver, CO, USA, October 5-6, 2009, Revised Selected Papers, Springer, pp.
103-122.

Alves]r., V.P.M,, Cole, L., Borba, P., Ramalho, G., 2005. Extracting and evolving mobile
games product lines. In: Proc. 9th Int’l Software Product Line Conf. (SPLC 2005),
vol. 3714 of LNCS, Springer-Verlag, Rennes, France, pp. 70-81.

Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., de Lucena, CJ.P., 2006. Refac-
toring product lines. In: GPCE, pp. 201-210.

Alves, V., Matos, P., Cole, L., Vasconcelos, A., Borba, P., Ramalho, G., 2007. Extracting
and evolving code in product lines with aspect-oriented programming. Trans-
actions on AOSD 4, 117-142.

Alves, V., Calheiros, F., Nepomuceno, V., Menezes, A., Soares, S., Borba, P., 2008.
FLiP: managing software product line extraction and reaction with aspects. In:
Software Product Lines, 12th Int’l Conf., SPLC, Limerick, Ireland, p. 354.

Alves, M., Pires, P., Delicato, F., Campos, M., 2008a. CrossMDA: a model-driven
approach for aspect management. Journal of Universal Computer Science 14
(8),1314-1343.

AMPLE, 2006. Aspect-Oriented Product Line Engineering. http://www.ample-
project.net/

Anastasopoulos, M., Muthig, D., 2004. An evaluation of aspect-oriented program-
ming as a product line implementation technology. In: ICSR, pp. 141-156.
Andrade, R,, Ribeiro, M., Gasiunas, V., Satabin, L., Rebélo, H., Borba, P., 2011. Assessing
idioms for implementing features with flexible binding times. In: 15th Euro-
pean Conference on Software Maintenance and Reengineering, CSMR 2011, 1-4

March 2011, Oldenburg, Germany, pp. 231-240.

Andrews,].H.,2001. Process-algebraic foundations of aspect-oriented programming.
In: Proceedings of the Third International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns, REFLECTION’01, pp. 187-209.

Antonelli, L., Rossi, G., Leite,]., 2010. Early identification of crosscutting concerns
in the domain model guided by states. In: 25th Annual ACM Symp. on Applied
Computing (ACM SAC 2010), ACM, pp. 275-280.

1 http://www.springsource.org.

http://www.eclipse.org/mylin
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide
http://portal.acm.org/citation.cfm?id=1787479.1787493
http://www.ample-project.net/
http://www.ample-project.net/
http://www.springsource.org

928 U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

AOM, 2011. Aspect-Oriented Modeling Workshop.
modeling.org/

AOSD Europe, 2002. AOSD-Europe Network of Excellence. http://www.
aosd-europe.net/

AOSD, 2002. 1st International Conference on Aspect-Oriented Software Develop-
ment. http://trese.cs.utwente.nl/aosd2002/

AOSD, 2011. 10th International Conference on Aspect-Oriented Software Develop-
ment, http://aosd.net/2011

AOSD-BR, 2002. AOSD-BR Discussion List. http://tech.groups.yahoo.com/group/
aosd-br/

AOSD-BR-Community, 2011. AOSD-related papers in top SE conferences from 1999
to 2011. http://bit.ly/AOSD-BR-ASSESSMENT-1999-2011

AOSD-BR-Community, 2011. Production of the AOSD-BR Community.
http://bit.ly/AOSD-BR_Production

Apel, S., Leich, T., Rosenmiiller, M., Saake, G., 2005. FeatureC++: on the symbiosis of
feature-oriented and aspect-oriented programming. In: GPCE, pp. 125-140.

Apel, S., Leich, T., Saake, G., 2006. Aspectual mixin layers: aspects and features in
concert. In: Proc. of International Conference on Software Engineering (ICSE),
pp. 122-131.

Apel, S., Leich, T., Saake, G., 2008. Aspectual Feature Modules. IEEE Transactions on
Software Engineering 34 (2), 162-180.

Apel, S., Kastner, C., GroBlinger, A., Lengauer, C., 2010. Type safety for feature-
oriented product lines. Automated Software Engineering 17 (3), 251-300.

Barbosa, E.A., Batista, T., Garcia, A, Silva, E., 2011. PL-AspectualACME: an aspect-
oriented architectural description language for software product lines. In:
Proceedings of the 5th European Conference on Software Architecture, ECSA'11,
Springer-Verlag, Berlin, Heidelberg, pp. 139-146, ISBN 978-3-642-23797-3,
http://dl.acm.org/citation.cfm?id=2041790.2041808

Batista, T., Chavez, C., Garcia, A., Sant’Anna, C., Kulesza, U., Rashid, A., Castor Filho,
F., 2006a. Reflections on architectural connection: seven issues on aspects and
ADLs. In: Early Aspects 2006 at ICSE 2006, Shangai, China, pp. 3-10.

Batista, T., Chavez, C., Garcia, A., Kulesza, U., Sant’Anna, C., Lucena, C., 2006b. Aspec-
tual connectors: supporting the seamless integration of aspects and ADLs. In:
XX Brazilian Symp. on Software Engineering (SBES 2006), Florianopolis, Brazil,
pp. 17-32.

Batra, U., Dahiya, D., 2009. Modularization of concerns in a distributed framework:
an aspect oriented approach. In: IEEE International Conference on Computer
Science and Information Technology (ICCSIT, 2009), pp. 64-68.

Berg, K.V.D., et al., 2005. AOSD Ontology 1.0 Public Ontology of Aspect-Orientation.
Tech. Rep. AOSD-Europe Deliverable D9, AOSD-Europe-UT-01. Universiteit
Twente, 2005.

Bergmans, L., Aksit, M., 2001. Composing crosscutting concerns using composition
filters. Communications of the ACM 44 (10), 51-57.

Bernardo, R,, SalesJr., R, Castor, F., Coelho, R., Cacho, N., Soares, S.,2011. Agile testing
of exceptional behavior. In: XXV Brazilian Symp. on Software Engineering (SBES
2011), Sao Paulo, Brazil.

Bertran, .M., Garcia, A., von Staa, A., 2011. An exploratory study of code smells in
evolving aspect-oriented systems. In: Borba, A., Chiba, S. (Eds.), AOSD, ACM, pp.
203-214, ISBN 978-1-4503-0605-8.

Binder, R.V., 1999. Testing Object-Oriented Systems: Models, Patterns and Tools, 1st
ed. Addison Wesley, Reading, MA, USA.

Binkley, D., Ceccato, M., Harman, M., Ricca, F., Tonella, P., 2006. Tool-supported
refactoring of existing object-oriented code into aspects. IEEE Transactions on
Software Engineering 32 (9), 698-717.

Bonifacio, R., Borba, P., 2009. Modeling scenario variability as crosscutting mech-
anisms. In: 8th Int’l Conf. on Aspect-Oriented Software Development (AOSD
2009), ACM, New York, NY, USA, pp. 125-136, ISBN 978-1-60558-442-3.

Borba, P., et al.,, 2012. A theory of Software Product Line Refinement. Theoretical
Computer Science.

Braga, R., Germano, F.S.R,, Pacios, S.F., Masiero, P., 2007. AIPLE-IS: an approach to
develop product lines for information systems using aspects. In: I Brazilian
Symp. on Components, Architectures and Software Reuse (SBCARS 2007), pp.
17-30.

Braga, R., Pereira, C.A.F., Masiero, P., 2010. Using aspect-oriented programming to
promote reuse across domains in software product lines. In: 4th Latin-American
Work. on Aspect-Oriented Software Development (LA-WASP 2010), pp. 1-6.

Burrows, R., Ferrari, F.C., Garcia, A., Taiani, F., 2010a. An empirical evaluation of cou-
pling metrics on aspect-oriented programs. In: ICSE Workshop on Emerging
Trends in Software Metrics (WETSoM), ACM Press, Cape Town, South Africa, pp.
53-58, ISBN 978-1-60558-976-3.

Burrows, R., Ferrari, F.C., Lemos, O.A.L., Garcia, A., Taiani, F., 2010b. The impact of cou-
pling on the fault-proneness of aspect-oriented programs: an empirical study.
In: Proceedings of the 21th International Symposium on Software Reliability
Engineering (ISSRE), IEEE Computer Society, San Jose, CA, USA, pp. 329-338,
ISBN 978-1-4244-9056-1, ISSN 1071-9458.

Burrows, R., Taiani, F., Garcia, A., Ferrari, F.C., 2011. Reasoning about faults in
aspect-oriented programs: a metrics-based evaluation. In: Proceedings of the
19th International Conference on Program Comprehension (ICPC), IEEE Com-
puter Society, Kingston/ON, Canada, pp. 131-140, ISBN 978-1-61284-308-7,
ISSN 1063-6897.

Bynens, M., Landuyt, D.V., Truyen, E., Joosen, W., 2010. Reusable aspect-oriented
implementations of concurrency patterns and mechanisms. In: 9th Workshop
on Aspects, Components, and Patterns for Infrastructure Software (ACP4IS '10),
AOSD '10, pp. 17-20.

Cacho, N., Sant’Anna, C., Figueiredo, E., Garcia, A., Batista, T., Lucena, C., 2006. Com-
posing design patterns: a scalability study of aspect-oriented programming. In:

http://www.aspect-

5th Int’l Conf. on Aspect-Oriented Software Development (AOSD 2006), ACM,
New York, NY, USA, pp. 109-121, ISBN 1-59593-300-X.

Cacho, N,, et al., 2006. Improving modularity of reflective middleware with aspect-
oriented programming. In: Proc. 6th Int'l Workshop on Software Engineering
and Middleware (SEM 2006), ACM, New York, NY, USA, pp.31-38,ISBN 1-59593-
585-1.

Cacho, N., Castor Filho, F., Garcia, A., Figueiredo, E., 2008. EJFlow: taming excep-
tional control flows in aspect-oriented programming. In: 7th Int’l Conf.
on Aspect-Oriented Software Development (AOSD 2008), Brussels, Belgium,
pp. 72-83.

Cacho, N., Dantas, F., Garcia, A., Castor, F., 2009. Exception flows made explicit:
an exploratory study. In: XXIII Brazilian Symp. on Software Engineering (SBES
2009), Fortaleza, Brazil.

Cafeo, B.B.P., Masiero, P.C, 2011. Contextual integration testing of
object-oriented and aspect-oriented programs: a structural approach
for Java and Aspect]. In: Proceedings of the 25th Brazilian Sym-
posium on Software Engineering (SBES), IEEE Computer Society,
S ao Paulo, SP, Brazil, ISBN 978-1-4577-2187-8, 214-223.

Calheiros, F., Nepomuceno, V., Borba, P., Soares, S., Alves, V., 2007. Product line vari-
ability refactoring tool. In: 1st Workshop on Refactoring Tools, WRT 2007 with
ECOOP 2007, Berlin, pp. 32-33.

Camargo, V., Masiero, P.C., 2004. Implementacado de Variabilidades em Frameworks
Orientados a Aspectos desenvolvidos em Aspect]. In: WASP 2004.

Camargo, V., Masiero, P., 2005. Frameworks Orientados a Aspectos. In: XIX Brazilian
Symp. on Software Engineering (SBES 2005), pp. 200-216.

Camargo, V., Masiero, P., 2008. A pattern to design crosscutting frameworks. In: 23rd
Annual ACM Symp. on Applied Computing (ACM SAC 2008), pp. 759-764.

Cappelli, C., Leite, J., Batista, T., Silva, L., 2009. An aspect-oriented approach to busi-
ness process modeling. In: Proc. Early Aspects Workshop at AOSD 2009, ACM,
pp. 7-12.

Cappelli, C., Santoro, F., Leite, J., Batista, T., Medeiros, A., Romeiro, C., 2010. Reflec-
tions on the modularity of business process models: the case for introducing
the aspect-oriented paradigm. Business Process Management Journal 16 (4),
662-687.

Cardelli, L., Wegner, P., 1985. On understanding types, data abstraction, and poly-
morphism. ACM Computing Surveys 17 (4), 471-523, ISSN 0360-0300.

Carneiro, G., Silva, M., Mara, L., Figueiredo, E., Sant’Anna, C., Garcia, A., Mendonga, M.,
2010. Identifying code smells with multiple concern views. In: XXIV Brazilian
Symp. on Software Engineering (SBES 2010), IEEE Comp. Soc., Washington, DC,
USA, pp. 128-137, ISBN 978-0-7695-4273-7.

Castor Filho, F., et al., 2006. exceptions and aspects: the devil is in the details. In:
Proc. 14th ACM SIGSOFT FSE, Portland, USA, pp. 152-162.

Castor Filho, F., Garcia, A., Rubira, C., 2007. Extracting error handling to aspects: a
cookbook. In: Proc. ICSM 2007, Paris, France, pp. 134-143.

Castor Filho, F., Garcia, A., Rubira, C., 2007. Error handling as an aspect. In: Proc.
Workshop on Best Practices in Applying AOSD at AOSD 2007, Vancouver, Canada.

Cazzola, W., Pini, S., Ancona, M., 2006. Design-based pointcuts robustness against
software evolution. In: RAM-SE, pp. 35-45.

Ceccato, M., Tonella, P., 2004. Measuring the effects of software aspectization. In:
1st Workshop on Aspect Reverse Engineering.

Chavez, C., Lucena, C., 2003. A theory of aspects for aspect-oriented software
development. XVII Brazilian Symp. on Software Engineering (SBES 2003),
130-145.

Chavez, C,, Garcia, A., Kulesza, U., Sant’Anna, C., Lucena, C., 2005. Taming heteroge-
neous aspects with crosscutting interfaces. In: XIX Brazilian Symp. on Software
Engineering (SBES 2005), pp. 216-231.

Chavez, C., Garcia, A., Batista, T., 2007. Are architectural aspects style-dependent?
In: Workshop on Aspects in Architectural Description at AOSD 2007, pp. 1-4.

Chavez, C., Garcia, A., Batista, T., Oliveira, M., Sant’anna, C., Rashid, A., 2009. Com-
posing architectural aspects based on style semantics. In: 8th Int’l Conf. on
Aspect-Oriented Software Development (AOSD 2009), vol. 11, pp. 1-122.

Chavez, C., Kulesza, U., Soares, S., Borba, P., Lucena, C., Masiero, P., Sant’Anna, C.,
Piveta, E., Ferrari, F., Castor, F., Coelho, R., Silva, L., Alves, V., Mendonca, N.,
Figueiredo, E., Camargo, V., Silva, C., Pires, P., Batista, T., Cacho, N., von Staa,
A, Leite,], Silveira, F., Lemos, O., Penteado, R., Delicato, F., Braga, R., Valente, M.,
Ramos, R, Bonifacio, R., Alencar, F., Castro, ., 2011. The AOSD research commu-
nity in brazil and its crosscutting impact. In: Software Engineering (SBES), 2011
25th Brazilian Symposium on, pp. 72-81.

Chavez, C.,2004. Um Enfoque Baseado em Modelos para o Design Orientado a Aspec-
tos. Ph.D. Thesis. PUC-Rio.

Chidamber, S., Kemerer, C., 1994. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20 (8), 476-493.

Chitchyan, R, et al, 2005. Survey of Aspect-Oriented Analysis and Design
Approaches, Tech. Rep. AOSD-Europe-ULANC-9, AOSD-Europe. http://www.
aosd-europe.net/documents/index.htm/analys.pdf

Chitchyan, R., Rashid, A., Rayson, P., Waters, R., 2007. Semantics-based composition
for aspect-oriented requirements engineering. In: Barry, B.M., de Moor, O. (Eds.),
6th Int’l Conf. on Aspect-Oriented Software Development (AOSD 2007), vol. 208,
ACM, pp. 36-48, ISBN 1-59593-615-7.

Chitchyan, R, et al., 2009. Semantic vs. syntactic compositions in aspect-oriented
requirements engineering: an empirical study. In: 8th Int’l Conf. on Aspect-
Oriented Software Development (AOSD 2009), ACM, pp. 149-160.

Chung, L., etal., 2000. Non-functional Requirements in Software Engineering. Kluwer
Academic Publishers, Boston.

Clarke, S., Walker, R., 2005. Aspect-Oriented Software Development, chap. Generic
Aspect-Oriented Design with Theme/UML. Addison-Wesley, pp. 425-458.

http://www.aspect-modeling.org/
http://www.aspect-modeling.org/
http://www.aosd-europe.net/
http://www.aosd-europe.net/
http://trese.cs.utwente.nl/aosd2002/
http://aosd.net/2011
http://tech.groups.yahoo.com/group/aosd-br/
http://tech.groups.yahoo.com/group/aosd-br/
http://bit.ly/AOSD-BR-ASSESSMENT-1999-2011
http://bit.ly/AOSD-BR_Production
http://dl.acm.org/citation.cfm?id=2041790.2041808
http://www.aosd-europe.net/documents/index.htm/analys.pdf
http://www.aosd-europe.net/documents/index.htm/analys.pdf

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933 929

Clements, P., Northrop, L.M., 2001. Software Product Lines: Practices and Patterns.
Addison-Wesley.

Coelho, R, et al., 2008. Assessing the impact of aspects on exception flows: an
exploratory study. In: Proc. ECOOP 2008, Paphos, Cyprus, pp. 207-234.

Coelho, R, Rashid, A., Kulesza, U., von Staa, A., Lucena, C., Noble, J., 2008. Exception
handling bug patterns in aspect oriented programs. In: Proc. PLOP 2008, Chicago,
USA, pp. 1-19.

Coelho, R., Kulesza, U., Rashid, A., von Staa, A., Lucena, C., 2008. Unveiling and tam-
ing liabilities of aspect libraries reuse. In: XXII Brazilian Symp. on Software
Engineering (SBES 2008), Campinas, Brazil.

Coelho, R., et al., 2009. On the robustness assessment of aspect-oriented programs.
In: Proc. 3rd ACoM Workshop at OOPSLA 2009, Orlando, FL, USA.

Coelho, R., von Staa, A., Kulesza, U., Rashid, A., Lucena, C., 2011. Unveiling and tam-
ing liabilities of aspects in the presence of exceptions: a static analysis based
approach. Information Sciences 181 (13), 2700-2720.

Cole, L., Borba, P.,2005. Deriving refactorings for Aspect]. In: 4th Int’l Conf. on Aspect-
Oriented Software Development (AOSD 2005), Chicago, USA, pp. 123-134.
Cole, L., Piveta, E.K., Sampaio, A., 2004. A RUP based analysis and design with aspects.

In: XVIII Brazilian Symp. on Software Engineering (SBES 2004), Brasilia, Brazil.

Cole, L., Borba, P., Mota, A., 2005. Proving aspect-oriented programming laws. In:
Proc. FOAL 2005, p. 1.

Costanza, P., Hirschfeld, R., 2005. Language constructs for context-oriented pro-
gramming: an overview of ContextL. In: Proceedings of the 2005 Symposium
on Dynamic languages, DLS 05, ACM, pp. 1-10.

Cugola, G., de Cote, J.E.M., 2005. On introducing location awareness in publish-
subscribe middleware. In: Proceedings of the Fourth International Workshop
on Distributed Event-Based Systems, IEEE Computer Society, pp. 377-382.

Cunha, C.A,, Sobral, J.A.L., Monteiro, M.P., 2006. Towards reusable aspects: the call-
back mismatch problem. In: Proceedings of the 5th International Conference on
Aspect-oriented Software Development, AOSD '06, ACM, New York, NY, USA, pp.
134-145, ISBN 1-59593-300-X.

Delamare, R., et al., 2009. A test-driven approach to developing pointcut descrip-
tors in Aspect]. In: Proc. 2nd Int’l Conf. on Software Testing, Verification and
Validation (ICST), IEEE Comp. Soc., Denver, CO, USA, pp. 376-385, ISBN 978-0-
7695-3601-9.

Delamare, R, Baudry, B., Le Traon, Y., 2009b. AjMutator: a tool for the mutation
analysis of Aspect] pointcut descriptors. In: Proceedings of the 4th International
Workshop on Mutation Analysis (Mutation), IEEE Computer Society, Denver, CO,
USA, pp. 200-204.

DeMillo, R.A,, et al., 1978. Hints on test data selection: help for the practicing pro-
grammer. IEEE Computer 11 (4), 34-43.

Dijkstra, E., 1976. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New
Jersey, EUA, 217 p.

do Prado Leite, J.C.S., Yu, Y., Liu, L., Yu, ES.K,, Mylopoulos, J., 2005. Quality-based
software reuse. CAiSE 53, 5-550.

Douence, R., Motelet, O., Stidholt, M., 2001. A formal definition of crosscuts. In:
Proceedings of the Third International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns, REFLECTION'01, pp. 170-186.

Eaddy, M., Zimmermann, T., Sherwood, K.D., Garg, V., Murphy, G.C., Nagappan, N.,
Aho, A.V., 2008. Do crosscutting concerns cause defects? IEEE Transactions on
Software Engineering 34, 497-515, 0098-5589.

Evermann, J., 2007. A meta-level specification and profile for Aspect] in UML. Journal
of Object Technology 6 (7), 27-49.

Fayad, MLE., Schmidt, D., 1997. Object-oriented Application Frameworks, Commu-
nications of the ACM 40.

Fenton, N.E., Pfleeger, S.L, 1998. Software Metrics: A Rigorous and Practical
Approach, 2nd ed. PWS Publishing Co., Boston, MA, USA. ISBN 0534954251.
Fernandes, V., Delicato, F., Pires, P., Kulesza, U., Batista, T., 2009. CrossMDA2: Uma
Abordagem Baseada em Modelos para Geréncia de Evolug ao de Pointcuts. In:
11l Brazilian Symp. on Components, Architectures and Software Reuse (SBCARS

2009), pp. 195-208.

Ferrari, F., Maldonado,].C.,Rashid, A.,2008. Mutation testing for aspect-oriented pro-
grams. In: Proc. 1st Int’l Conf. on Software Testing, Verification and Validation
(ICST), IEEE Comp. Soc., Lillehammer, Norway, pp. 52-61, ISBN 978-0-7695-
3127-4.

Ferrari, F., Nakagawa, E.Y., Rashid, A., Maldonado, J., 2010. Automating the mutation
testing of aspect-oriented java programs. In: Proc. 5th ICSE Int’l Workshop on
Automation of Software Test (AST), ACM Press, Cape Town, South Africa, pp.
51-58, ISBN 978-1-60558-970-1.

Ferrari, F., Burrows, R., Lemos, O., Garcia, A., Figueiredo, E., Cacho, N., Lopes, F.,
Temudo, N, Silva, L., Soares, S., Rashid, A., Masiero, P., Batista, T., Maldonado,
J.C.,, 2010. An exploratory study of fault-proneness in evolving Aspect-Oriented
Programs. In: 32nd Int’l Conf. on Software Engineering (ICSE 2010), ACM Press,
Cape Town - South Africa, pp. 65-74. ISBN 978-1-60558-719-6.

Ferrari, F., Burrows, R., Lemos, O., Garcia, A., Maldonado, J., 2010. Characterising
faults in aspect-oriented programs: towards filling the gap between theory and
practice. In: XXIV Brazilian Symp. on Software Engineering (SBES 2010), IEEE
Comp. Soc., Salvador, BA, Brazil, pp. 50-59, ISBN 978-0-7695-4273-7.

Ferrari, F., 2010. A contribution to the fault-based testing of aspect-oriented soft-
ware. Ph.D. Thesis. ICMC/USP, S ao Carlos, SP, Brasil.

Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares,
S.,Ferrari, F.C., Khan, S.S., Filho, F.C., Dantas, F., 2008a. Evolving software product
lines with aspects: an empirical study on design stability. In: 30th Int’l Conf. on
Software Engineering (ICSE 2008), pp. 261-270.

Figueiredo, E., Sant’Anna, C., Garcia, A., Bartolomei, T., Cazzola, W., Marchetto, A.,
2008b. On the maintainability of aspect-oriented software: a concern-oriented

measurement framework. In: Proc. 12th Eur. Conf. on Software Maintenance
and Reengineering (CSMR), pp. 183-192.

Figueiredo, E., Whittle, J., Garcia, A., 2009a. Concernmorph: metrics-based detection
of crosscutting patterns. In: Proc. ACM SIGSOFT FSE 2009.

Figueiredo, E., Sant’Anna, C., Garcia, A., Lucena, C., 2009b. Applying and evaluating
concern-sensitive design heuristics. In: XXIII Brazilian Symp. on Software Engi-
neering (SBES 2009), IEEE Comp. Soc., Washington, DC, USA, pp. 83-93, ISBN
978-0-7695-3844-0.

Figueiredo, E., et al., 2009c. Detecting architecture instabilities with concern traces:
an exploratory study. In: Proc. WICSA/ECSA 2009, pp. 261-264.

Figueiredo, E., Silva, B., Sant’Anna, C., Garcia, A., Whittle, J., Nunes, D., 2009d. Cross-
cutting patterns and design stability: an exploratory analysis. In: 17th Int’l Conf.
on Program Comprehension (ICPC), vol. 13, pp. 8-147.

Figueroa, 1., Tanter, E., 2011. A semantics for execution levels with exceptions. In:
Proceedings of the 10th Workshop on Foundations of Aspect Languages.

Filman, R, Elrad, T., Clarke, S., Aksit, M. (Eds.), 2005. Aspect-Oriented Software Devel-
opment. Addison-Wesley, Boston. ISBN 0-321-21976-7.

Fowler, M., Beck, K., Brant, J., Opdyke, W.F.,Roberts, D., 1999. Refactoring — Improving
the Design of Existing Code, Object Technologies Series. Addison-Wesley.

Gamma, E., et al, 1995. Design patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley.

Garcia, V.C,, Piveta, E.K., Lucredio, D., Alvaro, A., Almeida, E., Prado, A., Zancanella, L.,
2004. Manipulating crosscutting concerns. In: 4th Latin American Conference on
Patterns Languages of Programming (SugarLoafPLoP), Porto das Dunas, Brazil.

Garcia, A, Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., von Staa, A., 2005.
Modularizing design patterns with aspects: a quantitative study. In: 4th Int’l
Conf. on Aspect-Oriented Software Development (AOSD 2005), ACM, New York,
NY, USA, 3-14, 2005. ISBN 1-59593-042-6.

Garcia, A., Chavez, C, Batista, T., Sant'anna, C., Kulesza, U., Rashid, A., Lucena, C.,
2006. On the modular representation of architectural aspects. In: Proc. EWSA
2006, Nantes, France.

Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., von Staa, A., 2006b.
Modularizing design patterns with aspects: a quantitative study. In: Transac-
tions on AOSD I, pp. 36-74.

Garcia, A., 2004. From Objects to Agents: An Aspect-Oriented Approach. Ph.D. Thesis.
PUC-Rio, Brazil.

Ghezzi, C., Sharifloo, A.M., 2011. Verifying non-functional properties of software
product lines: towards an efficient approach using parametric model checking.
In: SPLC, pp. 170-174.

Goodenough, J.B., 1975. Exception handling: issues and a proposed notation. Com-
munications of the ACM 18 (12), 683-696.

Greenwood, P., et al., 2007. On the contributions of an end-to-end AOSD testbed.
In: Early Aspects: Workshop in AO Requirements Engineering and Architecture
Design, IEEE Comp. Soc, p. 8, ISBN 0-7695-2957-7.

Greenwood, P., Bartolomei, T., Figueiredo, E., Garcia, A., Cacho, N., Sant'Anna, C.,
Borba, P., Kulesza, U., Rashid, A.,2007. On the impact of aspectual decompositions
on design stability: an empirical study. In: Proc. ECOOP 2007. Springer-Verlag,
pp. 176-200.

Grundy, J., 1999. Aspect-oriented requirements engineering for component-based
software systems. In: Proc. IEEE Int'l Symp. on Req. Engineering, IEEE,
pp. 84-91.

Gybels, K., Brichau,], 2003. Arranging language features for more robust
pattern-based crosscuts. In: 2nd Int'l Conf. on Aspect-Oriented Soft-
ware Development (AOSD 2003), ACM, New York, NY, USA, pp. 60-69,
ISBN 1-58113-660-9.

Hanenberg, S., Schmidmeir, S., 2003. Aspect] Idioms for aspect-oriented software
construction. In: Proc. EuroPLoP 2003.

Hanenberg, S., Oberschulte, C., Unland, R., 2003. Refactoring of aspect-oriented soft-
ware. In: 4th Net.ObjectDays Conference, Erfurt, Germany.

Harrison, W., Ossher, H., 1993. Subject-oriented programming (a critique of pure
objects). In: 7th Conf. on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA93), pp. 411-428.

Heidenreich, F., Sdnchez, P., Santos,].P., Zschaler, S., Alférez, M., Aradgjo,]., Fuentes, L.,
Kulesza, U., Moreira, A., Rashid, A., 2010. Relating Feature Models to Other Mod-
els of a Software Product Line - A Comparative Study of FeatureMapper and
VML*, Transactions on Aspect-Oriented Software Development VII - A Com-
mon Case Study for Aspect-Oriented Modeling, vol. 7. Springer Verlag, LNCS, pp.
69-114.

Hirschfeld, R., Igarashi, A., Masuhara, H., 2011. ContextFJ: a minimal core calculus
for context-oriented programming. In: Proceedings of the 10th FOAL Workshop,
ACM, pp. 19-23.

Hoffman, KJ., Eugster, P., 2008. Towards reusable components with aspects:
an empirical study on modularity and obliviousness. In: Proceedings of the
30th International Conference on Software Engineering, Leipzig, Germany, pp.
91-100.

Iborra, J., Pastor, O., Pelechano, V., 2006. Dealing with crosscutting concerns in a
model based software production method. In: Proceedings of the 2006 Interna-
tional Workshop on Early Aspects at ICSE, EA’06, ACM, New York, NY, USA, pp.
27-34, ISBN 1-59593-405-7.

Iwamoto, M., Zhao,]J., 2003. Refactoring aspect-oriented programs. In: 5th AOSD
Modeling with UML Workshop (AOM), San Francisco, USA.

Kastner, C., Apel, S., Kuhlemann, M., 2008. Granularity in software product lines. In:
ICSE, pp. 311-320.

Kamina, T., Aotani, T., Masuhara, H., 2011. Event(]J: a context-oriented programming
language with declarative event-based context transition. In: Proceedings of the
10th AOSD, ACM, pp. 253-264.

930 U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

Kande, M.M.,, Strohmeier, M.M.K.A., 2000. On the role of multi-dimensional separa-
tion of concerns in software architecture. In: Proceedings OOPSLA Workshop on
Advanced Separation of Concerns.

Katara, M., Katz, S., 2003. Architectural views of aspects. In: Proceedings of the 2nd
International Conference on Aspect-oriented Software Development, AOSD’03,
ACM, New York, NY, USA, pp. 1-10, ISBN 1-58113-660-9.

Kellens, A., et al., 2006. Managing the evolution of aspect-oriented software with
model-based pointcuts. In: Proc. ECOOP 2006, Nantes, France, pp. 501-525.
Kersten, M., Murphy, G.C., 2005. Mylar: a degree-of-interest model for IDEs. In:
Proceedings of the 4th International Conference on Aspect-Oriented Software
Development, AOSD 2005, Chicago, IL, USA, March 14-18, 2005, pp. 159-168.

Kersten, M., Murphy, G.C., 2006. Using task context to improve programmer pro-
ductivity. In: Proceedings of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2006, Portland, OR, USA, November
5-11, 2006, pp. 1-11.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,]., Irwin,
J., 1997. Aspect-oriented programming. In: Proc. ECOOP 1997, LNCS 1241, pp.
220-242.

Kiczales, G., Hilsdale, E., Hugunin,]., Kersten, M., Palm, J., Griswold, W., 2001. Getting
started with Aspect]. Communications of the ACM 44 (10), 59-65.

Koppen, C., Stoerzer, M., 2004. PCDiff: attacking the fragile pointcut problem. In:
Gybels, K., Hanenberg, S., Herrmann, S., Wloka,]. (Eds.), European Interactive
Workshop on Aspects in Software (EIWAS).

Krechetov, L, Tekinerdogan, B., Garcia, A., Chavez, C., Kulesza, U., 2006. Towards an
integrated aspect-oriented modeling approach for software architecture design.
In: Proc. AOM 2006 at AOSD 2006, Bonn, Germany.

Krueger, CW., 2001. Easing the transition to software mass customization. In:
Software Product-Family Engineering, 4th International Workshop, PFE 2001,
Bilbao, Spain, October 3-5, 2001, Revised Papers, Lecture Notes in Computer
Science, pp. 282-293.

Kulesza, U., Garcia, A., Bleasby, F., Lucena, C., 2005. Instantiating and customizing
product line architectures using aspects and crosscutting feature models. In:
Workshop on Early Aspects at OOPSLA 2005, San Diego, USA.

Kulesza, U.,Sant’Anna, C., Garcia, A., Coelho, R., von Staa, A., Lucena, C., 2006a. Quanti-
fying the effects of aspect-oriented programming: a maintenance study. In: Proc.
22nd IEEE Int’l Conf. on Software Maintenance, IEEE Comp. Soc., Washington, DC,
USA, pp. 223-233, ISBN 0-7695-2354-4.

Kulesza, U., Coelho, R., Alves, V., Neto, A.C., Garcia, A., Lucena, C., Staa, A.V., Borba, P.,
2006b. Implementing framework crosscutting extensions with EJPs and Aspect].
In: XX Brazilian Symp. on Software Engineering (SBES 2006).

Kulesza, U., de Lucena, CJ.P., Alencar, P.S.C., Garcia, A., 2006c. Customizing aspect-
oriented variabilities using generative techniques. In: Proceedings of the
Eighteenth International Conference on Software Engineering & Knowledge
Engineering (SEKE’2006), San Francisco, CA, USA, July 5-7, 2006, pp. 17-22.

Kulesza, U., Alves, V., Garcia, A., Lucena, C., Borba, P., 2006d. Improving extensibility
of object-oriented frameworks with aspect-oriented programming. In: Proc. 9th
Int’l Conf. on Software Reuse (ICSR 2006), pp. 231-245.

Kulesza, U., Alves, V., Garcia, A., Neto, A, Cirilo, E., de Lucena, C., Borba, P., 2007.
Mapping features to aspects: a model-based generative approach. In: Moreira,
A., Grundy, J. (Eds.), Early Aspects: Current Challenges and Future Directions,
vol. 4765 of Lecture Notes in Computer Science, Springer, Berlin/Heidelberg,
pp.155-174. ISBN 978-3-540-76810-4.

Lammel, R., 2002. A semantical approach to method-call interception. In: 1st Int’l
Conf. on Aspect-Oriented Software Development (AOSD 2002), pp. 41-55.

LatinAOSD, 2007. The Latin American Research Network on AOSD.
http://wiki.dcc.ufba.br/LatinAOSD/

Lee, K., Kang, K.C., Kim, M., Park, S., 2006. Combining feature-oriented analysis and
aspect-oriented programming for product line asset development. In: SPLC, pp.
103-112.

Lemos, O., Masiero, P., 2008. Integration testing of aspect-oriented programs: a
structural pointcut-based approach. In: XXII Brazilian Symp. on Software Engi-
neering (SBES 2008), pp. 49-64.

Lemos, O.,Masiero, P.,2011. A pointcut-based coverage analysis approach for aspect-
oriented programs. Information Sciences 181 (13),2721-2746, ISSN 0020-0255.

Lemos, 0., Vincenzi, A., Maldonado, J.C., Masiero, P.C., 2004. Teste de Unidade de Pro-
gramas Orientados a Aspectos. In: XVIII Brazilian Symp. on Software Engineering
(SBES 2004), Brasilia/DF, Brasil, pp. 55-70.

Lemos, O., Ferrari, F., Masiero, P., Lopes, C., 2006. Testing aspect-oriented program-
ming pointcut descriptors. In: Proc. 2nd Workshop on Testing AO Programs
(WTAOP) at ISSTA, ACM Press, Portland, USA, pp. 33-38, ISBN 1-59593-415-
4/06/0007.

Lemos, O., Vincenzi, A., Maldonado, J., Masiero, P., 2007. Control and data flow
structural testing criteria for aspect-oriented programs. Journal of Systems and
Software 80 (6), 862-882, ISSN 0164-1212.

Lemos, O., Franchin, 1., Masiero, P., 2009. Integration testing of object-oriented and
aspect-oriented programs: a structural pairwise approach for java. Science of
Computer Programming 74, 861-878, ISSN 0167-6423.

Lieberherr, K., Orleans, D., Ovlinger, J., 2001. Aspect-oriented programming with
adaptive methods. Communications of the ACM 44 (10), 39-41.

Lieberherr, K., 1996. Adaptive Object-oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company, Boston. ISBN 0-534-94602-X.

Lippert, M., Lopes, C.V., 2000. A Study on exception detection and handling using
aspect-oriented programming. In: 22nd Int’l Conf. on Software Engineering (ICSE
2000), Limerick, Ireland, pp. 418-427.

Lobato, C., Garcia, A., Kulesza, U., Staa, A.V., Lucena, C., 2008. Evolving and com-
posing frameworks with aspects: the mobigrid case. In: Proceedings of the

Seventh International Conference on Composition-Based Software Systems
(ICCBSS 2008), IEEE Computer Society, Washington, DC, USA, pp. 53-62,
http://dl.acm.org/citation.cfm?id=1343591.1343618, ISBN 978-0-7695-3091-8.

Lopes, C.V., 2005. AOP: a historical perspective (what’s in a name?). In: Filman et al.
(2005), pp. 97-122.

Loughran, N., Rashid, A., Zhang, W., Jarzabek, S., 2004. Supporting product line evo-
lution with framed aspects. In: Proc. of Workshop on Aspects, Components and
Patterns for Infrastructure Software (held with AOSD 2004).

Machado, I, Bonifacio, R., Alves, V., Turnes, L., Machado, G., 2011. Managing variabil-
ity in business processes: an aspect-oriented approach. In: Proc. Early Aspects
Workshop at AOSD 2011, ACM, New York, NY, USA, pp. 25-30, ISBN 978-1-4503-
0645-4.

Masuhara, H., Kiczales, G., 2003. Modeling Crosscutting in Aspect-Oriented Mech-
anisms. In: Cardelli, L. (Ed.), ECOOP, vol. 2743 of Lecture Notes in Computer
Science, Springer, pp. 2-28. ISBN 3-540-40531-3.

Medeiros, A., Silva, L., Batista, T., Minora, L., 2007. Requisitos e Arquitetura de Soft-
ware Orientada a Aspectos: Uma Integra¢ ao Sinérgica. In: XXI Brazilian Symp.
on Software Engineering (SBES 2007).

Medeiros, A., et al., 2007. MARISA-Uma Ferramenta para Mapeamento bidirecional
de Modelos Orientados a Aspectos: Requisitos e Arquitetura de Software. In:
1st Latin-American Work. on Aspect-Oriented Software Development (LA-WASP
2007), pp. 55-66.

Mellor, S., et al., 2004. MDA Distilled. Addison-Wesley, Redwood City, CA, USA. ISBN
0201788918.

Mens, T., Tourwe, T., 2004. A survey of software refactoring. IEEE Transactions on
Software Engineering 30 (2), 126-139.

Mens, K., 2002. Architectural aspects. In: Proceedings of AOSD 2002 Workshop
on Early Aspects: Aspect-Oriented Requirements Engineering and Architecture
Design.

Mezini, M. Ostermann, K., 2004. Variability management with feature-
oriented programming and aspects. In: Proc. 12th ACM SIGSOFT FSE,
pp. 127-136.

Molesini, A., Garcia, A., Batista, T., Chavez, C., 2010. Stability assessment of aspect-
oriented software architectures: a quantitative study. Journal of Systems and
Software.

Monteiro, M.P., Fernandes,].M., 2004. Object-to-aspect refactorings for feature
extraction. In: International Conference on Aspect-Oriented Software Develop-
ment (AOSD), ACM Press, Lancaster, UK.

Monteiro, M.P., Fernandes, J.M., 2005. Towards a catalog of aspect-oriented
refactorings. In: 4th International Conference on Aspect-Oriented Software
Development (AOSD), ACM Press, Chicago, USA, pp. 111-122.

Monteiro, M.P., Fernandes, .M., 2006. Towards a catalogue of refactorings and code
smells for aspect]. Transactions on Aspect-Oriented Software Development |
(2880), 214-258.

Monteiro, C., et al., 2007. The iAspectPlugin to automatize the identification of cross-
cutting concerns on i* models. In: 1st Latin-American Work. on Aspect-Oriented
Software Development (LA-WASP 2007).

Moreira, A., et al., 2002. Crosscutting quality attributes for requirements engineer-
ing. In: Proc. SEKE 2002, pp. 167-174.

Moreira, A., Rashid, A., Araujo, J., 2005. Multi-dimensional separation of concerns in
requirements engineering. In: Proceedings of the 13th IEEE International Con-
ference on Requirements Engineering, IEEE Computer Society, Washington, DC,
USA, pp. 285-296, ISBN 0-7695-2425-7.

Morell, LJ., 1990. A theory of fault-based testing. IEEE Transactions on Software
Engineering 16 (8), 844-857, ISSN 0098-5589.

Mortensen, M., Ghosh, S., 2006. Using aspects in object-oriented frameworks. In:
5th Int’l Conf. on Aspect-Oriented Software Development (AOSD 2006).

Neves, L., Teixeira, L., Sena, D., Alves, V., Kulesza, U., Borba, P., 2011. Investigating
the safe evolution of software product lines. In: GPCE.

e Oliveira, M.S., 2007. Modelagem de Arquitetura de Software Orientada a Aspectos
em UML 2.0. Master’s thesis. IME/R].

Opdyke, W., 1992. Refactoring Object-Oriented Frameworks. Ph.D. Thesis. University
of Illinois at Urbana Champaign.

Ossher, H., Tarr, P., 2001. Using multi-dimensional separation of concerns to
(re)shape evolving software. Communications of the ACM 44 (10), 43-50.

Pacios, S.F.,Masiero, P., Braga, R., 2006. Guidelines for using aspects to evolve product
lines. In: 3rd Brazilian Work. on Aspect-Oriented Software Development (WASP
2006), pp. 111-120.

Parnas, D., 1972. On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15 (12), 1053-1058.

Pereira, C., Braga, R., Masiero, P., 2008. Captor-AO: an application generator sup-
ported by aspect-oriented programming (in Portuguese only). In: Proc. Tools
Session at the SBCARS 2008, ISBN 978-85-7430-796-1, pp. 1-8.

Perry, D.E., Wolf, AL, 1992. Foundations for the study of software architecture,
SIGSOFT Software Engineering Notes 17, 40-52. ISSN:0163-5948.

Pinto, M., Fuentes, L., 2007. AO-ADL: an ADL for describing aspect-oriented
architectures. In: Proc. 10th Int'l Conf. on Early Aspects: Current Chal-
lenges and Future Directions, Springer-Verlag, Berlin, Heidelberg, pp. 94-114.
http://portal.acm.org/citation.cfm?id=1783274.1783283, ISBN 3-540-76810-6,
978-3-540-76810-4.

Pinto, M., et al., 2002. Separation of coordination in a dynamic aspect-oriented
framework. In: 1st Int’l Conf. on Aspect-Oriented Software Development (AOSD
2002).

Pinto, M., Fuentes, L., Valenzuela, J.A., Pires, P.F., Delicato, F.C., Marinho, E., 2009.
On the need of architectural patterns in AOSD for software evolution. In: Proc.
WICSA/ECSA 2009, pp. 245-248.

http://wiki.dcc.ufba.br/LatinAOSD/
http://dl.acm.org/citation.cfm?id=1343591.1343618
http://portal.acm.org/citation.cfm?id=1783274.1783283

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933 931

Piveta, E., Hecht, M., Pimenta, M., Price, R.T., 2005. Bad smells em sistemas orien-
tados a aspectos. In: XIX Brazilian Symp. on Software Engineering (SBES 2005),
Uberlandia, Brazil.

Piveta, E., Hecht, M., Pimenta, M., Price, R., 2006. Detecting bad smells in Aspect].
Journal of Universal Computer Science 12 (7), 811-827.

Piveta, E., et al., 2007. Avoiding bad smells in aspect-oriented software. In: 19th
Int’l Conf. on Software Engineering and Knowledge Engineering (SEKE), Boston,
USA.

Piveta, E., et al., 2008. Searching for opportunities of refactoring sequences: reducing
the search space. In: 32nd IEEE COMPSAC, IEEE Press, Turku, Finland.

Piveta, E., Moreira, A., Pimenta, M., Araujo, J., Guerreiro, P., Price, R.T., 2008. Ranking
refactoring patterns with the analytic hierarchy process. In: 10th Int’l Conf. on
Enterprise Information Systems (ICEIS), Barcelona, Spain.

Piveta, E.K., Moreira, A., Pimenta, M.S., Araujo, J., Guerreiro, P., Price, R.T., 2012. An
empirical study of aspect-oriented metrics, Science of Computer Programming.
ISSN 0167-6423.

Piveta, E., 2009. Improving the Search for Refactoring Opportunities on Aspect-
Oriented and Object-Oriented Software. Ph.D. Thesis. UFRGS.

Prehofer, C., 1997. Feature-oriented programming: a fresh look at objects. In: ECOOP,
pp. 419-443.

Ramos, R, et al., 2006. Avalia¢ ao da Qualidade de Documentos de Requisitos Orien-
tado a Aspectos. In: Proc. X Iberoamericano de Ingenieria de Req. y Ambientes
de Software (IDEAS 06).

Ramos, R., Castro, J., ao Aragjo, J., Moreira, A., Alencar, F., 2008. Refatora¢ ao
para Documento de Requisitos: Uma Abordagem Aspectual. IEEE Latin America
Transactions 6(3).

Rashid, A., Chitchyan, R., 2003. Persistence as an aspect. In: 1st Int’l Conf. on Aspect-
Oriented Software Development (AOSD 2002), pp. 759-764.

Rashid, A., Moreira, A., 2006. Domain models are NOT aspect free. In: Proceedings
of the 9th International Conference on Model Driven Engineering Languages
and Systems, MoDELS’06, Springer-Verlag, Berlin, Heidelberg, pp. 155-169, ISBN
3-540-45772-0, 978-3-540-45772-5.

Rashid, A., et al., 2002. Early aspects: a model for aspect-oriented requirements engi-
neering. In: Proc. 10th Anniv. IEEE Joint Int’l Conf. on Req. Engineering, IEEE
Comp. Soc.

Reina, A.M.,, Torres, J., 2005. Weaving Aspect] by means of transformations. In: Proc.
1st Workshop on Models and Aspects - Handling Crosscutting Concerns in
MDSD at ECOOP 2005.

Rojas, K.A.L, et al., 2009. Derivacién de casos de uso con aspectos a partir de mod-
elos organizacionales i*. In: Memorias de la XII Conferencia Iberoamericana de
Software Engineering (CIbSE 2009), pp. 253-258.

Rumbaugh, J., Jacobson, 1., Booch, G., 2004. Unified Modeling Language Reference
Manual. 2nd ed. Pearson Higher Education. ISBN 0321245628.

Saaty, T.L., 1990. How to make a decision: the analytic hierarchy process. European
Journal of Operational Research 48 (1), 9-26.

Saaty, T.L., 2003. Decision-making with the AHP: why is the principal eigenvector
necessary? European Journal of Operational Research 145 (1), 85-91.

Sampaio, A, et al.,, 2005. EA-Miner: a tool for automating aspect-oriented require-
ments identification. In: Proc. 20th IEEE/ACM Int'l Conf. on ASE, ACM, pp.
352-355.

Sande, M., Choren, R., Chavez, C., 2006. Mapping AspectualACME into UML2.0. In:
AOM 2006 at MODELS 2006, Genova, Italy.

Sant’'anna, C., Garcia, A. Chavez, C., Lucena, C, von Staa, AV, 2003. On
the reuse and maintenance of aspect-oriented software: an assessment
framework. In: XVII Brazilian Symp. on Software Engineering (SBES 2003),
pp.- 19-34.

Sant’Anna, C., Garcia, A., Kulesza, U., Lucena, C., von Staa, A., 2004. Design patterns
as aspects: a quantitative assessment. In: XVIII Brazilian Symp. on Software
Engineering (SBES 2004), Brasilia, Brazil.

Sant’Anna, C,, Figueiredo, E., Garcia, A., Lucena, C., 2007. On the modularity of soft-
ware architectures: a concern-driven measurement framework. In: Proc. ECSA
2007, pp. 207-224.

Sant’Anna, C,, et al., 2008. On the modularity assessment of aspect-oriented multi-
agent architectures: a quantitative study. [JAOSE 2, 34-61, 1746-1375.

Sant’Anna, C.,2008. On the Modularity of Aspect-Oriented Design: A Concern-Driven
Measurement Approach. Ph.D. Thesis. PUC-Rio.

Santos, A.L., Lopes, A., Koskimies, K., 2007. Framework specialization aspects. In:
Proceedings of the 6th International Conference on Aspect-Oriented Software
Development, AOSD '07, ACM, New York, NY, USA, pp. 14-24, ISBN 1-59593-
615-7.

Santos, L., Silva, L., Batista, T., 2011. On the integration of the feature model
and PL-AOVGraph. In: Proc. Early Aspects Workshop at AOSD 2011, ACM,
pp. 31-36.

Saraiva, D., Pereira, L., Batista, T. Delicato, F.C., Pires, P.F., 2010. Architecting
a model-driven aspect-oriented product line for a digital TV middle-
ware: a refactoring experience. In: Proceedings of the 4th European
conference on Software architecture, ECSA’'10, Springer-Verlag, Berlin,
Heidelberg, pp. 166-181, ISBN 3-642-15113-2, 978-3-642-15113-2,
http://dl.acm.org/citation.cfm?id=1887899.1887915

Schmidt, D.,2006. Guest Editor’s introduction: model-driven engineering. [IEEE Com-
puter 39 (2), 25-31.

Siegmund, N., Rosenmiiller, M., Kastner, C., Giarrusso, P.G., Apel, S., Kolesnikov, S.S.,
2011. Scalable prediction of non-functional properties in software product lines.
In: SPLC, pp. 160-169.

Silva, L., Leite, J., 2005a. Uma Linguagem de Modelagem de Requisitos Orientada a
Aspectos. In: Proc. WER 2005 - Workshop on Req. Engineering, pp. 13-25.

Silva, L., Leite, J., 2005b. Integra¢ ao de caracteristicas transversais durante a mod-
elagem de requisitos. In: XIX Brazilian Symp. on Software Engineering (SBES
2005), pp. 26-39.

Silva, L., et al., 2007. On the symbiosis of aspect-oriented requirements and architec-
tural descriptions. In: Proc. 10th Int’l Conf. on Early Aspects: Current Challenges
and Future Directions, Springer-Verlag, pp. 75-93.

Silva, C., etal.,2008. Tailoring an aspectual goal-oriented approach to model features.
In: SEKE 2008, pp. 472-477.

Silva, B., Figueiredo, E., Garcia, A., Nunes, D., 2009. On the support and applica-
tion of macro-refactorings for crosscutting concerns. In: III Brazilian Symp. on
Components, Architectures and Software Reuse (SBCARS 2009).

Silva, C., Castro, J., Aradjo, J., Moreira, A., Tedesco, P., Mylopoulos,]J., 2009b.
Advanced separation of concerns in agent-oriented design patterns. [JAOSE 3
(2/3),306-327.

Silva, B, Sant’Anna, C., Chavez, C., 2011. Concern-based cohesion as change prone-
ness indicator: an initial empirical study. In: Proc. 2nd Int'l workshop on
Emerging Trends in Software Metrics (WETSoM 2011), ACM, New York, NY, USA,
pp. 52-58, ISBN 978-1-4503-0593-8.

Silveira, F.F,, et al., 2005. The testing activity on the aspect-oriented paradigm. In:
Proc. 1st Workshop on Testing Aspect Oriented Programs at AOSD 2005, Chicago,
IL, USA.

Silveira, F.,2007. METEORA: Um Método de Teste Baseado em Estados para Software
de Aplicag ao Orientado a Aspectos. Ph.D. Thesis. ITA.

Simmonds, D., Solberg, A. Reddy, R. France, R, Ghosh, S. 2005. An
aspect oriented model driven framework, computing, pp. 119-130.
http://ieeexplore.ieee.org/Ipdocs/epic03/wrapper.htm?arnumber=1540673

Soares, S., Laureano, E., Borba, P.,2002. Implementing distribution and persistence
aspects with Aspect]. In: Proc. OOPSLA 2002. ACM Press, Seattle, USA, pp.
174-190.

Soares, S., Calheiros, F., Nepomuceno, V., Menezes, A., Borba, P., Alves, V., 2008. Sup-
porting software product lines development: FLiP - product line derivation tool.
In: OOPSLA Companion, pp. 737-738.

Soares, S., 2004. An Aspect-Oriented Implementation Method. Ph.D. Thesis. Infor-
matics Center, Federal University of Pernambuco - CIn-UFPE - Brazil, 2004.
Solberg, A.,2005. Using aspect oriented techniques to support separation of concerns

in model driven development. In: Proc. SAC 2005, pp. 121-126.

Sousa, G., Silva, 1., Castro,]J., 2003. Adapting the NFR framework to aspect-oriented
requirements engineering. In: XVII Brazilian Symp. on Software Engineering
(SBES 2003), pp. 83-98.

Srivisut, K., Muenchaisri, P., 2007. Defining and detecting bad smells of aspect-
oriented software. In: IEEE International Computer Software and Applications
Conference (COMPSAC), pp. 65-70.

Stein, D., Hanenberg, S., Unland, R., 2006. Expressing different conceptual models
of join point selections in aspect-oriented design. In: 5th Int’l Conf. on Aspect-
Oriented Software Development (AOSD 2006), AOSD '06, ACM, New York, NY,
USA, pp. 15-26.

Sullivan, K., et al., 2005. Information hiding interfaces for aspect-oriented design. In:
Proc. 10th ESEC/FSE-13, ACM, New York, NY, USA, pp. 166-175, ISBN 1-59593-
014-0.

Sztajnberg, A., et al., 1999a. Configurando protocolos de intera??o na abordagem
R-RIO. In: XIII Brazilian Symp. on Software Engineering (SBES 1999).

Sztajnberg, A., et al., 1999b. Towards integrating meta-level programming and con-
figuration programming. In: XIII Brazilian Symp. on Software Engineering (SBES
1999), pp. 309-323.

Tanter, E., 2010. Execution levels for aspect-oriented programming. In: Proceedings
of the 9th AOSD.

TAOSD, 2006. Transactions on Aspect-Oriented Software Development.
http://www.springer.com/computer/Incs?SGWID=0-164-2-109318-0

Tarr, P., Ossher, H., Harrison Jr., W.S.S,, 1999. N degrees of separation: multi-
dimensional separation of concerns. In: 21st Int’l Conf on Software Engineering
(ICSE’99), pp. 107-119.

Taveira,].C., et al., 2009. Assessing intra-application exception handling reuse with
aspects. In: XXIII Brazilian Symp. on Software Engineering (SBES 2009), Forta-
leza, Brazil.

Teixeira, L., Borba, P., Gheyi, R., 2011. Safe composition of configuration knowledge-
based software product lines. In: SBES, pp. 263-272.

Uetanabara, J., Chavez, C., Camargo, V., 2009. UML-AOF: a profile for modeling
aspect-oriented frameworks. In: Proc. AOM at AOSD 2009.

Uetanabara,]., Penteado, R., Camargo, V.,2010. An overview and an empirical evalua-
tion of UML-AOQF: a UML profile for aspect-oriented frameworks. In: 25th Annual
ACM Symp. on Applied Computing (ACM SAC 2010), pp. 1-6.

Valente, M.T., Malta, M.N., Domingues, S., 2009. Guidelines for enabling the extrac-
tion of aspects from existing object-oriented code. Journal of Object Technology
8(3),101-119.

Valente, M.T., Couto, C., Faria,]., Soares, S., 2010. On the benefits of quantification in
Aspect] systems. Journal of the Brazilian Computer Society 16 (2), 133-146.
Valente, M.T., Borges, V., Passos, L., 2012. A semi-automatic approach for extract-
ing software product lines. IEEE Transactions on Software Engineering 38 (4),

737-754.

van Dooren, M., Steegmans, E., 2005. Combining the robustness of checked excep-
tions with the flexibility of unchecked exceptions using anchored exception
declarations. In: Proceedings of OOPSLA'2005, pp. 455-471.

Venners, B., Eckel, B., 2003. The Trouble with Checked Excep-
tions: A Conversation with Anders Hejlsberg, Part II. Available at
http://www.artima.com/intv/handcuffs.html. Last visited in January 9th
2012.

http://dl.acm.org/citation.cfm?id=1887899.1887915
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1540673
http://www.springer.com/computer/lncs?SGWID=0-164-2-109318-0
http://www.artima.com/intv/handcuffs.html

932 U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933

Wampler, D., 2003. The Role of Aspect-Oriented Programming in OMG’s Model-
Driven Architecture.

Wand, M., Kiczales, G., Dutchyn, C., 2004. A semantics for advice and dynamic join
points in aspect-oriented programming. ACM Transactions on Programming
Languages and Systems 26 (5), 890-910.

WASP, 2004. 1st Brazilian Workshop on
yahoo.com/group/aosd-br/

WASP, 2005. 2nd Brazilian Workshop on AOSD. www.labes.icmc.usp.br/wasp2005

WASP, 2006. 3rd Brazilian Workshop on AOSD. http://www.les.inf.
puc-rio.br/wasp2006

Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W., Schwinger, W., Kap-
sammer, E., 2011. A survey on UML-based aspect-oriented design modeling.
ACM Computing Surveys 43 (4), 28.

Xu, D., Xu, W., Nygard, K., 2005. A state-based approach to testing aspect-oriented
programs. In: Proceedings of the 17th International Conference on Software
Engineering and Knowledge Engineering (SEKE), Taiwan.

Yy, Y., Leite,]., Mylopoulos, ., 2004. From goals to aspects: discovering aspects from
requirements goal models. In: Proc. 12th IEEE Int’l Requirements Engineering
Conf, pp. 38-47.

Yu, E.S.K.,, 1997. Towards modeling and reasoning support for early-phase require-
ments engineering. In: Proc. of the 3rd IEEE International Symposium on
Requirements Engineering, RE'97, IEEE Computer Society, Washington, DC, USA.
http://dl.acm.org/citation.cfm?id=827255.827807. ISBN 0-8186-7740-6.

Zhao,]., Xu, B., 2004. Measuring aspect cohesion. In: Wermelinger, M., Margaria,
T. (Eds.), 7th International Conference Fundamental Approaches to Software
Engineering (FASE 2004), vol. 2984 of Lecture Notes in Computer Science,
Springer, pp. 54-68. ISBN 3-540-21305-8.

Zhao, J., 2002. Tool support for unit testing of aspect-oriented software. In: OOPSLA
2002 Workshop on Tools for AOSD, Seattle, WA, USA.

Zhao, J., 2003. Data-flow-based unit testing of aspect-oriented programs. In: Proc.
27th Annual [EEE Int'l Computer Software and Applications Conf, IEEE Computer
Society, Dallas/Texas, USA, pp. 188-197.

Zhao, J., 2004. Measuring coupling in aspect-oriented systems. In: Proceedings of
the 10th International Software Metrics Symposium, (Late Breaking Paper).
Zschaler, S., Sanchez, P., Santos, J.P., Alférez, M., Rashid, A., Fuentes, L., Moreira, A.,

Aradjo, J., Kulesza, U., 2009. VML* - a family of languages for variability man-
agement in software product lines. In: Software Language Engineering, Second
International Conference, SLE 2009, Denver, CO, USA, October 5-6, 2009, Revised

Selected Papers, Springer, pp. 82-102.

AOSD. http://tech.groups.

Uird Kulesza is an Associate Professor at the Federal University of Rio Grande do
Norte (UFRN), Brazil. He obtained his PhD in Computer Science at PUC-Rio - Brazil
(2007). His main research interests include: software product lines, software evo-
lution, and generative development. He has co-authored over 100 referred papers
in journals, conferences, and book chapters. He worked as a post-doc researcher
member of the AMPLE project (2007-2009) - Aspect- Oriented Model-Driven Prod-
uct Line Engineering (www.ample-project.net) at the New University of Lisbon,
Portugal.

Sérgio Soares received his PhD in Computer Science at UFPE - Brazil (2004). He
is an Associate Professor at the Federal University of Pernambuco (UFPE) and
Executive Coordinator of INES, the National Institute of Science and Technology
for Software Engineering. His main research interests include Empirical Software
Engineering, Software Product Lines, Software Evolution, Software Modularity, and
Object-Oriented Programming.

Christina von Flach Garcia Chavez received her PhD in Computer Science at PUC-
Rio - Brazil (2004). She is an Associate Professor at the Federal University of Bahia
(UFBA) - Brazil. Her main research interests include Software Evolution and Software
Design, with emphasis on architecture, principles, patterns and practices, digital
archeology of software and Software Engineering Education.

Fernando Castor is an Assistant Professor at the Federal University of Pernambuco
(UFPE) - Brazil. He holds a PhD in Computer Science from UNICAMP - Brazil. His
is interested in developing techniques, tools, and methods to ease the construc-
tion and maintenance of large-scale dependable systems. His main research areas
are exception handling, fault tolerance, concurrent programming, and advanced
modularization techniques.

Paulo Borba is Professor of Software Development at the Informatics Center of the
Federal University of Pernambuco, Brazil, where he leads the Software Productivity
Group. His main research interests are in the following topics and their integration:
software modularity, software product lines, and refactoring.

Carlos Lucena is a Full Professor of Computer Science at the Pontifical Catholic Uni-
versity of Rio de Janeiro (PUC-Rio) since 1982 and an Adjunct Professor of Computer
Science and a Senior Research Associate of the Computer Systems Group at the
University of Waterloo, which he has visited on a regular basis since 1975. He com-
pleted his undergraduate studies in Economics and Mathematics between 1962 and
1965 at PUC-Rio and received his Masters degree from the University of Waterloo
(1969), Canada, and his PhD from the University of California in Los Angeles (1974).
His current research focuses on agent-oriented software engineering, multi-agent
applications, autonomic computing and software reuse.

Paulo Masiero is a Professor of the Department of Computing Systems of the Insti-
tute of Mathematics and Computer Science of the Universidade de Sdo Paulo, Brazil,
where he is one of the leaders of the Software Engineering Research Group. His

main research interests are testing of aspect-oriented programs, web services and
embedded systems, software product lines, software design.

Claudio Sant’Anna received her PhD in Computer Science at PUC-Rio - Brazil (2008).
He is an Assistant Professor at the Federal University of Bahia (UFBA) - Brazil.
His main research interests include software design, with emphasis on modula-
rity, separation of concerns, comprehension, metrics, visualization, architecture,
aspect-oriented programming and empirical software engineering.

Fabiano Ferrari received his PhD in Computer Science from the University of Sao
Paulo (USP)in 2010. He is currently an Assistant Professor at the Computing Depart-
ment of the Federal University of Sdo Carlos (UFSCar). His research interests include:
testing of Object-Oriented and Aspect-Oriented software, software metrics, Exper-
imental Software Engineering and Agile Methods.

Vander Alves earned his PhD in Computer Science from the Federal University of
Pernambuco (UFPE), in 2007. Since then, he held postdocs positions at Lancaster
University (2007-2008) and at Fraunhofer IESE (2008-2009). He is interested in
research and development of Software Product Lines and currently holds the tenured
position of Professor Adjunto 2 at University of Brasilia (UnB).

Roberta Coelho is an Associate Professor at Federal University of Rio Grande do
Norte, Brazil. She holds a PhD in Computer Science fom Pontifical Catholic University
of Rio (PUC-Rio) (2004-2008). She have conducted empirical studies in the context
of reliability of AO applications, and her research interests include static analysis,
exception handling, dependability and empirical software engineering.

Eduardo Figueiredo is an Assistant Professor at the Federal University of Minas
Gerais (UFMG) since 2010. He received his PhD degree in Software Engineering from
Lancaster University (UK) in 2009. His research interests include aspect-oriented
programming, software product lines, software reuse, empirical software engineer-
ing, and software metrics.

Paulo F. Pires is currently an Associate Professor of the Federal University of Rio
de Janeiro and also a member of the Centre for Distributed and High Performance
Computing at the University of Sydney. He received his PhD from Federal University
of Rio de Janeiro, Brazil, in 2002.

Flavia C. Delicato received her PhD from Federal University of Rio de Janeiro, Brazil,
in 2005. She is currently an Associate Professor of the Federal University of Rio de
Janeiro. In 2010 she was a visiting academic at the University of Sydney, Australia.
She integrates the Centre for Distributed and High Performance Computing at the
University of Sydney. She participates in several research projects with funding from
International and Brazilian government agencies.

Eduardo Piveta holds a PhD in Computer Science from Federal University of Rio
Grande do Sul (UFRGS). His research interests are mainly related to programming
languages, and to the design, implementation, and evolution of software systems.
Currently he is a lecturer at Universidade Federal de Santa Maria (UFSM) at Santa
Maria, Brazil.

Carla Silva received her PhD in Computer Science at UFPE - Brazil (2007). She is
an Associate Professor at the Federal University of Pernambuco (UFPE), where she
is member of the Requirements Engineering Laboratory (LER). Her main research
interests include Requirements Engineering, Agent Oriented Development, Aspect
Oriented Development, Model-driven Development and Software Product Lines.

Valter Camargo holds a PhD in Software Engineering from University of Sdo Paulo.
Currently, he is an assistant professor at the Compurting Department in Fed-
eral University of Sdo Carlos (UFSCar), Brazil. His research interests involve Reuse
(Frameworks and Software Product Lines), ADM (architecture-driven moderniza-
tion), aspect-oriented frameworks and model-driven engineering.

Rosana Braga is an Assistant Professor of the Department of Computing Systems of
the Institute of Mathematics and Computer Science at Universidade de Sdo Paulo.
Her research at the Software Engineering Research Group comprise software prod-
uct lines, aspect-oriented software development, component and service oriented
architectures, model-driven development, application generators, frameworks, pat-
terns, and pattern languages.

Julio Leite is an Associate Professor at PUC-Rio; member of the Working Group
2.9 (Software Requirements Engineering) of IFIP (International Federation for Infor-
mation Processing); member of the editorial board of the Journal of Requirements
Engineering Springer; has been a member, since 1993, of the program commit-
tee of the IEEE international conference on requirements (RE); member of the
Association for Computing Machinery and the IEEE Computer Society; founding
member of the Brazilian Computer Society (SBC), co-editor of the book Per-
spectives on Software Requirements and co-founder of the WER (Workshop on
Requirements Engineering) series and of the FEES (Education Forum in Software
Engineering).

Otavio Lemos received his M.Sc. (2005) and D.Sc. (2009) degrees in computer sci-
ence from the University of Sio Paulo (USP). He was a visiting researcher at UCIrvine
from January to July 2007, and from June to August 2012. He’s currently an Assis-
tant Professor at the Federal University of Sdo Paulo (UNIFESP), doing research on
software testing, reuse, and experimentation.

Nabor Mendong¢a has a PhD in Computing from Imperial College London - U.K.
(1999). He is a Titular Professor at the University of Fortaleza (UNIFOR), Brazil. His

http://wiki.dcc.ufba.br/WASP04/WebHome
http://wiki.dcc.ufba.br/WASP04/WebHome
http://www.labes.icmc.usp.br/wasp2005
http://www.les.inf.puc-rio.br/wasp2006
http://www.les.inf.puc-rio.br/wasp2006

U. Kulesza et al. / The Journal of Systems and Software 86 (2013) 905-933 933

main research interests are distributed systems, software engineering, middleware
and cloud computing.

Thais Batista received her PhD in Computer Science at PUC-Rio - Brazil (2000). She
is an Associate Professor at the Federal University of Rio Grande do Norte (UFRN) —
Brazil. Her main research interests include Software Architecture, Software Product
Lines, Modularization, Middleware and Cloud Computing.

Rodrigo Bonifdcio is an assistant professor at the Computer Science Department
| University of Brasilia. He received his PhD in Computer Science from the Infor-
matics Center / Federal University of Pernambuco. His research interests include:
automated analysis and derivation of software product liens and empirical software
engineering.

Nélio Cacho is an assistant professor in computer science at the Federal University
of Rio Grande do Norte, Brazil. His research interests include exception handling,
aspect-oriented programming, software product lines, and empirical software engi-
neering. He received his PhD in computer science from the University of Lancaster
(2008).

Lyrene Silva received her PhD in Computer Science at PUC-Rio, Brazil (2006). She
is an Assistant Professor at the Federal University of Rio Grande do Norte (UFRN) —
Brazil. Her research interests include Requirements Engineering, Software Product
Line and Domain Modeling.

Arndt von Staa received his PhD degree in Computer Science from the University
of Waterloo, Canada (1974). He is a Full Professor at PUC-Rio. His main research
interests include modularity, software quality, testing, and CASE tools.

Fabio Silveira received his PhD in Computer Science from the Technological Institute
of Aeronautics (ITA) in 2007. He is currently an Assistant Professor at the Science and
Technology Institute of the Federal University of Sdo Paulo (UNIFESP). His research
interests include: Object-Oriented and Aspect-Oriented software testing, Experi-
mental Software Engineering, Agile Methods, and Metadata.

Marco Tdlio Valente is an assistant professor in the Computer Science Depart-
ment at the Federal University of Minas Gerais, Brazil. His research interests include

software architecture, software remodularization and software maintenance and
evolution. Valente has a PhD in computer science from the Federal University of
Minas Gerais.

Fernanda Alencar received her Ph.D. in Computer Science (1999) at Federal Uni-
versity of Pernambuco, Postdoctoral at the University of Lisbon, Portugal (2006)
and Postdoctoral Universidad Politécnica de Valencia (2008-2009). She is currently
Associate Professor at Federal University of Pernambuco. Her main research inter-
est include requirement engineering, agent oriented development, aspect-oriented
software engineering, development driven by models and sociotechnical systems.

Jaelson Castro is an associate professor at the Universidade Federal de Pernambuco,
Brazil, where he leads the Requirements Engineering Laboratory (LER), since 1992.
He received his Ph.D. in 1990 from Imperial College, London. His research interests
include software engineering, requirements engineering, agent-oriented devel-
opment, aspect-oriented development, model-driven development, and software
product lines.

Ricardo Ramos received his PhD in Computer Science at UFPE - Brazil (2009). He is
an Associate Professor at the Federal University of Vale do Sao Francisco (UNIVASF).
His main research interests include requirement engineering, distance learning,
educational games and Object-Oriented Programming.

Rosangela Penteado is an Associate Professor of Computing Department at the
Federal University of Sao Carlos. She received her Ph.D from the University of
Sao Paulo. Her research interests include: Object-Oriented and Aspect-Oriented
Software Reengineering, Software Maintenance and Evolution, Frameworks, Model-
Driven Development, Software Product Lines.

Cecilia Rubira is a Full Professor of the University of Campinas (UNICAMP), Brazil.
She received her Ph.D. in Computing Science (1994) from the University of New-
castle, UK. Her current research interests are fault tolerance, exception handling,
software architectures, component-based software engineering, software product
lines and aspect-based software development. She has co-authored more than 100
scientific papers, book chapters, and books in these areas, and also supervises a
number of MSc and PhD students at UNICAMP.

	The crosscutting impact of the AOSD Brazilian research community
	1 Introduction
	2 AOSD-BR timeline
	2.1 The first steps
	2.2 Bringing together AOSD researchers from different Brazilian universities
	2.3 Encouraging the cooperation between Brazilian research groups
	2.4 Crossing the borders
	2.5 Promoting the cooperation between the AOSD-BR community and their South America neighbors
	2.6 Inviting international senior professors and researchers
	2.7 Promoting the cooperation between the AOSD-BR community and international research groups
	2.8 Hosting the AOSD conference in Brazil

	3 AOSD-BR research areas
	3.1 Early aspects
	3.1.1 Key challenges
	3.1.2 Addressing the challenges
	3.1.3 Comparison with research conducted by the international community
	3.1.4 Open issues

	3.2 Modeling and model-based techniques
	3.2.1 Key challenges
	3.2.2 Addressing the challenges
	3.2.3 Comparison with research conducted by the international community
	3.2.4 Open issues

	3.3 Refactoring
	3.3.1 Key challenges
	3.3.2 Addressing the challenges
	3.3.3 Comparison with research conducted by the international community
	3.3.4 Open issues

	3.4 Testing
	3.4.1 Key challenges
	3.4.2 Addressing the challenges
	3.4.3 Comparison with research conducted by the international community
	3.4.4 Open issues

	3.5 Exception handling
	3.5.1 Key challenges
	3.5.2 Addressing the challenges
	3.5.3 Comparison with research conducted by the international community
	3.5.4 Open issues

	3.6 Metrics
	3.6.1 Key challenges
	3.6.2 Addressing the challenges
	3.6.3 Comparison with research conducted by the international community
	3.6.4 Open issues

	3.7 Product-lines and frameworks
	3.7.1 Key challenges
	3.7.2 Addressing the challenges
	3.7.3 Comparison with research conducted by the international community
	3.7.4 Open issues

	4 AOSD-BR research impact
	4.1 Intellectual production, collaboration, and human resources training
	4.2 Research impact quantification
	4.2.1 Analyzing the international impact of the AOSD-BR community
	4.2.2 Analyzing the impact of the AOSD-BR community compared with the SE Brazilian community
	4.2.3 AOSD-BR most cited papers, awards & benchmarks

	5 Conclusions
	5.1 Main results
	5.2 Lessons
	5.3 Future work

	Acknowledgements
	References

