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Abstract. Locating program element(s) relevant to a particular feature is an important step in efficient 
maintenance of a software system. The existing feature location techniques analyze each feature 
independently and perform a one-time analysis after being provided an initial input. As a result, these 
techniques are sensitive to the quality of the input. In this paper, we propose to address the above issues in 
feature location using an iterative context-aware approach. The underlying intuition is that features are not 
independent of each other, and the structure of source code resembles the structure of features. The 
distinguishing characteristics of the proposed approach are: (1) it takes into account the structural similarity 
between a feature and a program element to determine feature-element relevance; (2) it employs an 
iterative process to propagate the relevance of the established mappings between a feature and a program 
element to the neighboring features and program elements. We evaluate our approach using two different 
systems, DirectBank, a small-scale industry financial system, and Linux kernel, a large-scale open-source 
operating system. Our evaluation suggests that the proposed approach is more robust and can significantly 
increase the recall of feature location with only a minor decrease of precision.
Keywords: feature location, traceability recovery, information retrieval, structural similarity

1. Introduction
Software maintenance tasks, such as bug fixes and feature enhancements, often originate from the users 

of a system. The description of these tasks is often expressed in terms of features that are observable to the 
users. Locating program element(s) relevant to a particular feature (i.e., feature location) is an important and 
recurring step in efficient maintenance of a software system. Researchers have presented techniques to 
provide automated assistance in feature location. In particular, researchers have investigated using 
Information Retrieval (IR) (i.e., lexical analysis) (Marcus and Maletic, 2003; Poshyvanyk and Marcus, 2007; 
Zhao et al., 2006; Marcus et al., 2004), static analysis (Warr and Robillard, 2007), dynamic analysis 
(Eisenbarth et al., 2003), and the hybrid of several analysis techniques (Poshyvanyk and Gueheneuc, 2007). 

These existing techniques analyze each feature independently, ignoring the interdependencies (i.e., 
structural context) of features and the interdependencies of program elements. Furthermore, they perform a 
one-time analysis after being provided an initial input. As a result, these techniques are sensitive to the 
quality of the input, for example, the quality of feature descriptions, the quality of the identifiers and 
comments of program elements, or the availability of carefully designed test cases. 

To address the above issues, we propose an Iterative Context-aware approach to automatic Feature 
Location (ICFL). Our ICFL approach is inspired by two lines of research. First, research on domain 
engineering (Kang et al., 1990; Zhang et al., 2006) suggests that features are not independent of each other, 
for example, a feature may use, extend, or refine other features; features and their interdependencies form 
some forms of feature models (Peng et al., 2006). Furthermore, using appropriate reverse-engineering 
techniques (such as She et al., 2011; Dumitru et al., 2011; Yang et al., 2009), we can construct such feature 
models from existing requirement documents and source code with the help of domain experts. Second, 
research on distributed information retrieval (Ermolayev et al. 2005) suggests that similar elements in two 
different knowledge models usually have similar structural contexts. These two lines of research suggest that 
in addition to the “local” properties (such as lexical descriptions) of features and program elements the 
structural context of features and program elements can serve as the other important factor for determining 
the relevance between features and program elements.

Based on the above observations, our ICFL approach takes as input a requirement model that captures 
features and their interdependencies and a program model that captures program elements and their 
interdependencies. It solves feature location problem by computing many-to-many feature-element 
mappings between the two input models. ICFL measures the relevance between a feature and a set of 
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program elements based on their lexical and structural similarity (Section 3.3). The lexical similarity 
measures the similarity of feature description and source code (e.g. identifiers and comments). The structural 
similarity measures how much of the structural context of a feature can be mapped to the structural context
of a set of program elements based on already-established feature-element mappings.

ICFL uses a greedy best-first search algorithm to incrementally recover feature-element mappings. It 
employs an iterative process to propagate the knowledge of the established mappings between a feature and 
a set of program elements to the neighbouring features and program elements (Section 3.4). The underlying 
intuition is that the more feature-element mappings ICFL recovers, the more likely it becomes that ICFL 
may recover further related feature-element mappings. To avoid the negative impact of erroneously feature-
element mappings on the subsequent mapping iterations, ICFL starts with a high initial similarity threshold 
and gradually decreases the similarity threshold in the subsequent iterations. This strategy ensures that 
feature-element mappings with higher similarities would be identified first and then these established 
mappings would help to identify more feature-element mappings in the subsequent iterations.

We evaluate our ICFL approach using two subject systems, DirectBank system and Linux kernel. The 
DirectBank system is a small-scale Java-based financial system from our industry partner, Wingsoft Ltd., 
which provides bank interfacing services for cashiers. DirectBank system consists of 30K lines of code, 71 
features and 951 feature interdependencies, 53 classes and 414 methods. The Linux kernel is an open source 
operating system kernel written in C; it consists of about 12 million lines of code, 2000 directories and 
28,024 files, and 155,266 C functions. Furthermore, Linux kernel contains about 700 Kconfig (a Linux-
kernel specific feature modelling language (Berger et al., 2010; She et al., 2010)) files, from which we 
automatically extract the feature model of Linux kernel (consisting of 6,052 features and 1,410,830
interdependencies). We compare our ICFL approach with an IR-based approach to feature location (Zhao et 
al., 2006). Our evaluation suggests that the proposed iterative context-aware approach to feature location is 
more robust and can significantly increase the recall of feature-element mappings with only a slight decrease
in the precision.

The remainder of the paper is organized as follows. Section 2 introduces related work. Section 3
describes the proposed ICFL approach, including an overview of the ICFL algorithm, meta-model, similarity 
metrics, the details of the ICFL algorithm and the output. Section 4 presents the evaluation of our approach 
with DirectBank and Linux kernel systems. Section 5 discusses several relevant issues and threats to validity 
of our ICFL approach. Section 6 concludes and outlines future work.

2. Related Work
A large number of techniques for feature location have been proposed. They can be divided into (a) IR-

based approaches, such as Latent Semantic Indexing (LSI) (Marcus and Maletic, 2003; Poshyvanyk and 
Marcus, 2007; Marcus et al., 2004), (b) dynamic approaches that analyze execution scenarios (Eisenbarth et 
al., 2003), and (c) hybrid approaches that combine information retrieval, static and/or dynamic analysis 
(Poshyvanyk and Gueheneuc, 2007). Dit et al. (Dit et al., 2011) provides a comprehensive survey of existing 
feature location techniques.

Among IR-based feature location approaches, Latent Semantic Indexing (LSI) is frequently used to 
capture the essential semantic information of each feature by dimension reduction (Marcus et al., 2004). 
Poshyvanyk and Marcus (Poshyvanyk and Marcus, 2007) propose to combine LSI-based analysis and 
Formal Concept Analysis (FCA). FCA is employed to analyze the relations between program elements and 
features (called objects and attributes in FCA respectively). Dynamic-analysis based feature location
approaches, such as (Eisenbarth et al., 2003), examine traces collected from a set of scenarios of system 
executions; some of these scenarios execute features, while the others do not. A recent work by Kazato et al. 
(Kazato et al., 2012) presents a feature location approach for multi-layer systems, which merges execution 
traces collected in each layer using dynamic analysis and then uses FCA to identify collaborative program 
elements for each feature. Poshyvanyk and Gueheneuc (Poshyvanyk and Gueheneuc, 2007) propose a hybrid 
approach to combine dynamic analysis (by scenario-based probabilistic ranking of events) and information 
retrieval (LSI-based technique) to overcome the uncertainty in decision makings of feature location.

These feature location approaches analyze each feature independently and perform a one-time analysis. 
For example, in IR-based feature location approaches features are considered as separate concepts with 
different descriptions; and in dynamic-analysis based approaches, features are only connected to relevant 
execution scenarios.  The mappings between features and program elements are established by examining 
only such “local” properties. Adams et al. (Adams et al., 2010) presents COMMIT, a history-based
technique for mining crosscutting concerns (features). This technique identifies weighted relations between 
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sub-concerns and thus reconstructs composite concern as multiple interconnected sub-concerns. In contrast, 
our ICFL approach takes into account the interdependencies (i.e., structural context) of features and program 
elements and performs an iterative process for determining the program elements’ relevance to the features.
Our position paper (Peng et al., 2011) introduces basic concepts of ICFL, while in this paper we illustrate our 
ICFL approach with more examples and evaluate ICFL with a large-scale empirical study using Linux 
kernel.

Zhao et al. (Zhao et al., 2006) present a two-phase approach for feature location called SNIAFL. 
SNIAFL first applies an IR technique to identify an initial set of feature-element mappings based on the 
lexical description of features and program elements; it considers features as individual requirements units 
with lexical descriptions. Then, SNIAFL enriches the initial mappings by exploring only program call graph.
In a recent work, McMillan et al. (McMillan et al., 2011) presents a code search system called Portfolio. It 
combines information retrieval and call-graph analysis for feature location. Similar to SNIAFL, Portfolio
first finds initial focus points (relevant functions) by matching source code and keywords from queries. Then 
it uses PageRank and Spreading Activation Network (SAN) to rank the relevance of focus points. These two 
approaches consider only code-level structural information but not feature-level structural information. The 
quality of the initial feature-element mappings greatly affects the quality of the final results. Furthermore, 
SNIAFL uses code-level structural information in a separate phase to “improve” (e.g. extend or rank) the 
initial IR-based search results. In contrast, our ICFL approach considers the structural context of both 
features and program elements and measures the overall similarity between a feature and a program element 
based on both their lexical description and structural context at the same time. Furthermore, the iterative 
matching process of our approach allows ICFL to identify feature-element mappings with high similarities 
initially, and then identify more and more feature-element mappings in the subsequent iterations.

Lucia et al. (De Lucia et al., 2008) propose an incremental IR-based feature location approach and 
conduct a comparative study of one-shot and incremental approaches. However, this approach analyzes only 
the lexical descriptions and does not consider the structural context in its iterative feature location process. 
Their incremental process is guided by the incrementally decreased similarity threshold. This gives users the 
control over the number of validated correct links that they are interested in. This incremental process 
usually causes a significant decrease in precision with the increase in recall as the similarity threshold 
decreases, while our approach can significantly increase the recall of feature location with only a slight 
decrease of precision due to the consideration of structural context of features and program elements in the 
iterative matching process.

3. The Approach
In this section, we first give an overview of our ICFL approach. We then describe the meta-model 

assumed by our ICFL approach as the underlying representation for capturing the structural context (i.e., 
interdependencies) of features and program elements. Next, we discuss the similarity metrics on which ICFL 
relies to determine a program element’s relevance to a feature. Finally, we present the iterative feature 
location algorithm and the output.

Source 
Code

Program
Model

Feature
Model

Static/Dynamic 
Program Analysis

Feature Model 
Creation

Lexical Similarity 
Computation

Iterative 
Matching

Product
Document

System Expert feature 
description

identifiers and 
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program elements and program context

lexical 
simialrity Feature-Element

Mapping Pairs

Figure 1. Overview of the ICFL approach

3.1 Overview

Figure 1 presents an overview of our ICFL approach. The program model can be easily extracted using 
static or dynamic program analysis techniques, which capture the lexical description (e.g. identifiers and 
comments) and the structural information of program elements. The feature model is usually created by 
system experts. For example, software product lines such as Linux kernel are equipped with feature models
for feature management and product derivation (Berger et al., 2010). In the absence of such forward-
engineered feature models, feature models can be reverse-engineered from existing product documents and 
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source code (She et al., 2011; Dumitru et al., 2011; Yang et al., 2009). Feature models capture feature 
descriptions and the interdependencies between features.

Lexical similarity can be computed between feature description and program description (i.e., identifiers 
and comments) using IR techniques. Furthermore, structural feature relations and program relations are 
extracted from feature model and program model as feature and program contexts, respectively. Then based 
on those already established feature-element mapping pairs, the structural similarity between a feature f and 
a program element p can be computed by evaluating how much of f’s neighbouring features and their 
relations can be mapped to p’s neighbouring program elements and their relations according to predefined 
mapping schema between feature relation types and program relation types.

Based on structural and lexical similarities between features and program elements, ICFL uses a greedy 
best-first search algorithm to incrementally recover feature-element mapping pairs. It employs an iterative 
process with several rounds of mapping. The initial (first) round mapping is based on lexical similarity only, 
and in following rounds lexical similarity and structural similarity are combined for determining the 
correspondences between features and program elements. In each round, if some candidate feature-element
mapping pairs are identified, then the structural contexts of these newly mapped feature-program-elements 
pairs are activated, and the similarities of related not-yet mapped candidate pairs will be re-computed. As a 
result, more mapping pairs may be accepted due to the similarity re-computation in the next round.

In the first few iterations, lexical similarity is often the main factor for determining the correspondences 
between features and program elements. However, in the following rounds of iterative mapping, as more and 
more structural contexts of already-established feature-elements mappings are activated, structural similarity 
plays an increasingly significant role in determining the mappings between features and program elements.
To minimize the negative impact of erroneous feature-element mapping pairs on the following mapping 
iterations, ICFL adopts the strategy of a high initial threshold with gradual concession in subsequent 
iterations. This strategy ensures that feature-element mappings (especially those identified in initial iterations 
of ICFL) are most likely correct. 

3.2 Meta-model of the Feature and Program Models

Our ICFL approach solves the feature location problem by computing many-to-many feature-element 
mappings between the two input models, i.e., a feature model representing features and their 
interdependencies as well as a program model representing program elements and their interdependencies, 
respectively. The meta-model of the input models that ICFL assumes is a typed directed graph.

In a typed directed graph, each graph node represents one individual element of the model, associated 
with a node type. In this study, a feature model consists of two types of graph nodes, i.e., use-observable 
functional features and business objects. A business object denotes a user-observable business entity that can 
be produced, modified or accessed by functional features. A program model consists of three types of graph 
nodes, i.e., classes/files, methods, and database tables (db_tables). For object-oriented programs such as the 
DirectBank system, methods are regarded as implementation elements for functional features, classes denote 
entity classes corresponding to business objects, and database tables represent persistent objects. For
procedural programs such as Linux kernel, files are regarded as implementation elements for functional 
features. Each node in a feature model or a program model has an attribute description, such as the natural 
language description of the feature, the identifiers and comments of the method. 

Edges of a typed directed graph represent directed dependencies between model elements. Each edge is 
associated with an edge type. In this study, a feature model consists of two types of edges, representing
decomposition between features and read/update dependencies between features and business objects, 
respectively; a program model captures call relations between methods and data_read/data_update
dependencies between methods and classes/db_tables.

It should be noted that node and edge types that can be used in the ICFL approach are not limited to 
those used in the studies reported in this paper. More node and edge types can be defined based on 
application-specific knowledge about requirements and implementation. For example, for a web-based 
system, one can define web pages as a new node type and page links as a new edge type in the program 
model.

Because feature model and program model describe the system at different levels of abstraction, one may 
need to determine the correspondence between edge types in the two input models, in order to enable the 
computation of structural similarity. In ICFL, this correspondence is defined by users as an application-
specific mapping schema between edge types of feature models and program models.
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For example, in our empirical study with the subject system DirectBank (see Section 4.1), we define that 
feature decomposition corresponds to method call. We also define that read/update dependencies between 
features and business objects in feature models correspond to data_read/data_write dependencies between
methods and class/db_tables in program models. This is based on the nature and implementation of the 
DirectBank system. That is, DirectBank is a database-centric information system (Yang et al., 2009). The 
business logics of a program element can be largely characterized by how this element operates on business 
data. Furthermore, our industrial partner informed us that in DirectBank read/update dependencies between 
features and business objects are implemented by data access (data_read/data_write) relations between 
methods and class/db_tables.

Figure 2 and Figure 3 present (partially) the feature model and the program model from our empirical 
study with DirectBank. In DirectBank, the functional feature SignIn is decomposed into two functional 
features BankOpAuth and IPAddrAuth, which deal with operator- and IP-based authorization respectively. 
Furthermore, the feature SignIn reads operators from the business object OperatorList and it updates another 
business object OperationHistory to log operation history. The feature SignIn is implemented in the method 
Operator.login, which calls two other methods Operator.hasBankAuth and Operator.checkIp-Address to
check whether the operator and the client IP address are authorized. The method Operator.login reads the 
operators from the class CurOperators and logs the operation history in the database table OperationLog. It 
can be seen that the structural context of the features and the relevant program elements are similar, and this 
structural similarity would help to determine the relevance between features and program elements, even 
though their lexical descriptions are not similar (for example, the feature SignIn and the method 
Operator.login). 

<<functional feature>>
SignIn

<<business object>>

OperatorList
<<functional feature>>

BankOpAuth
<<functional feature>>

IPAddrAuth

<<business object>>
Operation History

update

decompose decompose read

…

Figure 2. A partial feature model of DirectBank

<<class>>
CurOperators

<<method>>
Operator .login…

<<method>>
Operator .has

BankAuth

<<method>>
Operator .check

IpAddress

callcall

<<DB table>>

OperationLog
data_write

data_read

Figure 3. A partial program model of DirectBank

3.3 Similarity Metrics

Let us discuss similarity metrics for mapping a feature to the relevant program elements. The key to 
determine such mappings in ICFL is to compare the similarity between a feature and a program element, 
both at the lexical and at the structural level. In this subsection, we first introduce the lexical similarity, 
structural similarity, and the overall similarity metrics that ICFL uses. Then, we illustrate the computation 
of these similarity metrics with an example.
3.3.1 Lexical similarity

ICFL encodes the description attribute of a graph node (i.e., model element) in a Term-
Frequency/Inverse-Document-Frequency (TF/IDF) vector (Baeza-Yates and Ribeiro-Neto, 1999). Recall 
that the description attribute of a graph node captures the lexical description of a corresponding feature or 
program element. ICFL constructs TF/IDF vectors for features based on feature descriptions and TF/IDF 
vectors for program elements based on their source code respectively. The TF/IDF vector evaluates how 
important a word is to a document in a corpus. The importance increases proportionally to the number of 
times a word appears in the document but is offset by the frequency of the word in the corpus. The TF/IDF 
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vector is often used in IR-based feature location approaches (Zhao et al., 2006) for determining a program 
element’s relevance to a feature.  In the similar vein, we define the lexical similarity between a feature and 
a program element as follows:

Definition 1 (Lexical Similarity)
Given a feature f and a program element p, ICFL measures their lexical similarity SimL with the cosine 
similarity between the TF/IDF vectors Vf and Vp, as defined in the following equation:

3.3.2 Structural similarity
ICFL employs an iterative feature location algorithm, involving multiple iterations of mapping between 

features and program elements (see Section 3.4). In each iteration (except the first iteration), when 
determining the relevance of candidate feature-element mappings, feature-element mappings established in 
earlier iterations provide the structural context for computing structural similarity of candidate feature-
element mappings.

This structural context is captured by the neighbouring features (or program elements) as defined below.

Definition 2 (Neighbouring Features/Elements)
Given a feature (or program element) node n and an edge type t, let neighbour(n, t) be a set of neighbouring 
features (or program elements) consisting of all feature (or program-element) nodes that are related to n
through edges of type t.

For example, according to the feature model and program model given in Figure 2 and Figure 3, there are:

neighbour(SignIn, decompose)={BankOpAuth, IPAddrAuth},

neighbour(Operator.login, call)={Operator.hasBankAuth, Operator.checkIpAddress}.

Furthermore, the computation of structural similarity depends on the mapping schema between the edge 
types of feature model and the edge types of program model, as defined below.

Definition 3 (Mappings of Edge Types between Feature Model and Program Model).
Given an edge type ft of feature model, let map(ft) be a set of the corresponding edge type(s) of program 
model, according to the user-defined application-specific edge-type mapping schema.

For example, in the example given in Figure 2 and Figure 3, we have map(decompose)={call}, 
map(read)={db_read}, and map(update)={db_write}.

Based on the above definitions, we now define a structural-similarity metric. In the ith iteration of the 
iterative mapping process, let Mi be the set of already established feature-element mappings in earlier 
iterations. The structural similarity metric is defined as follows:

Definition 4 (Structural Similarity)
Given a feature f, a program element p, and an edge type ft of feature model, let 

F= be the set of relevant features of p’s neighbouring program 
elements that are related to p through edges of type map(ft), ICFL measures the structural similarity SimS

between f and p, given the edge type ft, as follows:

The structural similarity SimS computes Jaccard coefficient (Tan et al., 2005), indicating how similar two 
sets, F and neighbour(f, ft), are. It essentially measures the intersection of these two sets of features. This 
intersection set effectively incorporates knowledge of any “known landmarks” (i.e., already established 
feature-element mappings) for determining the relevance of f and p.

Let {et} be the set of all the edge types defined in the feature model. The structural similarity between f
and p is defined by the following equation:
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3.3.3 Overall similarity metric
Our ICFL algorithm computes the overall similarity metrics between features and program elements 

using both lexical similarity and structural similarity. Given a feature f and a program element p, ICFL 
computes their overall similarity metric Sim as follows:

where w is a weight that defines the extent to which the overall similarity metric depends on the lexical 
similarity and on the structural similarity, Conf(f) is the confidence degree of structural similarity indicating 
how many of the feature f’s neighbouring features can be used as “known landmarks” in the computation of 
structural similarity. Conf(f) is calculated as follow:

Conf(f) provides another dynamic adjustment to reflect the usability of structural similarity. In the first
iteration, Conf(f) is equal with 0 and the overall similarity is equal to the lexical similarity between a feature 
and a program element. Then in the subsequent iterations Conf(f) may increase as more and more feature-
element mappings have been established.

3.3.4 An example of similarity computation
Take the feature model and the program model in Figure 2 and Figure 3 as an example. Let the already 

established feature-element mappings be (BankOpAuth, hasBankAuth), (IPAddrAuth, checkIpAddress), and 
(OperationHistory, OperationLog). Let (SignIn, Operator.login) be the candidate feature-element pair. Table 
I summarizes the computation of the structural similarity between the feature f=SignIn and the method 
p=Operator.login. Note that the structural similarity for the edge type read is 0 and Conf(SignIn) is 3/4=0.75
because the mapping (OperatorList, CurOperators) is not yet established at this moment. Let the weight w
be 0.8; let the lexical similarity SimL(SignIn, Operator.login) be 0.52. Then the overall similarity metric 
Sim(SignIn, Operator.login) is (1-0.8*0.75)*0.52+0.8*0.75*(1+0+1)/3=0.608. 

Clearly, the structural similarity between the feature SignIn and the method Operator.login significantly 
increases the overall similarity between them than considering only their lexical similarity. This can help to 
establish the mappings between SignIn and Operator.login, even if their descriptions are not that similar 
lexically. Furthermore, the newly established mapping (SignIn, Operator.login) can in turn increase the 
structural similarity of the candidate pair (OperatorList, CurOperators) from 0 to 1, which may further push 
this pair above the similarity threshold.

TABLE I. STRUCTURAL SIMILARITIES OF (SIGNIN, OPERATOR.LOGIN)

Edge Type neighbour(f, ft) neighbour(p, map(ft)) F SimS
decompose/call BankOpAuth, IPAddrAuth hasBankAuth, checkIpAddress BankOpAuth, IPAddrAuth 1
read/data_read OperatorList CurOperators - 0

update/data_write OperationHistory OperationLog OperationHistory 1

3.4 Algorithm

Our ICFL approach recovers traceability links between features and program elements by computing 
many-to-many feature-element mappings between a feature model and a program model. As a system may 
consist of thousands of features and program elements, the number of possible many-to-many feature-
element mapping solutions can be very large. To avoid exhaustive enumeration of possible solutions, ICFL
uses a greedy best-first search algorithm to incrementally construct a “good enough” solution for feature-
element mappings.

Our iterative feature location algorithm is described in pseudo code in Algorithm 1. The algorithm takes 
as input a feature model MF and a program model MP. It produces as output a set MapF_P of many-to-many 
feature-element mappings. Each element of MapF_P is a pair <f, p> that represents a feature f and its relevant
program element p. The set MapF_P is initially an empty set (line 2) and it contains all the feature-element 
mappings established as the algorithm proceeds finally. The set CandF_P contains all the candidate feature-
element pairs, i.e., not-yet-mapped feature-element pairs. Initially, it contains all the possible feature-element 
mappings (line 3).

The algorithm takes four additional parameters, Tmax, Tmin, pace, and w, which define the upper bound of 
the similarity threshold, the lower bound of the similarity threshold, the concession pace, and the weight for 
computing overall similarity metric (see Section 3.3.3). The iterative process starts with threshold being set 
at Tmax (line 4). In an iteration of feature location, ICFL examines each candidate feature-element pair (f, p) 
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in CandF_P (line 7), if the overall similarity metric between the feature f and the program element p is above 
the current threshold (line 8), then ICFL adds this pair of feature-element to the mapping set MapF_P (line 9) 
and removes it from the candidate set CandF_P (line 10), i.e., the feature f and the program element p has 
been considered as a pair of established feature-element mapping. If no more new feature-element mappings 
have been identified in a given iteration (line 14), the algorithm reduces the threshold by a pace (line 15) and 
starts a new iteration to identify more feature-element mappings. This process continues until the threshold
is below the lower bound of similarity threshold Tmin (line 5). Finally, ICFL algorithm returns the set MapF_P

of feature-element mappings (line 18).
We illustrate the iterative feature location process of Algorithm 1 with an example (see Table II) based 

on the feature model and the program model given in Figure 2 and Figure 3. The algorithm starts with the 
following settings: Tmax=0.8, Tmin=0.4, pace=0.2 and w=0.8. It ends after four iterations. Table II shows the 
overall similarity (Sim) of the candidate feature-element pairs, the similarity threshold used in each iteration,
and the set MapF_P after each iteration. As discussed in Section 3.3.3, the similarity of each candidate 
feature-element pair in the first round is actually its lexical similarity, since no feature-element mappings 
have been established. After the first iteration, three candidate pairs with overall similarity higher than the 
threshold (0.8), i.e., (BankOpAuth, Operator.hasBankAuth), (IPAddrAuth, Operator.checkIpAddress), 
(OperationHistory, OperationLog), have been identified as feature-element mappings.

In the second iteration, as discussed in Section 3.3.4, due to three established feature-element mappings, 
the similarity of the candidate feature-element pair (SingIn, Operator.login) increases from 0.52 to 0.608. 
However, its similarity is still lower than the threshold (0.8). Furthermore, the similarity of (OperatorList, 
CurOperators) remains unchanged (0.41). As a result, no new feature-element mappings are established in 
the second iteration. ICFL then decreases the similarity threshold by 0.2 (from 0.8 to 0.6) and starts the third 
iteration. Due to the decrease of the similarity threshold, the similarity of (SingIn, Operator.login) is now 
above the similarity threshold (0.6) of the third iteration, and thus has been identified as a new feature-
element mapping and added into MapF_P. In the fourth iteration, this newly established mapping (SingIn, 
Operator.login) increases the structural similarity of the not-yet mapped feature-element pair (OperatorList, 
CurOperators), which pushes the overall similarity of (OperatorList, CurOperators) to 0.882. Thus, 
(OperatorList, CurOperators) has been identified as a new mapping and added into MapF_P in the forth 
iteration.

Algorithm 1. The iterative feature location algorithm
procedure
begin
1. MapF_P ICFL(MF, MP, Tmax, Tmin, pace, w)
2.     MapF_P  =  ! ;
3.     CandF_P = {{f, p}| f! MF and p! MP};
4.     threshold = Tmax;

5.     while (threshold ≥ Tmin && CandF_P ≠ ! ) {
6.         moreMappingIdentified = false;
7.         for each (f, p) ! CandF_P {
8.             if(Sim(f, p) > threshold) {
9.                 MapF_P = MapF_P !  {(f, p)};
10.                 CandF_P = CandF_P \ {(f, p)};
11.                 moreMappingIdentified = true;
12.             }
13.         }
14.         if(!moreMappingIdentified) {
15.             threshold = threshold – pace;
16.         }
17.     }
18. return MapF_P;
end

It is important to note that if we were considering only lexical similarity of features and program 
elements and analyzing features and program elements independently in a single iteration, we would not be 
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able to identify the feature-element mappings of (SingIn, Operator.login) and (OperatorList, CurOperators). 
In contrast, ICFL takes into account the structural context of features and program elements and propagates 
the relevance of established feature-element mappings in an iterative process. This allows ICFL to identify 
more feature-element mappings, i.e., achieve better recall. As we will demonstrate in the empirical studies 
(Section 4), due to the consideration of structural context in an iterative process, the increase in recall does 
not sacrifice the precision significantly. 

TABLE II. EXAMPLE OF THE ITERATIVE FEATURE LOCATION PROCESS

Iteration 1 Iteration 2 Iteration 3 Iteration 4
pair1 0.52 0.608 0.608 -
pair2 0.85 - - -
pair3 0.91 - - -
pair4 0.41 0.41 0.41 0.882

Sim

pair5 0.93 - - -
threshold 0.8 0.8 0.6 0.6
MapF_P pair2; pair3; pair5 pair2; pair3; pair5 pair1; pair2; pair3; pair5 pair1; pair2; pair3; pair4; pair5

pair1=(SignIn, Operator.login); 
pair2=(BankOpAuth, Operator.hasBankAuth); 
pair3=(IPAddrAuth, Operator.checkIpAddress); 
pair4=(OperatorList, CurOperators); 
pair5=(OperationHistory, OperationLog)

4. Empirical Studies
To evaluate the effectiveness of ICFL, we conducted empirical studies with two subject systems, 

DirectBank, a small-scale financial system, and Linux kernel, a large-scale open source operating system 
kernel. We use DirectBank because it is from our industrial partner. The system experts of DirectBank are 
available to verify the validity of the results of ICFL. We use Linux kernel because it has well-documented 
feature models and the ground truth of feature-element mappings can be extracted from the system for 
evaluation. This allows us to systematically investigate the scalability of our ICFL approach and the quality 
of ICFL’s feature location results. 

We use precision and recall metrics to evaluate the effectiveness of the proposed approach in identifying 
the mappings between features and their relevant program elements. Given a set of features F and a set of 
program elements P, let Mapactual be the set of actual feature-element mappings and MapF_P be the set of 
feature-element mappings reported by our approach. Precision is the percentage of the correctly reported 
feature-element mappings P = (MapF_P ! Mapactual)/MapF_P and recall is the percentage of feature-element 
mappings reported correctly R = (MapF_P ! Mapactual)/Mapactual. To reflect a weighted average of the 
precision and recall, we also use F-measure, which can be computed as (1 + b2)/(1/P + b2/R). In our studies, 
following the treatment in (Hayes et al, 2006), we set b to 2, i.e., recall is considered four times as important 
as precision, since finding missing traceability links is usually more difficult than removing incorrect links.

4.1 Results for DirectBank

DirectBank is a small-scale industrial database-centric information system written in Java. In this study, 
we evaluate the effectiveness of ICFL and compare it with an IR-based approach to feature location (Zhao 
et al., 2006) augmented with incremental threshold concession.
4.1.1 Study Setup

The system experts of DirectBank manually construct the feature model of the system. The feature model
involves 71 functional features (such as SignIn) and business objects (such as OperatorList). The system 
experts provide the natural language description of these features and business objects. In addition to the 
decompositions of functional features, features may manipulate (read or update) business objects in the 
feature model. That is, this feature model has three types of feature dependencies, i.e., decomposition, read 
and update. 

In this study, we would like to identify classes, methods and database tables that implement the features 
and business objects of DirectBank. We use static program analysis to obtain the program model. We first 
use Eclipse JDT/DOM APIs to get the Abstract Syntax Tree (AST) model of the program, and then extract 
program elements (classes and methods) and their call/read/update dependencies from the AST model. The 
read/update dependencies between the methods and the db_tables are extracted by statically analyzing the 
SQL queries in JDBC statements.
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The system experts define the mapping schema between the edge types of feature model and program 
model as follows: decompositions correspond to method calls, i.e., feature decompositions are implemented 
as method calls in DirectBank; read (or update) dependencies correspond to read (or update) between 
methods and classes/db_tables. Furthermore, the system experts also manually provide the ground truth 
mappings between the features and business objects and the relevant program elements (classes, methods, 
and database tables). 

We process the description attributes of the features and the program elements in a similar way to other 
information-retrieval techniques (Zhao et al., 2006), and then encode them in TF/IDF vectors associated with 
the corresponding features and program elements. As discussed in Section 3.4, ICFL employs an iterative 
mapping process with threshold concession, so threshold setting is not so sensitive for ICFL but a high initial 
similarity threshold is required to ensure that the identified feature-element mappings in the initial iterations 
are most likely to be correct mappings. Therefore, in this evaluation, we set Tmax=0.8, Tmin=0.5 and pace=0.1. 
To reflect the importance of structural similarity, we set the weight w for computing overall similarity metric 
at 0.8.
4.1.2 Results

The iterative feature location algorithm executes seven iterations. Figure 4 summarizes the experiment 
results. The horizontal axis represents the threshold adopted in each iteration, while the vertical axis 
represents the precision and recall in identifying feature-element mappings in each iteration. Note that in 
Figure 4 we do not show the iterations during which no new feature-element mappings have been identified.
This result suggests that our approach can significantly improve the recall of feature location (from 56.31% 
to 91.26%) with a slight decrease in precision (from 59.18% to 58.39).

We also apply an IR-based approach to feature location (Zhao et al., 2006) to the DirectBank system. To 
compare with the iterative process of ICFL, we apply the IR-based approach at the four different thresholds 
that ICFL used in its iterative mapping process. Note that the application of IR-based approach at different 
thresholds is independent of each other, because the IR-based approach cannot iteratively use feature-
element mappings established in earlier rounds. Figure 5 presents the result. Compared with the proposed 
ICFL approach, this IR-based approach significantly sacrifices the precision (from 59.18% to 22.93%) in 
order to improve the recall (from 56.31% to 80.58%) at the lower similarity threshold. We attribute the better 
performance of our approach to its iterative context-aware nature, which makes it less sensitive to the choice 
of the similarity threshold and the quality of the lexical descriptions of features and program elements.

Figure 4. Precision/recall of ICFL with DirectBank
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Figure 5. Precision/recall of an IR-based FL with DirectBank

4.2 Results for Linux kernel

Linux kernel is a large-scale open source operating system kernel written in C. In this study, we evaluate 
the effectiveness of ICFL and compare it with an IR-based approach to feature location (Zhao et al., 2006) 
augmented with incremental threshold concession.
4.2.1 Subject System

The Linux kernel system was originally developed for 32-bit x86-based PCs, but has since been ported to 
numerous architectures, such as Alpha, SPARC, PowerPC, and also mainframes and handheld devices. In 
fact, the Linux kernel has become a software product line (Berger et al., 2010; She et al., 2010), which 
consists of thousands of features that can be configured in order to generate specific kernel products for vast 
combinations of architectures, subsystems, device drivers, etc. 

The Linux kernel manages these features and their variability using a feature modeling language 
(Kconfig) and its accompanied configuration tool (Berger et al., 2010; She et al., 2010). The configuration 
tool allows users to initialize and modify a configuration. It supports a few initialization options, for 
example, using the default configuration for a given architecture (defconfig); randomly selecting features to 
be included in the kernel product (randconfig); or selecting as many features as possible (allyesconfig). The 
user then uses GUI-based configuration tool to modify the configuration to reach the desired state. 

This configuration process results in a valid selection of features expressed as a set of configuration 
symbols, such as CONFIG_PCI, which represents the feature of PCI supporting in the Linux system. The 
Linux kernel uses C preprocessor (CPP) language to handle feature implementations at source code level. 
The configuration symbols are used in Makefiles and source code to control which directories, files, and 
conditional blocks are selected for compilation. In fact, the usage of these configuration symbols in 
Makefiles and source code provides the ground truth mappings (as defined by Linux kernel developers) of 
features and their relevant program elements (e.g. source files, functions).
4.2.2 Experiment Setup

In this study, we use the version 2.6.36.2 of Linux kernel that was released on December 9th, 2010 as the 
subject system to evaluate our ICFL approach. 

The Kconfig files defining features and feature dependencies can be considered as a Linux-kernel 
specific feature model (Berger et al., 2010; She et al., 2011). Therefore, in this study we extract features and 
feature dependencies from Kconfig files to construct the feature model of Linux kernel as feature-level input
for ICFL. The resulting feature model of Linux kernel 2.6.36.2 consists of 6052 features. Note that not all 
these 6052 features can be included in a specific kernel product on a given system architecture. In this study, 
we generate a kernel configuration for the x86_32 system architecture using allyesconfig profile (i.e., 
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selecting as many feature as possible). Furthermore, in this study we consider only the core kernel features 
that are implemented in the following core kernel subsystems:

! ! arch/x86 contains the specific kernel code for x86-based architecture (Our experiment was conducted on 
a 32-bit x86-based PC. We did not consider other hardware architectures/CPUs in this study).

! ! kernel contains the main architecture-independent kernel code.
! ! include contains most of the system’s include (.h) files.
! ! fs contains support for various kinds of file systems.
! ! ipc contains the code for inter-process communications.
! ! mm contains the architecture-independent memory management code.
! ! lib contains the architecture-independent library code.
! ! net contains the networking support for sockets and TCP/IP (Code for particular networking cards is 

contained in drivers/net).
! ! block contains the block device code.
! ! sound contains two kinds of sound supports, i.e., alsa and oss.
! ! crypto contains support for hardware crypto devices.
! ! init contains the system initialization code.
! ! security contains Linux security module code.

Linux kernel 2.6.36.2 contains in total approximately 12 million lines of code, 2,084 directories, 28,024 
files and 155,266 C functions. The above core subsystems that we consider in the study involve about 18.0% 
(1088/6052) of features of the Linux kernel and about 10.2% (2871/28024) of source (.c) files of the full 
source tree. We decide to omit device drivers (e.g. sound, PCI, networking card, SCSI) in this study. These 
device drivers are usually small and self-contained. It is relatively easy to determine the implementation of 
these device drivers.

We develop a set of program analysis tools to construct the feature model from Kconfig files and the 
program model from source code. The Linux kernel is an operating system kernel. It does not deal with 
business objects and database. Its feature model consists of only functional features and decomposition
relationships between features. In this study, we would like to identify source files (.c) that implement the 
functional features of Linux Kernel. Therefore, the reverse-engineered program model consists of source 
files and their usage dependencies. Note that the usage dependencies between source files are aggregated 
from the function calls between functions defined in the corresponding source files.

In this study, the mapping schema between edge types of feature model and program model is relative 
simple, i.e., feature decompositions correspond to file usage dependencies. Furthermore, we develop a tool 
to analyze the usage of feature configuration symbol (i.e., CONFIG_xxx) in makefiles and C preprocessors. 
This tool extract the ground truth mappings (as defined by Linux kernel developers) of features and their 
relevant program elements from Linux kernel. For Linux kernel version 2.6.36.2, the extracted ground truth 
consists of in total 3990 feature-element mappings. In this experiment, we also set the threshold Tmax as 0.8, 
Tmin as 0.5, pace as 0.1 and w as 0.8.
4.2.3 Runtime Performance

The empirical study with Linux kernel is conducted on a computer with Windows Server 2008, Intel 
Xeon 2.13GHz, 32GB RAM. As Linux kernel is a large-scale system with thousands of features and source 
files, the iterative mapping process of ICFL algorithm is quite time-consuming. Therefore, to speed up the 
iterative mapping process, we introduce one more filtering threshold Fmin that is set to 0.2 in this study. If the 
overall similarity metric of a candidate feature-element mapping is less than Fmin, the candidate mapping will 
be removed from the candidate set CandF_P.

After taking this filtering strategy, it takes about 3 hours for our ICFL algorithm to complete the 18 
iterations of the mapping process (see Figure 6) for locating the implementation files of all 1088 features.
The filtering strategy may affect the precision and recall of the feature location results of ICFL algorithm
because it ignores some candidate mappings. However, it can significantly improve the runtime performance
of our ICFL algorithm, while its impact on the quality of the feature location results is minor as we discuss
below.
4.2.4 Results

Again, we use precision and recall metrics to evaluate the quality of the feature-element mappings 
reported by our ICFL algorithm in Linux kernel study. Figure 6 summarizes the experiment results. The X-
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axis represents the iterations and the threshold adopted in each iteration, and the Y-axis represents the 
precision and recall in each iteration. 

From Figure 6, it can be seen that depending on structural contexts of features and source files ICFL 
significantly improves the recall (from 7.44% to 66.03%) of feature-element mappings with a decrease of
precision (from 46.28% to 29.52%). Overall, ICFL makes a significant improvement on F-measure metrics 
(from 0.089 to 0.529). Considering the significant improvement on recall and F-measure we believe the 
decrease of precision is acceptable. It is interesting to note that in the initial four iterations the recall 
increases only slightly from 7.44% to 9.34%, with about 5% decrease in precision. However, as more and 
more feature-element mappings have been established and contributed to the similarity computation of not-
yet mapped feature-element mappings, the recall increases sharply (about 56%) in the following iterations 
with only minor (about 11%) decrease in precision.

Figure 6. Precision/recall of ICFL with Linux kernel

Figure 7. Precision/recall of an IR-based FL with Linux kernel
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We also apply an IR-based approach to feature location (Zhao et al., 2006) to the Linux kernel data. 
Similar to the study with DirectBank, we apply the IR-based approach at the four different thresholds that 
ICFL adopted to facilitate the comparison with the iterative process of ICFL. Figure 7 presents the 
experiment results. Clearly, without considering structural contexts of features and program elements in an 
iterative process, the decrease of similarity threshold significantly sacrifices precision (from 46.28% to 
11.70%) for recall (from 7.44% to 49.82%). Even with this significant sacrifice of precision, the best recall 
(49.82% at the similarity threshold 0.5) that this IR-based approach achieves is still much worse than the 
recall (66.03%) that our ICFL approach achieves at the same similarity threshold (0.5). Thus, although at 
lower threshold the IR-based approach also achieves better F-measure metrics (improved from 0.089 to 
0.302), it is clear that the improvement is much lower than that of ICFL approach (0.302 versus 0.529). 
Furthermore, ICFL manages to keep precision in an acceptable range. The worst precision (29.52% at the 
similarity threshold 0.5) of ICFL in this Linux kernel study is much higher than the worst precision (11.70%) 
of the IR-based approach. According to Figure 7, if this IR-based approach wants to achieve the precision 
(29.52%), its recall would be only about 20%, which is significantly worse than the recall (i.e., 60.52%) of 
ICFL at the same precision value. 

Let us take a closer look at the feature location results of our ICFL algorithm and the IR-based approach 
for a specific Linux kernel feature “The wireless configuration of Linux system”. For the sake of simplicity, 
we refer to this Linux kernel feature as “CONFIG_80211” (i.e., the configuration symbol of this feature used 
in Kconfig file) in the following discussion. Table III summarizes the source files (.c) that are relevant to this 
specific Linux kernel feature, i.e., the ground truth mappings between the relevant source files and the 
feature CONFIG_80211. As shown in the Table, the feature CONFIG_80211 has been implemented in 15 
different source (.c) files. 

Table III also presents the lexical similarity metrics, the final structural similarity metrics and the final 
overall similarity metrics between the feature CONFIG_80211 and each of its implementing source file. The 
last two columns show the files that can be identified as relevant program elements by ICFL and the IR-
based approach with the similarity threshold of 0.5 respectively. Because the description of the feature 
CONFIG_80211 is very short, the lexical similarity metrics (the column SimL) between its descriptions and 
the relevant source files are relative low. However, by taking into account the similarity of the structural 
contexts (the column SimS) of the feature CONFIGU_80211 and the relevant source files, the overall 
similarity metrics (the column Sim) have been significantly improved. If the similarity threshold is set to 0.5, 
our ICFL algorithm can successfully identify 66.7% (10/15) of feature-element mappings, while the IR-
based approach can only find 20% (3/15). 

TABLE III. RESULTS FOR THE FEATURE “THE WIRELESS CONFIGURATION OF LINUX SYSTEM”

file_id file_name SimL SimS Sim ICFL IR-based Approach

7143 net/wireless/ibss.c 0.51 0.80 0.74 √ √
7194 net/wireless/radiotap.c 0.37 0.00 0.07

7202 net/wireless/scan.c 0.36 1.00 0.87 √
7207 net/wireless/sme.c 0.45 0.80 0.73 √
7214 net/wireless/core.c 0.38 1.00 0.88 √
7229 net/wireless/util.c 0.46 0.80 0.73 √
7249 net/wireless/chan.c 0.48 0.40 0.42

7250 net/wireless/wext-sme.c 0.49 0.80 0.74 √
7251 net/wireless/reg.c 0.39 1.00 0.88 √
7261 net/wireless/nl80211.c 0.37 0.00 0.07

7267 net/wireless/sysfs.c 0.33 1.00 0.87 √
7275 net/wireless/ethtool.c 0.50 0.00 0.10 √
7276 net/wireless/mlme.c 0.33 1.00 0.87 √

7278 net/wireless/wext-
compat.c 0.52 0.60 0.58 √ √

7281 net/wireless/debugfs.c 0.33 0.20 0.23
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4.3 Summary

From the results with DirectBank (Figure 4 and Figure 5) and Linux kernel (Figure 6 and Figure 7), it 
can be seen that precision tends to decrease as recall increases except a few exceptions in the experiments 
using ICFL, for example the second and sixth iterations in Figure 4 and the fourth and sixth iterations in 
Figure 6. These exceptions were caused by the fact that the similarity threshold did not decrease in these 
iterations while more correct mapping pairs were accepted due to the increase of structural similarities of 
matching candidates.

The iterative process of the ICFL approach suggests that there are two key factors that cause the increase 
of recall, i.e., more candidate pairs being accepted as mappings. One factor is the decreased threshold, and 
the other is the availability of more and more mapped structural relations. Increase of recall resulted from the 
former factor is completely earned by sacrificing precision. In contrast, increase of recall resulted from the 
latter factor is achieved by utilizing structural similarity provided by already established mappings, thus has 
minor influence on precision. Therefore, in the two IR-based experiments (Figure 5 and Figure 7), in which 
no structural similarity is taken into account, the precision decreases rapidly as the recall increases. 
Furthermore, we can see that compared with the relative bigger decrease of precision in Linux kernel study 
(from 46.28% to 29.52% in Figure 6), there is only a very slight decrease of precision in DirectBank study 
(from 59.18% to 58.39 in Figure 4). Our further analysis suggests that this difference is due to the higher-
quality of initial mappings established in the first iteration and also due to the fact that features and program 
elements of the DirectBank system has richer structural context, i.e., more node and edge types in both the 
feature model and the program model. The high-quality initial mappings and the richer structural context 
help to reduce the impacts of lower similarity threshold on the mapping process and thus prevent erroneous 
feature-element mappings from being established.

5. Discussion
Our empirical study shows that the structural similarity between features and program elements can 

effectively improve the quality of feature location results in an iterative graph matching process. However, 
the effectiveness of our ICFL approach may be affected by several factors, including the quality of the initial 
mapping results in the first iteration, and the concession pace of similarity threshold in the iterative mapping 
process, and the tradeoffs between the quality (precision and recall) of the feature location results and the 
human effort required when applying ICFL approach in practice.

5.1 The impact of initial mapping results in the first iteration

Our ICFL approach exploits the structural contexts of features and program elements for the purpose of 
feature location. For example, if a feature is decomposed into a few sub-features, then the relevant program 
elements implementing these features may manifest certain kinds of usage dependencies (such as method 
calls). The similarity of such structural contexts of features and program elements are inherent in the system. 
In contrast, the lexical descriptions of feature and program elements are more ad-hoc and uncertain. It 
requires much effort to “normalize” in order to make these lexical descriptions useful (Butler et al., 2011).

Nevertheless, the computation of structural similarity requires certain established mappings of features 
and program elements in the structural contexts of candidate features and program elements. As a result, the 
initial mapping results of the first iteration of ICFL may affect the subsequent iterations of ICFL. Take the 
experiment results of DirectBank and Linux kernel shown in Figure 4 and Figure 6 as an example.
Compared with the overall precision and recall that ICFL achieves in the DirectBank study (see Figure 4), it 
can be seen that the overall precision and recall that ICFL achieves in the Linux kernel study (see Figure 6) 
are worse than those of DirectBank. Linux kernel is a much more complex system than DirectBank. It 
supports thousands of features implemented in tens of thousands of source files. This significantly increased 
system complexity affects the quality of feature location results of ICFL. 

Furthermore, it is interesting to note that the recall (7.44%) and precision (46.28%) in the first iteration of 
ICFL on Linux kernel data is much lower than the recall (56.31%) and precision (59.18%) in the first 
iteration of ICFL on DirectBank data. We believe that the much lower precision and recall in the first 
iteration also affect the overall precision and recall of ICFL in the Linux kernel study. We find that this 
worse first iteration on Linux kernel data is mainly due to the short feature descriptions extracted from 
Kconfig files (about 48.43% of the features contain less than 30 words). Consequently, it makes it difficult to 
determine the relevance between features and program files in the first iteration during which only lexical 
similarities are available as no feature-element mappings have been established yet. In contrast, the feature 
descriptions in the DirectBank study are provided by the system expert. These descriptions are much more 
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complete and precise, which results in a better precision and recall in the first iteration. This better first-
iteration precision and recall in turn provides a good basis for the subsequent iterative mapping process.

This indicates that the quality of lexical descriptions of features and program elements may still affect the 
quality of feature location results of our ICFL approach, especially in the first few iterations. However, as we 
discuss in the comparison of our ICFL results and those of IR-based approach (Figure 4 versus Figure 5, and 
Figure 6 versus Figure 7), the final results of our ICFL is much less sensitive to the quality of lexical 
descriptions of features and program elements than IR-based approach, because our ICFL takes into account 
structural contexts of features and program elements in an iterative mapping process.

Figure 8. Precision/recall of ICFL with different initial mapping quality (DirectBank)

In order to evaluate the impact of the initial mapping results on the subsequent iterations of ICFL, we 
conduct another experiment on DirectBank system, in which we intentionally use less complete or precise
feature descriptions. As a result, the lexical similarities between DirectBank features and program elements 
are significantly decreased, which in turn greatly affect the quality of the initial mapping results in the first 
iteration. Figure 8 presents the results of the second experiment on DirectBank. The lower two lines present 
the precisions and recalls of this second experiment on DirectBank. Compared with the precisions and 
recalls of the first experiment on DirectBank (the higher two lines), it can be seen that the quality of the 
initial mapping results greatly affects the precision and recall of the final feature location results. Given the 
worse initial mapping results, our ICFL algorithm can still improve the quality of feature location results in 
the subsequent iterations. However, the quality of its final results can be significantly worse than the quality 
of the final feature location results based on better initial mapping results.

Therefore, to produce high-quality mapping results in the first iteration, one should try to provide more 
complete and precise description for each feature. Furthermore, a high initial threshold (e.g., 0.8 or higher) is 
often useful to ensure the high-quality of initially accepted mapping pairs.

5.2 The concession pace of similarity threshold

In the feature location process of ICFL algorithm (see Algorithm 1), a high initial similarity threshold 
(i.e., Tmax) is necessary to ensure that the identified feature-element mappings in the initial iterations are most 
likely to be correct mappings. In additional to Tmax, the pace of threshold concession is another important 
input parameter. Intuitively, a small concession pace value decreases the similarity threshold in small steps, 
thus can potentially affect the precision and recall of identified feature-element mappings by enforcing more 
mapping iterations. In these iterations, more feature-program-elements pairs can be activated and used for 
similarity computation. In other words, with a smaller concession pace, structural similarity plays more 
important role in the computation of the overall similarity metric (see Section 3.3.3) and also the selection of 
feature-program mappings.

Figure 9 presents our experiment results of the precisions and recalls of the final feature location results 
of ICFL on DirectBank system using different concession paces of similarity threshold. The x-axis shows 
different concession paces (ranging from 0.01 to 0.2), while the y-axis shows the precision and recall values 
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of the final feature locations results with different concession paces. For example, using the concession pace 
0.01, the precision and recall of the final feature location results of ICFL is 61.81% and 86.41%, respectively. 
Overall, our experiment results show that as the concession pace increases (or decreases), the precision may 
decrease (or increase) slightly with a slight increase (or decrease) in recall. 

Figure 9. Evaluation of the final precision and recall with Different concession pace (DirectBank)

However, smaller concession pace of similarity threshold may result in worse runtime performance due 
to more mapping iterations of ICFL. For example, in DirectBank study ICFL ends after five iterations using 
concession pace 0.2, while it executes 27 iterations using concession pace 0.05. Consequently, the execution 
time of the ICFL algorithm increases from half an hour to twenty hours. According to our experience, for 
small-scale or medium-scale systems like DirectBank a concession pace between 0.05 and 0.1 may be 
appropriate, while for large-scale systems like Linux Kernel a concession pace between 0.1 and 0.15 may be 
appropriate considering the performance issue.

5.3 Crosscutting features

Many features in software systems are crosscutting. A crosscutting feature may mean that the feature 
itself is crosscutting, or its implementation is crosscutting.

A business expert can identify a feature to be crosscutting if it interacts with multiple other features. As 
shown in Figure 10, this kind of crosscutting features (e.g., Log) and their interactions with other features 
can be represented as feature relations in a feature model. In our ICFL approach, such relations between 
features do not necessarily form a strict tree model. For example, a crosscutting feature Log, which interacts 
with several other features such as OrderPayment and OrderChecking, can be represented by use
dependencies among these features. These use dependencies, if mapped to corresponding program relations 
(e.g., method calls), can also provide the structural contexts required for locating the Log feature in the 
implementation

<<functional feature>>
OrderProcessing

<<functional feature>>

OrderChecking
<<functional feature>>

OrderDelivery

decompose decompose

…

<<functional feature>>
Log

use use
use

<<functional feature>>

OrderPayment

use

…

Figure 10. An example of crosscutting feature
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From the implementation perspective, code units that are relevant to a crosscutting feature may be 
scattered in several modules. Take the Log feature again as an example. It is often the case that in addition to
a logging method there are also other relevant program units scattered in modules corresponding to other 
features such as OrderPayment and OrderChecking. Feature location is the activity of identifying an initial 
location in the source code that implements a given feature, while the full extent of all the code relevant to a 
feature is handled by impact analysis (Dit et al., 2011). In other words, feature location in a narrow sense
means to identify specific program elements that contribute to a given feature’s implementation and not to 
any other features’ implementation (Zhao et al., 2006). Therefore, we believe that, if we locate only specific 
program elements for a given feature, the structure of source code should resemble the structure of features
in general. Based on the specific program elements located by ICFL, we can extend the results with more 
relevant program elements, for example, by exploring program call graph as what has been done in SNIAFL
(Zhao et al., 2006).

Having that said, we believe that the modularity of a software system’s implementation has a significant 
influence on the effectiveness of the ICFL approach. For a software system that has a good modularity 
design and follows the principle of separation of concern, its program structure will align well with the 
structure of features, thus allows the successful application of our ICFL approach.

5.4 Practical use of the ICFL approach

When using our ICFL approach in practice, developers are required to provide a feature model as an 
input. The feature model can be manually constructed by domain experts or (semi-)automatically extracted
from product documents (She et al., 2011; Dumitru et al., 2011; Yang et al., 2009). Therefore, certain 
amount of human effort may be necessary for constructing feature models, especially when the system does 
not have a feature model or other similar form of feature documents. For example, in the study of Linux 
kernel system we can automatically extract the feature model of Linux kernel from the accompanied Kconfig 
files of the Linux kernel, while in the study of DirectBank we have to resort to the system experts of 
DirectBank who manually constructed the required feature model for our empirical study.

Furthermore, the feature models can be coarse-grained (Kang et al., 1990), for example including only
coarse-grained features and decomposition relations. The feature models may also be fine-grained (Zhang et 
al., 2006; Peng et al., 2006), for example defining not only fine-grained features and decomposition relations
but also additional feature dependencies. Fine-grained feature models usually require more human effort to 
construct. However, fine-grained feature models allow our ICFL algorithm to produce better feature location 
results, because they provide richer structural contexts of features that can be exploited in the feature 
location process of ICFL. In our two empirical studies on DirectBank and Linux kernel, we use only limited 
types of feature dependencies, such as feature decomposition. However, it is important to note that our ICFL 
approach is not limited to those types of feature (and program-element) dependencies used in our empirical 
studies. In fact, ICFL can be easily configured to exploit (open-ended) types of feature dependencies and/or 
program-element dependencies (see Definitions in Section 3.3.2). 

It should be noted that the feature model required by the ICFL approach can be reused through the 
maintenance process and shared among developers of the same system. After the initial construction, the 
feature model can be updated and optimized based on requirements changes and developers’ feedback. Thus 
the feature model can be maintained and shared as a common knowledge base facilitating developers’
maintenance tasks. In addition to reusing feature model, experiences about proper parameter settings of 
ICFL algorithm can also be shared among developers of the same system.

Given the feature location results, a developer may still need to validate the reported feature-element 
mappings to identify false positives. As our ICFL approach adopts an iterative process with threshold 
concession, mapping pairs produced by ICFL may be accepted in different iterations with different threshold. 
The reported mappings can be ranked by their similarity measurements computed on both lexical and 
structural similarity. The developer then can check the results according to the ranked list of feature-element 
mappings. Our experience shows that mappings reported in earlier iterations usually have better quality, i.e., 
with less false positives. On the other hand, the quality of feature location results can also be improved with 
developers’ feedback when they check the results. ICFL can be used in an iterative manner by requesting 
developers’ feedback after each iteration. In this way, the iterative process can be ended according to the 
quality feedback from developers instead of the predefined threshold. Moreover, as a large number of false 
positives can be eliminated according to developers’ feedback, the quality of feature location results can be 
improved with more accurate contextual information.
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5.5 Threats to validity

The major threats to the validity of our studies lie in the following three aspects.
The first threat is the quality of the ground truth mappings used to evaluate the quality of feature location 

results. For the DirectBank study, the system experts from our industrial partner manually identified the 
ground truth mappings. DirectBank is a small system and its system experts had maintained the system for 
years. Thus, we believe that the ground truth mappings they provided are reliable. For the Linux kernel study, 
the ground truth mappings are automatically extracted based on the usage of feature configuration symbols 
in Makefiles and source code as defined by Linux kernel developers. Overall, we believe the threat to the 
validity of ground truth mapping is acceptable for our empirical studies.

The second threat lies in the fact that our ICFL approach requires a predefined feature model and 
corresponding mapping schema. As discussed in Section 5.4, the granularity and quality of the predefined
feature model can influence the quality of feature location results. On the other hand, the granularity of 
program information may also influence the quality of feature location results. For example, we used Java 
methods (also classes) in the DirectBank study and source files in the Linux kernel study respectively. Our 
ICFL approach requires a mapping schema between the edge types of feature model and program model (see 
Definition 3 in Section 3.3.2) so that it can determine the similarity of the structural context of features and 
program elements. However, because feature model and program model describe the system at different 
levels of abstraction, it is not always straightforward to determine the correspondence between the edge 
types between the two types of models. For example, a feature decomposition relation may be implemented 
by method/function call or message passing. One may have to understand the specific style of system design 
and implementation in order to define appropriate mapping schema between the edge types in feature model 
and program model. 

The third threat is the "greedy-best-first-search-without-backtracking" strategy used in our ICFL 
algorithm. This strategy may lead to “suboptimal” feature location results, due to the erroneous feature-
element mappings identified in the initial iterations of ICFL process. As discussed in Section 5.2, we may 
alleviate the negative impacts of this search strategy on the quality of feature location results of ICFL by 
adopting high initial similarity threshold and/or using small concession pace of similarity threshold. The high 
initial similarity threshold and small concession pace ensure that the feature-element mappings (especially 
those identified in initial iterations of ICFL) are most likely correct. 

6. Conclusion and Future Work
In this paper, we have proposed an iterative context-aware approach to automatic feature location. 

Taking as input a feature model and a program model, our approach examines both the lexical description 
and the structural context of the features and the program elements for determining the feature-element 
mappings in an iterative feature location process. Our experimental study on a small-scale industrial 
product and a large-scale open source operating system has confirmed that our approach can significantly 
increase the recall of feature location task with a good control in decrease of precision. Furthermore, our 
approach is less sensitive to the choice of the similarity threshold and the quality of the lexical description 
of the features and the program elements.

Our study suggests that current feature location approaches can be improved by utilizing structural 
context information of features and program elements with application-specific knowledge about the 
mapping schema between feature relation types and program relation types. The similarity of such 
structural contexts of features and program elements are inherent in many systems, making the feature 
location process more robust and less sensitive to the quality of the input (e.g., lexical description of the 
features and the program elements).

The rationale behind our approach is to utilize the prior knowledge of developers about a target system 
to improve the effectiveness of feature location techniques. Currently our ICFL approach only employs 
feature relations for determining the mappings between features and program elements. In the future, we 
will investigate the usage of design knowledge such as architecture models in our approach. Furthermore, 
we will conduct systematic empirical studies on more complex and hybrid systems such as multi-layered 
web systems consisting of web pages, Java classes and XML configuration files.
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Highlights

We propose ICFL, an iterative context-aware approach for feature location

ICFL considers structural similarity between features and program elements

We evaluate ICFL using a small industry system and a large open-source system

ICFL is more robust and can increase recall with only minor decrease of precision

Structural similarity can complement lexical similarity for feature location


