
3D Architecture Viewpoints on Service Automation

Qing Gua, Félix Cuadradob, Patricia Lagoa, Juan C. Dueñasb

aDepartment of Computer Science, VU University Amsterdam, The Netherlands
bDept. de Ingenieŕıa de Sistemas Telemáticos, Universidad Politécnica de Madrid,

Madrid, Spain

Abstract

Service-oriented Architecture is an emerging paradigm for the execution of
business-oriented as well as technical infrastructure processes by means of
services. Automating the execution of services is of paramount importance
in order to fulfill the needs of companies. However we have found that
automation -although important- is seldom addressed explicitly as a con-
cern when stating requirements or designing the software architecture of
the service-based applications (SBAs). In this paper we define three archi-
tectural viewpoints framing the concerns about service automation. These
three viewpoints, called 3D (Decisions, Degree, Data), respectively: express
architectural decisions about automation; help identifying the level (degree)
of automation required, and represent the specific data required to support
automation in services. They have been applied to three industrial case
studies and one academic experiment. Results show that they successfully
support both technical and non-technical stakeholders in understanding how,
and communicating upon, their concerns related to service automation have
been addressed. The application of the 3D service automation viewpoints to
different domains exhibits promising reusability.

Keywords: Architecture viewpoint, Service-oriented Architecture,
Service-based Application, Automation

1. Introduction

New generation business models impose additional requirements on the
IT support of business processes [1]. In particular, quickly responding to
new business requirements, continuously reducing IT cost and dynamically
integrating new business partners and customers are highly demanded [2].

Preprint submitted to Journal of Systems and Software September 26, 2012

The Service-oriented Architecture (SOA) [3] as an architectural style has
been widely adopted in industry thanks to its ability of providing seamless
integration among software services. SOA implementations (i.e. service-
based applications or SBAs) are expected to be autonomous, discoverable
and composable, and thereby coordinately deliver business functionalities [4]
in a possibly automated way.

Automation is defined as “the execution by a machine agent (usually a
computer) of a function that was previously carried out by a human.” [5].
Service automation can be defined as the degree to which the service can be
executed automatically without human intervention.

On the one hand, fully automating services would bring obvious bene-
fits to companies [6]. Automation of service execution cuts down human
resource costs as less human effort is required; it minimizes personnel skill
requirements and training time as part of technical decisions are taken by
services; and it prevents faults caused by human mistakes (e.g. typos). More
importantly, the execution of automated SBAs (defined as SBAs where every
service is automated) is independent from human performance or availability.

On the other hand, fully automating services is in practice not always
technically possible or is often restricted by some domain-specific factors.
For instance, the automation of service negotiation is extremely difficult as
quality requirements must be quantified and formalized as processable infor-
mation. On top of that, services are often distributed among multiple busi-
ness partners and thereby not fully controlled by one specific organization.
This way, the quality of a SBA depends on the quality of its composing ser-
vices. Automating service negotiation would mean any malfunctions caused
by a service from untrusted service provider would potentially lower the reli-
ability and security of the SBA. As a result, the degree of service automation
often depends on the criticality of specific domains and the need of human
control.

Although service automation is specifically important for SBAs to max-
imize their capability of dynamically adapting to business changes, stake-
holders’ concerns related to service automation are often poorly addressed
in the architecture description of SBAs. For automated services, service de-
velopers are often concerned with the policies and guidelines regulating their
automation; for services that cannot be automated, human actors are of-
ten concerned with their participation in the execution of services and their
responsibilities. Architects are concerned with communicating their design
decisions about service automation with these and other stakeholders (e.g.

2

managers).
The lack of explicitly addressing service automation in architecture de-

scriptions becomes evident in the study presented in this paper on the service
deployment and configuration architecture (SDCA). The SDCA offers a set
of services aiming at automatically deploying new or updated business ser-
vices of SBAs. The SDCA has been applied to two industrial domains, an
enterprise banking domain (called BankFutura) and a personal digital home
domain (called HomeFutura). Each service in the SDCA service flow can
be configured in terms of the degree of automation to fulfill different re-
quirements of different domains. Despite that service automation is clearly
a concern, design decisions on which services can (or cannot) be automated
and the rationale behind these decisions are completely missing in the ar-
chitecture description of the SDCA and its two industrial cases. This lack
leads to incomplete architecture description, hurdling sharing and reusing
architectural knowledge (AK) [7].

In this work, we take a viewpoint approach [8] for framing a basic set of
concerns relating to service automation and providing a set of models, meth-
ods and notations to illustrate the way in which the concerns are addressed
in architecture design. With this purpose, we followed a typical action re-
search cycle [9, 10] with three iterations, each of which was carried out with
one industry partner as a case study. The results of the action research are
three service automation viewpoints, which are called 3D service automa-
tion viewpoints (for better readability we use abbreviation 3D VP’s in the
rest of the paper). The defined viewpoints are focused on capturing service
automation concerns. Therefore, aspects such as detailed modeling of ser-
vice compositions are out of the scope of our work. They can be provided
by already existing, complementary viewpoints. Further, validation has been
carried out in the evaluating phase of the three action research cycles, thanks
to three different case studies.

The 3D VP’s consist of three distinct yet inter-related viewpoints, each
dealing with one perspective of service automation. The viewpoint ‘Decision
on service automation’ deals with the decisions that have been made on the
degree of service automation, including the rationale behind them and the
link to domain-specific factors. The viewpoint ‘Degree of service automation’
deals with the overall degree of service automation that has been designed
within a service flow. And the viewpoint ‘Data relating to service automation’
focuses on the data that enables different degrees of automation of each
service.

3

To further evaluate the applicability of the 3D VP’s, we carried out an
university experiment in a service-oriented design Master course asking 11
groups of students to apply the viewpoints to illustrate the service automa-
tion aspect of their design of a e-Health system. Within academic limitation,
the success of this experiment further confirms the applicability of the 3D
VP’s to SBAs in general.

The remainder of the paper is organized as follows. In Section 2 we intro-
duce service automation as a service aspect and motivate the need for service
automation viewpoints in Section 3. Our research approach is described in
Section 4. In Section 5 we document the description of the 3D VP’s de-
veloped in this work. We then discuss in Section 6 the visual support that
the 3D VP’s provide as well as the applicability of the 3D VP’s. Section 7
concludes the paper summarizing our work.

2. An introduction to automation

2.1. Automation and human interaction

There are many aspects of a system which can potentially be automated,
and multiple possible levels of automation. In [11] a framework is presented
for classifying automation aspects depending on the type of human functions
being automated (sensory processing, analysis, decision making, action exe-
cution) and the level of automation adopted by the system (from identifying
the potential options, to suggesting one of them or automatically taking the
decision). Decision making and analysis are frequently the kinds of activities
where the decision about the level of automation remains more open, and
the balance between human and computer is usually decided for each specific
system [12].

The emergence of autonomic computing signified one of the latest ad-
vances for automation in the field of system management. This paradigm
was defined by IBM in 2004 in an attempt to cope with the ever increas-
ing complexity of managing current systems [13]. The intent is to enable
the creation of systems which manage themselves in a completely automated
way, analogous to biological systems. In the recent years, this proposal has
gained consensus from both industry and academia as the preferred approach
for obtaining complete system automation (without human intervention).

A common way to implement autonomic behavior is through the defini-
tion of policies [14], reasoning about the available information and deciding
how to react to the current state of the system in order to address specific

4

concerns. Policies are central elements behind automated decision making.
Sloman [15] defines policies as the “rules governing the choices in behavior
of a system”. They represent the goals and the operational constraints of
a system, enabling the automation of decisions about aspects such as secu-
rity management (authorization and access control) or network management
(network routing) [16]. Policies can be specified by different policy definition
languages, ranging from high level ones that are readable by human-beings
(e.g., PONDER and RBAS) to low level ones that are only meant to be
processed by software systems (e.g. PCIM and CORS-PR PIB) [17].

2.2. Automation in service-based applications

SBAs often consist of two types of services, business services and man-
agement services. Business services implement some business functions, such
as hotel booking, care renting or payment. To improve the flexibility and
dynamism of SBAs, the management activities supporting the execution of
SBAs can also be implemented as services, called management services. Some
examples are secure service discovery service in [18], a multi-agent automated
negotiation service in [19], an automatic deployment service [20] and a moni-
toring service in [21]. Maximizing the automation capability of both of these
two types of services enables highly dynamic SBAs.

However, in practice automating the execution of services and delivering
dynamic and reliable SBAs is not always technically possible or even de-
sirable. SBAs introduce additional concerns when compared to traditional
software systems [22], that further complicating. As an example, trust con-
cerns heavily influence automation decisions when the SBA relies on exter-
nally developed services. These factors and rationale for decisions on service
automation should be explicitly documented to improve the quality of archi-
tecture description. In Sec. 3.1 we further elaborate this need using a study
on automation of service management and deployment.

3. The need for service automation viewpoints

In this section we illustrate why the currently available documentation
mechanisms are not sufficient for capturing all the aspects related to au-
tomation, using a specific example. We first introduce a study we carried
out on the automation of service management and deployment. Further on,
we analyze the existing alternatives for capturing that knowledge about the
design of the system.

5

3.1. A study on automation of service management and deployment
Deployment and configuration of SBAs are key management activities

which need to be as automated as possible in order to foster their dy-
namicity. Automation is addressed by the system analyzed in this work,
the SDCA (Service Deployment and Configuration Architecture); a Service-
Based Application which provides a deployment and configuration service for
distributed applications and services [23]. The deployment functionality is
offered by eight loosely coupled services which collaborate to obtain a dis-
tributed deployment plan (containing a set of changes that will be applied to
the runtime environment), starting from an initial objective. The composing
services perform activities such as connecting to the instrumentation agents
for retrieving the runtime information, accessing software repositories, de-
ciding which compatible version of a service to use or choosing where each
deployable artifact should be physically located. The architecture has been
designed with flexibility in mind as regards all the decisions taken during
the process. This way, they can either be completely automated though the
definition of policies or be manually controlled by requiring human input for
decision making.

Over its lifespan, the SDCA has been applied in two different domains:
the delivery of services to a Digital Home (HomeFutura) and the support
for deploying banking deployment processes (BankFutura). These fields of
application have very different concerns: the banking domain imposes hard
requirements of reliability, security and stability of the system, while these
aspects are not as critical for the end users which consume the services offered
at HomeFutura. Additional factors, such as the technical background of
the users of the SDCA (IT administrators versus end users), or the specific
characteristics in each domain of the runtime infrastructure and the deployed
services also present important differences in both cases.

These differences caused variation in the degree of automation of the
services of one domain when compared to the other, which was made possible
by the flexibility of the architecture. As an example of that, for HomeFutura
the selection of which runtime node will host each service is automated by
using a load balancer policy. In this scenario, the decision is not relevant
for the end user, who does not have a technical background and just wants
to start consuming the service as soon as possible. On the other hand, in
BankFutura the same service is manually controlled by IT administration,
with a deep knowledge of the runtime domain and an understating of the
criticality of the service. Because of the same factors, deployment plans

6

are instantly executed in HomeFutura, while they must be scheduled by the
administrator in the banking organization, in order to provoke as less impact
to the running services as possible.

Clearly, the developed solutions for both domains did take into account all
those specific concerns in order to decide upon the automation of the execu-
tion flow. However, neither the concerns, nor the rationale or decisions about
it were made explicit in the complete documentation of the system. This in-
formation is vital to understand the design decisions which were taken over
the process, inform system actors about its intended participation and guide
the potential evolution of the SDCA from its current state. For instance, the
question of which services can be executed in any application domain without
any human intervention from the SOA manager of the SDCA is not answered
in the documentation. Instead, the documentation only points out that the
SDCA supports automatic service deployment, which could be interpreted as
no human actors are required at all during the service deployment process,
which is not the case. If we go to the domain-specific implementations, the
SOA architect of the banking domain cannot find an answer for the question
of which quality attributes have an impact on the degree of automation of
the deployment process, as the link between quality attributes and service
automation is missing from the documentation.

Those documentation problems are common to most developments. In
practice, the usefulness of architecture description is hardly recognized by
stakeholders (or readers) because architecture description becomes easily
outdated, inconsistent, contains either far too much information or too ab-
stract to understand [24]. The software design is often documented due to
organizational policies, without having in mind the expectation of readers.
Whether the readers can understand and retrieve useful information from
the documentation is often neglected. A potential solution to these prob-
lems is proposed in [25]; this work suggests to adopt expressive mechanisms
to convey information to stakeholders, and apply them to document the in-
formation that is relevant to each stakeholder. This way, stakeholders are
more motivated to read the architecture description, ultimately improving
the usefulness of architecture description.

3.2. Documenting software architecture

Software systems must address the concerns raised by multiple stakehold-
ers (e.g. architect, project manager and developer). These concerns must be
supported and documented by the software architecture. A popular approach

7

for documenting these concerns consists of following the separation of con-
cerns principle, defining multiple architecture views [26]. Each view focuses
on specific aspects of the system architecture, such as its structure [27], or
the component data flow [28], and is used only by the relevant stakeholders.

Architecture viewpoints provide the means to define and reuse views
among multiple systems. Some well-known view models from industry in-
clude: Kruchten’s “4+1” View Model [29], Hofmeister’s view model [30],
Software Engineering Institute (SEI) set of views [31], ISO Reference Model
of Open Distributed Processing (RM-ODP) [32], Zachman Framework for
enterprise architecture [33] and the viewpoint catalog collected by Eeles and
Cripps [34].

Existing viewpoints address concerns that often appear in traditional soft-
ware architectures. Recent software architecture styles (like SOA), bring ad-
ditional specific concerns that challenge the reusability of the existing view-
points. The lack of available views make practitioners face difficulties to find
an effective way to illustrate any new characteristics introduced by these
architecture styles. As a result, viewpoints enabling the illustration of spe-
cific concerns introduced by modern software architecture styles like SOA are
needed.

To our knowledge, none of the available viewpoints capture the concerns
about service automation, leaving a gap to be filled. The usage of service
automation viewpoints is twofold. On the one hand, the viewpoints frame a
basic set of concerns that are commonly related to service automation. The
identification of these concerns saves effort from architects and avoids the
danger of overlooking them. On the other hand, service automation view-
points comprise a set of conventions that facilitate the creation of architecture
views illustrating all the information needed to address service automation
related concerns.

4. Research approach

With the aim of defining a set of viewpoints framing concerns commonly
relevant to service automation, we followed an action research approach.
Action research is an iterative research approach where the researcher actively
participates in the case studies that he/she performs [9]. The motivation for
carrying out such an approach complies with what has been defined by Avison
et al. [10], which is “try out a theory with practitioners in real situations,
gain feedback from these experiences, modify the theory as a result of this

8

theory and try it again”. In the context of this work, the theory is made
of a set of viewpoints on service automation; the real situations refer to the
industrial case studies that we carried out; and the result of the theory refers
to a set of views on service automation that can be used for architecture
description.

Susman and Evered [9] described the action research process as a five
phase, cyclical process. These five phases (see Figure 1) include: 1) diag-
nosing, 2) action planning, 3) action taking, 4) evaluating, and 5) specifying
learning. Diagnosing refers to the identification of the primary problems.
Action planning specifies actions that should be undertaken to solve these
problems. These actions are then implemented in the action taking phase.
The outcomes of the actions are evaluated in the evaluating phase. Lastly the
knowledge gained in previous phases is collected in the specifying learning
phase, which may serve as valuable input to the next cycle.

We have followed the action research approach above with the goal of
defining a set of reusable service automation viewpoints. We carried out three
case studies (described in the following) in three associated action research
cycles (see Figure 1): each cycle produced a set of views and viewpoints,
which have been both challenged in the subsequent case study, and evaluated
and refined to cross-check for consistency with the previous case study.

4. Evaluating

3. Action taking

2. Action

planning

1. Diagnosing
5. Specifying

learning

Iteration 1

(SDCA)

Iteration 2
(BankFutura)

Forward Feedback

1. Diagnosing

Action research phase

Legend

4. Evaluating

3. Action taking

2. Action
planning

1. Diagnosing
5. Specifying

learning

Iteration 3

(HomeFutura)
4. Evaluating

3. Action taking

2. Action

planning

1. Diagnosing
5. Specifying

learning

Figure 1: The research approach

The first case study was carried out with the UPM (Universidad Politécnica
de Madrid) team, which designed and implemented the SDCA. In Phase 1:
Diagnosing, we studied the documentation of the SDCA and identified their

9

needs for explicitly addressing concerns about service automation. In Phase
2: action planning, we identified a list of stakeholders that might have con-
cerns relating to service automation and planned interview questions. In
addition, we designed a view-driven approach for developing viewpoints, de-
riving them from diagrams that are confirmed by stakeholders.

The main work has been carried out in Phase 3: action taking. There
we first conducted interviews with the stakeholders of the SDCA with the
aim of eliciting their concerns regarding service automation. From this set of
concerns, we identified what information should be depicted in the diagrams
to address these concerns. As some concerns might require the same type of
information, analyzing this information helped us in reducing the number of
necessary diagrams.

After we established what information should belong to each diagram,
we created them, with special attention to stakeholder understandability.
We then generalized the diagrams in an initial set of viewpoints on service
automation (which is the theory of the action research approach). Using
this initial set of viewpoints, we created a set of views for the SDCA. We
brought back these views to the stakeholders with the question of whether
these views were correct (content-wise) and aiding understanding of how the
concerns relating to service automation had been addressed in the design.

The feedback that we received from the stakeholders and domain experts
enabled us to refine the views and viewpoints in Phase 4: evaluating to
improve their expressiveness and completeness. After several iterations of
interviews and refinements, we obtained a final set of viewpoints framing all
the concerns that we have elicited. This set of viewpoints as well as the
lessons that we learned in this action research cycle were valuable inputs for
the next action research cycle.

Our next case study (see Iteration 2 in Figure 1) was carried out with
BankFutura, which applied the SDCA to their service configuration manage-
ment. The phases that we took in this cycle were similar to the ones in the
SDCA case study. The only difference was that at the end of the cycle of
the BankFutura case study, we revisited the cycle of the SDCA case study
to ensure that the viewpoints created in the BankFutura cycle could be suc-
cessfully applied to the SDCA as well. The same applied to the third case
study carried out with HomeFutura (Iteration 3). The viewpoints created
in the HomeFutura case study were evaluated and refined again to fulfill the
needs of both SDCA and BankFutura.

10

5. 3D service automation viewpoints

5.1. An overview of 3D service automation viewpoints

To illustrate the aspects that are relevant to service automation in ar-
chitecture design, we developed three service automation viewpoints. The
‘Degree of service automation’ viewpoint addresses the concerns about the
achieved and potential degree of automation for each service. The ‘Decision
on service automation’ viewpoint documents the reasoning behind the de-
cided degrees of automation. The ‘Data relating to service automation’
viewpoint illustrates what information and actors are involved in the degrees
of service automation.

The 3D viewpoints are complementary, being relevant to different types
of stakeholders and documenting different concerns [35, 36]. The degree view-
point identifies what services form the SBA, and what is the degree of au-
tomation for each of them. This information is of great interest to all the
stakeholders and thereby is exposed to the “public”. The remaining two
viewpoints build upon that general information. The data viewpoint docu-
ments the data and actors that intervene over service execution automation.
The decision viewpoint his information is enhanced by the remaining two
views. Finally, the decision viewpoint provides to the “internal” design team
(e.g.architects) the means for documenting and reusing the knowledge on
automation decision making. The rationale for this viewpoint is influenced
by the actors and policies from the data viewpoint and refers to the services
and degrees illustrated by the degree viewpoint.

5.2. Documenting architecture viewpoints

In the literature, there are multiple proposals for documenting viewpoints.
Among them the template proposed by Hilliard [37] is in our opinion the
most comprehensive one and, most importantly, reflects the requirements on
viewpoints specified in ISO/IEC 42010) [38]. Therefore, we chose to use this
template to document the 3D VP’s developed in this work. Table 9 presents
and describes the required items of the template.

In the following, we shall present the description of the viewpoint ‘Decision
on service automation’ (Sec. 5.4), ‘Degree of service automation (Sec. 5.5),
and ‘Data relating to service automation’ (Sec. 5.6) using the items of the
template in Table 9. For each of these viewpoints, we explain in detail its
metamodel and conforming notation, which are the key elements to be used
to create views, as well as an example view. To illustrate the application of

11

Table 1: Summary of Hilliard’s template for documenting architecture viewpoints

Template item Description
Viewpoint Name Name of the viewpoint, and accepted synonyms.
Overview Brief overview of the viewpoints.
Typical stakeholders
(optional)

The typical audience for views prepared using this
viewpoint.

Concerns List of the architecture-related concerns framed by
this viewpoint.

Anti-Concerns (op-
tional)

Kinds of issues this viewpoint is not appropriate for.

Model types Each type of model used by the viewpoint.
Model languages Vocabulary used for constructing the view.
Viewpoint metamodels
(optional)

The conceptual entities, their attributes and the re-
lationships that comprise the vocabulary of a type of
model.

Conforming notation An existing notation or model language to be used for
the model.

Model correspondence
rules

The viewpoint may specify model correspondence
rules.

Operations on views Methods which may be applied to views and their
models.

Examples Examples for the reader.
Notes Any additional information.
Sources The sources for this viewpoint, if any, including au-

thor, history, literature references, prior art, etc.

12

the 3D VP’s, we take a fragment of the SDCA service flow as a running sce-
nario, introduced in the following section. A formal definition of the elements
introduced in the 3D VP’s is provided in A.

5.3. A fragment of the SDCA service flow - running scenario

With the purpose of 1) showing how to construct views by applying the
proposed 3D VP’s and 2) illustrating how the constructed views address
the concerns framed by the 3D VP’s, we created three service automation
views as examples based on a subset of the BankFutura SDCA service flow
(introduced in Sec. 3.1). The subset of the SDCA service flow is presented
in Figure 2 and shortly described as follows.

Obtain Possible

Mappings

Select Unit

Resolve Unit

Map Units To

Nodes

sequence

Legend

 service service

Figure 2: A subset of the SDCA service flow

The deployment service Select Unit selects one unit among the available
ones to be deployed in the environment. The selection criteria should be
provided to the service as an external input. After that, the deployment
service Resolve Unit is invoked, where the logical requirements of the deploy-
ment unit containing the service are analyzed, in order to find a closed set
of units satisfying all their dependencies. There might be multiple candidate
units satisfying one dependency (e.g. multiple units with minor, compatible
versions) and for those cases a unit satisfaction criteria should be provided
as an external input. Once the complete set of units that will participate
in the operation has been identified, the deployment service Obtain Possible
Mappings evaluates the available resources from the runtime containers (e.g.
application servers), and returns for each unit the potential nodes of the en-
vironment where those can be deployed. Having these nodes, the deployment
service Map Units To Nodes decides on the final destination for each involved
unit, according to external distribution criteria.

13

The views created based on this scenario are used as examples in the
description of the 3D VP’s. For a detailed description of the 3D service
automation views, please refer to [39] where we report on the views created
for the complete service flow for both BankFurtura and HomeFutura.

5.4. Viewpoint ‘Decision on service automation’ (Decision Viewpoint)

SOA architects are often concerned with the justification of decisions on
the degree of automation. The rationale behind the decisions as well as the
decisions themselves are architectural knowledge valuable for organizations.
A good representation of such knowledge aids the SOA architects in analyzing
the design space and making optimized decisions [40]. It also enables the SOA
architects to communicate their decision with the other stakeholders. The
viewpoint ‘Decision on service automation’ is defined to serve this purpose.
The description of the Decision Viewpoint is presented in Table 2.

The metamodel of the Decision Viewpoint. The metamodel presented in Fig-
ure 3 illustrates the conceptual relationship between the constructs of the
decision model, which includes services with a decided degree of automation,
domain-specific factors and justifications for decisions.

justifies

Rationale for
a decision on

automation

Domain

specific factor

influences

based on

Scope

Degree of

automation

executes with

Domain

dependent

Domain

independent

Fully

automated

Either semi-

automated or policy-

driven automated

Semi-automated

Policy-driven

automated

Name

Service

0..*

Opt for policy-
driven

automated

Opt for semi-

automated

Figure 3: The metamodel of the Decision Viewpoint (in UML)

14

Table 2: Viewpoint ‘decision on service automation’ (Decision Viewpoint)
Viewpoint item Description
Viewpoint Name Decision on service automation viewpoint (Decision Viewpoint)
Overview The viewpoint deals with the links between domain-specific factors and the degree

of automation that can be applied to each atomic service in a business process.
Typical stakeholders SOA architects
Concerns Justification of decisions on the degree of service automation SOA archi-

tects are concerned with what are the most appropriate decisions on the degree of
service automation.
Reconfigurability in terms of automation. SOA architects are concerned
with what are the possible alternatives on the degree of service automation when
requirements or constraints change.

Model types Service automation decision model (Decision model)
Model languages This model is expressed in terms of these constructs: services, and domain-specific

factors that influence or lead to the decisions on service automation, decisions that
are relevant to service automation, and rationale for the decisions. The decision
model can be illustrated by the graphical notation proposed below.

Viewpoint metamodels See Figure 3
Conforming notation See Figure 4
Model correspondence
rules

All the services in the degree of service automation view should appear in this
view. The decision on the degree of service automation of each service in this view
should be correspondent to the degree of service automation of each service in the
degree view.

Operations on views Creation methods: To create a decision view, first identify which domain-specific
factors have an impact on the degrees of automation of the services and then link
the architecture constraints with the services with the corresponding rationale.
The rationale explains how each factor leads to a decision on the degree of service
automation.
Interpretive methods: In the decision view, the decision on automation is ren-
dered by two attributes: domain-dependency and re-configurability. In particular,
the border of ovals shows the domain dependency of the decision (a dashed line
suggests that it is domain dependent, while a straight line suggests that it is do-
main independent). When applying the services to another application domain,
this attribute highlights that domain independent services may keep the same de-
gree of automation whereas domain dependent services have to be justified against
the new domain-specific factors. Furthermore, the shadow of ellipses points out
if an alternative degree of automation is possible and thereby the service can be
re-configured if needed.
Analysis methods: Model correspondence rules can help the SOA architects
assess consistency with other views. The information presented in the decision
view not only shows the current degree of automation but also guides future re-
configurations in the degree of automation. This is supported by two aspects of
the view. First, the shadow reflects open degrees of automation with the current
constraints. Second, the model provides traceability between the constraints and
the affected services; hence the impact of those changes in the SBA will be clearly
identified easing its analysis.

Examples See Figure 5
Notes In principle, the rationale for fully automated services should explain why they do

not need external inputs during their execution. The rationale for other degrees of
services must motivate why external inputs are needed, why human actors have to
provide it or why it is possible to define policies to assist the execution of services.
If the degree of service automation is domain dependent, at least one domain
constraint has to be linked to the service.

Sources -

15

Each Service (see Figure 3) has a name and is designed to support a cer-
tain Degree of automation. The Degree of automation can be either Domain
dependent or Domain independent, meaning that the degree of automation
of a particular service differs when the service is applied in different appli-
cation domains. Next to classifying degrees from the perspective of domain
dependency, this viewpoint defines five degrees of automation from the per-
spective of human intervention): when a service does not require additional
input during its execution, it is Fully automated as no human intervention
is needed at all; when a service does require additional input and this input
can only be provided by a human actor, it Has to be semi-automated and if it
can only be provided by a policy, it Has to be policy-driven automated; when
the service flexibility allows the input to be provided by a human actor or
policies, the service is Either semi-automated or policy-driven automated; if
the input is decided to be provided by a human actor, a service is Opt to be
semi-automated, whereas if the input is decided to be provided by a policy,
a service is Opt to be policy-automated.

The decision on the degree of automation is heavily influenced by Domain-
specific factors, including non-functional requirements, business goals, archi-
tecture constraints, characteristics of the infrastructure, skills of the human
actors, etc. These factors lead to a set of Rationale that justifies the deci-
sions on automation for services. In addition, when a factor impacts a set
of services, its rationale is linked to a Scope encasing all the services, and
influences the decision on each affected service.

Note that although services that Have to be semi-automated (or Have to be
policy-driven automated) and Opt to be semi-automated (or Opt to be policy-
driven automated) are designed with the same degree of service automation,
they are different from a decision making perspective. The former type of
decision is a “has-to” decision in that only human actors (or policies) can
provide the additional inputs and thereby no other choice can be made. The
latter is an “opt for” decision in that both human actors and policies can
provide the additional inputs and thereby the architect can make a selection
between them based on the domain-specific factors of the system of interest.

One could argue that the reasoning behind “has-to” or “opt-to” is often
embraced in the rationale and wonder why they are regarded as two different
degrees of automation. Indeed, the rationale for decisions on service automa-
tion should explain what are the alternatives and what are the decisions and
why. However, this explanation is usually descriptive and embedded in the
text. By explicitly differentiating these two types of decisions and modeling

16

them as first class entities, the expressiveness of the decision model is en-
hanced and directly facilitates (potential) future re-configuration and SBA
evolution.

Conforming notation of the Decision Viewpoint. Figure 4 illustrates the graph-
ical notation designed for creating decision models. Services are represented
by ellipses; the three ones at left most of the figure represent three differ-
ent degrees of service automation that have been decided. Moreover, they
also imply that alternative degrees of service automation are not feasible or
reasonable. The notations in the second column of the figure represent that
a selection has been made or left open among alternative degrees of service
automation. These services can be re-configured to an alternative degree of
service automation if necessary.

The two notations in the third column denote the dependency between
a degree of service automation and a specific domain. The notations in the
last column are used to illustrate the relation between decisions, domain-
specific factors, and associated rationale, as well as the scope of services
where architecture constraints may have an impact on.

Domain

dependent

Domain

independent

Opt for policy-driven

automated

Opt for semi-

automated

Has to be policy-

driven automated

Has to be semi-

automated

Fully automated

Rationale

Domain specific

factors

leads to

justifies

Scope

Either semi-
automated or policy-

driven automated

Figure 4: Conforming notation of the Decision Viewpoint

An example of decision view. An example of the decision view created for
BankFutura (based on the service flow described in Sec. 5.3) is presented
in Figure 5. This example documents the decisions taken on the degree of
service automation. In the following, we shall explain how this decision view
addresses the concerns (see Table 2) framed by the Decision Viewpoint.

17

The concern about justification of decisions on the degree of automation is
addressed by modeling the rationale in the decision view, explaining whether
external inputs are required during the execution of services and (if so) mo-
tivating whether such inputs can be obtained automatically or need to be
given by human actors. For instance, as shown in Figure 5 service Obtain
Possible Mappings does not require any additional decisions or parameters
during its execution and thereby is fully automated. In turn, service Map
Units To Nodes requires distribution criteria as an external input during its
execution. As explained by the attached rationale, Map Units To Nodes is
decided to be semi-automated since control of distribution criteria is more
feasible if manually performed by a deployer in BankFutura.

Moreover, justification of decisions on the degree of automation is also
addressed by domain-specific factors. For instance, in Figure 5 the quality
attribute “security” (at bottom left corner of the figure) impacts all services,
as indicated by its link through the rationale to the scope (the big rectangle
in Figure 5), implying that critical activities should be manually controlled if
possible (explained by the attached rationale). Next to security, human actor
is another domain-specific factor that has an impact on the degree of service
automation. In BankFutura, as a banking deployer handling deployment
tasks is available and has the ability to manually control certain critical
activities, it is possible to dedicate some critical deployment tasks to this
human actor if needed.

Another concern framed by the Decision Viewpoint is reconfigurability
in terms of automation. This concern is addressed by “opt to be” services,
identified in the view with the shadows of the ovals, as it is shown in Figure 5.
For these services, the decisions on their degrees of automation could change
if the domain-specific factors change. For instance, since Select Unit carries
out critical activities and any mistakes would lead to unstable deployment
configurations, BankFutura opts for semi-automating this service. However,
suppose the quality requirements were not stability and criticality but agility
or flexibility, the architect could decide to automate Select Unit by means of
policies rather than requiring a human actor to make the selection.

5.5. Viewpoint ‘Degree of service automation’ (Degree Viewpoint)

Since services are the building blocks of SBAs, the degrees of automa-
tion of individual services directly determine the degree of automation of the
whole SBA. An overview of the extent to which each service of a SBA can

18

Name: Credit

concession service

Developed by: IT

department internal

to BankFutura

Service

Stability

Criticality

Quality

attributes

Topology: Pre-defined

Environment

Banking

deployer

Human actor

Security

Quality

attributes

The mapping activity must

take into account the specific

objectives and guidelines
behind the definition of the

environment topology.

Although such objectives as

distribution criteria could be

derived and defined in formal

models, there is a significant

cost in capturing that

knowledge, as well as a big

impact for any divergence

between the original

guidelines and the formalized

knowledge. Therefore, it is

decided that the banking
deployer should control the

mapping process.

Automatic unit

selection implies

allowing the
deployment

system

dynamically reacts
on changes, which

may result in

unexpected errors
and unstable

configuration.
Although section

criteria can be

technically

formalized , it is

decided that the

selection is made

by a human actor .

The human

actors are

familiar with the

domain

knowledge and

have technical

expertise.

Therefore, they

are capable of

making

technical
decisions over

the deployment

process, and

critical activities

can be
manually

controlled

The system has

a restricted

access for each

type of

operation. It is

required that the

operations that

take place at

each step can be

traced and

responsibility can
be assigned to

staff members.

Therefore,

critical activities

should be
manually

controlled.

Select Unit

Resolve

Unit

Map Units to

Nodes

Obtain
Possible

Mappings

This service

analyzes the

elements from
the logical graph

and the runtime

nodes and
identifies all the

possible
physical

mappings for the

participating
services. There

is no decision or

additional

parameter

required, thus it

is completely

automated.

Scope

leads

to

Quality

attributesRationale

Domain dependent service,

decided to be semi-automated

Domain dependent service,

decided to be policy-driven

automated

Domain

independent

service, fully

automated

Scope

leads

to

Quality

attributesRationale

justifiesjustifies

Legend

Banking services

are developed and
provided internally

according to internal
regulations. Since

the dependency

resolution activity is
simpler and

predictible, unit

satisfaction criteria

can be formalized

as policies and

hence it is decided

to automate this
service.

Figure 5: An example of decision view

19

be executed without human-intervention is not only of great interest to man-
agers who are responsible for resource allocation and planning but also for
human actors who participate during the execution of services. The Degree
Viewpoint is developed to address concerns of these two types of stakeholders.
The description of the Degree Viewpoint is presented in Table 3.

The metamodel of the Degree Viewpoint. The relationship between the con-
structs of the decision on service automation model is presented in Figure 6.
Each Service has a name and is designed with a Degree of automation. There
are three basic degrees of service automation: Fully automated (i.e. no Addi-
tional input is required), Semi-automated (i.e., a Human actor provides the
Additional input required by services), and Policy-driven automated (i.e.,
services retrieve required Additional input from Policies). A hybrid degree
reflects that the service is Either semi-automated or policy-driven automated.
Each service can be linked to another service with an execution sequence.

Degree of

automation

executes with

Fully

automated

Either semi-automated

or policy-driven

automated

Semi

automated

Policy-driven

automated

Human actor

Additional

input

 requires

Policy

 requires

 requires

provides provides

Name

Service

executes after
0..1

Figure 6: The metamodel of the Degree Viewpoint (in UML)

The conforming notation of the Degree Viewpoint. As denoted by the graph-
ical notation presented in Figure 7, the degrees of automation are graphically
rendered by the darkness of the color assigned to each service: the darker the
color, the higher the degree of automation. In addition, human actors can
be associated to semi-automated services with the purpose of highlighting
who are expected to provide input to which services (see association provides
input to). The sequence between services indicates the order in which the

20

Table 3: Viewpoint ‘Degree of service automation’ (Degree Viewpoint)
Viewpoint item Description
Viewpoint Name Degree of service automation viewpoint (Degree Viewpoint)
Overview The viewpoint shows the degrees of automation services are designed for and

whether each service can be automated or not. If human intervention is required,
the Degree Viewpoint highlights which actors should participate during the execu-
tion of services.

Typical stakeholders Human actors and managers
Concerns Degree of service automation Managers are concerned with the degree of au-

tomation that the services are expected to achieve.
Accountability Human actors are concerned with which services can be executed
automatically and which services require intervention from human actors.
Accountability. Managers are concerned with the trace of responsibility of hu-
man actors for providing input to services that are not fully automated.

Model types Degree of service automation model (Degree model)
Model languages The degree of service automation model is expressed in terms of these constructs:

services with different degrees of automation, human actors that are required during
the execution of services. This model can be illustrated by the graphical notation
proposed below.

Viewpoint metamodels See Figure 6
Conforming notation See Figure 7
Model correspondence
rules

Services as well as their degrees of automation should be correspondent to the data
model of the data view and the automation decision view. Human actors should
be correspondent to the data model of the data view.

Operations on views Creation methods: a degree view can be created by retrieving the decided de-
grees of automation for services (from the decision view) and adding that informa-
tion to the sequence of participating services.
Interpretive methods: the degree of automation is illustrated by means of the
darkness of the color. The darker the color, the higher degree of automation it
represents. The reader of this view may capture how many levels of automation
the services are designed for. The sequence between the services highlights the
interaction between services and the variation in the degrees of automation, which
can point to bottlenecks in the complete service execution flow.
Analysis methods: model correspondence rules can help the SOA architects
assess consistency with other views. The degree model not only provides a holistic
overview on the degree of service automation designed for each service, but also
provides guidance on detecting possible bottlenecks during the service execution
flow. In principle, each semi-automated service could introduce a bottleneck when
the corresponding human actor does not provide required information in time.
Implementation methods: services with different degrees of automation should
be provided with different interfaces dealing with different types of input/output
sources.

Examples See Figure 8
Notes The degree view is meant to show the designed degree of automation of services,

whether a service has to be or opt to certain degree of automation is irrelevant
to the stakeholders that are interested in this view. A service in the decision
view that either has to be semi-automated and opt to be semi-automated requires
inputs directly from human actors, and therefore correspondent to semi-automated
services. The same applies for policy-driven automated services.

Sources The Degree Viewpoint is derived both from UML use case diagrams and Business
Possess Modeling Notation (BPMN), both of which describe a set of actions carried
out by a list of actors. Similar with use case diagrams, horizontal ellipses are used
in the Degree Viewpoint to represent atomic services and actors are directly linked
to services. Similar with BPMN, arrow lines are used to denote sequences between
two services. On top of that, we add colors to ellipses to represent services with
different degrees of automation. This visualization technique helps (in particular)
non-technical stakeholders in capturing the degree of automation designed for the
services.

21

deployment services are invoked (see association executes after). With this
additional information, the period during which human intervention is (and
is not) required becomes explicit. By illustrating that external inputs are
expected to be provided by whom and when, this view also addresses the
accountability concern.

Policy-driven

automated service

Fully automated

service

sequence

Human Actor

provides input to

Semi-automated

service

Either semi-
automated or policy-

driven automated

Figure 7: The conforming notation of the Degree Viewpoint

An example of degree view. An example of the degree view created for Bank-
Futura (based on the service flow described in Sec. 5.3) is presented in Fig-
ure 8. Corresponding to the example of decision view (presented in Figure 5),
this example shows the decided degree of automation for each service. In the
following, we shall explain how this degree view addresses the concerns (see
Table 3) framed by the Degree Viewpoint.

Obtain Possible

Mappings

Banking deployer

Select Unit

Resolve Unit

Map Units To Nodes

Human actor

Semi-

automated

service
provides input to

Policy-driven

automated

service

sequence

Legend

Fully

automated

service

sequence

Figure 8: An example of degree view

The concern about degree of service automation is directly reflected at the
metamodel, and is graphically depicted by different shades of color blue. By

22

looking at Figure 5, one can easily understand that three different degrees
of automation have been designed for the four services, among which two
services require human intervention. Furthermore, the vertical positioning of
the services depending on their degree of automation improves its graphical
expressiveness, simplifying its comprehension.

The concern about accountability is addressed mainly by the association
of the human actor with the semi-automated services. More specifically, ser-
vices Select Unit and Map Units To Nodes are directly linked to a banking
deployer, indicating that this human actor should provide required informa-
tion during their execution. For the banking deployer, it is obvious to see
when he or she should be available to perform certain tasks and which ser-
vices are particularly relevant to them in the service flow. For the manager,
the degree view facilitates service management in that potential bottlenecks
(e.g. waiting for human inputs) can be detected.

5.6. Viewpoint ’Data relating to service automation’ (Data Viewpoint)

Whenever the execution of a service cannot be completely automated,
during execution it requires certain data, which must be provided by external
sources. In order to facilitate the execution of the service, it is important
to know what kind of data is missing and how to provide such data. These
questions are often the concerns of human actors (e.g. when to input what
data to which services), architects (e.g. how to ensure the input data is
understood by services) and managers (e.g. the alignment between input data
with organizational regulations or goals). The Data Viewpoint is developed
to frame these concerns and its description is presented in Table 4.

The metamodel of the Data Viewpoint. The relationship between the con-
structs of the data flow model and policy model is presented in Figure 9.
Each Service designed to support a certain Degree of automation has a name
and can be linked to another service with a sequence flow. Services that
are Either semi-automated or policy-driven automated require Additional
input: a Policy-driven automated service requires Policy input while a Semi-
automated service requires Human input provided by a Human actor. These
additional inputs are guided by associated Policies: policies guiding Human
inputs are often Guidelines or rules that are less structured; whereas Poli-
cies accessed directly by services have to be machine readable and thereby
documented in a more structured way (Formalized policy). Each Policy has
an ID, a name and a description. It is associated to a service that is either

23

Table 4: Viewpoint ’Data relating to service automation’ (Data Viewpoint)
Viewpoint item Description
Viewpoint Name Data relating to service automation viewpoint (Data Viewpoint)
Overview The Data Viewpoint focuses on the generation, retrieval, processing, and organizing

of data that are relevant to the support of different degrees of service automation.
Typical stakeholders Human actors, SOA architects, and managers
Concerns The specification of policies SOA architects are concerned with the format in

which policies should be defined so that human actors can easily understand them
and services can automatically process them. Managers are concerned with what
policies have to be in place before the services are ready in execution and who
controls them.
Compliance with organizational regulations Managers are concerned with
whether the external inputs provided to non-completely automated services comply
with organizational regulations or goals.
Human participation. Human actors are concerned with what information needs
to be provided to the services, how to provide correctly the information and when
it should be provided.

Model types Automation-related policy model (policy model) captures the organizational-level
policies that are required during the execution of services.
Automation-related data flow model (data flow model) captures the policies and
human input that the services will require during their execution. In addition, it
captures how the services will enforce those policies and how human input interacts
with the services.

Model languages Policy model: policies can be described in terms of their name, description, the
associated service and their format. These elements can be captured in a table.
Data flow model: it is expressed in terms of these constructs: policies, human
input, actors and services. The data flow model can be illustrated by graphical
notation proposed below.

Viewpoint metamodels See Figure 9;
Conforming notation For data flow model see Figure 10; for policy model see Table 5
Model correspondence
rules

Services as well as their degrees of automation should be correspondent to the data
model of the data view and the automation decision view. Human actors should
be correspondent to the data model of the data view.

Operations on views Creation methods: Create a data flow model before a policy model. To cre-
ate a data flow model, first analyze what external information requires each non-
completely automated service. Next, decide which policies are required for guiding
human actors and assisting policy-driven automated services. To create a policy
model, first record all the policies in the data flow model. Then define each policy
in terms of its name, description, controller and format.
Interpretive methods: In the data flow model, the graphical color scheme ap-
plied to the degree of automation is also applied to the corresponding polices.
Policies illustrated in dark color directly assist the execution of policy-driven au-
tomated services; while policies illustrated in light color guide the human actors
to provide information to the semi-automated services. In the policy model, the
reader may obtain an overview of each system policy related to automation.
Analysis methods: Model correspondence rules can help the SOA architects as-
sess consistency with other views. As services that are not fully automated require
additional information during their execution, it is important that this additional
information is illustrated in this view. Implementation methods: The policy
model describes important information about the policies, such as the format of
definition, which can guide the implementation of the policy-driven automated
services. In a similar way, defining the required information for semi-automated
services, and identifying the participating actors for each one, will also guide their
implementation.

Examples For data flow model see Figure 11; for policy model see Table 6
Notes
Sources

24

Semi-automated or Policy-driven automated with the purpose of assisting
their execution. The assigned Human actor controls the Policy, ensuring
that its content complies with organizational or architectural goal and that
its format is aligned with the requirements of the architect. Each policy is
specified in a certain format, defined by the architect.

Human

input

Degree of

automation

executes with

Formalized

policy

Guideline

or rule

Fully

automated

Additional

input

Either semi-

automated or

policy-driven

automated

Semi-

automated

Human
actor

Policy-driven

automated
Policy inputrequires

provides

provides

guides

Name

Service

executes after

requires

0..1

Name
ID
Description

Policy

controlled

by

Figure 9: The metamodel for the automation-related data flow model (in UML)

Conforming notation of the Data Viewpoint. The data flow model can be
constructed using the graphical notation presented in Figure 10. Besides the
notation for the three basic degrees of service automation, we distinguish the
guidelines/rules from formalized policies. While both guidelines/rules and
formalized policies are relevant to service automation, the former are used
by the human actors to drive the decision and the latter are directly accessed
by deployment services to achieve policy-driven automation.

The leftmost side of Figure 10 shows the graphical notation denoting
the relationships between the elements related to policy-driven automated
services. A formalized policy directly assists the execution of a policy-driven
automated service by providing the data that it needs. The middle part of
Figure 10 shows the graphical notation denoting the relationships between
the elements related to semi-automated services. More specifically, a human
actor is responsible for providing a type of information that is required by
a semi-automated service. For this purpose, the human actor is guided by
certain guidelines or rules.

Given these details on the relationships between policies, human actors,
and services, the human actors can tell which services are expecting what in-

25

Additional input

Fully automated

service

Formalized

policy

provides

Policy-driven

automated

service

Policy input

assist the execution of

Guidelines

or rules

guides

provides

Semi-automated

service

Human
Input

Human

actor

assist the execution of

Either semi-
automated or policy-

driven automated

sequence

Figure 10: The notation for the data relating to service automation model

formation from them. Moreover, it explicitly points out which organizational
guidelines or rules should this information comply with. This way, the de-
ployment actors can be prepared to transform this organizational knowledge
to their input to services, hence facilitating human participation.

The policy model can be constructed in terms of a table, listing the
policies that are relevant to service automation. The template for such a
table is shown in Table 5. This table aids the specification of policies in
presenting all the information relevant to the policies in a structured manner.
As such, this table also aids the preparation of the policies.

Table 5: The template for automation-related policy table
Policy
ID

Policy name Policy Description Associated ser-
vice

Controlled
by

Type of for-
mat

Model correspondence rules. Each policy in the automation-related policy
model should be linked to a service, which should appear in each of the other
views. Each policy in the automation-related data flow model should be
linked to the policies specified in the automation-related policies model.

An example of data view. A data view consists of two models, a data model
and a policy model. An example of the former is presented in Figure 11 and
the latter in Table 6. In the following, we shall explain how this data view
addresses the concerns (see Table 4) framed by the Data Viewpoint.

26

The concern about human participation is mainly addressed by the data
model. Corresponding to the degree view (presented in Figure 8), the data
model shows in detail that the two semi-automated services Select Unit and
Map Units To Nodes require information about Identification of the desired
service and Selection among the possible candidate units respectively during
their execution. The bank deployer can see from the data model that he or
she is required to provide these two pieces of information; and to do so he or
she is guided by System Requirements and Unit distribution policy.

Obtain Possible
Mappings

Select Unit

Resolve Unit

Map Units To Nodes

Unit selection

policy: latest

version

System

Requirements

Unit distribution

policy: optimize

performance,

ensure reliability

Banking

deployer

Identification

of the desired

service

Selection among

the possible

candidate units

Identification
of satisfactory

units

Legend

Guidelines

or rules

Formalized

policy

Policy-driven

automated service

Semi-
automated

service

provides
Human

Input

Human

actor
Policy

input

sequence

assist the execution of

guides provides

Fully automated

service

Additional

input

assist the execution of

sequence

Figure 11: An example of data model

An example of the policy model is shown in Table 6, listing all the policies
appearing in the data model given in Figure 11. This model mainly addresses
the concern about the specification of policies. For instance, since System
Requirements and Unit distribution policy are used by a human actor, they are
constructed in textual documents. Whereas Unit selection policy is directly
accessed by the policy-driven automated service Resolve Unit, thereby it is
created under machine readable formats.

The concern about compliance with organizational regulations is addressed
by both the data model and policy model. In the data model, each required
external input is linked to a policy implying that such input should conform
to the policy. In particular, when the external inputs are given by human
actors (like identification of the desired service provided by the banking de-
ployer as shown in Figure 11), it is of critical important to the manager
to have certain control over these inputs. Since the links between exter-

27

Table 6: An example of policy model
Policy
ID

Policy name Policy Description Associated
service

Controlled by Type of format

PB01 System re-
quirements

Describes the business
processes that must be
supported by the envi-
ronment

Select Unit Managers Textual Docu-
ment

PB02 Unit selection
policy: Lat-
est version

Selects the unit with
the most recent version
among the potential can-
didates

Resolve Unit SOA Archi-
tects

Formal/SQL
Sorting Query

PB03 Unit distribu-
tion policy

Defines the rationale
behind the environment
definition and the quality
levels to be sustained by
the deployed services

Map Units To
Nodes

SOA Archi-
tect

Textual Envi-
ronment design /
SLA Document

nal inputs and policies become explicit in the data model, the manager of
BankFutura understands better which policies will be used for providing the
required inputs. Complementarily, the policy model (presented in Table 6)
shows the specification of the policies in detail. In particular, it shows the
stakeholders who are responsible for maintaining the policies. The manager
could use this information to govern the validity of the policies.

5.7. Summary

In summary, the degree view can be regarded as the core of the three
service automation views, which can serve as a “central view”. The basic
elements of the degree view, a set of services with different degree of au-
tomation (ellipses marked with different colors), are also part of the other
two service automation views. Thereby, we can see the decision view and
data view as two views with different levels of abstraction. More specifically,
the decision view is a refinement of the degree view by adding rationale for
the decision on the degree of automation; and the data view is also a re-
finement of the degree view in that it adds information about policies and
human inputs that assist the execution of services. As such, the three views
have vertical relations, meaning they relate at different levels of abstraction.

6. Discussion

6.1. The visual support of the 3D service automation viewpoints

In [41], David Harel reflects on his early work on Statecharts, and ob-
served: “One of the most interesting aspects of this story is the fact that the

28

work was not done in an academic tower, inventing something and trying to
push it down the throats of real-world engineers. It was done by going into
the lions den, working with the people in industry. [. . .] If what you come
up with does not jibe with how they think, they will not use it. Its that
simple.” Our approach is similar. We worked together with architects to
identify their visualization requirements for architectural views. Architects
use views for two main purposes [42], reasoning and communication with
other stakeholders. In both cases, one fundamental factor for the usefulness
of a certain viewpoint is in providing the right visual notation to present the
needed information.

Visualization is a common technique to convey abstract information in
intuitive ways [43]. Representing information in terms of (a set of) graphics
often more easily draws readers’ attention and improves understandability, as
compared to pieces of text [44]. From our experience, the range of stakehold-
ers involved in services engineering includes a broader range of expertise’s
than in the development of traditional applications, which further reinforces
the need to achieve an effective communication between the stakeholders
through the usage of visualization techniques.

Software architecture practitioners have developed several well-accepted
diagram notations for documenting the systems, such as the UML (Unified
Modeling Language) [45] or the BPMN (Business Process Modeling Nota-
tion) [46]. Although they do not capture exactly the information involved
in the automation concerns, they do provide a way of representing concepts
such as service execution flow, or representing the actors which interact with
the system. However, these existing diagrams can be difficult to understand,
limiting their usefulness for reasoning with non-technical stakeholders (such
as end users or business managers), and for effective communication. There-
fore, these well-accepted notations can constitute the base of the proposed
viewpoints, but should be adapted to intuitively represent all the elements
surrounding these concerns and their relationships, using a notation easily
understandable for non-technical readers.

Visual support of viewpoints has been identified in Sec. 3.2 as a funda-
mental characteristic for their usefulness. In this section we describe how
we have consciously designed the graphical notation of the 3D VP’s to make
the corresponding views intuitively understandable and to hold readers at-
tention steady. To this aim, we followed some well-known design principles
in information- and software visualization [44, 43].

First of all, we used color tones in the graphical notation, with different

29

shades of color blue, for representing the different degrees of service automa-
tion. The motivation behind this scheme is that according to human per-
ception, dark colored objects often feel heavier in weight (tending to sink),
whereas light colored objects feel lighter (tending to float). This way, the
color tone renders graphically the degree of automation of each service: the
darker the color, the higher the degree of automation. This representation
resembles an iceberg immersed in the sea, with the human actors looking at
the surface: only the top (white is the lightest color) is visible (i.e. human
actor gets access to the service and manually participates in its execution),
while the deeper the iceberg is sunk in water, the lesser accessible it becomes
(i.e. increasingly automated).

The graphical notation for policies inherits the same color scheme. As
shown in Figure 10, policies guiding human actors are light colored; whereas
policies assisting the execution of policy-driven automated services are dark
colored. In this way, just from the color of the policies the reader can per-
ceive the correspondence between the degree of service automation and poli-
cies. These visualization techniques should enable the views becoming self-
explaining.

Second, in addition to color selection, we also carefully chose the shapes
of the graphical notation. In service automation views, services are the core
objects whereas other elements such as policies or human actors are auxiliary
information. Moreover, services most likely appear in other views than 3D
service automation views as well. For these reasons, we see the need to
graphically differentiate services from the other elements. We used ellipses
to denote services (as in SoaML [47]), and boxes to represent other elements.

Third, to help the reader focus on the main message that a 3D view
intends to convey, we positioned the elements supporting such main message
in the center of the view. For instance, when looking at a decision view like
Figure 5, the reader’s attention is naturally brought to the layer of rationale
that justifies service automation decisions. In the data view (see Fig 11),
since the data required during the execution of services is positioned in the
middle, the reader naturally pays attention to data-related issues, such as
which service requires such data and where the service can obtain this data,
helping the main purpose of this view.

Finally, to make the conforming views easy to understand and self-ex-
plaining, we reused known notations and concepts from UML and BPMN to
represent common concepts in the architecture description. For instance, we
used a person symbol to represent a human actor, and a document symbol to

30

represent a policy. Relationships also use a familiar notation: for instance, a
line with arrow denotes the invocation sequence between to services, and a
line connecting a human actor and a service denotes the interaction between
them.

In summary, the graphical notation defined in the 3D VP’s has been
carefully designed in order to maximize the expressiveness of the conforming
views. The notation’s ease of understanding simplifies both the creation
and interpretation of conforming views. As such, the 3D VP’s facilitate the
communication between stakeholders, especially the ones lacking technical
expertise.

6.2. The applicability of the 3D VP’s

To validate our goal of supporting reusability and applicability of the
3D VP’s across different domains, we carried out a fourth study in a totally
different context, namely an education environment. In a SOA design Master
course given in our university, 11 groups of 3 Master students each were
asked to design a SOA e-Health system (its functional and non-functional
requirements are described in [48]) using the 3D VP’s in their architecture
descriptions. As the e-Health system consisted of many business processes,
the students were allowed to select one process to illustrate its automation
aspect. Some examples of the selected process are diagnosis, medical device
reservation, and pharmacy management.

During this course, we asked the students to first identify concerns related
to service automation in the e-Health system, and then use the 3D VP’s to
illustrate these concerns. In this way, we could possibly obtain some concerns
that we might have overlooked in our case studies but should be framed
because of their relevance. The results show that the concerns identified by
the students were either specific to E-health system or domain-independent.
In both cases, we could successfully map them to the set of concerns already
framed in 3D VP’s in a straightforward way.

In summary, in spite of the clearly different application domain of the
e-Health system (as compared to the SDCA), the students could directly
apply the 3D VP’s to illustrate the service automation aspects in their design.
Moreover, the students provided very positive feedback on the use of the 3D
VP’s and their expressiveness. Although not conclusive, these results provide
us with further positive indication of the applicability of the 3D VP’s to SBAs
in general.

31

7. Conclusion

SOA has been widely adopted in industry. One of the reasons for this
adoption is its ability to dynamically respond to business changes. To max-
imize this ability, SBAs should have a certain degree of automation and
minimize the intervention of human actors. As SBA consist of services that
are distributed and owned by different business parties, the lack of control
over services poses additional concerns in service-oriented design. In this
work, we identify service automation as a service aspect that is specifically
relevant to SBAs and thereby should be explicitly documented in architecture
description.

The 3D viewpoints contribute to address the top three SOSE challenges
reported in [49]: quality, service and data. The decision view addressed
quality-based decision making, as it illustrates the trade-off between the de-
gree of automation services can achieve and other quality requirements such
as reliability, security, agility, and flexibility. Second, the 3D viewpoints focus
on service autonomy, therefore contributing to also contribute to the support
of one property of “good” services. Finally, the data view frames some data
provenance concerns of SBAs. More specifically, it illustrates the creation,
processing, and management of the data relevant to service automation (in-
cluding policy guidelines and programmatic policies).

The study of the SDCA and its two industrial applications motivated us
to develop viewpoints to address service automation concerns. This study
also provided us with a source from where we could elicit concerns, model
corresponding designs and verify the correctness and expressiveness of the
models. Using the action research approach, we developed the 3D VP’s
presented here, framing the concerns relating to automating the execution of
services for coordinately accomplishing a specific (business or engineering)
task.

So far, the 3D VP’s have been used to illustrate the service automation as-
pect of the SDCA and its two industrial applications, as well as the e-Health
system designed by the Master students. During these studies, we noticed
that the decisions on service automation were influenced by a common set
of domain-specific factors, including quality attributes, human actors, char-
acteristics of services or infrastructure. In our future work, we plan to gain
more insight into the link between these factors and the degree of service
automation. As such, this link could serve as a list of guidelines for service
automation decision making.

32

Appendix A. Formal definitions of the 3D Viewpoint elements

This appendix provides a formal definition of the elements from the three
automation viewpoints using set theory and first order logic expressions.

The three viewpoints on service automation capture complementary in-
formation related to a specific automation context AC of the SBA. AC is
defined as a tuple that contains five sets of elements relevant for the automa-
tion of an SBA: AC =< Service, Factor, Input, Provider, Rationale >. Set
Service contains the service executions that participate in the specific SBA
scenario. Factor is the set of domain-specific factors that are relevant for
the decision on the degrees of automation of the automation context ser-
vices. Set Input contains the additional input elements that are required
by the services to execute correctly. Those input elements are provided by
the members of set Provider, which includes the elements external to the
services that can provide additional input. Finally, the elements from set
Rationale capture the rationale on each specific decision about the degree of
automation of each service from the AC.

The following gives further details about the elements from these sets
and their relations. We also include a reference table for each viewpoint that
summarizes the metamodel elements and the corresponding definitions.

Appendix A.1. Definitions related to Degree

AC captures the automation information about a SBA scenario. On the
elements in Service we defined a partial binary relation, denoted executesAf -
ter, which gives the order in which services are sequentially executed. If
s2 executesAfter s1 then s2 is executed after s1. It is possible that two
services are not related via executesAfter. In this case, s3 might be executed
after s1 without having an executesAfter relation between s2 and s3. This
means that it is irrelevant for the SBA which service between s2 and s3 is
executed after.

The automation context also contains a set of domain-specific factors
f ∈ Factor. A domain-specific factor f represents a characteristic of the
context that is relevant for automation. The function DomainSpecific :
AC → Boolean represents whether the degrees of automation of the AC
services depend or not on domain-specific factors. The function is evaluated
as follows: DomainSpecific(ac) = true, if |Factor| > 0.

A service executes with a degree of automation extracted from the fol-
lowing set Degree = {Fully, PolicyDriven, Semi}. The Fully automated

33

degree is a completely automated execution without any need for external
intervention. A PolicyDriven automated execution requires external input
that can be provided beforehand, and Semi-automated execution requires
the intervention of an external actor.

Each service s, depending on its technical characteristics, can poten-
tially execute with multiple degrees of automation. The potential range
of degrees of automation for each individual service s is defined by func-
tion options : Service → ℘(Degree), where ℘ denotes the superset of a set.
The automation possibilities for each service depend on its nature and the
underlying design, with the restriction that |options(s)| ≥ 1.

Each service s can have a decision on its degree of automation execu-
tion. The services that have a decided degree are represented by the subset
decided = {s ∈ Service, |options(s)| = 1 ∨DomainSpecific(AC)}. The de-
cisions are represented by the partial function decision : decided→ Degree.
A decision for a service s is one among the set of possible options for that
service, i.e. the decision corresponds to the decided option.

Appendix A.2. Definitions related to the Data viewpoint

Set Input from the AC contains all the additional input elements that are
required by the services to execute correctly. Depending on the origin of the
additional input, this set can be partitioned into two subsets, HumanInput
and PolicyInput. Elements of HumanInput are provided by human actors,
while elements of PolicyInput are generated by an automated policy.

Several services from the AC require additional input to perform their exe-
cution. They are identified by subset depServices = {s ∈ Service|decision(s) ∈
{Semi, PolicyDriven}}. The partial function inputFor : depServices →
Input maps the services that require additional input with the Input ele-
ments. The value of function inputFor satisfies the following:

• if decision(s) = Semi, then inputFor(s) ∈ HumanInput;

• if decision(s) = PolicyDriven, then inputFor(s) ∈ PolicyInput.

AC also contains the set of elements that provide additional information
p ∈ Provider. This set is partitioned into two subsets depending on the
nature of the provider, HumanActor and Policy. Elements from subset Hu-
manActor are human stakeholders that participate in the AC, while elements
from Policy are documents and artifacts that provide automation informa-
tion. Policy is further partitioned into subsets FormalPolicy and Guideline.

34

Elements of FormalPolicy provide additional input to a service execution.
To this aim, they are defined in policy languages that are interpretable au-
tomatically by the services. Elements of Guideline are documents that guide
a human actor in the process of providing the required additional input to a
service. The function providerFor : Input → Provider satisfies the follow-
ing:

• if hi ∈ HumanInput, then providerFor(hi) ∈ HumanActor;

• if pi ∈ PolicyInput, thenproviderFor(pi) ∈ FormalPolicy.

The only elements from set Provider that do not directly provide input
are element of Guideline. Their role is to guide human actors on providing
the additional Input to semi-automated services. These actors are identi-
fied as follows: humanProviders := {ha ∈ HumanActors|∃s ∈ decided :
decision(s) = Semi ∧ providerFor(inputFor(s)) = ha}.

Finally, each Policy element is maintained by a human actor. The func-
tion responsibleFor : Policy → HumanActor provides a reference to the
human actor that maintains the Policy element.

Appendix A.3. Definitions related to the Decision viewpoint

The final set of elements that constitute the automation context is the
Rationale. Each element r ∈ Rationale contains the argumentation for a
decision on the degree of automation of a service. The partial function
basedOn : Rationale → ℘(Factor) provides the basis for each Rationale.
The predicate function domainSpecific on set Rationale evaluates to true if r
belongs to the domain of definition of basedOn. This reflects whether or not
the rationale for a decision is influenced by domain-specific factors.

Set Rationale is partitioned into two sets depending on the scope of
their influence on the automation decisions: individualRationale and glob-
alRationale. Elements of individualRationale affect the decision for specific
services, whereas elements of globalRationale affect every automation deci-
sion. This is expressed by the following function: justifies : Rationale →
Service ∪ {Service}, with:

• justifies(r) = s ∈ Service if r ∈ individualRationale

• justifies(r) = Service if r ∈ globalRationale

35

Table A.7: Degree Viewpoint metamodel equivalences
Metamodel element Equivalent Definition
s instance of Service s ∈ Service
i instance of Additional Input i ∈ Input
h instance of Human Actor h ∈ HumanActor
p instance of Policy p ∈ Policy
Service s1 executesAfter s2 executesAfter(s1,s2) relation
Service s executes with Degree of automation
d

d = decision(s)

Service s executes Fully automated decision(s) = Fully
Service s executes either semiautomated or
policy-driven

options(s) = {Semi, PolicyDriven} ∧
decision(s) is not defined

Service s requires Additional Input i i = inputFor(s)
Service s executes Semi-automated decision(s) = Semi
Human actor h provides Additional input i h=providerFor(i)
Semi-automated Service s requires Human
Actor h

i = inputFor(s) ∧ h = providerFor(i)

Service s executes Policy-driven automated decision(s) = PolicyDriven
Policy p provides AdditionalInput i p = providerFor(i)
Service s requires Policy p i = inputFor(s) ∧ providerFor(i) = p

36

Table A.8: Data Viewpoint metamodel equivalences
Metamodel element Equivalent Definition
s instance of Service s ∈ Service
hi instance of Human input hi ∈ HumanInput
pi instance of Policy input pi ∈ PolicyInput
h instance of Human actor h ∈ HumanActor
p instance of Policy p ∈ Policy
fp instance of Formalized policy fp ∈ FormalizedPolicy
g instance of Guideline g ∈ Guideline
Service s1 executesAfter s2 executesAfter(s1,s2) relation
Service s executes with Degree of automation
d

d = decision(s)

Service s executes Fully automated decision(s) = Fully
Service s executes Either semiautomated or
policy-driven

options(s) = {Semi, PolicyDriven} ∧
decision(s) is not defined

Service s executes Semi-automated decision(s) = Semi
Semi automated service s requires Human In-
put hi

hi = inputFor(s)

Human actor h provides Human input hi h = providerFor(hi)
Guideline g guides Human actor h h = guidedBy(g)
Service s executes Policy-driven automated decision(s) = PolicyDriven
Policy-driven Service s requires Policy input
pi

pi = inputFor(s)

Formalized policy fp provides Policy input pi fp = providerFor(pi)
Policy p is controlled by Human actor ha ha = responsibleFor(p)

37

Table A.9: Decision Viewpoint metamodel equivalences
Metamodel element Equivalent Definition
Scope Service
s instance of Service s ∈ Service
r instance of Rationale r ∈ Rationale
d instance of Domain specific factor d ∈ Factor
Service s executes with Degree of automation
d

d = decision(s)

Domain independent Service s decision(s)isnotdefined ∨ |options(s)| = 1
Domain dependent Service s decision(s)isdefined ∧ |options(s)| > 1
Service s executes Fully automated decision(s) = Fully ∧ |options(s) = 1|
Service s executes Either semi automated or
policy-driven

options(s) = {Semi, PolicyDriven} ∧
decision(s) is not defined

Service s opt for semi automated decision(s) = Semi ∧ |options(s)| > 1
Service s opt for policy-driven automated decision(s) = PolicyDriven∧ |options(s)| >

1
Service s executes Semi-automated decision(s) = Semi ∧ |options(s) = 1|
Service s executes Policy-driven automated decision(s) = PolicyDriven ∧ |options(s) =

1|
Rationale r justifies degree of Service s s = justifies(r), r ∈ individualRationale
Rationale r influences {s1..sn} ∈ Service {s1..sn} = justifies(r), r ∈ globalRationale
Rationale r based on Factor[f1..fn] {f1..fn} = basedOn(r)

38

[1] M. Rehfeldt, K. Turowski, Business models for coordinating next gen-
eration enterprises, in: Proceedings of the Academia/Industry Working
Conference on Research Challenges, IEEE Computer Society, Washing-
ton, DC, USA, 2000, p. 163.

[2] M. Chen, A. N. K. Chen, B. B. M. Shao, The implications and impacts of
Web Services to electronic commerce research and practices, J. Electron.
Commerce Res. 4 (4) (2003) 128–139.

[3] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign, Prentice Hall, 2005.

[4] M. Papazoglou, D. Georgakopoulos, Service-oriented computing, Com-
mun. ACM 46 (10) (2003) 25–28.

[5] R. Parasuraman, V. Riley, Humans and automation: Use, misuse, dis-
use, abuse, Human Factors 39 (2) (1997) 230–253.

[6] C. H. Crawford, G. P. Bate, L. Cherbakov, K. Holley, C. Tsocanos,
Toward an on demand service-oriented architecture, IBM Systems 44 (1)
(2005) 81–107.

[7] A. Jansen, P. Avgeriou, J. S. van der Ven, Enriching software archi-
tecture documentation, Journal of Systems and Software 82 (8) (2009)
1232 – 1248.

[8] ISO/IEC/IEEE, ISO/IEC/IEEE 42010 systems and software engineer-
ing - architecture description (2012).
URL www.iso-architecture.org/ieee-1471/

[9] G. I. Susman, R. D. Evered, An assessment of the scientific merits of
action research, Administrative Science Quarterly 23 (1978) 582–603.

[10] D. Avison, F. Lau, M. Myers, P. A. Nielsen, Action research, Commu-
nications of the ACM 42 (1) (1999) 94–97.

[11] R. Parasuraman, T. Sheridan, C. Wickens, A model for types and levels
of human interaction with automation, IEEE Transactions on Systems,
Man, and Cybernetics, Part A: Systems and Humans 30 (3) (2000) 286–
297.

39

[12] F. Nachreiner, P. Nickel, I. Meyer, Human factors in process control
systems: The design of human - machine interfaces, Safety Science 44 (1)
(2006) 5–26.

[13] J. Kephart, D. Chess, The vision of autonomic computing, IEEE Com-
puter 36 (1) (2003) 41–50.

[14] D. Agrawal, K. Lee, J. Lobo, Policy-based management of networked
computing systems, IEEE Communications 43 (10) (2005) 69–75.

[15] M. Sloman, Policy driven management for distributed systems, Journal
of network and Systems Management 2 (4) (1994) 333–360.

[16] A. Bandara, N. Damianou, E. Lupu, M. Sloman, N. Dulay, Handbook of
Network and Systems Administration, Elsevier, 2007, Ch. Policy-Based
Management, pp. 507–563.

[17] A. Guerrero, V. A. Villagra, J. E. L. de Vergara, Including management
behavior defined with SWRL rules in an ontology-based management
framework, in: 12th Annual Workshop of HP Openview University As-
sociation, 2005, p. 13.

[18] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, R. H. Katz,
An architecture for a secure service discovery service, in: MobiCom ’99:
Proceedings of the 5th annual ACM/IEEE international conference on
Mobile computing and networking, ACM, New York, NY, USA, 1999,
pp. 24–35.

[19] M. kun Cao, R. Chi, Y. Liu, Developing a multi-agent automated ne-
gotiation service based on service-oriented architecture, Service Science
1 (1).

[20] G. Kecskemeti, Y. Zetuny, T. Kiss, G. Sipos, P. Kacsuk, G. Terstyan-
szky, S. Winter, Automatic deployment of interoperable legacy code
services, in: UK e-Science All Hands Meeting, 2005, pp. 729–736.

[21] G. Wang, C. Wang, A. Chen, H. Wang, C. K. Fung, S. A. Uczekaj,
Y.-L. Chen, W. Guthmiller, J. Lee, Service level management using
QoS monitoring, diagnostics, and adaptation for networked enterprise
systems, in: Proceedings of the Ninth IEEE International Enterprise
Computing Conference, IEEE Computer Society, 2005, pp. 239–250.

40

[22] Q. Gu, P. Lago, On service-oriented architectural concerns and view-
points, in: 8th Working IEEE/IFIP Conference on Software Architec-
ture, IEEE, Cambridge, UK, 2009, pp. 289–292.

[23] J. Ruiz, J. Dueñas, F. Cuadrado, Model-based context-aware deploy-
ment of distributed systems, IEEE Communications Magazine 47 (6)
(2009) 164–171.

[24] T. C. Lethbridge, J. Singer, A. Forward, How software engineers use
documentation: The state of the practice, IEEE Software 20 (6) (2003)
35–39.

[25] P. Clements, D. Garlan, R. Little, R. Nord, J. Stafford, Documenting
Software Architectures: Views and Beyond, Addison-Wesley, 2002.

[26] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
2nd Edition, Addison-Wesley, 2003.

[27] P. Selonen, J. Xu, Validating UML models against architectural profiles,
SIGSOFT Software Engineering Notes 28 (5) (2003) 58–67.

[28] N. Liu, D. Zheng, F. Gao, Y. Xiong, Research on the application of UML
in software architecture modeling, in: 10th IEEE International Con-
ference on High Performance Computing and Communications, IEEE
Computer Society, Los Alamitos, CA, USA, 2008, pp. 762–766.

[29] P. Kruchten, The 4+1 view model of architecture, IEEE Software 12 (6)
(1995) 42–50.

[30] C. Hofmeister, P. Kruchten, R. L. Nord, Generalizing a model of software
architecture design from five industrial approaches, in: the 5th Working
IEEE/IFIP Conference on Software Architecture, 2005, pp. 77–86.

[31] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, J. Stafford, A practical method for documenting software
architectures (2002).
URL www-2.cs.cmu.edu/afs/cs/project/able/ftp/icse03-dsa/%

-submitted.pdf

[32] D. Norris, The ISO reference model for open distributed processing: An
introduction, Journal of Computer Networks and ISDN Systems 27 (8)
(1995) 1215–1229.

41

[33] J. Zachman, A framework for information systems architecture, IBM
Systems Journal 26 (3) (1987) 276–292.

[34] P. Eeles, P. Cripps, The Process of Software Architecting, Addison-
Wesley Professional, July 2009.

[35] R. M. Dijkman, D. A. Quartel, L. F. Pires, M. J. van Sinderen, An
approach to relate viewpoints and modeling languages, in: Proceedings
of the 7th IEEE Enterprise Distributed Object Computing Conference,
IEEE Computer Society, Los Alamitos, CA, USA, 2003, pp. 14–27.

[36] N. Boucké, D. Weyns, R. Hilliard, T. Holvoet, A. Helleboogh, Charac-
terizing relations between architectural views, in: Proceedings of the 2nd
European conference on Software Architecture, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 66–81.

[37] R. Hilliard, The trust viewpoint (2009).
URL www.iso-architecture.org/viewpoints/docs/hilliard-Trust-

VP-r1.pdf

[38] D. Emery, R. Hilliard, Updating IEEE 1471: architecture frameworks
and other topics, in: Proceedings of the Seventh Working IEEE/IFIP
Conference on Software Architecture, IEEE Computer Society, 2008, pp.
303–306.

[39] Q. Gu, F. Cuadrado, P. Lago, J. C. Duenas, Service Research Chal-
lenges and Solutions for the Future Internet: S-Cube - Towards En-
gineering, Managing and Adapting Service-Based Systems, Vol. LNCS
6500 of Services Science Subline, Springer-Verlag, 2010, Ch. Architecture
Views illustrating the Service Automation Aspect of SOA, pp. 339–372.
doi:10.1007/978-3-642-17599-2.

[40] M. A. Babar, P. Lago, Design decisions and design rationale in software
architecture, Journal of Systems and Software 82 (8) (2009) 1195–1197.

[41] D. Harel, Statecharts in the making: A personal account, Communica-
tions of the ACM 52 (2009) 67–75.

[42] P. Kruchten, Controversy corner: What do software architects really
do?, Journal of Systems and Software 81 (12) (2008) 2413–2416.

42

[43] C. Chen, Information visualization: Beyond the horizon, Springer-
Verlag New York, Inc., 2004.

[44] S. K. Card, J. Mackinlay, B. Shneiderman, Readings in Information Vi-
sualization: Using Vision to Think (Interactive Technologies), 1st Edi-
tion, Morgan Kaufmann, 1999.

[45] A. Evans, R. France, K. Lano, B. Rumpe, The uml as a formal modeling
notation, in: J. Bézivin, P.-A. Muller (Eds.), The Unified Modeling
Language. UML”98: Beyond the Notation, Vol. 1618 of Lecture Notes
in Computer Science, Springer, 2004, pp. 514–514.

[46] C. Ouyang, M. Dumas, A. H. M. ter Hofstede, W. M. P. van der Aalst,
From BPMN process models to BPEL web services, in: Proceedings of
the IEEE International Conference on Web Services, IEEE Computer
Society, Washington, DC, USA, 2006, pp. 285–292.

[47] OMG, Service oriented architecture modeling language (SoaML) - spec-
ification for the UML profile and metamodel for services (UPMS) - re-
vised submission (2008-11-01) (2008).
URL www.omg.org/cgi-bin/doc?ad/08-08-04.pdf

[48] E. D. Nitto, V. Mazza, A. Mocci, Collection of industrial best practices,
scenarios and business cases, Deliverable CD-IA-2.2.2, S-Cube Consor-
tium, www.s-cube-network.eu (2009).

[49] Q. Gu, P. Lago, Exploring service-oriented system engineering chal-
lenges: A systematic literature review, Service Oriented Computing and
Application 3 (3) (2009) 171–188.

43

