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Abstract

A semantic-web ontology, simply known as ontology, comprises a data model and data that should comply with it. Due to their
distributed nature, there exist a large amount of heterogeneous ontologies, and a strong need for exchanging data amongst them, i.e.,
populating a target ontology using data that come from one or more source ontologies. Data exchange may be implemented using
correspondences that are later transformed into executable mappings; however, exchanging data amongst ontologies is not a trivial
task, so tools that help software engineers to exchange data amongst ontologies are a must. In the literature, there are a number of
tools to automatically generate executable mappings; unfortunately, they have some drawbacks, namely: 1) they were designed to
work with nested-relational data models, which prevents them to be applied to ontologies; 2) they require their users to handcraft
and maintain their executable mappings, which is not appealing; or 3) they do not attempt to identify groups of correspondences,
which may easily lead to incoherent target data. In this article, we present MostoDE, a tool that assists software engineers in
generating SPARQL executable mappings and exchanging data amongst ontologies. The salient features of our tool are as follows:
it allows to automate the generation of executable mappings using correspondences and constraints; it integrates several systems
that implement semantic-web technologies to exchange data; and it provides visual aids for helping software engineers to exchange
data amongst ontologies.
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1. Introduction

The goal of the Semantic Web is to endow the current Web
with metadata, i.e., to evolve it into a Web of Data that can
be easily consumed by machines (Polleres and Huynh, 2009).
Semantic-web ontologies are the artefacts of this Web of Data,
each of which comprises a data model and data that should com-
ply with it; they build on the semantic-web technologies, i.e.,
RDF, RDF Schema, and OWL for modelling structure and data,
and SPARQL for querying them (Antoniou and van Harmelen,
2008; Zhang et al., 2010). For the sake of brevity, in this article,
we refer to semantic-web ontologies as ontologies.

The distributed nature of the Web of Data implies that there
exist a large amount of heterogeneous ontologies that have been
devised by different organisations with different purposes. Fur-
thermore, the same data in the Web of Data may be endowed
with different data models that have been devised by differ-
ent organisations, who use those data with different purposes;
this makes it common to have interoperability problems (Noy,
2004). Furthermore, new ontologies try to reuse existing on-
tologies as much as possible since it is considered a good prac-
tice. Unfortunately, it is usual that existing ontologies cannot be
completely reused, but require to be adapted, which entails that
ontologies use a mixture of new and reused data models (Heath
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and Bizer, 2011). Due to these facts, there exist a strong need
for exchanging data amongst ontologies, i.e., populating a tar-
get ontology using data that come from one or more source on-
tologies (Fagin et al., 2005).

Exchanging data amongst ontologies may be performed by
means of ad-hoc proposals, which rely on handcrafting pieces
of code to solve particular data exchange problems (Ome-
layenko, 2002), reasoner-based proposals, which rely on logic
rules that express how source data can be reclassified into tar-
get data (Serafini and Tamilin, 2007), and query-based propos-
als, which rely on queries that retrieve data from a source on-
tology, transform them, and output the results using the tar-
get ontology (Rivero et al., 2011a). Both the rules required
by reasoner-based proposals and the queries required by query-
based proposals are usually referred to as executable mappings
in the literature. They are represented in a high-level, struc-
tured language (Rivero et al., 2011a). Note that, in addition to
data exchange, executable mappings are the cornerstone com-
ponents of several other integration tasks, such as data integra-
tion (Lenzerini, 2002; Makris et al., 2012, 2010), model match-
ing (Bellahsene et al., 2011), model evolution (Noy and Klein,
2004), or query processing in distributed ontologies (Lee et al.,
2010).

Ad-hoc proposals are difficult to create, tune, maintain, and
reuse since they require an expert to handcraft a piece of soft-
ware to solve each data exchange problem independently from
the others (Popa et al., 2002). Reasoner-based proposals are
generally not scalable since they do not achieve good perfor-
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mance when reasoning on relatively complex or large ontolo-
gies (Haarslev and Möller, 2008). These facts make the previ-
ous proposals little appealing to deal with real-world data ex-
change problems, which has motivated many authors to work
on query-based proposals.

The work regarding query-based proposals has focused on
generating executable mappings automatically. This is a key
requirement since, otherwise, the costs involved in devising
the mappings, checking if they work as expected, and optimis-
ing and maintaining them would not make sense (Petropoulos
et al., 2007). The vast majority of proposals build on corre-
spondences, which are hints that specify which entities in the
source and target ontologies correspond to each other, i.e., are
somewhat related (Euzenat and Shvaiko, 2007). The literature
also provides several proposals to generate correspondences au-
tomatically (Bellahsene et al., 2011); unfortunately, they are
not usually able to find all of the correspondences involved in
some data exchange problems, and thus require user interven-
tion (Raffio et al., 2008b). Additionally, correspondences are
inherently ambiguous, i.e., different experts may interpret them
differently and thus the same data exchange problem might re-
sult in different target data (Alexe et al., 2008b; Bernstein and
Melnik, 2007).

As a conclusion, tools that help software engineers devise the
queries to exchange data amongst ontologies are a must. In the
literature, there are a number of tools to automatically generate
executable mappings (Bizer and Schultz, 2010; Bonifati et al.,
2005; Dou et al., 2005; Haas et al., 2005; Maedche et al., 2002;
Mocan and Cimpian, 2007; Parreiras et al., 2008; Ressler et al.,
2007). Unfortunately, these tools have a number of drawbacks:
1) Haas et al. (2005) and Bonifati et al. (2005) rely on nested-
relational data models, and cannot thus be applied to ontologies.
2) Bizer and Schultz (2010), Dou et al. (2005), Parreiras et al.
(2008) and Ressler et al. (2007) require their users to handcraft
and maintain their executable mappings, which is not appealing
since users have to create, optimise, and maintain them. 3) Mo-
can and Cimpian (2007) did not attempt to identify groups of
correspondences, which may easily lead to target data that does
not satisfy the constraints in the target ontology (Alexe et al.,
2011a; Bernstein and Melnik, 2007; Popa et al., 2002).

In this article, we present MostoDE1, a tool that assists soft-
ware engineers in generating SPARQL 1.1 executable map-
pings and exchanging data amongst a subset of ontologies that
can be represented in quite a complete subset of the OWL 2
Lite profile. These mappings are automatically generated based
on correspondences and constraints amongst source and target
ontologies, and they are executed by means of a query engine
on the source ontologies to produce data that comply with the
target ontology. Our tool provides a GUI that allows to de-
fine correspondences amongst the source and target ontologies.
These correspondences are n:1, which means that it is possi-
ble to specify one or more entities of the source ontologies
that correspond to one entity of the target ontology; we also al-
low to specify transformation functions in the correspondences.

1http://tdg-seville.info/carlosrivero/MostoDE

Furthermore, MostoDE also allows to define user-defined con-
straints in the source or target ontologies to adapt them to the re-
quirements of a specific data exchange problem (Bouquet et al.,
2004). The executable mappings output by MostoDE are rep-
resented in a subset of the SPARQL 1.1 query language that
includes blank nodes and BIND clauses with user-defined func-
tions to transform source data. Currently, there exists a variety
of systems that implement semantic-web technologies and are,
thus, suitable to perform data exchange, e.g., Sesame, OWLIM,
Jena, TDB, Oracle, ARQ, or Pellet to mention a few; as of
the time of writing this article, W3C lists a total of 282 sys-
tems (W3C, 2012). MostoDE integrates several of these sys-
tems by means of an open framework that is intended to provide
extension points that software engineers can use to incorporate
new systems.

The salient features of our tool are as follows: it allows to
automate the generation of executable mappings using corre-
spondences and constraints; it integrates several systems that
implement semantic-web technologies to exchange data; addi-
tionally, it provides visual aids for helping software engineers
exchange data amongst ontologies that are represented in quite
a complete subset of the OWL 2 Lite profile (see (Rivero et al.,
2012b) for further details). We presented a preliminary version
of our tool in (Rivero et al., 2011b) and a formalisation of the
algorithms behind MostoDE in (Rivero et al., 2012b); in this
version, we have improved our previous results since now we
can deal with n:1 correspondences and functions to transform
data as they are exchanged. This is an important improvement
insofar we can now deal with common problems in practice,
e.g., concatenating a name and a surname to form a full name,
or looking up a code in a database to dereference it.

The rest of the article is organised as follows: Section 2
presents the related work; Section 3 reports on some prelimi-
naries regarding semantic-web technologies and data exchange.
Section 4 describes the underlying data model and algorithms
of MostoDE. Sections 5 and 6 respectively presents how we im-
plemented our tool, and the evaluation results that we have ob-
tained after applying it to four real-world data exchange prob-
lems. Finally, Section 7 recaps on our main conclusions.

2. Related work

In this section, we present other existing tools that are related
to MostoDE; on the one hand, we present some tools that focus
on nested-relational data models (see Section 2.1), and, on the
other hand, we describe some tools that rely on semantic-web
ontologies (see Section 2.2). Finally, we analyse and discuss
the drawbacks of these tools (see Section 2.3).

Table 1 summarises this section. In this table, the 3 symbol
denotes that the tool supports a feature, symbol 5 implies that
the tool does not support a feature, symbol N/A states that this
feature is not applicable to the tool, and the ∼ symbol indicates
that the feature is partially supported. The features we have
analysed are the following:

F1: This feature determines if a tool allows to generate exe-
cutable mappings automatically. Otherwise, the mappings
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Tools F1 F2 F3 F4 F5 F6 F7

Nested-relational tools

(Haas et al., 2005) 3 3 3 5 5 N/A N/A

(Alexe et al., 2006) 3 3 3 5 5 N/A N/A

(Bonifati et al., 2005) 3 3 3 5 5 N/A N/A

(Alexe et al., 2008a) 3 3 3 5 5 N/A N/A

(Raffio et al., 2008a) 3 3 3 3 3 N/A N/A

(Mecca et al., 2009b) 3 3 3 3 3 N/A N/A

(Pichler and Savenkov, 2009) 5 5 3 5 5 N/A N/A

(Alexe et al., 2011b) 3 5 3 5 5 N/A N/A

(Marnette et al., 2011) 3 3 3 3 3 N/A N/A

Semantic-web tools

(Mocan and Cimpian, 2007) 3 5 5 3 3 3 ∼

(Maedche et al., 2002) 3 5 3 3 3 3 5

(Parreiras et al., 2008) 5 3 3 5 3 3 ∼

(Bizer and Schultz, 2010) 5 3 3 5 3 3 5

(Dou et al., 2005) 5 3 5 5 3 3 ∼

(Ressler et al., 2007) 5 3 3 5 3 3 ∼

MostoDE 3 3 3 3 3 3 ∼

F1 = Automatically generate executable mappings; F2 = Interpret correspon-
dences in groups; F3 = Use a query engine to exchange data; F4 = Use n:1
correspondences; F5 = Deal with transformation functions; F6 = Deal with
arbitrary RDFS ontologies; F7 = Deal with arbitrary OWL ontologies.

Table 1: Comparison of tools to exchange data.

must be handcrafted, which is undesirable because this is
an effort-consuming and error-prone task.

F2: This feature determines if a tools interprets correspon-
dences in groups of inter-related correspondences. Oth-
erwise, it interprets them in isolation, which is undesirable
because it can easily lead to incoherent target data.

F3: This feature determines whether or not a tool performs data
exchange by means of a query engine. The few proposals
that are not query-based are reasoner-based, which, as we
mentioned earlier, do not seem scalable enough.

F4: This feature determines if a tool deals with n:1 correspon-
dences since it may be necessary to relate more than one
source entity in the same correspondence.

F5: This feature determines if a tool deals with transformation
functions since they are appealing when exchanging data
in the context of the Web of Data.

F6: This feature determines if a tool can deal with arbitrary
RDFS ontologies that include constraints such as domain,
range, or subclass. Otherwise, it can only deal with a sub-
set of them, e.g., some taxonomies, which is not desirable

since the current Web of Data is composed of arbitrarily
complex ontologies.

F7: This feature determines if a tool can deal with arbitrary
OWL ontologies that include constraints, such as minimal
cardinality, union of classes, or intersection of instances.

2.1. Nested-relational tools

The earliest attempts to devise a tool to generate executable
mappings focused on the exchange of data amongst nested-
relational data models. Haas et al. (2005) devised Clio, which
is the state-of-the-art tool and lies at the heart of IBM’s Info-
Sphere Data Architect (IBM, 2012). Clio takes a source and a
target nested-relational data models, a number of constraints of
each data model, and a number of 1:1 correspondences between
them as input, and it is able to automatically generate exe-
cutable mappings in different query languages, such as XQuery,
XSLT, or SQL. Furthermore, Clio allows to exchange data from
the source to the target by running the generated executable
mappings on a query engine.

Alexe et al. (2006) built SPIDER on top of Clio; it is a
tool that helps understand and maintain the automatically gen-
erated executable mappings by extracting data examples from
the source and the target. Bonifati et al. (2005) devised HeP-
ToX, which focuses on Peer-to-Peer systems in which each peer
stores its own data and can integrate data from other peers.
HePToX is similar to Clio but, instead of working with nested-
relational data models, it focuses on XML data models, which
are a superset of nested-relational data models. In addition,
HePToX allows to perform data exchange amongst the peers
contained in a particular Peer-to-Peer system.

Recent proposals have focused on improving the previous
tools. Alexe et al. (2008a) devised Muse to automatically gen-
erate executable mappings building on n:1 correspondences;
Muse is able to automatically infer grouping functions for cor-
respondences by analysing the answers to a sequence of ques-
tions proposed by the tool. Raffio et al. (2008a) developed Clip,
which also allows to generate executable mappings based on
n:1 correspondences, and it uses a mapping visual language
that was specifically designed for nested-relational data mod-
els. It allows to represent complex correspondences, such as
grouping functions, aggregation functions, or dependent corre-
spondences. Mecca et al. (2009b) devised +Spicy, a tool that
allows to compute core executable mappings, a special type of
executable mappings that generates core target data when per-
forming data exchange. The most appealing feature of core
target data is that they are non-redundant data (Mecca et al.,
2009a). Marnette et al. (2011) devised ++Spicy, which im-
proves +Spicy by allowing more expressive target constraints.

Pichler and Savenkov (2009) developed DEMo, which also
computes core executable mappings and allows to evaluate re-
dundancy in the generated target data model of a particular data
exchange problem. Alexe et al. (2011b) presented Eirene, a tool
to automatically generate executable mappings using data ex-
amples instead of constraints and correspondences. Note that
this tool assumes that data examples pre-exist but, if they do
not exist, the user is responsible for providing them.

3



The industry has paid attention to the problem of exchanging
data in nested-relational settings. The following range amongst
the most popular tools: Carey (2006), IBM (2012), Microsoft
(2012), Altova (2012), and Stylus (2012).

2.2. Semantic-web tools

Euzenat et al. (2008) and Polleres et al. (2007) presented
preliminary ideas on the use of SPARQL 1.0 executable map-
pings to exchange data. They focused on the lacks of stan-
dard SPARQL to work as a language to describe executable
mappings, and they proposed a number of extensions, such
as regular expressions to describe paths, external functions,
or aggregations. Furthermore, Bikakis et al. (2009) presented
SPARQL2XQuery, which aims to answer SPARQL queries
over XML databases.

Mocan and Cimpian (2007) developed the Web Services Ex-
ecution Environment in which they studied the problem of data
exchange in the context of semantic-web services, i.e., web ser-
vices that are enriched with semantic annotations to improve
their discovery and composition (Forte et al., 2008). They
presented a formal framework to describe correspondences in
terms of first-order logic formulae that can be mapped onto Web
Service Modeling Language rules very easily. Note that the
Web Service Modeling Language is an ontology language that
takes into account the features identified by the Web Service
Modeling Ontology (Fensel et al., 2007). Their proposal is sim-
ilar in spirit to the one by Maedche et al. (2002), whose focus
was on modelling correspondences in a general-purpose setting.
The main difference with the previous proposals is that Mocan
and Cimpian (2007) went a step beyond formalising correspon-
dences and devised a tool that executes them using a WSML
reasoner.

Parreiras et al. (2008) presented a tool within the framework
of Model-Driven Engineering. They extended the ATL meta-
model to support OWL ontologies, which allows to express
constraints on them using the OCL language. They devised a
mapping language called MBOLT by means of which users can
express executable mappings that are later transformed into the
SPARQL query language by means of a library of ATL transfor-
mations. This is similar in spirit to the proposals by Bizer and
Schultz (2010), Dou et al. (2005), and Ressler et al. (2007), the
difference is the language used to represent the executable map-
pings: Bizer and Schultz (2010) and Ressler et al. (2007) use
SPARQL 1.0 executable mappings; whereas Dou et al. (2005)
use Web-PDDL executable mappings that are run by means of
a first-order logic reasoner.

Gennari et al. (2003) devised Protégé, one of the most suc-
cessful tools to build and maintain ontologies. Protégé includes
the PROMPT Suite (Noy and Musen, 2003) that allows to au-
tomatically find correspondences amongst a source and a target
ontology. Haase et al. (2008) devised the NeON Toolkit, which
is similar in spirit to the Protégé tool, but also includes a mod-
ule to define correspondences amongst a source and a target
ontology.

2.3. Discussion

After surveying current tools to exchange data, we con-
clude that some of them were designed for nested-relational
data models and are thus not applicable to ontologies. Nei-
ther seem they easy to adapt due to a number of inherent differ-
ences (Motik et al., 2009; Rivero et al., 2011a), namely:

• A nested-relational data model defines a tree that com-
prises a number of nodes, which may be nested and have
an arbitrary number of attributes, and it is also possible to
specify referential constraints to relate attributes; contrar-
ily, an ontology is not a tree, but a graph in which there is
not a root node, and it can contain cycles.

• A nested-relational data model does not support the spe-
cialisation of nodes; contrarily, an ontology allows to spe-
cialise classes and properties in taxonomies. Furthermore,
these taxonomies may be completely arbitrary in the sense
that all possible relations are allowed, such as an unde-
fined number of specialisation levels, a class (property)
may have more than one superclass (superproperty), or a
class (property) is subclass (subproperty) of itself.

• An instance in a nested-relational data model has a unique
type that corresponds to an existing node; contrarily, an
instance in an ontology may have multiple types of several
existing classes.

• In nested-relational data models, queries to exchange data
are encoded using XQuery or XSLT, which build on the
structure of the XML documents on which they are exe-
cuted; contrarily, in an ontology, queries must be encoded
in a language that is independent from the structure of the
documents used to represent it, e.g., XML, N3, or Turtle.

Furthermore, the tools that are specifically tailored towards
ontologies suffer from a number of problems, namely: a) Maed-
che et al. (2002), and Mocan and Cimpian (2007) make no at-
tempt to identify groups of correspondences that must be taken
into account together, which may easily lead to incoherent tar-
get data, i.e., data that does not satisfy the constraints in the tar-
get ontology (Bernstein and Melnik, 2007; Popa et al., 2002);
b) Bizer and Schultz (2010), Dou et al. (2005), Parreiras et al.
(2008), and Ressler et al. (2007) do not build on correspon-
dences, but require users to handcraft and maintain their ex-
ecutable mappings using several languages; c) Gennari et al.
(2003), Haase et al. (2008), and Noy and Musen (2003) do not
focus on the exchange of data, but on the definition or automatic
generation of correspondences; they do not provide any mecha-
nisms to transform these correspondences into executable map-
pings.

3. Preliminaries

In this article, we focus on ontologies that are modelled us-
ing the OWL 2 Lite profile ontology language. Furthermore,
we also focus on exchanging data using SPARQL 1.1 query
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Figure 1: Steps to exchange data by means of a query engine.

engines. In the rest of this section, we present some prelimi-
naries on ontologies and exchanging data amongst them in Sec-
tions 3.1 and 3.2, respectively. Finally, we present our running
example in Section 3.3.

3.1. Semantic-web ontologies

An OWL ontology comprises a set of entities that are identi-
fied by URIs. An entity may be a class, a data property, or an
object property. A class can be specialised into other classes.
Data properties have a set of classes as domain and a basic
XSD data type as range. Object properties have a set of classes
as domain and range. Beyond class, subclass, property, domain,
and range constructs, the OWL 2 Lite profile ontology language
provides other constructs to represent other constraints, e.g.,
rdfs:subPropertyOf , which allows to model subproperty con-
straints; owl:sameAs, which deals with relating two instances
that model the same real-world object; owl:minCardinality,
which restricts the minimal number of property instances that
an ontology should contain; or owl:versionInfo, which is de-
vised to provide meta-information.

In addition to structure, ontologies also provide data: a class
instance is identified by its own URI, and it may have a number
of types. A data property instance relates a class instance with a
literal by means of a data property. An object property instance
relates two class instances. RDF, which is based on triples, is
used to represent both the structure and data of an ontology by
means of an object property. A triple comprises three elements:
the first one is called subject, the second one is called predicate,
and the third one is called object. Triples are used to represent
both the structure and the data of an ontology.

3.2. Exchanging data

Exchanging data amongst ontologies by means of a SPARQL
query engine comprises five steps (see Figure 1), namely:

1. Loading: This step consists of loading the source and tar-
get ontologies and the set of SPARQL queries from a per-
sistent storage into the appropriate internal data structures.

2. Reasoning over source: This step is optional and deals
with making it explicit the knowledge in the source ontol-
ogy (Mokhtar et al., 2008). Note that SPARQL 1.1 engines
implement RDF Schema and OWL entailments, which
would make this step unnecessary. However, current query
engines are far from fully supporting SPARQL 1.1 entail-
ments (SPARQL, 2012), which motivated us not to rely on
this feature of SPARQL 1.1.

3. Query engine: This step consists of executing a set of
SPARQL queries over the source ontology to produce in-
stances of the target ontology. The result of this step must
be the same regardless of the order in which queries are
executed.

4. Reasoning over target: This step is also optional and it
deals with making it explicit the knowledge in the target
ontology.

5. Unloading: This step deals with saving the target ontology
from the internal data structures to a persistent storage.

SPARQL queries are used to retrieve and construct triples
from RDF stores. SPARQL provides four types of queries,
namely: SELECT, CONSTRUCT, ASK, and DESCRIBE. They
are based on triple patterns that are similar to triples, but al-
low to specify variables in the subject, predicate, and/or object,
which are prefixed with a ‘?’. In this article, we focus on the
CONSTRUCT type, since this type of queries allows to both re-
trieve and construct RDF data. Finally, BIND clauses are used
to implement transformation functions.

3.3. Running example

To illustrate the exchanging of data amongst ontologies, we
provide a running example that consists of exchanging data
from a part of DBpedia to a part of Freebase (see Figure 2). On
the one hand, DBpedia (Bizer et al., 2009) is a community effort
to annotate and make the data stored at Wikipedia accessible by
means of an ontology. On the other hand, Freebase (Bollacker
et al., 2008) is another community effort to store structured data
in an open repository that is exposed using RDF. Figure 2(a)
shows the structure of both DBpedia (left side) and Freebase
(right side) ontologies using a tree notation. These ontologies
model companies, the cities where they were founded, and the
people who founded them.

In the figure, dbp:Place is a class that models a geographic
place, and we denote it as a circle. (Throughout this article, we
use a number of namespaces as prefixes that are summarised in
Table 2.) dbp:PopulatedPlace is a subclass of dbp:Place, and
we denote it as dbp:PopulatedPlace [dbp:Place]. An example
of a data property is geo:lat, which models the latitude of a ge-
ographic position, and we denote it as a square. The domain
of geo:lat is {dbp:Place}, and we denote it by nesting geo:lat
into dbp:Place. The range of geo:lat is xsd:float, and we denote
it as geo:lat<xsd:float>. An example of an object property is
dbp:foundationPlace, which models the place in which an or-
ganisation was founded, and we denote it as a pentagon. The
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fb_loc: locationfb_loc:location .area <xsd:float>fb_loc:location .geolocation<fb_loc:geocode>dbp:Placedbp:areaTotal <xsd:double>
dbp:foundationPlace <dbp:City>

geo:lat <xsd:float>geo:long <xsd:float> fb_loc:geocodefb_loc:geocode.latitude <xsd:float>fb_loc:geocode.longitude <xsd:float>dbp:PopulatedPlace [dbp:Place]dbp:PopulatedPlace /areaTotal<dbptype:squareKilometre >dbp:City [dbp:PopulatedPlace ]dbp:Organization fb_loc:citytown [fb_loc:location ]fb_org:organizationfb_org:organization .place_founded<fb_loc:location>dbp:foundedBy <dbp:Person> fb_bus:employment _tenure.company [fb_org:organization ]dbp:Company [dbp:Organization] fb_bus:employer .employees<fb_bus:employment _tenure>fb_bus:employment _tenurefb_bus:employment_tenure.person     <fb_peo:person>dbp:Personfoaf:givenName <xsd:string>foaf:surname <xsd:string> fb_peo:personfb:type.object.name <xsd:string>
(a) Structure of the sample ontologies.

dbpr:Google[dbp:Organization, dbp:Company]
dbp:areaTotal “45,105”^^xsd:double

dbp:foundationPlace[dbpr:Menlo_Park,_California]dbp:foundedBy [dbpr:Larry_Page]

dbpr:Menlo_Park,_California[dbp:Place , dbp:PopulatedPlace , dbp:City] fb:m.0kjdf3 [fb_loc:geocode]fb_loc:location .area “45,105”^^xsd:floatdbpr:Menlo_Park,_California[fb_loc:location , fb_loc:citytown]dbp:PopulatedPlace /areaTotal“45.105”^^dbptype:squareKilometregeo:lat “37.454”^^xsd:floatgeo:long “ -122.178”^^xsd:float
dbpr:Larry_Page [dbp:Person]foaf :givenName “Larry”^^xsd:stringfoaf:surname “Page”^^xsd:string

fb_loc:location .geolocation [fb:m.0kjdf3]fb_loc:geocode.latitude “37.454”̂ ^xsd:floatfb_loc:geocode.longitude “-122.178”^^xsd:floatdbpr:Google [fb_org:organization ,fb_bus:employment _tenure.company]fb_org:organization .place_founded[dbpr:Menlo_Park,_California]fb_bus:employer .employees [fb:m.022qjvr ]fb:m.022qjvr [fb_bus:employment _tenure]fb_bus:employment_tenure.person [dbpr:Larry_Page]dbpr:Larry_Page [fb_peo:person]fb:type.object.name “Larry Page”^^xsd :string
(b) Data of the sample ontologies.q1: CONSTRUCT {?l rdf:type fb_loc:location .} WHERE {?l rdf:type dbp:Place . } q2: CONSTRUCT {?l rdf:type fb_loc:location .?l fb_loc:location .area ?a .} WHERE {?l rdf:type dbp:Place .?l dbp:areaTotal ?at .BIND(dbToFl(?at) AS ?a) }q3: CONSTRUCT {?c rdf: type fb_org:organization .?c rdf: type fb_bus:employment _tenure.company .?p rdf: type fb_peo:person ._:e rdf: type fb_bus:employment _tenure .?c fb_bus:employer .employees _:e ._:e fb_bus:employment_tenure.person ?p .} WHERE {?c rdf:type dbp:Organization .?c rdf:type dbp:Company .?p rdf:type dbp:Person .?c dbp:foundedBy ?p . }

q4: CONSTRUCT {?p rdf:type fb_peo:person .?p fb:type.object.name ?n .} WHERE {?p rdf:type dbp:Person .?p foaf:givenName ?gn .?p foaf:surname ?sn .BIND(concat(?gn, ?sn) AS ?n) }
(c) Sample queries to exchange data.

Figure 2: Running example.

Prefix URI

dbp http://dbpedia.org/ontology/

dbpr http://dbpedia.org/resource/

dbptype http://dbpedia.org/datatype/

fb http://rdf.freebase.com/ns/

fb loc http://rdf.freebase.com/ns/location.

fb peo http://rdf.freebase.com/ns/people.

fb bus http://rdf.freebase.com/ns/business.

fb org http://rdf.freebase.com/ns/organization.

foaf http://xmlns.com/foaf/0.1/

geo http://www.w3.org/2003/01/geo/wgs84_pos#

owl http://www.w3.org/2002/07/owl#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

xsd http://www.w3.org/2001/XMLSchema#

Table 2: Prefixes used throughout the article.

domain of dbp:foundationPlace is {dbp:Organization} and the
range is {dbp:City}.

Regarding the ontology data (see Figure 2(b)),
we denote a class instance as a diamond, e.g.,
dbpr:Menlo Park, California is a class instance of class
dbp:City. dbpr:Menlo Park, California is also an instance
of types {dbp:Place, dbp:PopulatedPlace}, since dbp:City is
a subclass of dbp:PopulatedPlace, and dbp:PopulatedPlace
is subclass of dbp:Place; reasoners are used to make this
knowledge explicit. We denote each data property instance
as a square, e.g., geo:lat relates dbpr:Menlo Park, California
with “37.454”ˆ ˆxsd:float. Furthermore, we denote each object
property instance as a pentagon, e.g., dbp:foundedBy relates
dbpr:Google and dbpr:Menlo Park, California.

Some sample RDF triples in our example are the following:

(dbp:Organization, rdf :type, owl:Class)
(dbp:Company, rdf :type, owl:Class)
(dbp:Company, rdfs:subClassOf , dbp:Organization)
(dbp:Person, rdf :type, owl:Class)
(dbpr:Google, rdf :type, dbp:Organization)
(dbpr:Google, rdf :type, dbp:Company)
(dbpr:Larry Page, rdf :type, dbp:Person)
(dbpr:Google, dbp:foundedBy, dbpr:Larry Page)

Figure 2(c) shows four examples of SPARQL queries of
the CONSTRUCT type that are expected to exchange data in
our running example: q1 retrieves instances of dbp:Place (the
WHERE clause) and reclassifies them as fb loc:location (the
CONSTRUCT clause). q2 is similar to q1 but also transforms
the value of dbp:areaTotal into fb loc:location.area by means
of function dbToFl, which transforms a double into a float. Note
that this requires to use a BIND clause in which the result of
applying the function is assigned to variable ?a. q3 retrieves a
company with its founder (property dbp:foundedBy) and stores
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q1: CONSTRUCT {

?l rdf:type fb_loc:location .

} WHERE {

?l rdf:type dbp:Place . }

q2: CONSTRUCT {

?l rdf:type fb_loc:location .

?l fb_loc:location .area ?a .

} WHERE {

?l rdf:type dbp:Place .

?l dbp:areaTotal ?at .

BIND(changeType(?at) AS ?a) }

U

dbpr:Menlo_Park,_California [fb_loc:location ]

fb_loc:location .area “45,105”^^xsd:float

dbpr:Menlo_Park,_California [fb_loc:location ]

fb_loc:location .area “45,105 ”̂ ^xsd:float

dbpr:Menlo_Park,_California [fb_loc:location ]

Figure 3: Union of two sample overlapping queries.

them at the target, which models the same information with a
different structure, i.e., it relates the company and the founder
by means of a new instance of type fb bus:employment tenure;
since this type is not present in the source, we use a blank node
that acts as a placeholder for data that is not available when the
data exchange is performed. Blank nodes are prefixed with ‘ :’,
and they are known as labelled nulls in the context of nested-
relational data models (Fagin et al., 2005). Finally, q4 retrieves
the first and last name of a person and generates the full name
in the target by means of function concat.

Note that queries q1 and q2 overlap; however, they both
are necessary to perform data exchange since there may be
instances of type dbp:Place that are not related to any in-
stances of property dbp:areaTotal; these instances would not
be exchanged by q2 in isolation, and we have to consider ev-
ery possible combination of data. However, this overlapping
does not produce any incoherent data. For example, Figure 3
presents some target sample data that have been constructed
using q1 and q2; even if each result in isolation comprises
an instance of dbpr:Menlo Park, California, the union of the
results of both queries comprises only one class instance of
dbpr:Menlo Park, California, which is the expected result.

4. Generating executable mappings

In this section, we describe the core of MostoDE, in
which we present the underlying data model of our tool
(see Section 4.1), and the algorithms to automatically gen-
erate SPARQL executable mappings, which are divided into
two groups: the generation of kernels (see Section 4.2) and
the transformation of kernels into executable mappings in
SPARQL 1.1 (see Section 4.3).

4.1. The underlying data model

This model defines the concepts that we need to automati-
cally generate executable mappings in SPARQL (see Figure 4).
The main concept of this data model is Entity, which represents
the entities that form an ontology. An Entity has a URI and
specialises into either Class, DataProperty, or ObjectProperty.
Furthermore, ontologies comprise a number of constraints that
restrict how these entities should be combined; we use con-
cept Constraint to model them; Constraint specialises into ei-
ther Domain, Range, StrongDomain, StrongRange, Subclass,

«abstract»Entity+ URI uriClassDataPropertyObjectProperty
«abstract»ConstraintDomainRangeStrongDomainStrongRangeSubclassSubproperty

11 «abstract»CorrespondenceToClassToDataPropertyToObjectProperty
1..*1

«abstract»Function 0..1

Kernel* * 1..*

ExecutableMapping1..* TriplePattern1..* 1 «abstract»Node11 ResourceBind Literal
1

1..* 0..11..*

sourcetargetsubjectobject correspondencessourcetarget

sourcetargetbinds
subject

function

predicatesource
targetfunction

object
«abstract»VariableAnonVarNamedVarLinkSubstitution value 1key1leftright 11

Figure 4: Modelling entities, constraints, correspondences, kernels, links, sub-
stitutions, and executable mappings.

or Subproperty. A Constraint relates two instances of Entity by
means of relations subject and object.

Correspondence is the concept that represents a correspon-
dence, i.e., a hint that relates some source entities to a target
entity; a correspondence relates one or more instances of Entity
by means of the source relation, with a single instance of Entity
by means of the target relation. Additionally, it is possible to
define transformation functions (Function) from some source
entities onto a target entity. It is important to notice that these
functions can be used to perform simple data transformations
like concatenating a name and a surname to form a full name,
or to invoke external functionality like looking up a code in a
database to dereference it.

Correspondence specialises into ToClass, ToDataProperty,
or ToObjectProperty. A Kernel relates two sets of instances
of Constraint by means of relations source and target, and a
set of instances of Correspondence using the correspondences
relation. Relations source and target are have a minimal cardi-
nality of zero, which entails that a Kernel may not be related to
any instances of Constraint; however, a Kernel must be related
to, at least, an instance of Correspondence.

ExecutableMapping represents a SPARQL query of the
CONSTRUCT type, which means that it comprises a CON-
STRUCT clause, a WHERE clause, and a number of BIND
clauses, which are represented by means of relations source,
target, and binds, respectively. Relations source and target
represent sets of TriplePatterns. Each TriplePattern is re-
lated to three instances of Node by means of relations subject,
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fb_loc:locationfb_loc:location.area <xsd:float>fb_loc:location.geolocation<fb_loc:geocode>dbp:Placedbp:areaTotal <xsd:double>
dbp:foundationPlace <dbp:City>

geo:lat <xsd:float>geo:long <xsd:float> fb_loc:geocodefb_loc:geocode.latitude <xsd:float>fb_loc:geocode.longitude <xsd:float>
v1v3v4dbp:PopulatedPlace [dbp:Place]dbp:PopulatedPlace /areaTotal<dbptype:squareKilometre>dbp:City [dbp:PopulatedPlace ]dbp:Organization fb_loc:citytown [ fb_loc:location]v6 fb_org:organizationv7 fb_org:organization .place_founded<fb_loc:location >v8dbp:foundedBy <dbp:Person> fb_bus:employment_tenure.company [fb_org:organization]dbp:Company [dbp:Organization] v10 fb_bus:employer .employees<fb_bus:employment_tenure>fb_bus:employment_tenurefb_bus:employment _tenure.person     <fb_peo:person>
v9dbp:Personfoaf:givenName <xsd:string>foaf:surname <xsd:string>

fb_peo:personfb:type.object.name <xsd:string>
v11

dbToFlv2
sqkmToFlv5

concatv12
Figure 5: Structure of the ontologies, constraints and correspondences in our
running example.

predicate, and object. A Node specialises into either a
Resource, a Literal, or a Variable, which also specialises into
either an AnonVar (a blank node) or a NamedVar. A Bind re-
lates a number of instances of Node and a NamedVar by means
of source and target relations, respectively. Furthermore, a Bind
may be optionally related to an instance of Function using the
function relation.

We also use two auxiliary concepts: Link and Substitution. A
Link relates two instances of NamedVar using the left and right
relations, which are used to link free named variables when
transforming a kernel into a SPARQL executable mapping (see
Section 4.3). A Substitution represents a map, in which the key
is an instance of NamedVar (the key relation), and the value is
an instance of Variable (the value relation). Substitutions are
used to rename free named variables that are linked to the same
named or anonymous variable (see Section 4.3).

Our tool allows to define six types of constraints and three
types of correspondences, which are illustrated in Figure 5.
There, we present the source and target ontologies of our run-
ning example, and the constraints and correspondences that are
needed to exchange data from the source into the target on-
tology by means of the automatically generated SPARQL ex-
ecutable mappings. The constraints that our tool supports are
the following:

• Domain: this constraint relates an instance of
DataProperty or ObjectProperty (subject) with an
instance of Class (object). For example, in Figure 5, the
domain of data property dbp:areaTotal is class dbp:Place,
or the domain of object property dbp:foundationPlace is
class dbp:Organization.

• Range: it relates an instance of ObjectProperty (subject)
with an instance of Class (object). For example, in Fig-

ure 5, the range of object property dbp:foundationPlace is
class dbp:City.

• StrongDomain: it relates an instance of Class (subject)
with an instance of DataProperty or ObjectProperty
(object). Note that this constraint entails that the class
has a minimal cardinality of one with respect to the
data or object property. For example, in Figure 5, the
strong domain of class dbp:Organization is object prop-
erty dbp:foundedBy, and we denote it as a dashed arrow
from the class to the property.

• StrongRange: it relates an instance of Class (subject) with
an instance of ObjectProperty (object). Note that this con-
straint entails that the class has a minimal cardinality of
one with respect to the object property. For example, in
Figure 5, the strong range of class fb loc:geocode is object
property fb loc:location.geolocation, and we denote it as a
dashed arrow from the class to the property.

• Subclass: it relates two instances of Class (subject
and object, respectively). For example, in Figure 5,
dbp:PopulatedPlace is a subclass of dbp:Place.

• Subproperty: it relates two instances of DataProperty or
ObjectProperty (subject and object, respectively). Note
that, in the running example of Figure 5, we have no ex-
ample of subproperty constraints. (It is not so common
to find subproperties in the Web of Data (Glimm et al.,
2012).)

In addition to these constraints, our tool allows to define a
number of correspondences amongst source and target ontolo-
gies, which are the following:

• ToClass: this correspondence relates one or more in-
stances of Entity (source relation) that are reclassified into
a single instance of Class (target relation). When there
are more than one source entities, it is mandatory to use
a transformation function to reclassify the instances. For
example, in Figure 5, v1 is a to-class correspondence that
relates a single instance of class dbp:Place with another
single instance of class fb loc:location.

• ToDataProperty: this correspondence relates one or more
instances of Entity (source relation) that are copied to a
single instance of DataProperty (target relation). If there
are multiple source entities, then it is mandatory to use
a transformation function. For example, in Figure 5, v2
is a to-data-property correspondence that relates a single
instance of dbp:areaTotal that is copied to a single in-
stance of fb loc:location.area data property by means of
the dbToFl function. Another example is v3, which re-
lates geo:lat with fb loc:geocode.latitude using the im-
plicit identity function. Correspondence v12 relates two
source data properties, foaf :givenName and foaf :surname,
with a target data property fb:type.object.name using the
concat function.
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1: GenerateExecutableMappings
2: Input
3: CS,CT: Set of Constraint
4: V: Set of Correspondence
5: Output
6: M: Set of ExecutableMapping
7: Variables
8: k: Kernel
9: m: ExecutableMapping

10: v: Correspondence
11:
12: M = ∅
13: For each v ∈ V
14: k = GenererateKernel(v,CS,CT ,V)
15: m = TransformIntoExecutableMapping(k)
16: M = M ∪ {m}

Figure 6: Algorithm to generate executable mappings.

• ToObjectProperty: this correspondence relates one or
more instances of Entity (source relation) to a single in-
stance of ObjectProperty (target relation) that must ex-
ist at least in the target. This correspondence does
not reclassify or copy source instances to target in-
stances, but it only specifies that a target instance
should exist only if there exist a number of source in-
stances. For example, in Figure 5, v8 is a to-object-
property correspondence that relates dbp:foundationPlace
to fb org:organization.place founded, i.e., an instance
of fb org:organization.place founded in the target ex-
ists only if there exists, at least, one instance of
dbp:foundationPlace in the source. (It is not so common
to find to-object-property correspondences with more than
one object property in the Web of Data (Bizer and Schultz,
2010).)

It is important to notice that these definitions of correspon-
dences are inherently incomplete, i.e., a correspondence of type
ToDataProperty states how to generate the object of an instance
of a given target data property, but it does not state how to gen-
erate the subject of this instance; in addition, a correspondence
of type ToObjectProperty does not state how to generate the
subject or the object of an instance of a given target object prop-
erty; it only states its existence. Therefore, it is mandatory to
combine the correspondences to generate executable mappings.

Figure 6 shows our algorithm to generate SPARQL exe-
cutable mappings. This algorithm takes a set of source and
target constraints, and a set of correspondences as input, and it
outputs a number of executable mappings in SPARQL: for each
correspondence (line 13), we first generate a kernel, which is a
subproblem of the input data exchange problem that describes
source data that needs to be exchanged as a whole, and target
data that needs to be created as a whole (line 14), and then trans-
form it into a SPARQL executable mapping (line 15). An im-
portant issue is that both constraints and correspondences relate
source and target entities, which is the reason why it is possible
to group correspondences by means of constraints. In the fol-
lowing subsections, we explain how we automatically generate

1: GenerateKernel
2: Input
3: v: Correspondence
4: CS,CT: Set of Constraint
5: V: Set of Correspondence
6: Output
7: k: Kernel
8: Variables
9: v′: Correspondence
10: ES,ET: Set of Entity
11: V ′: Set of Correspondence
12:
13: – Compute source and target constraints
14: k.source = expand v.source in CS

15: k.target = expand {v.target} in CT

16: – Find correspondences
17: ES = get entities from k.source
18: ET = get entities from k.target
19: V ′ = ∅
20: For each v′ ∈ V
21: If v′.source ⊆ ES ∧ v.target ∈ ET

22: V ′ = V ′ ∪ {v′}
23: k.correspondences = V ′

Figure 7: Algorithm to generate kernels.

kernels and transform them into executable mappings.

4.2. Generating kernels
For each correspondence in the given input, our tool auto-

matically generates a kernel. Intuitively, a kernel comprises a
subset of source entities and constraints, target entities and con-
straints, and correspondences that describe a subset of data that
requires to be exchanged as a whole, i.e., if more or less data are
considered, then the exchange would be incoherent. Figure 7
presents the algorithm to automatically generate them, which
takes a single correspondence v, a set of source and target con-
straints, and a set of correspondences as input, and it outputs
the kernel that is derived from correspondence v.

First, this algorithm takes source and target entities of the in-
put correspondence v and expands them using the constraints
(lines 14 and 15 in Figure 7); note that v.source is a set of
entities, whereas v.target is a single entity since we deal with
n:1 correspondences. This expansion consists of finding the
source or target constraints that result for exploring the source
or target entities in depth using the constraints. For exam-
ple, Figure 8(a) shows correspondence v3 of our running ex-
ample (see Figure 5), whose source entity is geo:lat; thus ex-
panding this entity by means of the source constraints results
in the partial kernel of Figure 8(b). The target entity of v3 is
fb loc:geocode.latitude, thus expanding this entity by means of
the target constraints results in the partial kernel of Figure 8(c).

Finally, we have to cluster other correspondences that may be
implied in this kernel; to perform this, we add a correspondence
v to the kernel if the source entities of v are included in the
entities of the source constraints, and the target entity of v is
included in the entities of the target constraints (lines 17–23 in
Figure 7). Figure 8(d) shows the correspondences that relate the
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geo:lat <xsd:float> fb_loc:geocode.latitude <xsd:float>v3
(a) Correspondence v3 of our running example.dbp:Placegeo:lat <xsd:float> fb_loc:geocode.latitude <xsd:float>v3

(b) Expansion of the source entities of v3.fb_loc:locationfb_loc:location .geolocation<fb_loc:geocode>dbp:Placegeo:lat <xsd:float> fb_loc:geocodefb_loc:geocode.latitude <xsd:float>v3
(c) Expansion of the target entities of v3.fb_loc:locationfb_loc:location .geolocation<fb_loc:geocode>dbp:Placegeo:lat <xsd:float> fb_loc:geocodefb_loc:geocode.latitude <xsd:float>

v1v3
(d) Finding correspondences of the kernel.

Figure 8: Example of the automatic kernel generation.

entities of the previous example, in this case, v1, which relates
dbp:Place with fb loc:location.

4.3. Transforming kernels into executable mappings
Figure 9 presents the algorithm that takes a kernel as input

and outputs an executable mapping. First, we generate two sets
of triple patterns and a set of BIND clauses using the constraints
and the correspondences of the input kernel (lines 22 and 24).
When initialising triple patterns, we create a single triple pattern
for each entity that belongs to either the source or target con-
straints; note that triple patterns created from the source (tar-
get) constraints form the WHERE (CONSTRUCT) clause. If
the entity is a class, we generate a triple pattern of the form:
?x rdf :type C, where ?x is a fresh variable and C is the entity; if
the entity is a data or object property, we generate a triple of the
form: ?x P ?y, where ?x and ?y are fresh variables and P is the
entity. Furthermore, for each to-class or to-data-property cor-
respondences, we generate a single BIND clause of the form:
BIND(f (?x1, ?x2, . . . , ?xn) AS ?y), where ?x1, ?x2, . . . , ?xn and
?y are fresh variables and f is the corresponding transforma-
tion function; note that we do not generate any BIND clauses
for to-object-property correspondences since they specify that
a target instance should exist only if there exist a number of
source instances, but do not reclassify or copy source instances
to target instances. Figure 10(a) shows the executable mapping
that results after this initialisation for the kernel depicted in Fig-
ure 8(d).

After the initialisation of triple patterns and BIND clauses,
we compute a set of links amongst their fresh variables by

1: TransformIntoExecutableMapping
2: Input
3: k: Kernel
4: Output
5: m: ExecutableMapping
6: Variables
7: CS,CT: Set of Constraint
8: V: Set of Correspondence
9: ES,ET: Set of Entity
10: TC, TW: Sorted Set of TriplePattern
11: B: Set of Bind
12: LC, LW , LB: Set of Link
13: S: Set of Substitution
14:
15: – Initialise auxiliar variables
16: CS = k.source
17: CT = k.target
18: V = k.correspondences
19: ES = get entities from CS

20: ET = get entities from CT

21: – Initialise WHERE, CONSTRUCT and BIND
22: TW = initialise patterns using ES

23: TC = initialise patterns using ET

24: B = initialise binds using V
25: – Compute constraint and bind links
26: LW = compute links in TW using CS

27: LC = compute links in TC using CT

28: LB = compute links in B using V
29: – Compute substitution
30: S = compute substitution using LW ∪ LC ∪ LB

31: – Apply substitution
32: TW = apply S to TW

33: TC = apply S to TC

34: B = apply S to B
35: – Create executable mapping
36: m.source = sort TW using heuristics
37: m.target = sort TC using heuristics
38: m.binds = B

Figure 9: Algorithm to transform kernels into executable mappings.

analysing the constraints and the correspondences in the ker-
nel that is associated with the correspondence being analysed
(lines 26 and 28). In this case, we create a link between two
variables if there is a constraint or a correspondence that re-
lates them. For example, Figure 10(b) presents the links be-
tween the variables of the initial executable mapping (see Fig-
ure 10(a)), in which ?x1 and ?x2 are linked because the domain
of geo:lat is dbp:Place, ?x1 and ?z1 are linked because v1 has
dbp:Place as the source, ?y2 and ?y4 are linked because the
range of fb loc:location.geolocation is fb loc:geocode, or ?y1
and ?z3 are linked because v1 has fb loc:location as the target.

Then, we compute a substitution for every fresh variable us-
ing the previously defined links (line 30). To perform this, it is
important to notice that the previous result is a graph in which
every connected component includes a group of variables that
are linked and should actually be the same. Therefore, we
transform this graph into a substitution in which every variable
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m1: CONSTRUCT {?y1 rdf: type fb_loc:location .?y2 rdf: type fb_loc:geocode .?y3 fb_loc:location .geolocation ?y4 .?y5 fb_loc:geocode.latitude ?y6 .} WHERE {?x1 rdf: type dbp:Place .?x2 geo:lat ?x3 .BIND (?z1 AS ?z3)BIND (?z2 AS ?z4) }
(a) Initial executable mapping.

?plc?z1?x1?x2 ?z2?x3
?y1?y3 ?z3?y2?y4?y5 ?z4?y6?lat1

?loc_:cod ?lat2
(b) Links and substitution.

m1: CONSTRUCT {
?loc fb_loc: location.geolocation _:cod .

_:cod fb_loc:geocode. latitude ?lat2 .

?loc rdf:type fb_loc:location .

_:cod rdf:type fb_loc:geocode .

} WHERE {

?plc geo:lat ?lat1 .

?plc rdf:type dbp:Place .

BIND (?plc AS ?loc)

BIND (?lat1 AS ?lat2) }

(c) Final executable mapping.

Figure 10: Example of the automatic transformation of a kernel into an SPARQL executable mapping.

in every connected component is replaced by the same fresh
variable. Figure 10(b) shows these substitutions, in which ?x1,
?x2, and ?z1 are replaced by ?plc; ?x3, and ?z2 are replaced by
?lat1; ?y1, ?y3, and ?z3 are replaced by ?loc; ?y6 and ?z4 are
replaced by ?lat2; and ?y2, ?y4, and ?y5 are replaced by :cod.
In the last case, there exist a number of variables in the CON-
STRUCT clause that are not linked to any variable in the BIND
clauses; this entails that the set of correspondences is not com-
plete enough to describe the data exchange problem that is be-
ing analysed. In some situations, the set of correspondences
can be completed to solve the problem, but there are others, as
in our running example, in which this is not possible because
the target ontology provides more information than the source
ontology. Therefore, instead of failing to exchange any data
due to this problem, we generate a blank node that acts as a
placeholder.

In the next step, we deal with replacing each variable of the
CONSTRUCT, WHERE and BIND clauses that belongs to the
same connected component by the same fresh variable using
the previously computed substitution (lines 32 and 34).

Last, but not least, we have found out that the ARQ SPARQL
engine that we used in our implementation did not optimise
query execution, which motivated us to work on a number of
heuristics that helped reduce the execution times from days to
seconds. Note that both TC and TW are sorted sets in the al-
gorithm in Figure 9; the heuristics we use to sort them are the
following:

1. Triple patterns that have a property as predicate are at the
top of a sorted set, and triple patterns that have rdf :type
as predicate are at the bottom. The intuition behind this
heuristic is that we should not retrieve the cartesian prod-
uct of every instance of a given class, and then prune
the instances using the properties related to them, but we
should retrieve only those instances that are related by the
given properties.

2. Let t1 and t2 be two triple patterns, each of which has a
property as predicate, t1 is already in a sorted set, and we
wish to include t2. We can distinguish the following cases:
1) if t1.subject is equal to t2.subject or t2.object, then add
t2 before t1; 2) if t1.object is equal to t2.subject or t2.object,
then add t2 after t1; 3) otherwise, add t2 after t1. The intu-
ition behind this heuristic is that we prune more instances
if the triple patterns are concatenated; otherwise, we re-
trieve the cartesian product of instances.

ManagerFactory<<Interface>>IQueryManager <<Interface>>IReasonerManagerJenaQryMngOracleQryMngTDBQryMngSDBQryMng
buildQueryManager( ): IQueryManagerbuildReasonerManager( ): IReasonerManager JenaRsnMngOracleRsnMngPelletRsnMng

Figure 11: Design diagram of query and reasoner managers.

Taking these heuristics into account, Figure 10(c) shows the
final SPARQL executable mapping that has been automatically
generated for the kernel in Figure 8(d).

5. Implementation

We implemented MostoDE in a tool with a graphical user
interface to facilitate the automatic generation of SPARQL ex-
ecutable mappings. This tool is based on the Jena frame-
work (Carroll et al., 2004), which allows to work with both
RDF and OWL. Furthermore, thanks to the ARQ module, we
are able to work with SPARQL queries. Our tool includes two
components that allow to deal with the variability of semantic-
web technologies regarding query engines and reasoners: the
query manager and the reasoner manager. Each of these man-
agers use a RDF store to work with ontologies.

In our implementation, we use two interfaces for the query
and reasoner managers to abstract away from the technology.
Figure 11 shows the design diagram of these managers, in
which we use the Factory and the Adapter design software pat-
terns (Gamma et al., 1995). Furthermore, we have used the fol-
lowing technologies to implement adapters for the query man-
ager: Jena in memory, Oracle, Jena TDB, and Jena SDB. Or-
acle stores ontologies in an internal representation based on
relational tables; Jena TDB supports large scale storage and
uses the file system to store ontologies; Jena SDB uses stan-
dard SQL databases to store ontologies, such as Microsoft SQL
Server, Oracle, IBM DB2, or MySQL. We have also used three
technologies to implement adapters for the reasoner manager,
namely: Jena, Oracle (OWL Prime), and Pellet. Consequently,
this implementation allows to test 4× 3 data exchange systems,
but our design allows to incorporate new systems easily.
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(a) Sample entities, constraints and correspondences represented in MostoDE.

(b) Sample source and target data represented in MostoDE.

Figure 12: Two sample screen shots of our tool.
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D2F O2M MO DBPClasses 13 72 9 12Data properties 10 41 8 4Object properties 6 90 8 5Correspondences 12 11 10 9Source constraints 20 696 54 12Target constraints 20 118 58 49Triples 3,237,758 2,536,567 1,093,928 2,107,451Executable mappings 12 11 10 9Generation time (secs) 0.03 0.25 0.08 0.06Data exchange (secs) 5.46 55.2 20.62 2.95
Table 3: Results of evaluating MostoDE.

Figure 12 presents two screen shots of MostoDE. In Fig-
ure 12(a), we show the entities and constraints of the source and
target ontologies of our running example. MostoDE segregates
the structure of an ontology from its data, see Figure 12(b). Fur-
thermore, the tool allows to define user-defined (source and tar-
get) constraints, and correspondences, which are represented in
a user-friendly notation. When constraints and correspondences
are specified, MostoDE automatically generates SPARQL exe-
cutable mappings that are also shown to the user.

Below, we describe a number of steps that the user has to
perform to exchange data from a source to a target ontology;
these steps, which provide an overview on how MostoDE is
expected to be used, are the following:

1. The user is responsible for selecting a query and a rea-
soner manager to store source and target ontologies, per-
form reasoning, and exchanging data.

2. The user has to choose the source and target ontologies to
be integrated, which are automatically parsed and shown
to her/him using our tree-like notation.

3. The user is now responsible for adding correspondences
amongst source and target entities.

4. In addition to correspondences, it may be necessary to add
user-defined constraints because source and target ontolo-
gies must be adapted to the requirements of the data ex-
change problem. The user is responsible for providing
them in case that there were necessary; therefore, this step
is optional.

5. In this step, the user can instruct MostoDE to automat-
ically generate SPARQL executable mappings using the
previously defined constraints and correspondences.

6. Finally, it is also possible to actually exchange data from
the source to the target by running the previously gener-
ated executable mappings.

6. Evaluation

We have used the previous implementation to evaluate our
tool, i.e., to measure the time that it takes to generate executable
mappings and perform data exchange. Since timings are im-
precise in nature, we repeated each experiment 25 times and
averaged the results after discarding roughly 0.01% outliers us-
ing the well-known Chevischev’s inequality. The experiments

were run on a computer that was equipped with a single 2.66
GHz Core 2 Duo CPU and 4GB RAM, Windows XP Profes-
sional (SP3), JRE 1.6.0, and Jena 2.6.4. We also measured
the time our executable mappings took to exchange data using
ARQ 2.8.8 as the query manager and Oracle 11g as the reasoner
manager. Although these timings depend largely on the tech-
nology being used, we think that presenting them is appealing
insofar they prove that the queries we generate can be executed
on reasonably-large ontologies in a sensible time.

Table 3 summarises our evaluation results, in which the
columns represent the data exchange problems that we have
evaluated and the rows a number of measures; the first group
of measures provides an overall idea of the size of each data
exchange problem, whereas the second group provides infor-
mation about the number of executable mappings, the time to
generate them, and the time they took to execute, i.e., the time
of performing the data exchange. Note that the time MostoDE
took to generate the executable mappings in the data exchange
problems was less than one second in all cases.

The data exchange problems that we have used form part of
a benchmark for evaluating data exchange in the context of on-
tologies (Rivero et al., 2012a). These problems are the follow-
ing:

• D2F: This problem corresponds to the running example
that we present in this article.

• O2M: This problem focuses on publishing semantic web
services as Linked Open Data, which is a successful ini-
tiative of the Web of Data that consists of a number of
principles to publish, connect, and query data in the Web
that rely on semantic-web technologies (Heath and Bizer,
2011). OWL-S (Klusch et al., 2009) is one of the main ap-
proaches for describing semantic web services that defines
an ontology in OWL. MSM (Pedrinaci and Domingue,
2010) is a web service ontology that allows to publish web
services as Linked Open Data. In this problem, we ex-
change data from OWL-S 1.1 to MSM 1.0.

• MO: This problem builds on a fictitious video-on-demand
service called Movies Online, which provides informa-
tion about the movies it broadcasts and reviews of these
movies. Movies Online provides an ontology and we
wish to exchange data by combining DBpedia 3.2 and
Revyu 1.0 (Heath and Motta, 2008), which is a publicly
available web site that allows to review and rate web re-
sources, including movies.

• DBP: It focuses on the evolution that an ontology may suf-
fer. DBpedia comprises a number of different versions due
to a number of changes in its conceptualisation. When a
new version of DBpedia is devised, the new ontology may
be populated by performing data exchange from a previ-
ous version to the new one. In this problem, we exchange
data from a part of DBpedia 3.2 to DBpedia 3.6.
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7. Conclusions

In this article, we present MostoDE, a tool that assists soft-
ware engineers in exchanging data amongst a subset of ontolo-
gies that can be represented in quite a complete subset of the
OWL 2 Lite profile (see (Rivero et al., 2012b) for further de-
tails). It takes a source and a target ontology and a set of corre-
spondences amongst them as input, and it outputs a number of
SPARQL executable mappings that are executed by means of a
query engine to perform data exchange, and are represented in
SPARQL 1.1.

The core of MostoDE comprises an underlying data model
that allows to represent constraints, n:1 correspondences, and
transformation functions. Additionally, the core comprises a
set of algorithms that allows to automatically generate SPARQL
executable mappings based on correspondences and constraints
amongst source and target ontologies. These algorithms are di-
vided into two groups: a) the generation of kernels, each of
which describes the structure of a subset of data in the source
ontology that needs to be exchanged as a whole, and the struc-
ture of a subset of data in the target ontology that needs to be
created as a whole; b) the transformation of kernels into exe-
cutable mappings in SPARQL.

The key features of our tool are that it allows to automate
the generation of executable mappings using correspondences
and constraints; it integrates several systems that implement
semantic-web technologies to exchange data; and it provides
visual aids for helping software engineers to exchange data
amongst ontologies. As future work, we are planning to in-
corporate more complex types of constraints, such as zero-
cardinality, general property, or class intersection constraints.
Furthermore, to reduce or even avoid the use of reasoners, we
are planning on leveraging SPARQL 1.1 entailments once the
recommendation is stable.
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