
M
o

A
a

b

a

A
R
R
A
A

K
A
M
R
E
C

1

u
n
t
s
t
c
r
s

t
a
i
t
a
t
t

M
5

0
h

The Journal of Systems and Software 86 (2013) 2502– 2519

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho me p age: www.elsev ier .com/ locate / j ss

OO: An architectural framework for runtime optimization of multiple system
bjectives in embedded control software

rjan de Rooa, Hasan Sözerb,∗, Lodewijk Bergmansa, Mehmet Akş it a

University of Twente, Enschede, The Netherlands
Özyeğin University, İstanbul, Turkey

 r t i c l e i n f o

rticle history:
eceived 29 June 2012
eceived in revised form 28 March 2013
ccepted 1 April 2013
vailable online 15 April 2013

eywords:
rchitectural framework

a b s t r a c t

Today’s complex embedded systems function in varying operational conditions. The control software
adapts several control variables to keep the operational state optimal with respect to multiple objec-
tives. There exist well-known techniques for solving such optimization problems. However, current
practice shows that the applied techniques, control variables, constraints and related design decisions
are not documented as a part of the architecture description. Their implementation is implicit, tailored
for specific characteristics of the embedded system, tightly integrated into and coupled with the control
software, which hinders its reusability, analyzability and maintainability. This paper presents an archi-
ulti-objective optimization
untime adaptation
mbedded systems
ontrol software

tectural framework to design, document and realize multi-objective optimization in embedded control
software. The framework comprises an architectural style together with its visual editor and domain-
specific analysis tools, and a code generator. The code generator generates an optimizer module specific
for the given architecture and it employs aspect-oriented software development techniques to seam-
lessly integrate this module into the control software. The effectiveness of the framework is validated in
the context of an industrial case study from the printing systems domain.

© 2013 Elsevier Inc. All rights reserved.
. Introduction

A current trend in embedded systems is toward adaptivity
nder varying circumstances (e.g., environmental conditions, user
eeds and input). For example, current high-end printing sys-
ems perform adaptive optimization of multiple system objectives,
uch as maximizing productivity and minimizing energy consump-
ion. They apply trade-off decisions concerning several user needs,
onflicting quality attributes and objectives. Adaptive optimization
esults in more competitive systems that leverage better customer
atisfaction and cost effectiveness.

Adaptive and optimized behavior is achieved by adjusting cer-
ain decision variables in the system. Examples of decision variables
re the speed of the system and the temperature setpoint of a heat-
ng device. The values of the decision variables are often subject
o constraints. For example, the speed of the system is limited to
 maximum speed and the amount of consumed power is limited
o the amount of power available. The problem of balancing mul-
iple system objectives by influencing a set of decision variables

∗ Corresponding author at: School of Engineering, Özyeğin University, Niş antepe
ah. Orman Sk. No. 13, Alemdağ – Ç ekmeköy 34794, İstanbul, Turkey. Tel.: +90 216

64 9383; fax: +90 216 564 9057.
E-mail address: hasan.sozer@ozyegin.edu.tr (H. Sözer).

164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2013.04.002
that are subject to constraints is known as multi-objective opti-
mization (MOO) (Keeney and Raiffa, 1976). In modern embedded
systems, the set of strategies and techniques to facilitate MOO are
implemented in software, as part of the control logic.

Embedded systems can comprise many different controllers
implemented in several software modules, each controlling a part
of the system. As a result, MOO have to be realized by manip-
ulating and coordinating many controllers, scattered throughout
the embedded control software. For example, power consumption
and productivity of the system cannot be controlled by a specific
controller; they are influenced by the behavior of the system as
a whole. This manipulation and coordination of many controllers
introduces additional structural complexity within the embedded
control software.

There is a lack of systematic methods and techniques to design
and implement MOO in embedded control software and to man-
age the resulting complexity. Usually the implemented control
behavior is sufficient, but not optimal, as better optimizing solu-
tions would be too complex to implement. When implemented,
the applied optimization techniques, controlled variables, con-
straints and related design decisions are not documented as a

part of the architecture description. They usually remain implicit,
making it hard to communicate, analyze, maintain and reuse the
embedded control software. Moreover, the lack of explicit rep-
resentation of the decision variables and their interrelationships

dx.doi.org/10.1016/j.jss.2013.04.002
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:hasan.sozer@ozyegin.edu.tr
dx.doi.org/10.1016/j.jss.2013.04.002

ems a

l
r
s

2
w
t
o
t
S
t
m
p
m
a
m
w
T
b
d

d
s
o
g
a
a
s
m
o
M
s
a
u

c
d
t
c
p
w
o
c
t
m
o
t
a
c
t
o

s
m
t
a
o
t
F
f

2

m

A. de Roo et al. / The Journal of Syst

eads to implicit dependencies among the software modules. As a
esult, any modification of the controlled system and/or the control
oftware becomes error-prone.

Previously, we have proposed an architectural style (de et al.,
009), which introduces a graphical notation to document the soft-
are architecture from the MOO point of view. This style enables

he documentation of decision variables, constraints and trade-
ffs at the architectural level. In this work, we have extended
he style with domain-specific models. In particular, we use
IDOPS+(Broenink, 1997) for documenting physical characteris-
ics/models regarding the controlled system. Several such physical

odels are implemented in embedded control software. In digital
rinting systems for instance, physical models are used for esti-
ating the heat exchange among components like the toner belt

nd the paper path. In practice, however, these models are imple-
ented in a general-purpose programming language and tangled
ith the control software, just like the implementation of MOO.

he new style, which we call as the MOO architectural style, is not
ased on just one language or notation. It makes use of multiple
omain-specific modeling languages (DSMLs) together.

In this paper, we also introduce a complete framework for
ocumenting, analyzing and realizing MOO in embedded control
oftware. We have developed a toolchain consisting of visual edit-
rs, analysis tools, code generators and weavers. The framework
enerates optimizers based on the MOO architectural model. It
lso composes the generated code with both the physical models
nd the rest of the control software by means of aspect-oriented
oftware development techniques. The core application is kept
odular and independent from the optimization details. As such,

ur approach supports the reusability and maintainability of the
OO solutions and physical models, which are modularized and

pecified with separate DSMLs. Separate specification of MOO
spects, related physical models and the control logic also enables
s to perform domain-specific analysis and verification.

We have illustrated the effectiveness of our framework in the
ontext of an industrial case study from the printing systems
omain. We have modularized the specification of the MOO solu-
ion and the implementation of the physical models for a part of the
ontrol software that is responsible for heat control on the paper
ath. These specifications are verified by the toolchain of the frame-
ork. Part of the control software is automatically generated based

n the verified MOO architectural model and the related physi-
al models. The generated code is automatically composed with
he rest of the control software. We have compared the perfor-

ance of the automatically generated control software with three
ther alternatives that use state-of-the-practice engineering solu-
ions for optimization. We have seen that our approach can lead to
n increase in productivity by 20%, and it can decrease the energy
onsumption by 10%. We have also seen that our approach reduces
he deviation in print quality. In addition, the control software turns
ut to be more modularized, reusable and maintainable.

The remainder of this paper is organized as follows. The next
ection provides background information on multi-objective opti-
ization. Section 3 introduces the industrial case study and puts

he problem in context. Section 4 presents an overview of our
pproach. We explain the MOO architectural style and the toolchain
f the MOO framework in Sections 5 and 6, respectively. In Sec-
ion 7, we explain the experimental setup and present the results.
inally Section 8 provides the conclusions and discusses some
uture work directions.
. Background: multi-objective optimization (MOO)

MOO is a mathematical problem in which the goal is to optimize
ultiple objectives. The objectives can be influenced by a set of
nd Software 86 (2013) 2502– 2519 2503

decision variables. The values of these decision variables are subject
to constraints. A MOO problem is defined as follows (Collette and
Siarry, 2003):

Definition 1 (MOO problem). A MOO problem can be represented
by a tuple 〈o(x), g(x), h(x)〉, where

• x ∈ R
n represents the value of the n decision variables.

• o(x) ∈ R
n → R

k is a vector of k objective functions in the decision
variables x that provide a valuation for the k objectives.

• g(x) ∈ R
n → R

l is a vector of l functions that describe inequality
constraints. An inequality constraint means that x should be cho-
sen in such a way that the outcome of each of the l functions in g
is smaller than 0.

• h(x) ∈ R
n → R

m is a vector of m functions that describe equality
constraints. An equality constraint means that x should be chosen
such that the outcome of each of the l functions in g is equal to 0.

The solution to this problem are the x ∈ R
n that minimize o(x)

under the constraints ∀i ∈ [1 . . . l]gi(x) ≤ 0 and ∀j ∈ [1, . . ., m]hj(x) = 0.

The constraints limit the possible values for the decision vari-
ables to a subset of R

n. This subset is called the feasible decision
space. The solution to the optimization problem is selected from
the feasible decision space. Each value x in the feasible decision
space can be input to the objective functions o(x). The set of all
objective values that result from applying all values in the feasible
decision space to the objective functions is called objective space or
criterion space.

Optimizing a single objective is straightforward, as there is
a one-dimensional objective space in which there is one point
that has a smaller objective value than all the other points in the
objective space. But when there are multiple objectives, there is
usually not a single point in the objective space that has the min-
imal/optimal value for all objectives. In this case, one point in the
objective space is said to dominate another point if it improves upon
at least one of the objectives, without compromising on the other
objectives. In a MOO problem, there might not be a single point that
dominates all other points. Instead, there can be multiple points in
the objective space that are not dominated by any other point in
the objective space. These points are called Pareto optimal points
(Pareto et al., 1896). For practical applications, such as in the control
of embedded systems, a single result/solution of the MOO problem
is necessary. Based on the relative importance of the objectives (e.g.,
based on customer needs), a single optimal value can be selected.
A preference relationship on the objectives is usually specified in
the form of a trade-off function, providing a scalar value for each
point in the objective space, and as such providing a total ordering
relationship among the Pareto optimal points.

We have employed existing theory on multi-objective opti-
mization (Ehrgott and Gandibleux, 2002; Marler and Arora, 2004;
Yoon and Hwang, 1995; Eckenrode, 1965; Hwang and Yoon, 1981;
Geilen et al., 2007) to form a mathematical basis for our approach.
Hence, we do not contribute, but rather utilize existing methods
and techniques in this domain. Several (open-source) implemen-
tations of multi-objective optimization algorithms exist, such as in
Gnu linear programming kit (2012) and lp solve (2012). Matlab pro-
vides a function, called fmincon, to perform optimization of a single
objective (Find minimum of constrained nonlinear multivariable
function, 2013), which can also be utilized together with a trade-
off function regarding multiple objectives. We have employed this
function within the code that is generated by the MOO framework.
3. Industrial case study and problem statement

We have developed and evaluated our approach within the con-
text of the Octopus project (Octopus project, 2012). In this section,

2504 A. de Roo et al. / The Journal of Systems a

Toner
Belt

Paper Path

Paper H
eater

Contact
Point

Belt
Temperature
Sensor

Pph Tph
P

Tbelt

Tcontact

v

w
t
d

3

b
c
s
e
w
l
a
q
p
(
s
m
c
t
t

3

t
t

s
c
a
l
t
o
t
T
h
b
a
t

•
•

•

r

Fig. 2 shows the architecture of the control software for the
Radiator
rad

Fig. 1. Schematic view of the Warm Process.

e first describe the project context. Then, we introduce an indus-
rial case study, taken from the digital document printing systems
omain. Finally, we provide the problem statement.

.1. The context

In traditional embedded systems development, trade-offs
etween (conflicting) system qualities (e.g., productivity, energy
onsumption) are made at design time. This results in embedded
ystems in which the trade-off between these qualities is fixed. For
xample, the embedded system is either a high-productive system
ith high energy consumption, or an energy-saving system with

ow productivity. Nowadays, market forces demand more flexible
nd adaptable machines, in which the trade-offs between system
ualities can be made at runtime. For example, a customer of a
rinting system might sometimes need a high-productive machine
e.g., for time-critical print jobs), while in general an energy-saving
ystem is preferred. The embedded system has to dynamically opti-
ize the system qualities under changing circumstances, such as

hanges in environmental conditions and changes in user input. In
he following subsection, we introduce an example case study in
his context.

.2. Case study: Warm Process

A part of the printing process in digital document printing sys-
ems is called the Warm Process. This process is responsible for
ransferring a toner image to paper.

Fig. 1 depicts a schematic overview of the parts in the printing
ystem responsible for the Warm Process behavior. The Warm Pro-
ess has two main parts; a paper path to transport sheets of paper
nd a toner belt to transport toner images. The contact point is the
ocation where the paper path meets the toner belt. At this loca-
ion the toner image is transferred from the toner belt to the sheet
f paper. For correct printing, both the sheets of paper and the
oner belt should have a certain temperature at the contact point.
herefore, the Warm Process contains two heating systems; a paper
eater to heat the sheets of paper and a radiator to heat the toner
elt. There is no sensor to measure the temperature of the toner belt
t the contact point (Tcontact). Instead, the physical system provides
he following sensors and actuators:

T : Sensor that measures the paper heater temperature.
ph
Tbelt: Sensor that measures the temperature at the sensor location
on the toner belt.
v: Actuator to set the printing speed.1

1 Note that this only gives a simplified and abstract view of a printing system. In
eality, there is no single actuator in the physical system to set the printing speed.
nd Software 86 (2013) 2502– 2519

• Pph: Actuator to set the amount of power supplied to the paper
heater.

• Prad: Actuator to set the amount of power supplied to the radiator.

The printing speed can be adapted depending on the needs and
objectives. For example, it can be lowered to reduce energy con-
sumption or raised when printing on lighter paper (to increase
productivity). If the speed of the system changes, the temperatures
of the paper heater and belt also need to change, to maintain cor-
rect print quality. Engineers identified a relationship between the
three variables: speed (v), paper heater temperature (Tph) and the
temperature of the belt at the contact point (Tcontact). Correct print
quality is ensured if this relationship, as follows, holds (c1, c2 and
c3 are constants):

Tcontact
desired= c1 · v − c2 · Tph + c3 (1)

The paper heater reacts slowly to changing temperature set-
points, while the radiator can quickly influence Tcontact. Therefore,
engineers decided to mainly use the radiator to adjust the tem-
peratures when the speed changes. This means that Eq. (1) is used
to determine the required Tcontact (i.e., the setpoint). As there is no
sensor to directly measure Tcontact, engineers had to identify the
following relationship between Tcontact and Tbelt (c4 is a constant):

Tcontact = c4 · Prad√
v

+ Tbelt (2)

In the following subsection, we analyze important aspects,
design decisions and issues regarding the implementation of MOO
in the context of the Warm Process case study.

3.2.1. Analysis of optimization in the Warm Process case study
In the Warm Process case study, engineers aim to introduce the

possibility for the user to make trade-offs at runtime between the
two conflicting objectives power consumption and productivity of
the printing system. They identified the decision variables that can
be used to influence the objectives, the different constraints in the
system and the objective functions:

• Decision variables: Speed of the system (v), temperature setpoint
of the paper heater (Tsp

ph
).

• Constraints:
– 60 ≤ v (minimal speed is 60).
– v ≤ 120 (maximal speed is 120).
– 40 ≤ Tsp

ph
(minimal setpoint for the paper heater is 40).

– Tsp
ph

≤ 90 (maximal setpoint for the paper heater is 90).
– Pph ≤ 1200 (maximal power to the paper heater is 1200 W).
– Prad ≤ 800 (maximal power to the radiator is 800 W).
– Ptotal ≤ Pavail (total power consumption should not exceed the

amount of power that is available to the system).
• Objective functions:

– Total power consumption: Ptotal = Pph + Prad.
– Productivity: Prod = 1/v (productivity is defined as an inverse

of speed, as in MOO the goal is to minimize the objective func-
tions).
Warm Process case study. The software architecture contains six

Instead, the paper path consists of multiple motors and pinches, each of which can
be controlled independently. If this control is done in a coordinated way, this leads
to correct paper transportation at a certain speed. Nevertheless, a virtual speed
actuator can be implemented, which takes care of controlling the different motors
in the paper path to obtain the requested speed.

A. de Roo et al. / The Journal of Systems and Software 86 (2013) 2502– 2519 2505

System I/O

Paper
Path
vPrint Quality

Tcontact

Tph

v

Belt Temperature

Prad

Tcontact

Tbelt

v

Paper Heater
Controller

Tph

Tspph

Pph

Radiator
Controller

 TcontactTspcontact Prad

Pph Pph Tph Tbelt Prad Prad v v

KEY: In-port Out-portConnectorComponent

ss sof

d
r
t

s
f
a
a
v

p
h
B
d
b
t
s

t
a
a
f
p
f
c
e

realization of MOO and the management of software complexity
introduced by its realization.
Fig. 2. Warm Proce

ifferent components. Components have interfaces, which are rep-
esented as in-ports/out-ports to provide/retrieve a value to/from
he component.

The System I/O component provides an interface to the sen-
ors and actuators in the system. The component has an out-port
or each sensor (Tph and Tbelt). The component has both an in-port
nd an out-port for each actuator (Pph, Prad and v). The out-port for
n actuator provides the current level of the actuator (i.e., the last
alue that has been provided to the in-port).

PaperHeaterController and RadiatorController are com-
onents that contain the control logic for respectively the paper
eater and the radiator. The components PrintQuality and
eltTemperature implement respectively the equation that
etermines print quality (Eq. (1)) and the equation that determines
elt temperature (Eq. (2)). PaperPath is the component that con-
rols the behavior of the paper path. It determines the speed of the
ystem and provides this to the Warm Process control components.

If we relate the MOO-relevant variables to different ports in
he software architecture, we can conclude that these variables
re related to different architectural elements (e.g., ports), which
re spread through the software architecture. This illustrates the
act that optimization can affect several components at different

arts of the system. Depending on the scale of the system and the
unctionality being optimized, the scattering can be worse, which
omplicates the implementation and increases the maintenance
ffort.
tware architecture.

3.3. Problem statement

There is a lack of systematic methods to design and imple-
ment MOO in embedded control software. This usually results in
ad hoc solutions that are tailored to the specific system and there-
fore inflexible when the system changes or evolves. Moreover, the
implementation of MOO gets tightly coupled and integrated with,
and spread out over multiple control software components.2 The
overall impact is a reduction in software quality: ad hoc and tightly
coupled solutions are more difficult to comprehend, their inflexible
nature hinders their evolvability and reusability. The lack of a com-
mon methodology and corresponding terminology makes it harder
to document and communicate the design decisions. The result is
higher development and maintenance costs (Banker et al., 1993).
Alternatively, as we have witnessed in practice, these problems can
lead to the decision to remove the runtime optimization require-
ment, as the benefits of a more optimal system do not outweigh
the reduced software quality and increased costs. Therefore, sys-
tematic methods, techniques and tools are required to support the
2 The issue of crosscutting and a large number of dependencies was confirmed as
a major issue by our industrial partners in the project.

2506 A. de Roo et al. / The Journal of Systems and Software 86 (2013) 2502– 2519

view o

3

i
(
(
n
w
t
fl
e
t
a
t

i
s
p
g
c
a
o
e
i
p

s
a
p
l
o
m
a
a
r
S
d
s
t
f
i
o

Fig. 3. The over

.3.1. Related work
Optimization of software design has received more attention

n recent years (Aleti et al., 2013). Usually there exist multiple
conflicting) quality attributes to consider in a software design
Sozer et al., 2011; Meedeniya et al., 2010). Therefore, MOO tech-
iques have been applied to balance the feasible design alternatives
ith respect to different quality factors such as energy consump-

ion vs. reliability (Aleti et al., 2009), resource utilization vs. data
ow latency (Li et al., 2011), and performance vs. reliability (Sozer
t al., 2011). In this paper we do not focus on the optimization of
he design itself but the implemented control behavior instead. We
im at supporting the design and realization of a software system
hat employs MOO for controlling embedded systems.

An architectural framework (Calinescu et al., 2011) has been
ntroduced for the development and adaptation of service-oriented
ystems. The framework employs MOO for selecting optimal com-
osition of available services based on QoS requirements. In
eneral, service-oriented systems are built through the dynamic
omposition of loosely coupled services. In this work, we focus on

 different application domain that impose different challenges. In
ur problem domain, software structure is mainly fixed and it is
mbedded in a physical environment. The main challenge is to facil-
tate the optimal control of a set of devices that interact with this
hysical environment.

The implementation of multi-objective optimization in control
ystems has been previously discussed by Lui et al. (2002). We aim
t introducing two new perspectives to these discussions. First,
revious implementations mainly consider localized control prob-

ems, i.e., optimized behavior of a specific controller. Our goal is to
ptimize system qualities (e.g., energy consumption and the perfor-
ance of the overall system), which has an impact on the system

s a whole. Hence, many different controllers have to cooperate
nd an architectural focus is required to manage the incorpo-
ation of the MOO functionality as part of the control software.
econd, previous discussions mainly focus on the mathematical
esign of an optimization algorithm. Our goal is to enable modular
pecification, analysis and automated composition of optimiza-
ion techniques. Hence, in the following, we introduce the MOO

ramework to facilitate better management of software complex-
ty in control software without compromising the effectiveness of
ptimization.
f the approach.

4. Overview of the MOO framework

We introduce the MOO framework to design and implement
control software that employs MOO. The MOO framework employs
an approach as depicted in Fig. 3 based on the MOO architectural
style and the MOO toolchain.

The MOO architectural style provides the ability to specify a spe-
cialized Component-and-Connector model (Clements et al., 2002)
for the architecture of the control software. The model includes
elements of the MOO solution (decision variables, constraints and
objective functions) in a structured way, as part of the architec-
ture description. We refer to an architectural model that is created
according to the MOO architectural style as MOO architectural model
or MOO model.

In addition to the decision variables, constraints and objective
functions, there exist computational logic and physical character-
istics/models regarding the controlled system that influence the
control behavior. To be able to analyze a MOO model and gener-
ate an optimizer module, these elements should also be specified.
Therefore, the MOO method provides the possibility to refer to
models that specify the computational logic (e.g., control logic,
implemented physical characteristics) of components in the archi-
tecture. In this work, we adopt the SIDOPS+language of the 20-Sim
toolset (Broenink, 1997; Kleijn, 2009), because of the suitability of
this language to model control logic and physical characteristics.
The models created with the SIDOPS+language are called 20-Sim
models.

A MOO model together with the 20-Sim specifications are pro-
vided as input to the MOO toolchain. The toolchain contains a
graphical editor, which is an extension of the ArchStudio 4 toolset
(Dashofy et al., 2007), to create and edit MOO models. The MOO
Consistency Validator checks the consistency of the MOO model. If
the MOO model is consistent, it can be provided to the MOO code
generator, to generate an optimizer module specific for the given
architecture and given MOO solution. The software modules that
implement the basic control architecture are provided to the MOO
code weaver. The code weaver composes these software modules
and the generated optimizer module by weaving instrumentation

in the software modules. The result is embedded control software
that includes MOO functionality. The next sections explain the MOO
architectural style and the MOO toolchain in more detail.

ems and Software 86 (2013) 2502– 2519 2507

5

d
m
t
l
H
d
t
s
o
f
o
C
d

5

•
•
•
•

•

•

b

o

Table 1
Notation of the MOO style.

Notation Description

Component with a stereotype and a name. Three
stereotypes are available: Analyzable, Oblivious and
SubModel. If a component has a reference to a 20-Sim
model, then it has the stereotype Analyzable. If a
component has the flag isOblivious set, then it has the
stereotype Oblivious. Oblivious components have by
definition a reference to a 20-Sim model, so the stereotype
Analyzable is omitted. If the component references
another MOO model (i.e., hierarchical composition), the
stereotype is SubModel.

◦ In-port
• Out-port
�� In-port/out-port with the isDecisionVariable flag set.
�� In-port/out-port with the isObjective flag set.

Usage of a port: The ports that belong to a component are
attached to the edge of the component. The port may be
labeled with its variableName.

→ Connector
A. de Roo et al. / The Journal of Syst

. MOO architectural style

In this section, we introduce the MOO architectural style3 for
ocumenting embedded control software architecture from the
ulti-objective optimization point of view. Specific styles for con-

rol software have been developed before (Hofmeister et al., 2000),
ike the Process Control styles described in Shaw and Garlan (1996).
owever, these styles take a more general view on control; they
escribe the system in terms of a controlled system, sensors, con-
rollers and actuators. The MOO style is applicable to a more
pecific type of functionality in control software, multi-objective
ptimization, and therefore can express specific properties of this
unctionality. In the following, we first provide a brief description
f the MOO style, using the same description structure as used in
lements et al. (2002) to describe architectural styles. Then, the
ifferent characteristics of the style are described.

.1. Style description

Elements: Component;
Interfaces: In-port, out-port;
Relations: Connector;
Properties of elements: Component implements the control logic,
consisting of, among others, control algorithms and models of
physical characteristics. Components have the following proper-
ties:
– 20SimReference: An optional reference to a 20-Sim model.

This 20-Sim model describes the computational logic between
the in-ports and out-ports of the component. If this computa-
tional logic is necessary to analyze the specified MOO solution,
a reference to a 20-Sim model should be provided. Otherwise,
it can be omitted.

– constraints: A list of constraints on the variables correspond-
ing to the ports of the component.

– isOblivious: A flag that indicates whether the component
is oblivious. This means that there is no software module that
implements the component: the component is only used for
specifying the MOO solution to be provided to the tooling.4 If
the isOblivious flag is set, the component should always have
a reference to a 20-Sim model.

– subModelReference: An optional reference to another MOO
model. This represents encapsulation of MOO models, to
provide hierarchical application of the MOO style.

Properties of interfaces: A port communicates the value of a specific
(physical) variable. An in-port is used by a component to receive
the value of a variable from other components. An out-port is
used by a component to communicate the value of a variable
to other components. In-ports and out-ports have the following
properties:
– variableName: String containing the name of the correspond-

ing (physical) variable.
– constraints: A list of constraints on the value of this port.
– isDecisionVariable: A flag that indicates whether the vari-

able corresponding to this port is a decision variable (i.e., the
optimization algorithm may determine the value of the port).

– isObjective: A flag that indicates that the variable corre-
sponding to this port represents the outcome of one of the

objective functions in the MOO problem.

Properties of relations: Same as the C&C viewtype (Clements et al.,
2002).

3 In the parlance of IEEE 1471 (Maier et al., 2001), the MOO architectural style can
e regarded as a viewpoint.
4 Hence the term oblivious component, to indicate that the actual implementation

f the software is not aware of this component.
Informal label indicating that the component or port has
constraints.

• Topology: Connectors connect ports. The start-point of a connector
is always an out-port. The end-point of a connector is always an
in-port. The semantics of a connector is that the value on the
end-point of the connector (in-port) is set to the value of the
start-point of the connector (out-port). An out-port can be the
start-point of multiple connectors. An in-port cannot be the end-
point of more than one connector. Each connector facilitates one-
to-one connection. One can make use of multiple connectors to
create multiple connections.

The MOO style has also a notation to create graphical represen-
tations of MOO models. These graphical representations are called
MOO views. Table 1 shows the different elements of the notation
and Fig. 4 shows the MOO view of the architecture for the Warm
Process case study. The labels 1–5 indicate that constraints have
been added to the corresponding port/component. This example
MOO view will be used in the next subsections to illustrate the
different characteristics of the style.

5.2. Specifying a MOO solution

This subsection explains the characteristics of the MOO style
that can be used for specifying MOO concerns within a software
architecture.

5.2.1. Ports providing decision variables and objective functions
Ports have the flags isDecisionVariable and isObjective.

By setting the isDecisionVariable flag, a designer indicates that
the port represents a decision variable. This means that the opti-
mization algorithm may choose the value on the port. If the port
also gets a value from a connector (in case of an in-port) or a compo-
nent (in case of an out-port), the value provided by the optimization
algorithm overrides the value provided by the connector or the
component. Fig. 4 shows two ports with the isDecisionVariable
flag set: The in-port Tsp

ph
of the Paper Heater Controller compo-

nent and the out-port v of the Paper Path component. This makes
the speed and the setpoint of the paper heater the two decision
variables in the MOO model.
By setting the isObjective flag, a designer indicates that the
value on the port represents the outcome of an objective function.
Fig. 4 shows two ports with the isObjective flag set: The out-
port Ptotal of the Power component and the out-port productivity

2508 A. de Roo et al. / The Journal of Systems and Software 86 (2013) 2502– 2519

System I/O

Paper
Path
v

1

«Analyzable»
Print Quality

Tcontact

Tph

v

«Analyzable»
Belt Temperature

Prad

Tcontact

Tbelt

v

«Analyzable»
Paper Heater
Controller

Tph

Tspph

Pph

«Analyzable»
Radiator
Controller

 TcontactTspcontact Prad
2

«Oblivious»
Productivity

v

«Oblivious»
Power

Prad

Pph 4

Pph Pph Tph Tbelt Prad Prad v Pavailv

Pavail

3
Ptotal productivity

5

he Wa

o
o
i
b

5

c
a
P
c
a

1
t

1

2

3

4

5

Fig. 4. MOO model of t

f the Productivity component. This means that there are two
bjectives in the system: total power consumption and productiv-
ty. Note that this MOO model does not specify a trade-off function
etween the two objectives.

.2.2. Constraints
Components and ports have the property constraints, which

ontains a list of constraints. Component constraints provide
 constraint among the values on the component’s ports (e.g.,
total ≤ Pavail). Port constraints only constrain the value on that spe-
ific port. As such, every constraint is associated with the related
rchitectural element directly.

In the MOO view shown in Fig. 4, there are four ports (labeled
, 2, 3 and 5) that have constraints and one component (labeled 4)
hat has constraints. These five constraints are:

 Port: v
(a) value ≥ 60
(b) value ≤ 120

 Port: Prad
(a) value ≥ 0
(b) value ≤ 800

 Port: Pph
(a) value ≥ 0
(b) value ≤ 1200

 Component: Power
(a) Ptotal ≥ 0

(b) Ptotal ≤ Pavail

 Port: Tsp
ph

(a) value ≥ 50
(b) value ≤ 90
rm Process case study.

The two constraints on the out-port that is labeled 1 provide
boundaries on the speed. The two constraints on the out-port
labeled 2 provide boundaries on the power given to the radia-
tor. Note that the optimizer is able to influence the value on this
out-port by adjusting the speed; the control logic implemented
within components Print Quality and Radiator Controller
relate speed to the value on the out-port labeled 2, i.e., the power
given to the radiator (Prad). The two constraints on the out-port
labeled 3 constrain the power given to the paper heater. It can be
influenced by the decision variable Tsp

ph
. The two constraints on the

Power component limit the power consumption of the system to
the amount of power available. The two constraints on the decision
variable Tsp

ph
give boundaries for this decision variable.

5.2.3. 20-Sim reference/analyzable component
In a MOO model, constraints and objective functions can be

specified using variables (i.e., ports) other than the decision vari-
ables. However, there should be computational logic implemented
in the components that provides mathematical relationships
between the decision variables and the other variables used as part
of constraints and objective functions. Otherwise, the constraints
and objective functions cannot be influenced by the decision vari-
ables. To be able to analyze the MOO model, it should include these
mathematical relationships. Therefore, the components of a MOO
model have a property 20SimReference. This property can be used
to make a reference to a 20-Sim model that specifies the computa-
tional logic (e.g., a model of physical characteristics or continuous

control logic) of the component. It is not necessary to include a 20-
Sim model for each component. Such a model should be included
only for components that relate constraints and objective functions
to the decision variables.

A. de Roo et al. / The Journal of Systems and Software 86 (2013) 2502– 2519 2509

ew of

T
e

d
o
s
T
e
e

c
m

6

s
s
i
c
A
e
p
t
o
2
t
t
a

t
h

Fig. 5. Overvi

Fig. 4 shows four components with stereotype Analyzable.
heir referenced 20-Sim models contain the physical relationships
xplained in Section 3.2.

Fig. 4 also shows two oblivious components: Power and Pro-
uctivity. The purpose of these components is to model the
bjective functions and to model the constraint that the power con-
umption of the system is limited to the amount of power available.
he Power component references a 20-Sim model containing the
quation: Ptotal = Pph + Prad. The Productivity component refer-
nces a 20-Sim model containing the equation: productivity = 1/v.5

In the following section, we introduce the MOO toolchain that
an analyze a MOO model and generate code for realization of opti-
ized control in embedded software.

. MOO toolchain

Fig. 5 shows an overview of the MOO toolchain. The figure shows
everal artifacts and a number of (automated) processes that con-
ume/generate certain (intermediate) artifacts. One of the artifacts
s the MOO model that is the input to the toolchain. The MOO model
an be edited by the MOO Model Editor. This editor is an extension of
rchstudio (Dashofy et al., 2007). It provides a graphical modeling
nvironment to create and edit MOO models. MOO Model Editor
arses the stored MOO models and SIDOPS+specifications (con-
aining 20-Sim models) to generate a mathematical representation

f the MOO model, including the semantics from the referenced
0-Sim specifications. This mathematical representation is used by
he Consistency Validator to check the consistency of the MOO solu-
ion. If the MOO solution is consistent, the Code Generator generates
n optimization software module, based on a predefined/selected

5 Strictly following the mathematical definition, the goal of MOO is to minimize
he objective functions. Therefore, productivity is expressed as the inverse of speed:
igher speed leads to a lower outcome of the productivity objective function.
the toolchain.

optimization algorithm6 and the specific MOO problem provided by
the mathematical representation. This optimization module needs
to interact with the software modules that implement the basic
control logic, to obtain values of certain (physical) variables and to
influence the decision variables. The Code Weaver weaves this inter-
action into the control software modules. This results in embedded
control software that includes MOO functionality. The different
tools/processes/artifacts in the MOO toolchain are discussed in
detail in the following subsections.

6.1. MOO Model Editor

The Archstudio toolsuite (Dashofy et al., 2007) offers a graph-
ical editor for Component-and-Connector models. We extended
this toolsuite to obtain a graphical editor for MOO models. Fig. 6
presents a screenshot of the extended Archstudio tooling, showing
a structural diagram that represents the MOO model in Fig. 4.

Archstudio stores the architectural models in an architecture
description language called xADL (Dashofy et al., 2001). xADL is an
XML-based architecture description language that is defined using
an XML schema. The xADL schema can be extended to be able to
express new elements and properties in an architecture descrip-
tion. We extended xADL to be able to add the different elements
of the realized MOO (decision variables, constraints and objective
functions) to the components and ports in the structural diagrams
of xADL. The extension is specified in the form of a XML schema (de
Roo, 2012) conforming to the MOO architectural style.

6.2. Deriving a mathematical representation
This subsection describes the mathematical representation of a
MOO model (together with the 20-sim models referred by its com-
ponents), and explains how this representation is created. The basic

6 The current toolset uses Matlab libraries (Find minimum of constrained
nonlinear multivariable function, 2013) for optimization. In principle, any optimiza-
tion algorithm/approach can be used.

2510 A. de Roo et al. / The Journal of Systems and Software 86 (2013) 2502– 2519

f the MOO Model Editor.

m
t
t
A
g

1

2

w

g

d
m
(
s
c

c
c
t

c

F

d

e

eq1b

c

a

eq2 f

KEY: Equation
Node

Variable
Node Relationship
Fig. 6. Screenshot o

odel of the representation is called a derivation graph. A deriva-
ion graph of a physical model is a directed graph that reflects how
he values of the physical variables are derived from one another.

 formal definition can be found in de Roo (2012). The derivation
raph is created in two steps:

 A derivation graph of each component in the MOO model is cre-
ated.

 The derivation graphs of the components are combined according
to the connections between the components in the MOO model.

These two steps are explained in the following. For both steps,
e apply standard data-flow analysis techniques.

Step 1. Creating a component’s derivation graph. The derivation
raph of a component is created using the following procedure:

Step 1a. Create the dependency graph. A dependency graph is a
irected graph that relates variables and equations in a physical
odel to each other. A formal definition can be found in de Roo

2012). If the component references a SIDOPS+specification, this
pecification is parsed and the corresponding dependency graph is
reated (de Roo, 2012).

Fig. 7 shows an example component, two equations from the
omponent’s referred SIDOPS+specification and a constraint of the

omponent. Fig. 8 shows the dependency graph that is created for
his example.

Step 1b. Match ports to variable nodes Each port of a component
orresponds to a variable. The variable nodes in a dependency graph

ig. 7. Example component, SIDOPS+specification and component constraint.
Fig. 8. Dependency graph corresponding to the example component and specifica-
tion in Fig. 7.

also correspond to variables. Using name matching of the corre-
sponding variables, ports of the component are matched to variable
nodes in the dependency graph. For each port that has no match-
ing variable node in the dependency graph, a new variable node is
added to the dependency graph.7

The result of this step is the relationship portMatch-
ing : ports → vNodes. This relationship is used by other processes in
the MOO toolchain. Fig. 9 shows the matching of the component’s
ports to the variable nodes in the dependency graph. The out-port
for variable g did not have a corresponding variable node. Therefore,
a new variable node is added to the dependency graph.
Step 1c. Handling component’s constraints. A component can
have constraints attached.8 These constraints should be reflected
in the component’s dependency graph. To include a component’s

7 This means that the variable corresponding to the port is not used in the
SIDOPS+specification. Note that this does not mean that the component’s imple-
mentation does not use (in case of in-ports) or compute (in case of out-ports) the
values of that port. The SIDOPS+model of a component only needs to include the
part of the semantics that relates constraints and objective functions to the decision
variables. Therefore, the model may leave out unimportant relationships, in this way
excluding certain variables.

8 Constraints can also be attached to ports. Constraints on ports only constrain
the variable corresponding to that port, no other variables.

A. de Roo et al. / The Journal of Systems and Software 86 (2013) 2502– 2519 2511

g

d

e

eq1b

c

a

eq2 f

ode

«Analyzable Component »

C

a b c e

f g

 ports

c
a

1

2

3

w
s
e
a

T
v
h
o
R
t
i
i
t
e

model for the Warm Process case study. The derivation graphs cre-
ated for the different components are indicated by dashed boxes.
KEY: Port Variable N

Fig. 9. Matching of

onstraint CCi in the component’s dependency graph, the following
pproach is adopted:

 The constraint CCi is rewritten in one of the following forms:
(a) expressionCCi < 0, for ‘greater than’ and ‘less than’ constraints.

For example, g < a * b becomes g − a * b < 0.
(b) expressionCCi < =0, for ‘greater than or equal to’ and ‘less

than and equal to’ constraints. For example, c ≥ a + b becomes
a + b − c ≤ 0.

(c) expressionCCi = 0, for equality constraints. For example,
b + c = d becomes b + c − d = 0.

 A structure reflecting the mathematical equation
cci = expressionCCi is added to the dependency graph. In this
equation, cci is a new variable. expressionCCi is the expression
formed in the previous step. The structure that is added to the
dependency graph consists of an equation node, which reflects
expressionCCi and a variable node, which reflects cci.

 Depending on the type of the rewritten constraint in the first
step of this approach, the cci variable node is annotated with the
constraint value < 0, value < =0 or value = 0. The mapping from the
constraint to the variable node is added to the relationship con-
straintMatching : constraints → vNarch. This relationship is used by
other processes in the MOO toolchain.

Fig. 10 shows the component’s dependency graph extended
ith an equation node CC1 and a variable node cc1 for the con-

traint. The constraint g ≤ a * b is rewritten as g − a * b ≤ 0. The
quation node CC1 reflects the equation cc1 = g − a * b. The cci vari-
ble node gets annotated with the constraint value ≤ 0.

Step 1d. Transform the dependency graph to the derivation graph.
he dependency graph only specifies the dependencies between
ariables as specified by the 20-Sim model. It does not represent
ow the values of certain variables are derived from the values of
ther variables. For this purpose, a derivation graph is created (de
oo, 2012). The variable nodes that provide the input for the deriva-
ion are those variable nodes that match with the component’s

n-ports. Fig. 11 shows the component’s derivation graph, which
s created from the dependency graph in Fig. 10. The graph shows
hat the in-ports labeled a, b, c and e are independent variables for
quations eq1 and eq2. Furthermore, the dependent variable d of
 mapping

 to variable nodes.

eq1 is an independent variable for eq2. The dependent variable of
eq2 is f, which is an out-port of the component.

Step 2. Constructing the derivation graph for the entire MOO model.
Suppose G is the set of derivation graphs of the components in a
MOO model. The derivation graph garch = (vNarch, eNarch, Earch) for
the entire MOO model is then created by combining the derivation
graphs in G, as follows:

1 The set of variable nodes in the derivation graph of the MOO
model is the union of the sets of variable nodes in the derivation
graph of each component: vNarch =

⋃
gi=(vNi,eNi,Ei)∈GvNi.

2 The set of equation nodes in the derivation graph of the MOO
model is the union of the sets of equation nodes in the derivation
graph of each component: eNarch =

⋃
gi=(vNi,eNi,Ei)∈GeNi.

3 The set of edges is constructed in two steps:
(a) First, create the union of the sets of edges in the derivation

graph of each component: Earch =
⋃

gi=(vNi,eNi,Ei)∈GEi.

(b) For each connector in the architecture: suppose the corre-
sponding out-port has matching variable node n1 ∈ vNarch
and the corresponding in-port has matching variable node
n2 ∈ vNarch, then add (n1, n2) to Earch.9

4 The portMatching mapping for the MOO model is created by tak-
ing the union of the portMatching mappings for each component:
portMatchingarch =

⋃
iportMatchingi. The portMatching mapping

is still needed to be able to relate nodes in the graph back to
ports in the MOO model.

5 The constraintMatching mapping for the MOO model is created
by taking the union of the constraintMatching mappings for each
component: constraintMatchingarch =

⋃
iconstraintMatchingi.

Fig. 12 shows the derivation graph created for the example MOO
9 Note that the in-port and out-port attached to a connector always have a corre-
sponding variable node.

2512 A. de Roo et al. / The Journal of Systems and Software 86 (2013) 2502– 2519

g

d

e

eq1b

c

a

eq2 f

KEY: Equation
Node

Variable
Node Relationship

CC1 cc 1

{value ≤ 0}

{...} Annotation

Fig. 10. Dependency graph extended with the component’s constraint.

KEY: Equation Variable
N Derivation

g

d

e

eq1b

c

a

eq2 f

CC1 cc 1

nent’

6

e
f
o
t
T

6

r
t
v
t
o
i

a

b

Node

Fig. 11. The compo

.3. MOO Consistency Validator

The MOO Consistency Validator analyzes a MOO model to
nsure two properties: (i) whether all the constraints and objective
unctions are associated with a mathematical relationship in terms
f the decision variables. (ii) if there exist components that need
o have a reference to a SIDOPS+specification (i.e., 20-Sim model).
he corresponding analysis steps are explained in the following.

.3.1. Overall consistency analysis
If each constraint and objective function has a mathematical

elationship with the decision variables, then an optimizer is able
o influence all constraints and objective functions by changing the
alues of these variables. In this way, the optimizer can guaran-
ee the satisfaction of the constraints and the optimization of the

10
bjective functions. The MOO Consistency Validator ensures this
n two steps.

First, the MOO Consistency Validator performs a dependency
nalysis on the derivation graph to detect dependent variable nodes.

10 Under the assumption that the constraints themselves are consistent, i.e., feasi-
le design space is not empty.
ode

s derivation graph.

These nodes are associated with variables that are influenced by
one or more decision variables. The analysis is performed by check-
ing for each variable node whether there is a path to it from another
variable node that corresponds to a decision variable. The algorithm
is straightforward and explained in detail in de Roo (2012). Fig. 13
shows the set of dependent nodes among the variable nodes of the
example derivation graph previously shown in Fig. 12. These are
the nodes that are reachable from the decision variable nodes (v
and Tsp

ph
) in the graph.

In the second step, the MOO Consistency Validator checks for
each node that has constraints or that is the outcome of an objec-
tive function, whether it is a dependent node or not. If not, this
means that there is no mathematical relationship with the deci-
sion variables, so an inconsistency has been detected. Fig. 13 shows
that all variable nodes that have constraints (the variable nodes
labeled 1–5) are dependent variable nodes. Furthermore, the vari-
able nodes that represent the outcome of objective functions (Ptotal
and Prod) are dependent variable nodes. Therefore, the specified
MOO model is consistent.
6.3.2. Detecting which components need a SIDOPS+specification
To construct a consistent MOO model, some of the components

that take part in the architecture should have a reference to a

A. de Roo et al. / The Journal of Systems and Software 86 (2013) 2502– 2519 2513

h

fe
Prad
(curr)

v
(curr)

TbeltTph

Prad vTbelt

BeltTPQ

Tph

v

v

Tcontact Tcontact

Rad
contr

Tcontact
Tcontact
SP

Prad

Pph

Power

Prad

Ptotal

Prod.

Prod.

v

PH
contr

Tph
Tph
SP

Pph
a b

c d g

a : Paper Heater Controller
b : Radiator Controller
c : Print Quality
d : Belt Temperature
e : Paper Path
f : System I/O
g : Power
h: Productivity

KEY: Equation Variable Derivation

Pavail

Pavail

CC1

cc1

Pph
(act)

Prad
(act)

v
(act)

Pph
(curr)

 for th

S
V

g
b
s
(

a
t
n

•

•

6

m
g
t

Node Node

Fig. 12. Derivation graph

IDOPS+specification (i.e., 20-Sim model). The MOO Consistency
alidator checks this property as follows.

First, a structure graph of the MOO model is created. A structure
raph shows the potential relationships between ports as specified
y the components and connectors. The algorithm for deriving the
tructure graph is straightforward and explained in detail in de Roo
2012).

Then, the following steps are performed to identify the need for
 reference to a 20-Sim model for each port that has constraints or
hat is the outcome of an objective function, and for each compo-
ent that has constraints:

Find all paths in the structure graph from any decision vari-
able node to the port/component node. Paths with cycles can
be excluded, as they are not relevant for the result. Suppose the
result is the set paths.
There should be at least one path ∈ paths, for which all the compo-
nents that correspond to the component nodes on this path refer
to a 20-Sim model. Only in this case a mathematical relationship
might be present that relates the constraints or objective function
to the decision variables.

.4. MOO code generator
MOO code generator is responsible for generating a software
odule that contains the optimization functionality specific for the

iven embedded control software. The following artifacts consti-
ute as input to the tool:
e example architecture.

• The MOO model: mooModel.
• The derivation graph of the MOO model.
• The portMatching relationship, which matches ports in the MOO

model to variable nodes in the derivation graph.
• The constraintMatching relationship, which matches component

constraints in the MOO model to variable nodes in the derivation
graph.

• The set of dependent variable nodes.

These artifacts are first analyzed to extract the set of decision
variables, a set of constraints on these decision variables and a set
of objective functions regarding these decision variables. Detailed
analysis procedures are provided in de Roo (2012). Next, code is
generated based on the extracted information. The generated code
performs the following tasks:

1 Information for certain parts of the MOO problem structure are
collected from basic control components at runtime. This infor-
mation can be the value at a certain port (valueOf(aPort)), a
value in the state of a component (valueInState(aVariable,
aComponent)), or a result of an expression in a 20-Sim model.
The MOO code weaver instruments basic control components to
facilitate access to the information.

2 Provide the MOO problem structure to an optimization algo-

rithm (function). The optimization algorithm then determines
a Pareto space or a single optimal outcome (in case there is a
trade-off function). The current implementation only supports
the Matlab function fmincon (Find minimum of constrained

2514 A. de Roo et al. / The Journal of Systems and Software 86 (2013) 2502– 2519

h

fe
Prad
(curr)

v
(curr)

TbeltTph

Prad vTbelt

BeltTPQ

Tph

v

v

Tcontact Tcontact

Rad
contr

Tcontact
Tcontact
SP

Prad

Pph

Power

Prad

Ptotal

Prod.

Prod.

v

PH
contr

Tph
Tph
SP

Pph
a b

c d g

a : Paper Heater Controller
b : Radiator Controller
c : Print Quality
d : Belt Temperature
e : Paper Path
f : System I/O
g : Power
h : Productivity

1-5: Nodes with constraints

KEY: Equation
Node

Variable
Node Derivation

Pavail

Pavail

CC1

cc1

Pph
(act)

Prad
(act)

v
(act)

Pph
(curr)

Dependent
Variable Node

1

23

4

5

Decision
Variable

n the

3

4

6

n
u
c
d
a
o
o
d

h
t
o
i
i
t
s
t

Fig. 13. Dependent nodes i

nonlinear multivariable function, 2013) as an optimization
algorithm.

 Set the decision variables in the basic control components to the
result of the optimization.

 Iterate over the above steps at a certain frequency (control loop).

.5. MOO code weaver

The MOO code weaver tool instruments the basic control compo-
ents. The optimization code generated by the MOO code generator
ses this instrumentation to collect information from the basic
ontrol components and to set the optimized values for the
ecision variables. In this work, we assume that get functions
re already available to obtain the required information. Aspect-
riented mechanisms are used to intercept calls to set functions
f the decision variables and replace the argument with the value
etermined by the optimizer.

Previously, a layered architecture (Brunato and Battiti, 2010)
as been proposed, where the implementation of the optimiza-
ion techniques are modularized at the bottom layer, providing
ptimization functionality as a service to the upper layer(s). Even
f the implementation of an optimization technique is modular-

zed, it needs to access and update several variables scattered
hroughout the embedded control software. Therefore, a layered
tructure is not sufficient for proper separation of concerns since
he necessary interactions of an optimizer crosscut the rest of the
example derivation graph.

control software. We employ specialized aspectual constructs for
modularizing such crosscutting concerns (de Roo, 2012).

7. Experimentation and evaluation

We claim that the use of the MOO framework reduces devel-
opment and maintenance effort, while being able to implement
control software realizing multi-objective optimization. We make
this claim for the following reasons.

First, our approach is automated end-to-end with a toolset. The
manual effort is limited to the specification of the input models.
Even most of these models (SIDOPS+specifications) are already
being specified by domain engineers and directly reused in our
approach.

Second, the use of the MOO architectural style makes MOO
an explicit part of the architecture models. Decision variables,
constraints, trade-offs and their dependencies are explicitly rep-
resented by ports, connectors and components of the software
architecture. As such, software architecture design directly sup-
ports the realization and maintenance of a MOO implementation.

Third, our approach supports separation of concerns in a
unique way. The control logic and application specific concerns

are implemented in a general-purpose language (GPL). The phys-
ical phenomena is defined with a DSML. Our tools automatically
compose (weave) artifacts defined in DSMLs with (into) software
modules defined in GPLs. Hence, two different types of concerns

A. de Roo et al. / The Journal of Systems a

Java
Control Software
Implementation
1, 2, 3 or 4

Matlab Simulink Simulation

sensor values actuator values

Simulink Model
Warm Process Thermodynamics

Seed (scenario) Results

a
g
c

w
c
t
I
M
i
t
c
i
c
t
u
b
a
l
i

7

S
t
p
s
s
d
A
o

c
t
i
m
a

1
2

3

Fig. 14. Simulation setup.

re separated. In addition, they are implemented with different lan-
uages that are most appropriate for expressing the corresponding
oncerns.

We were also concerned with the impact of the MOO frame-
ork on quality attributes other than maintainability. In particular,

ustom implementations of state-of-the-practice engineering solu-
ions might be considered better in terms of run-time performance.
t turns out that the control software that is generated by the

OO framework actually performs even better than the manually
mplemented system. To evaluate our framework in this respect,
his section describes an experiment based on the Warm Process
ase study. We have developed an embedded control software
mplementation using the MOO framework. This implementation is
ompared with three other state-of-the-practice engineering solu-
ions with respect to the leveraged system productivity, We have
sed a Matlab Simulink model to simulate the printer hardware
ehavior and employed different simulation scenarios involving

 limited and fluctuating amount of available power. In the fol-
owing, we first discuss the experimental setup, followed by the
mplementation and results.

.1. Experimental setup

We have developed an experimental setup based on a Matlab
imulink (MATLAB Simulink, 2012) model of the Warm Process
hermodynamics. This model has been provided by our industrial
artner, and is a realistic model of a real printer system. Fig. 14
hows the setup of this simulation. The simulation model can be
eeded with a value for the pseudo-random number generator that
etermines the amount of power available in the Simulink model.
fter the simulation, the results concerning productivity can be
btained.

Besides the Simulink model of the Warm Process, the setup
omprises one of the alternative control software implementa-
ions. The control software is implemented in Java and included
n the Matlab environment, which natively supports a Java virtual

achine. The following four control implementations are tested
nd compared11:

 MOO: An implementation created with the MOO framework.
 Intelligent Speed: The Intelligent Speed algorithm (de Roo, 2012) is
the state-of-the-practice approach, as we have learned from our
industrial partner. This algorithm works as follows. The amount
of power that is not utilized (Pmargin) is calculated. When Pmargin
it too low, speed is decreased by 20 ppm. When Pmargin is higher
than a certain boundary (200 W), then the speed is increased by
an amount that is proportional to the actual value of P .
margin

 Intelligent Speed 2: This is a variant of the Intelligent Speed
algorithm. The Intelligent Speed algorithm does not optimize
the power margin Pmargin to 0 W. Instead, it maintains a certain

11 Further details about these implementations can be found in de Roo (2012).
nd Software 86 (2013) 2502– 2519 2515

amount of margin (varying between 0 W and 200 W) to cope with
sudden drops in the amount of power available. In the exper-
iment, such a margin results in lower productivity, as not all
the available power is utilized. To make a fair comparison with
respect to the MOO implementation, which optimizes for a power
margin (Pmargin) of 0 W, we also test a second, adapted implemen-
tation of the Intelligent Speed algorithm, called Intelligent Speed
2 (de Roo, 2012). This algorithm adapts speed to optimize Pmargin
to approximately 0 W.

4 Eco Mode: The Eco Mode algorithm (de Roo, 2012) employs a strat-
egy as follows; if the amount of available power is sufficient to
print at the highest speed (120 ppm), then printing is performed
at the highest speed. Otherwise, printing is performed at lowest
possible speed (60 ppm).

The following settings and configurations are used with the
experimental setup:

• Tcontact is maintained at the setpoint determined by the Print-
Quality physical model (Eq. (1)).

• The speed of the system can vary between 60 and 120 ppm. It is
assumed that the speed can be changed instantaneously.

• The paper heater temperature (Tph) is controlled to its defined
setpoint as long as the speed and the available power permit.

• 11 scenarios are tested with fixed amount of power available.
Hereby, the amount of power available varies in fixed steps of
50 W from 700 W (minP) to 1200 W (maxP).

• 20 scenarios are tested with fluctuating power. Hereby, the
amount of power available fluctuates between an amount suf-
ficient to print at the highest speed (maxP) and an amount barely
sufficient to print at lowest speed (minP). Each scenario is created
using a pseudo-random generator which provides an even distri-
bution between minP and maxP. Experiments are performed for
the following 7 different fluctuation intervals (i.e., the interval
after which the amount of available power changes): 10 s, 25 s,
50 s, 100 s, 250 s, 500 s, and 1000 s.

• For each tested scenario, the simulation runs for 20,000 time steps
(i.e., simulated seconds).

7.2. Experiment results

This section presents the results of the experiment. The four
different implementations are compared according to the following
four criteria:

• Productivity: The average speed of the system, in pages per minute
(ppm).

• Energy consumption: The average energy consumed per printed
page, in J/page.

• Power margin: The average power margin (the difference between
the available and the consumed power), in W.

• Print Quality: The average deviation from perfect print quality, as
defined by the PrintQuality physical model.

Figs. 15–18 show the results of the experiment for each of these
four criteria. For each of the seven power fluctuation intervals the
mean value over the 20 scenarios is shown.

Fig. 15 shows the results for the criterion productivity. Here
we can see that for lower power fluctuation intervals, the MOO
implementation performs significantly better than the other three
control implementations. For the MOO, Eco Mode and Intelligent

Speed implementation, the performance is stable for the differ-
ent power fluctuation intervals. However, the Intelligent Speed
2 implementation performs better with higher power fluctua-
tion intervals, giving almost the same performance as the MOO

2516 A. de Roo et al. / The Journal of Systems and Software 86 (2013) 2502– 2519

0

20

40

60

80

100

120

10 25 50 100 250 500 1000

Av
er

ag
e

sp
ee

d
(p

pm
)

Power fluctua�on interval (s)

MOO
Eco Mode
Intelligent Speed
Intelligent Speed 2

Fig. 15. Average printing speed.

8,8

9,0

9,2

9,4

9,6

9,8

10,0

10,2

10,4

10,6

10,8

10 25 50 100 250 500 1000

Av
er

ag
e

En
er

gy
 C

on
su

m
p�

on
 (J

/p
ag

e)

Power fluctua�on interval (s)

MOO

Eco Mode

Intelligent Speed

Intelligent Speed 2

onsum

i
(

t
s

Fig. 16. Average energy c

mplementation for the highest two power fluctuation intervals
500 s and 1000 s).
Fig. 16 shows the results for the criterion energy consump-
ion. The figure shows that the MOO implementation performs
ignificantly better than the Eco Mode and Intelligent Speed

0

20

40

60

80

100

120

140

10 25 50 100

Av
er

ag
e

Po
w

er
 M

ar
gi

n
(W

)

Power fluctua�on in

Fig. 17. Average power mar
ption (lower ⇒ better).

implementation. The Intelligent Speed 2 implementation performs
better with higher power fluctuation intervals.
Fig. 17 shows the results for the criterion power margin. As
expected, the average power margin is high for the Intelligent
Speed implementation. The Eco Mode implementation also shows

250 500 1000

terval (s)

MOO

Eco Mode

Intelligent Speed

Intelligent Speed 2

gin (lower ⇒ better).

A. de Roo et al. / The Journal of Systems and Software 86 (2013) 2502– 2519 2517

0,00

0,05

0,10

0,15

0,20

0,25

0,30

10 25 50 100 250 500 1000

Av
er

ag
e

Pr
in

t Q
ua

lit
y

De
vi

a�
on

n inte

MOO

Eco Mode

Intelligent Speed

Intelligent Speed 2

om pr

a
t
fl
m
n
a

s
w
t
t

i
p
c
g
o
i

i
v
p
S
i
o

Power fluctua�o

Fig. 18. Average deviation fr

 significant average power margin. The average power margin of
he Intelligent Speed 2 implementation is lower for higher power
uctuation intervals. The MOO implementation has a low power
argin. Note that the power margin of the MOO implementation is

ot necessarily 0, because for some scenarios, there is more power
vailable than needed to print at the highest possible speed.

Fig. 18 shows the results for the criterion print quality. The figure
hows that the Eco Mode implementation performs significantly
orse than the other three implementations. The MOO implemen-

ation performs better than the other implementations, except for
he lowest power fluctuation interval.

Fig. 19 shows the average speed (i.e., productivity) of the four
mplementations for the 11 scenarios with a constant amounts of
ower available within each scenario. The figure shows that with a
onstant amount of power available, the productivity of the Intelli-
ent Speed 2 implementation is almost the same as the productivity
f the MOO implementation. The Intelligent Speed and Eco Mode
mplementation perform less.

Fig. 20 shows the average speed (i.e., productivity) of the four
mplementations for the 20 test scenarios with a fluctuation inter-
al of 1000. The figure shows that the MOO implementation
erforms consistently better than the Eco Mode and Intelligent

peed implementations. The performance of the Intelligent Speed 2
mplementation is consistently almost the same as the performance
f the MOO implementation.

40

50

60

70

80

90

100

110

120

130

140

700 750 800 850 900 950 1000

Av
er

ag
e

sp
ee

d
(p

pm
)

Power available (W

Fig. 19. Performance of the four implementations conce
rval (s)

int quality (lower ⇒ better).

7.3. Evaluation & discussion

In this subsection, we discuss experiment results and comment
on a set of issues we have observed. First of all, Figs. 15 and 19
shows that MOO implementation has the best performance con-
cerning productivity in all the tested scenarios. The difference with
the Intelligent Speed and Eco Mode implementations is consider-
able, but this is mainly due to the fact that these implementations
have large power margins. The Intelligent Speed 2 implementa-
tion approaches the performance of the MOO implementation for
larger power fluctuation intervals, as it minimizes the power mar-
gin. For smaller power fluctuation intervals, the Intelligent Speed 2
implementation is not able to perform as good as the MOO imple-
mentation.

Also on the other three criteria, energy consumption, power
margin and print quality, the MOO implementation performs
equally well or better than the other three implementations. So,
we can conclude that the MOO framework leads to systems that are
able to function at the same or a higher level than systems applying
other engineering solutions to optimize a system quality. Addition-
ally, the MOO framework provides the ability to optimize multiple
system qualities and dynamically make trade-offs between them. In

this way, solutions created with the MOO framework differs from
the other solutions, which typically optimize for a single system
quality.

1050 1100 1150 1200
)

MOO

Eco Mode

Intelligent Speed

Intelligent Speed 2

rning productivity with a constant power supply.

2518 A. de Roo et al. / The Journal of Systems and Software 86 (2013) 2502– 2519

60

65

70

75

80

85

90

95

100

105

110

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Av
er

ag
e

sp
ee

d
(p

pm
)

MOO

Eco Mode

Intelligent Speed

Intelligent Speed 2

ng pro

t
m
a
a
a
s
o
o
t
i
r
s
g
d
(

b
r
l
t
e
l

8

m
T
t
d
a
f
M
a
t
t
d

t
s
w
s
t
m

Scenario

Fig. 20. Performance of the four implementations concerni

In addition, we observed that the control software created with
he MOO framework is able to provide a precise and stable power

argin, as opposed to Intelligent Speed algorithm, which gives
n unpredictable margin between the amount of power available
nd the amount of power consumed (de Roo, 2012). We have
lso observed that the Eco Mode implementation has very instable
peed behavior: the system accelerates and decelerates continu-
usly. This behavior is undesirable from a user experience point
f view and it increases wear-and-tear of the printer system. Also,
he frequent speed changes lead to more deviation in print qual-
ty. Therefore, the Eco Mode implementation performs worst with
espect to print quality, as can be seen in Fig. 18. We have observed
mooth speed transitions for MOO, Intelligent Speed and Intelli-
ent Speed 2 implementations. Experimental results and detailed
iscussions regarding these observations can be found in de Roo
2012).

Figs. 15 and 16 suggest that there is a reverse correlation
etween productivity and energy consumed per printed page. This
everse correlation can be explained from the fact that the printer
oses an amount of energy to the environment which is unrelated
o the speed of the system. If productivity is lower, the amount of
nergy lost to the environment is attributed to less printed pages,
eading to a higher energy consumption per printed page.

. Conclusion and future work

We have presented the MOO framework, to design and docu-
ent MOO within the architecture of embedded control software.

his framework has an architectural focus, based on the MOO archi-
ectural style. A MOO architectural model that confirms to this style
efines essential elements of a MOO solution (i.e., decision vari-
bles, constraints and objective functions). The tools of the MOO
ramework can detect inconsistencies in the specification of the

OO solution. If the specification is consistent, it is used for gener-
ting the implementation of an optimizer. The tools also instrument
he implementation of the control software components, to connect
he generated optimizer to the control software components. This
elivers an implementation of MOO in embedded control software.

We have applied the approach in the context of an indus-
rial case study from the printing systems domain. Results
howed that the control software developed with the MOO frame-

ork performs at least as good as, and typically better than

tate-of-the-practice solutions to optimize productivity. In addi-
ion, the MOO framework enables dynamic trade-offs between

ultiple objectives. Above all, the adoption of the MOO style
ductivity for 20 scenarios with a fluctuating power supply.

leverages better separation of concerns, modularity and main-
tainability. The style separates the implementation of the control
logic and domain models that define physical phenomena. The
control logic and the domain models are specified in different lan-
guages and can be maintained separately. The tools of the MOO
framework automatically compose these artifacts.

Currently, the MOO architecture style captures only a static view
(structure at runtime) of the optimization process. As future work,
we are planning to extend the style with dynamic views. We also
want to extend the style to include probabilistic distributions as
constraints, as the relationships between decision variables might
not be always exactly known.

Acknowledgements

This work has been carried out as part of the OCTOPUS project
under the responsibility of the Embedded Systems Institute. This
project is partially supported by the Netherlands Ministry of Eco-
nomic Affairs under the Embedded Systems Institute program.

References

Aleti, A., Bjrnander, S., Grunske, L., Meedeniya, I., 2009. ArcheOpterix: an extend-
able tool for architecture optimization of AADL models. In: Proceedings of the
Workshop on Model-based Methodologies for Pervasive and Embedded Soft-
ware (MOMPES), pp. 61–71.

Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I., 2013. Software archi-
tecture optimization methods: a systematic literature review. IEEE Transactions
on Software Engineering, http://dx.doi.org/10.1109/TSE.2012.64.

Banker, R.D., Datar, S.M., Kemerer, C.F., Zweig, D., 1993. Software complexity and
maintenance costs. Communications of the ACM 36, 81–94.

Broenink, J., 1997. Modelling, simulation and analysis with 20-sim. Journal A 38 (3),
22–25.

Brunato, M., Battiti, R.,2010. Grapheur: a software architecture for reactive and
interactive optimization. In: Proceedings of the 4th International Conference on
Learning and Intelligent Optimization. Springer-Verlag, Berlin, Heidelberg, pp.
232–246.

Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G., 2011.
Dynamic QoS management and optimization in service-based systems. IEEE

Transactions on Software Engineering 37 (3), 387–409.
Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R., 2002. Docu-

menting Software Architectures: Views and Beyond. Addison-Wesley, Boston.
Collette, Y., Siarry, P., 2003. Multiobjective Optimization: Principles and Case Stud-

ies, 1st ed. Springer-Verlag, Berlin.
Dashofy, E.M., Hoek, A.V.d., Taylor, R.N., 2001. A highly-extensible, xml-based

architecture description language. In: WICSA ‘01: Proceedings of the Working
IEEE/IFIP Conference on Software Architecture, IEEE Computer Society, Wash-
ington, DC, USA, p. 103, http://dx.doi.org/10.1109/WICSA.2001.948416.
Dashofy, E., Asuncion, H., Hendrickson, S., Suryanarayana, G., Georgas, J., Taylor, R.,
2007. Archstudio 4: an architecture-based meta-modeling environment. In: ICSE
COMPANION ’07: Companion to the Proceedings of the 29th International Con-
ference on Software Engineering, IEEE Computer Society, Washington, DC, USA,
pp. 67–68, http://dx.doi.org/10.1109/ICSECOMPANION.2007.21.

http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0005
dx.doi.org/10.1109/TSE.2012.64
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0015
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0020
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0025
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0030
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0035
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0040
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0040
dx.doi.org/10.1109/WICSA.2001.948416
dx.doi.org/10.1109/ICSECOMPANION.2007.21

ems a

d

d

E

E

F

G

G

H

H

K

K
L

l
L

M

M

M

A. de Roo et al. / The Journal of Syst

e, A.R., Sözer, H., sit, M.A., 2009. An architectural style for optimizing system
qualities in adaptive embedded systems using multi-objective optimization. In:
Joint Working IEEE/IFIP Conference on Software Architecture, 2009 & European
Conference on Software Architecture, WICSA/ECSA 2009, Cambridge, UK, pp.
349–352.

e Roo, A. 2012. Managing software complexity of adaptive systems. Ph.D. Thesis.
University of Twente.

ckenrode, R.T., 1965. Weighting multiple criteria. Management Science 2 (3),
180–192.

hrgott, M., Gandibleux, X., 2002. Multiple Criteria Optimization: State of the Art
Annotated Bibliographic Surveys. Kluwer Academic Publishing, Norwell, Mas-
sachusetts.

ind minimum of constrained nonlinear multivariable function, 2013. http://www.
mathworks.nl/help/toolbox/optim/ug/fmincon.html (accessed 2013).

eilen, M., Basten, T., Theelen, B., Otten, R., 2007. An algebra of pareto points.
Fundamenta Informaticae 78 (1), 35–74.

nu linear programming kit, 2012. http://www.gnu.org/software/glpk/ (accessed
2012).

ofmeister, C., Nord, R., Soni, D., 2000. Applied Software Architecture, 1st ed.
Addison-Wesley Professional, Reading, Massachusetts.

wang, C., Yoon, K., 1981. Multiple Attribute Decision Making: Methods and Appli-
cations: A State-of-the-Art Survey, vol. 13. Springer-Verlag, Berlin.

eeney, R.L., Raiffa, H., 1976. Decisions with Multiple Objectives: Preferences and
Value Tradeoffs. John Wiley & Sons, Inc., New York.

leijn, C., 2009. 20-Sim 4.1 Reference Manual.
i, R., Etemaadi, R., Emmerich, M.M., Chaudron, M.V., 2011. An evolu-

tionary multiobjective optimization approach to component-based soft-
ware architecture design. In: IEEE Congress on Evolutionary Computation,
pp. 432–439.

p solve, 2012. http://lpsolve.sourceforge.net/ (accessed 2012).
ui, G., Yang, J., Whidborne, J., 2002. Multiobjective Optimisation and Control.

Research Studies Press, Baldock, Hertfordshire, England.
aier, M.W., Emery, D., Hilliard, R., 2001. Software architecture: introducing IEEE
standard 1471. IEEE Computer 34 (4), 107–109.
arler, R., Arora, J., 2004. Survey of multi-objective optimization methods for engi-

neering. Structural and Multidisciplinary Optimization 26, 369–395.
ATLAB Simulink, 2012. http://www.mathworks.com/products/simulink/

(accessed 2012).
nd Software 86 (2013) 2502– 2519 2519

Meedeniya, I., Buhnova, B., Aleti, A., Grunske, L.,2010. Architecture-driven reliability
and energy optimization for complex embedded systems. In: Proceedings of the
6th International Conference on Quality of Software Architectures. Springer-
Verlag, Berlin, Heidelberg, pp. p52–67.

Octopus project, 2012. ESI. http://www.esi.nl/projects/octopus
Pareto, V., 1896. Cours D’Économie Politique. F. Rouge, Lausanne, Switzerland.
Shaw, M., Garlan, D., 1996. Software Architecture: Perspectives on an Emerging

Discipline. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
Sozer, H., Tekinerdogan, B., Aksit, M., 2011. Optimizing decomposition of software

architecture for local recovery. Software Quality Journal, 1–38.
Yoon, K., Hwang, C., 1995. Multiple Attribute Decision Making: An Introduction.

Sage Publications, Thousand Oaks, California.

Arjan de Roo received his MSc degree in computer science from the University of
Twente in the Netherlands in 2007. He received his PhD degree in 2012 from the
same University. Currently, he is an independent entrepreneur.

Hasan Sözer received his BSc and MSc degrees in computer engineering from Bilkent
University, Turkey, in 2002 and 2004, respectively. He received his PhD degree in
2009 from the University of Twente, The Netherlands. From 2002 until 2005, he
worked as a software engineer at Aselsan Inc. in Turkey. From 2009 until 2011, he
worked as a post-doctoral researcher at the University of Twente. He is currently an
assistant professor at Özyeğin University.

Lodewijk Bergmans is a part-time Assistant Professor at the Computer Science
Department of the University of Twente in The Netherlands. He holds an MSc and
PhD degree from the same institute. He has ample industrial experience in object-
oriented software engineering, most notably on analysis and design, and software
architecture of embedded systems. Lodewijk’s long-term research goal is to achieve
a deeper understanding of software composition. In addition, Lodewijk works at the
Software Improvement Group, where he helps organisations making sound IT deci-
sions, through a fact-based and metrics-based analysis of their software systems
and development processes.
Mehmet Akş it holds an MSc degree from the Eindhoven University of Tech-
nology and a PhD degree from the University of Twente. Currently, he is
working as a full professor at the Department of Computer Science, University
of Twente and affiliated with the institute Centre for Telematics and Information
Technology.

http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0055
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0065
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0070
http://www.mathworks.nl/help/toolbox/optim/ug/fmincon.html
http://www.mathworks.nl/help/toolbox/optim/ug/fmincon.html
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0080
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0080
http://www.gnu.org/software/glpk/
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0090
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0095
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0100
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0110
http://lpsolve.sourceforge.net/
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0120
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0125
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0130
http://www.mathworks.com/products/simulink/
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0140
http://www.esi.nl/projects/octopus
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0150
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0155
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0160
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0165
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0165
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0165
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0165
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0165
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0165
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0165
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0165
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0165
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0165
http://refhub.elsevier.com/S0164-1212(13)00089-7/SBREF0165

	MOO: An architectural framework for runtime optimization of multiple system objectives in embedded control software
	1 Introduction
	2 Background: multi-objective optimization (MOO)
	3 Industrial case study and problem statement
	3.1 The context
	3.2 Case study: Warm Process
	3.2.1 Analysis of optimization in the Warm Process case study

	3.3 Problem statement
	3.3.1 Related work

	4 Overview of the MOO framework
	5 MOO architectural style
	5.1 Style description
	5.2 Specifying a MOO solution
	5.2.1 Ports providing decision variables and objective functions
	5.2.2 Constraints
	5.2.3 20-Sim reference/analyzable component

	6 MOO toolchain
	6.1 MOO Model Editor
	6.2 Deriving a mathematical representation
	6.3 MOO Consistency Validator
	6.3.1 Overall consistency analysis
	6.3.2 Detecting which components need a SIDOPS+ specification

	6.4 MOO code generator
	6.5 MOO code weaver

	7 Experimentation and evaluation
	7.1 Experimental setup
	7.2 Experiment results
	7.3 Evaluation & discussion

	8 Conclusion and future work
	Acknowledgements
	References

