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The increasing complexity and cost of software-intensive systems has led developers to seek ways
of reusing software components across development projects. One approach to increasing software
reusability is to develop a software product-line (SPL), which is a software architecture that can be
reconfigured and reused across projects. Rather than developing software from scratch for a new project,
a new configuration of the SPL is produced. It is hard, however, to find a configuration of an SPL that
meets an arbitrary requirement set and does not violate any configuration constraints in the SPL.

Existing research has focused on techniques that produce a configuration of an SPL in a single step.
Budgetary constraints or other restrictions, however, may require multi-step configuration processes.
For example, an aircraft manufacturer may want to produce a series of configurations of a plane over a
span of years without exceeding a yearly budget to add features.

This paper provides three contributions to the study of multi-step configuration for SPLs. First, we

present a formal model of multi-step SPL configuration and map this model to constraint satisfaction
problems (CSPs). Second, we show how solutions to these SPL configuration problems can be automati-
cally derived with a constraint solver by mapping them to CSPs. Moreover, we show how feature model
changes can be mapped to our approach in a multi-step scenario by using feature model drift. Third, we
present empirical results demonstrating that our CSP-based reasoning technique can scale to SPL models
with hundreds of features and multiple configuration steps.
. Introduction

The development and sustainment of software constitutes a
arge – and growing – expense in modern information and embed-
ed systems, such as avionics, mobile devices, cloud computing
nvironments, and medical equipment (Boehm, 1975). The abil-
ty to reuse software across multiple development projects is one

eans to amortize the cost of software development and sustain-
ent. Reusable software artifacts include design models, source

ode, test plans, and component architectures.
Reuse of software components is a common task in the mass cus-

omization of software products (Pohl et al., 2005). Mass customiza-

ion refers to the adaptation of a software product to a variety of
ifferent users by varying the features in the software in order to
atisfy their needs. Capturing customization opportunities, known
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as variability points, is an important activity that enables developers
to catalog the valid ways in which software artifacts can be reused.
In addition to describing how software artifacts can be reused,
it is essential to document the assumptions an artifact makes
about its environment, as well as any constraints that preclude its
reuse.

Software product-lines (SPLs) (Clements et al., 2001) are a
paradigm for managing the complexity of tracking and creating
reusable software artifacts, as well as describing their points of vari-
ability, and ensuring they are reused appropriately. A key part of
an SPL is scope, commonality, and variability (SCV) analysis. The
scope defines the collection of software artifacts that constitute the
SPL. The commonality defines the attributes that are common across
different sets of artifacts. The variability describes the differences
that exist across the artifacts, such as various implementations and
algorithms for different environments and/or requirements.

SPLs use models to codify the results of SCV analysis (Coplien
et al., 1998). A feature model (Kang et al., 1998) is used to capture

commonality and variability information existing in an SPL. A
feature model describes points of commonality and variability in
terms of features. Each feature represents a unit or increment in
SPL functionality, ranging from high-level end-user capabilities
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such as the presence of an entertainment system on an aircraft)
o implementation details (Metzger et al., 2007) (such as the usage
f a specific software library).

A common format for a feature model is a tree that describes suc-
essive refinements of the variability in a product-line. For example,
ig. 1 depicts the feature model of a flight avionics system that
ontains configuration options for its sensors and flight avionics
avigation capabilities.

The plane can contain different types of advanced navigation
ystems, such as Inertial Navigation or GPS.

Each individual advanced navigation avionics system that the
ircraft can be customized with requires a different set of sensors
nd software, e.g., the Laser Gyro software requires Laser Gyro
ardware. These types of configuration rules are encoded into the
ierarchical relationships in the tree. For example, the filled circle
bove Inertial Nav. denotes that it is a required child feature of
he Adv. Nav. Avionics feature.

An example of where software reuse can play a role is in
oftware evolution, which is a key task in software engineering.
oftware evolution is the process of determining how existing
oftware can be adapted to support new customer requirements.
enhman et al. (Lehman, 1996), for example, have explored how
oftware reuse can be employed in software evolution. In particu-
ar, their work showed that there is often a set of evolution rules
hat must be adhered to during the evolution process. In software
roduct-lines, software functionality is usually encapsulated in
omponents, enabling the reuse of code between different versions
f the software through these components. Because these software
omponents cannot be arbitrarily composed, rules are needed to
pecify how features can be composed across multiple steps.

To reuse software in a new context, developers use the feature
odel to determine how the SPL can be customized into a new

onfiguration. A configuration is a complete and unique set of the
PL’s software artifacts. In a feature model, a configuration is man-
fested as a selection of features that adheres to the configuration
onstraints captured in the feature relationships.

A core aspect of reusing software artifacts from an SPL is deter-
ining a complete and correct configuration of the SPL that satisfies

he target requirement set. For simple feature models, such as the
ne shown in Fig. 1, developers can manually derive a selection of
eatures for a configuration. For more complex feature models – or

n situations where cost optimization or resource constraints are
nvolved – automated mechanisms are needed.

Prior research has developed a variety of automated techniques
or deriving SPL configurations to fit a requirement set. For example,

Fig. 1. A configuration problem
some techniques model the feature selection problem as a con-
straint satisfaction problem (which is a set of variables and a set
of constraints over the variables) and use a general-purpose con-
straint solver (which is an automated tool for finding solutions to
these problems) to derive a suitable configuration (Benavides et al.,
2013; White et al., 2007). Other research has modeled feature selec-
tion problems as boolean satisfiability (SAT) problems or grammars
and used SAT solvers to derive configurations (Mannion, 2002;
Batory, 2005; Beuche, 2004; Buhrdorf et al., 2004) or Binary Deci-
sion Diagrams (BDDs) (Czarnecki and Wasowski, 2007). This prior
research have been focused on problems dealing with one configu-
ration with a set of constraints while not considering multiple-steps
derivation problems.

1.1. Open problems

When software evolves, its evolution may need to be broken
into multiple steps to satisfy evolution constraints (Abran et al.,
2001). In some cases, product features must be introduced grad-
ually over a series of steps. For example, the Boeing 737 aircraft,
introduced in 1966, has been continually upgraded and adapted
over time and is still currently in service. Each successive configu-
ration of the 737, which is called a Variant has been developed over
multiple years and incorporated new features into the base aircraft
configuration (Shaw, 1999). For example, development of the 737-
300 configuration of the aircraft started in 1979 and first flew in
1984. The configuration added a variety of features, such as an Elec-
tronic Flight Instrumentation System. The 737 has had numerous
successive configurations, such as the 737-400, 737-500, 737-600,
737-700, 737-800, and 737-900, all planned and developed over
significant spans of time.

There are a number of scenarios where the evolution of a set
of products may be performed over several predefined steps. For
example, when a new Linux distribution such as an Ubuntu release
is planned, developers have to decide the set of software artifacts
that are going to be added and removed in the next release of
the distribution (e.g. add and remove packages and change the
dependencies between them). Moreover, in other domains, such
as aircraft construction, nuclear power plants, etc., configurations
and upgrades to product configurations are planned years in
advance (e.g., the configurations of the 737 have spanned 46 years)

and must be analyzed years in advance of their actual production.
Ideally, an aircraft manufacturer would like to derive a sequence
of successive configurations that build upon one another, as the
737 variants do, so that more advanced features are included each

requiring multiple steps.
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Fig. 2. Potentia

ear. A manufacturer, however, cannot arbitrarily choose features
o add in a given year. Instead, each set of features for a year must
onstitute a complete and correct configuration of the SPL to avoid
elling a defective and non-viable configuration.

Further complicating this scenario is that a manufacturer is con-
trained in its introduction of features. For example, a manufacturer
ust introduce features in an order that ensures no two successive

onfigurations will not differ by more than the price that a customer
s willing to pay from one year to the next (e.g., airline development
r acquisition budget). Therefore, not only should every configura-
ion step should satisfy a set of constraints, but the delta between
ny two successive configurations must be also acceptable.

Finally, when the product life spans years, such as the case of the
6 year history of the 737, the availability and capabilities of the
rocessors, software, sensors, and other constituent components
f the product inevitably change. Not only must manufacturers be
ble to plan and reason about configuration over multiple steps but
ave plans that account for the end-of-life of components and the
ignificant increases in capabilities of newer components, which
roduce changes in the underlying feature model. For example, the
rocessing power and availability of the processors used in the 737
ave changed dramatically from 1966 to 2012. In some cases, the

eature model may be specialized (e.g., adapted so that its valid
onfigurations at later steps are subsets of the starting set of valid
onfigurations). In other cases, new features may be added to the
eature model so that it is evolved to allow configurations that were
ot initially possible or valid. Thus, when the configuration prob-

em should be reasoned in multiple steps, manufacturers must deal
ith two distinct forms of change: (1) changes to configuration

nd (2) changes to the underlying feature model that dictate what
onfigurations are valid.

This process of producing a series of intermediate configurations
etween a starting configuration and a desired ending configura-
ion – i.e., a configuration path – is shown in Fig. 2. In Fig. 2, the
elected features are colored in grey and the red features represent
eature selections that violate a software evolution constraint.

This sequence of activities is called a multi-step configuration
roblem. Prior work on automated configuration (Mannion, 2002;
atory, 2005; Beuche, 2004; Buhrdorf et al., 2004) focuses on select-

ng a single configuration in a single step and not determining a
onfiguration path. As a result, developers must manually derive
configuration path through feature models with hundreds or
housands of features and complex constraints on how successive
onfigurations can differ.

Manually deriving configuration paths for a product-line is hard
ecause developers must analyze a myriad of tradeoffs related to
guration paths.

the order that the features are selected. For example, developers
may temporarily add a feature that is not in the desired ending
configuration to yield a valid variant at a particular step. Moreover,
the costs of introducing features may vary over different steps mak-
ing it hard to identify exactly the right step to introduce a feature.
For example, the cost of adding an entertainment system in an air-
craft may vary from one year to the next one because of variations
in display prices, fluctuations in currency value, or changes in tax
rates.

1.2. Solution overview and contributions

We have developed an automated method for deriving a set of
configurations that meet a series of requirements over a span of
configuration steps. We call our technique the MUlti-step Software
Configuration probLEm Solver (MUSCLES). MUSCLES transforms
multi-step feature configuration problems into Constraint Satisfac-
tion Problems (CSPs) (Van Hentenryck, 1989). Once a CSP has been
produced for the problem, MUSCLES uses a constraint solver to gen-
erate a series of configurations that meet the multi-step constraints.
MUSCLES can return either all valid paths or a single optimized path
from the initial configuration to the final one and the SPL engineer
can decide which evolution path best fits the project’s goals.

This paper extends our prior work on automated multi-step con-
figuration of software product-lines (White et al., 2009). The paper
presents a new approach for handling feature model drift, which
represent the problem of introducing one or more changes in a
feature model’s constraints that occur over time. As pointed out
earlier, when configuration is performed in multiple steps, there
are two types of changes that must be considered: (1) configura-
tion changes and (2) feature model changes, which we term feature
model drift. This paper adds new techniques for handling the sec-
ond form of change, feature model drift, which was not addressed
in our prior work. We present a formal mapping of feature model
drift to a CSP so that multi-step configuration problems involving
non-constant product-lines can be automated. We also show how
ordering and branching constraints can be applied to models of
feature model drift.

The paper provides the following contributions to the study of
feature model configuration over a span of multiple steps:

1. We provide a formal model of multi-step configuration.

2. We show how the formal model of multi-step configuration can

be mapped to a CSP.
3. We show how multi-step requirements, such as limits on the

cost of feature changes between two successive configurations,
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can be specified using our CSP formulation of multi-step config-
uration.

. We present methods for modeling feature model drift as feature
model changes over time.

. We describe mechanisms for optimally deriving a set of config-
urations that meet requirements and minimize or maximize a
property (such as total configuration cost) of the configurations
or configuration process.

. We show how multi-step optimizations can be performed, such
as deriving the series of configurations that meet a set of end-
goals in the fewest time steps.

.3. Paper organization

The remainder of the paper is organized as follows: Section 2
ummarizes the challenges of performing automated configura-
ion reasoning over a sequence of steps; Section 3 describes a
ormal model of multi-step configuration; Section 4 explains MUS-
LES’s CSP-based automated multi-step configuration reasoning
pproach; Section 5 describes how feature model drift can be
odeled as a CSP;
Section 6 analyzes empirical results from experiments that eval-

ate the scalability of MUSCLES; Section 7 compares MUSCLES with
elated work; and Section 8 presents concluding remarks.

. Multi-step SPL configuration challenges

A multi-step configuration problem for an SPL involves tran-
itioning from a starting configuration through a series of
ntermediate configurations to a configuration that meets a desired
et of end state requirements. The solution space for producing

series of successive intermediate configurations to reach the
esired end state can be represented as a directed graph, as shown

n Fig. 3.
Each successive series of points represents potential config-

rations of the feature model at a given step. For example, the
onfigurations B0 . . . Bi represent the intermediate configurations
hat can be reached in one step from the starting configuration.
his section uses the graph formulation of the problem’s solution
pace to showcase the challenges of finding valid solutions.

.1. Challenge 1: graph complexity

Developers attempting to derive solutions to multi-step con-

guration problems manually or via a graph algorithm face an
xponential number of potential intermediate configurations and
aths that could be used to reach the desired end state. In the
orst case, at any given intermediate step, there can be O(2n)

Fig. 3. Multi-step confi
points (where n is the number of features in the feature model)
and thus 2n potential subsets of the features in the feature model
that could form a configuration. Moreover, for a multi-step con-
figuration problem over K time steps, there are O(K2n) possible
intermediate points.

Further compounding this problem is that for any intermediate
configuration at step T, there are 2n − 1 points at step T + 1 in the
worst case that could be reached from it by adding or removing fea-
tures to its feature selection. The intermediate configurations that
do not precede the end point will therefore have 2n − 1 outgoing
edges. Section 4 discusses how MUSCLES uses CSP-based automa-
tion to eliminate the need for developers to find solutions to these
multi-step configuration problems manually, thereby minimizing
configuration time and effort.

2.2. Challenge 2: point configuration constraints

To reason about configuration over multiple steps, developers
must ensure that at each step the configuration is in a valid state,
i.e., the feature selection of the configuration should not violate
the rules in the feature model. To plan the long-term configuration
strategy, therefore, developers must devise a series of valid config-
urations that incrementally build upon one another while moving
towards a desired end goal.

Fig. 1 shows an example configuration problem with time for an
aircraft with no advanced navigation capabilities. In three years, the
manufacturer would like to add the advanced navigation capabili-
ties to the standard aircraft. The manufacturer’s cost (in millions) to
add each feature to the aircraft configuration is shown in the Cost
to Add Features table in Fig. 1. The manufacturer has budgeted at
most 35 million dollars per year to add features to the aircraft. The
manufacturer would like to know what features to add each year to
reach the three year goal without exceeding the budget or creating
an invalid configuration in any year.

Although there are many potential intermediate configurations
that could be used to reach the desired aircraft configuration, most
configurations will not meet developer requirements. For example,
many of the K2n arbitrary subsets of feature selections represent
configurations that do not adhere to the feature model constraints.
Moreover, other external constraints (such as safety constraints
requiring a specific feature to be selected at all times) may not
be met. These point configuration constraints limit the allowed
configurations at a given step. The example in Fig. 1 has multi-
ple configuration paths that could be used to reach the end goal,

although few of them are correct.

Point configuration constraints eliminate many potential con-
figuration paths. These constraints may create small additional
restrictions, such as that a particular feature must always be

guration graphs.
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elected. Complex step-based constraints may also be present,
uch as a particular aircraft feature must be selected by a spe-
ific step so that manufacturer will be the first to market with that
apability.

In addition, a multi-step configuration problem should not dic-
ate an exact starting and ending configuration, but merely a series
f point configuration constraints that must hold for the start and
nd points of the configuration path. The myriad of possible point
onfiguration constraints significantly increases the challenge of
nding a valid configuration path for a multi-step configuration
roblem. Section 4.4 describes how MUSCLES models these con-
traints using a CSP, which enables a CSP solver to derive solutions
utomatically that adhere to these constraints, thereby avoiding
edious and error-prone manual configuration.

.3. Challenge 3: configuration change/edge constraints

The aircraft example in Fig. 1 requires that developers adding
ew features spend no more than 35 million dollars in one year.
he cost of selecting/deselecting features can be captured as the
ength or weight of the edges connecting two transitions. For
xample, to transition directly from the starting configuration
o the desired end configuration requires 88 million dollars and
as an edge weight of 88. We term these constraints on the
election/deselection of features from one step to the next, edge
onstraints.

Developers must not only find a path that reaches the desired
nd state without violating the point configuration constraints in
ection 2.2, but also ensure that any constraints on the edges con-
ecting successive configurations are met. Transitioning directly

rom the start configuration to end configuration would violate
he edge constraint of the 35 million dollar yearly development
udget. Edge constraints further reduce the number of valid paths
nd add complexity to the problem. Section 4.7 shows how these
dge restrictions can be encoded as constraints on MUSCLES’s CSP
ariables to plan configuration paths that adhere to development
udgets, which is hard to determine manually.

.4. Challenge 4: configuration path optimization

There may often be multiple correct configuration paths that
each the desired end point. In these cases, developers would like
o optimize the path chosen, e.g., to minimize total cost (the sum of
he edge weights). In other cases, it may be more imperative to meet
he desired end point constraints in as few time steps as possible,
.g., in Fig. 3 developers have an initial development budget of 35
illion dollars and then a subsequent yearly budget of 50 million

ollars.
Although the cost of the path through intermediate configura-

ions Bi and Ci is cheaper (70 million), developers may prefer to pass
hrough B0 and C0 since they will already have a configuration that

eets the end goals at C0. Developers must therefore not only con-
end with numerous multi-step constraints, but must also perform
omplex optimizations on the properties of the configuration path.
ection 4.10 shows how optimization can be performed on MUS-
LES’s CSP formulation of multi-step configuration so developers
an find the fastest and most cost-effective means of achieving a
onfiguration goal.

.5. Challenge 5: feature model drift

Over time, a feature model will invariably need readjusting to

ccount for changing external conditions (such as newly released
oftware features from vendors, deprecated APIs, or newly dis-
overed bugs), which we call feature model drift. In the simplest
ase, new features are added to the feature model. In more
challenging scenarios, it may be necessary to remove features from
the feature model or add new constraints between features to the
model.

For example, the vendor that provides the software for the
Laser Gyro feature, shown in Fig. 1, may be bought by a com-
petitor that intends to discontinue selling the existing software
component in two years. In place of the existing component, a
newer component will be offered that is much more expensive and
uses a different and more precise algorithm. In two years when
the existing software controller is discontinued, developers must
update the feature model to include the new laser gyro type and add
a requires constraint from the new laser gyro to the laser gyro hard-
ware. As shown in this example, feature model drift substantially
complicates the process of finding a sequence of configurations that
will both meet the requirements of each configuration checkpoint
and the end configuration goal. Section 5.1 shows how MUSCLES’s
CSP representation of multi-step configuration can be modified to
account for feature model drift.

3. A formal definition of multi-step configuration

This section presents a formal model of the multi-step config-
uration approach used by MUSCLES to derive valid configuration
paths of SPLs. This paper also presents the techniques for model-
ing multi-step configuration problems as CSPs. These techniques
give modeling tool developers the theoretical underpinnings to
develop tools that can reason about configuration over multi-
ple steps. We have developed domain-specific graphical modeling
tools for our industry partners, using the Generic Eclipse Mod-
eling System (http://eclipse.org/gmt/gems), for describing these
problems and each of the various constraint types outlined in this
paper and automating the transformation to CSP. For example, in
past work with Boeing, Siemens, and others, we have developed
modeling tools on top of these types of algorithmic approaches
for the aeronautics, automotive, and mobile computing domains
(Gill et al., 2004; Madl et al., 2006; Deng et al., 2008; Dougherty
et al., 2011; White et al., 2008b,b, 2007; Nechypurenko et al.,
2007). However, the process of building domain-specific languages
and tooling on top of MUSCLE is beyond the scope of this paper
and this paper focuses on the CSP modeling and solving process
for these multi-step problems. SPL modeling experts can build
modeling tools that use model to model transformation to cre-
ate MUSCLES CSPs, solve for optimized configuration paths, and
present the results to the user, very similar to our work in White
et al. (2008b).

This approach assumes that developers have advance knowl-
edge of the feature model changes that will occur. In some cases,
unforeseen changes may arise that impact the configuration paths
that were previously derived with MUSCLES. Unforeseen changes
are always a challenge in software development. A key attribute of
MUSCLES is that it can help developers to quickly analyze a num-
ber of different configuration paths to understand the impact of an
unforeseen change that has arisen. MUSCLES does not guarantee
that the configuration paths may not change due to unforeseen cir-
cumstances, but it does help engineers to reason about how those
changes may impact future configuration decisions and aid them
in understanding corrective remedies.

In its most general form, multi-step configuration involves find-
ing a sequence of at most K configurations that satisfy a series of
point configuration constraints and edge constraints. This defini-
tion requires the start and end configurations meet a set of point

constraints, but does not dictate that a single valid starting and end-
ing configuration exist. All derived configurations at each step must
be complete and valid feature model configurations – no partial
configurations are allowed.

http://eclipse.org/gmt/gems
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.1. General formal model

We define a multi-step configuration problem using the 6-tuple
sc = 〈E, PC, �(FT, FU), K, FStart, Fend〉, where:

E is the set of edge constraints, such as the maximum develop-
ment cost per year for features,
PC is the set of point configuration constraints that must be met
at each step, such as the feature model rules that developers may
require to be adhered to across all steps (the point configuration
constraints do not have to be identical across all steps. For exam-
ple, if feature A is active in the step K is not required to explicitly
set it to true in the step K + 1),
�(FT, FU) is a function that calculates the change cost or edge
weight of moving from a configuration FT at step T to a configu-
ration FU at step U,
K is the maximum number of steps in the configuration problem,
FStart is a set of configuration constraints on the starting configura-
tion. Those constraints can be a list of features that must initially
be selected. For example, the basic security required when build-
ing an aircraft.
Fend is a set of configuration constraints on the final configuration
to be reached at the end of the configuration steps. Those con-
straints can be composed by the features that must be selected
or maximum cost of the final configuration. For example, the
maximum cost for the entertainment system on an aircraft.

We define a configuration path from step T over K steps as a
-tuple

= 〈FT , FT+1, . . ., FT+K−1〉,
here the configuration at step T is denoted by FT. Each configura-

ion, FT, denotes the set of selected features at step T.
Section 4 shows how this formal model can be specified as a

SP. Although we use CSPs for reasoning on the formal model, we
ould also use SAT solvers, propositional logic, or other techniques
o reason about this model. The formal model is thus applicable
o a wide range of reasoning approaches that support the required
onstraints. Not all techniques may have sufficient expressiveness,
articularly to encode optimization-related goals, such as path

ength optimizations.

.2. Constraint and optimization functions

We now describe how the formal model presented above can
e used to model typical SPL configuration constraints. We show
ow common configuration needs, such as the selection of specific

eatures or budgetary constraints, can be mapped to portions of our
ulti-step configuration problem tuple.

.3. Edge constraints

We define an edge constraint as a bound on the feature state
selected or deselected) of features over time. An edge constraint,
i ∈ E, is defined as:

(FT , FT+k)

where � is a constraint defined over a set of features at steps
and T + k > T. The set of edge constraints E can include numerous

ypes of constraints on the transition from one configuration to
nother. A constraint e1 ∈ E may dictate that the maximum weight

f any edge between successive configurations in FT, FT+1 ∈ P have
t most weight 35 (for the avionics problem from Fig. 1):

T ∈ (0, . . ., K − 1), �(FT , FT+1) ≤ 35
In this case, � = �(FT, FT+1) ≤ 35. Edge constraints may also vary
depending on the step, for example a development budget may
start at $35 million and may expand as a function of the step:

∀T ∈ (0, . . ., K − 1), �(FT , FT+1) ≤ 35
1 − (.01 × T)

Edge constraints may also be attached to specific time steps:

∀T ∈ (0, . . ., 4, 6, . . ., K − 1), �(FT , FT+1) ≤ 35
1 − (.01 × T)

�(F5, F6) ≤ 40

3.4. Point configuration constraints

The point configuration constraints specify properties that must
hold for the set of selected features at a given step. A point con-
figuration constraint is defined as a set of feature selection states,
Fr, for step T, FT = Fr. Both the starting and ending points for the
multi-step configuration problem are defined as point configura-
tion constraints on the first and last steps. For example, we want to
start at a specific configuration Fstart and reach another configura-
tion Fend:

(F0 = Fstart) ∧ (FK = Fend)

Another general constraint pc1 ∈ PC could require that for any
step T, the feature selection FT satisfies the feature model con-
straints Fc:

∀T ∈ (0, . . ., K − 1), FT ⇒ Fc

Developers could also require that a specific set of features Fstart,
such as safety critical braking features, be selected at all times:

∀T ∈ (0, . . ., K − 1), Fstart ⊂ FT

3.5. Change calculation functions

A change function, defined as �(FT, FT+K), where K > 0, calculates
the cost of changing from one configuration to another config-
uration at a different step. For example, the following change
calculation function computes the cost of changing from one con-
figuration to another:

Fadded = FT+K − FT

�(FT , FT+K ) =
∑

fi × ci, fi ∈ Fadded

where fi is the ith selected feature and ci is the price of selecting
that feature.

4. A CSP model of multi-step configuration

This section describes how MUSCLES uses CSPs to derive
solutions to multi-step configuration problems automatically. To
address the challenges outlined in Section 2 we show how deriv-
ing a configuration path for a multi-step configuration problem
can be modeled as a CSP (Van Hentenryck, 1989) using the formal
framework from Section 3. After a CSP formulation of a multi-step
configuration problem is created, MUSCLES can use a CSP solver to
derive a valid configuration path automatically, which addresses
Challenge 1 in Section 2.1. Moreover, the CSP solver can be used to
perform optimizations that would be hard to achieve manually.

Prior work on automated feature model configuration

(Benavides et al., 2005; White et al., 2007, 2008a) has yielded
a framework for representing feature models and configuration
problems as CSPs. This section shows how a new formulation of
feature models and configuration problems can be developed to (1)
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ncorporate multiple steps; (2) allow a constraint solver to derive
configuration path for evolving a feature selection over multiple

ntermediate steps to meet an end goal; (3) permit the speci-
cation of intermediate configuration constraints; (4) allow for
hange/edge constraints, which govern the selection/deselection of
eature over time; and (5) optimize configuration path properties,
uch as path length or cost.

.1. CSP automated configuration background

A CSP is a set of variables and a set of constraints over the vari-
bles. For example, (X − Y > 0) ∧ (X < 10) is a simple CSP involving
he integer variables X and Y. A constraint solver is an automated
ool that takes a CSP as input and produces a labeling (which is a
et of values) for the variables that simultaneously satisfies all the
onstraints. The solver can also be used to find a labeling of the
ariables that maximizes or minimizes a function of the variables
.g., maximize X + Y yields X = 9, Y = 8.

A feature model can be modeled as a CSP through a series of
nteger variables F, where the variable fi ∈ F corresponds to the ith
eature in the feature model. A configuration is defined as a series of
alues for these variables such that fi = 1 implies that the ith feature
s selected in the configuration. If the ith feature is not selected,
i = 0. Configuration rules from the feature model are represented
s constraints over the variables in F. More information on creating
CSP from a feature model are described in White et al. (2007),

enavides et al. (2005).

.2. Introducing multiple steps into the CSP

The goal of automated configuration over multiple-steps is to
nd a configuration path that permutes a given starting configu-
ation through a sequence of intermediate configurations to reach
desired end state. For example, the configuration paths in Fig. 2

apture sequential modifications to the aircraft based configura-
ion (shown in Fig. 1) that will incorporate high-end features into
he base model. To reason about a configuration path over a span
f steps, we first introduce a notion of a configuration step into
USCLES’s CSP model of configuration.

.3. CSP model of configuration steps

To introduce configuration steps into MUSCLES’s configuration
SP, we modify the configuration CSP formulation outlined in Sec-
ion 4.1. We no longer use a variable fi to refer to whether or not
he ith feature is selected or deselected. Instead, we refer to the
election state of each feature at a specific step T with the vari-
ble fiT, i.e., if the ith feature is selected at step T, fiT = 1. We refer
o an entire configuration at a specific step as a set of values for
hese variables, fiT ∈ FT. A solution to the CSP is configuration path
efined by a labeling of all of the variables in the K-tuple: 〈FT, FT+1,
. ., FT+K−1〉. All paths are of the same length, except that some paths
ay arrive at the desired configuration earlier than other paths.
For example, if the ABS feature (denoted fa) is not selected at

tep T and is selected at step T + 1, then:

aT = 0faT+1 = 1

ig. 4 shows a visualization of how the fiT ∈ FT variables map to
eature selections.

.4. CSP point configuration constraints
To address Challenge 2 from Section 2.2, the point configuration
onstraints (which are the constraints that define what constitutes
valid intermediate configuration) can be modeled as constraints
Fig. 4. Representing feature selection state at specific steps.

on the variables fiT ∈ FT. Each point configuration constraint has a
specific set of steps, Tpc, during which it must be met, i.e., the con-
straint must only evaluate to true on the precise steps for which
it is in effect. A simple constraint would be that the 2nd and 3rd
configurations must have the feature f1 selected. The set of steps
for which this constraint must hold would be Tpc = {2, 3}.

4.5. CSP model of point configuration constraints

A CSP point configuration constraint, pci ∈ PC, requires that:

∀T ∈ Tpc, FT ⇒ pci

Arbitrary point configuration constraints can be built using this
model to restrict the valid configurations that are passed through
by the configuration path. This flexible point configuration con-
straint mechanism allows developers to specify and automatically
find solutions to problems involving the constraints from Challenge
2 in Section 2.2.

4.6. CSP point configuration constraints

Assume that we want to find values for FT, . . ., FT+K such that
we never violate any of the feature model constraints at any step.
Further assume that the constraints in the feature model remain
static over the K steps (feature model changes over multiple steps
can also be modeled). If the jth feature is a mandatory child of the
ith feature, we add the constraint:

∀T ∈ (0, . . ., K), (fiT = 1) ⇔ (FjT = 1)

That is, we require that at any step T, if the ith feature (FiT) is
selected, the jth feature (fjT) is also selected. Moreover, at any step T,
if the jth feature (FjT) is selected, the ith feature (fiT) is also selected.
Other example point configuration constraints can be mapped to
the CSP as shown in Fig. 5(a) and (b).

4.7. CSP edge/change constraints

Challenge 3 from Section 2.3 described how developers must
be able to specify and adhere to constraints on the difference
between two configurations at different steps. These change/edge
constraints can be modeled in the CSP as constraints over the
variables in two configurations FT and FU. By extending the CSP

techniques we developed in past work (White et al., 2008a), we
can specifically capture which features are selected or deselected
between any two steps and constrain these changes via budget or
other restrictions. Note that this slightly differs from the feature
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odel drift because there is no modification of any relationship
e.g., mandatory to optional).

.8. CSP model of edge/change constraints

To capture differences between feature selections between
teps T and U, we create two new sets of variables STU and DTU.
hese variables have the following constraints applied to them:

∀siTU ∈ STU, (siTU = 1) ⇔ (fiT = 0) ∧ (fiU = 1)

∀diTU ∈ DTU, (diTU = 1) ⇔ (fiT = 1) ∧ (fiU = 0)

f a feature is selected at time step T and not at time step U, then
iTU is equal to 1. Similarly, if a feature is not selected at step T and
elected at step U, siTU is equal to 1.

An edge edge(T, U) between the configurations at steps T and U
s defined as a 2-tuple:

dge(T, U) = 〈DTU, STU 〉
n edge is thus defined by the features deselected and selected

o reach configuration FU from configuration FT. The weight of the
dge weight(edge(T, U)) can then be calculated as a function of the
dge tuple. If the ith feature costs ci to select or deselect then

eight(edge(T, U)) =
n∑

i=0

siTU × ci +
n∑

i=0

diTU × ci

.9. CSP edge/change constraints

The cost of including a particular feature may change over time.
or example, the cost of selecting a GPS guidance system does
ot remain fixed, but instead typically decreases from one year to
he next as GPS technology is commoditized. We can model and
ccount for these changes in MUSCLES’s CSP formulation and con-
train the configuration path so that it selects features at times
hen they are sufficiently cheap. We thus define an edge constraint

hat accounts for changing feature modification costs and limits the
hange in cost between two successive configurations to $35 mil-
ion dollars. In practice, the edge weights should be defined by the
PL managers and the product stakeholders.
Assume that the cost of selecting the ith feature at step T can be
alculated by the function:

ost(i, T) = ci

T + 1
tion constraints.

We can then define the cost of selecting new features for the con-
figuration as:

weight(edge(T, T + 1)) =
n∑

i=1

(siTT+1 × Cost(i, T + 1))

We can now limit the cost of any two successive configurations via
the edge constraint:

∀T ∈ (0, . . ., K − 1), weight(edge(T, T + 1)) ≤ 35

In practice, the cost to add or remove features from a configuration
will be domain-specific. For example, add or removing features may
be as straightforward as consulting a supplier’s pricing sheet to
determine the cost of an add-on that will provide the necessary
feature. In more complex cases, the feature selection may involve
development of a new software component, in which software cost
estimation models may be needed.

4.10. Multi-step configuration optimization

Challenge 4 from Section 2.4 showed that optimizing the con-
figuration path is an important issue. CSP solvers can automatically
perform optimization while finding values for the variables in a CSP
(though it may be impractical time-wise for some problems). We
can define goal functions over the CSP variables to leverage these
optimization capabilities and address Challenge 4.

In some cases, developers may not want to just find any config-
uration path that ends in the desired state. Instead, they may want
a path that produces a configuration that meets the end goals as
early as possible. For example, in the avionics problem from Sec-
tion 1 developers may want to find a configuration path that meets
their constraints and includes the laser gyro as soon as possible.

4.11. CSP model of path length

To support path length optimization, we define a measure of
the number of steps needed to reach a valid end state. We must
therefore determine if the constraints on the final configuration
Fend (which is the goal state) are met by some configuration prior to
the last configuration (FT where T < K − 1). We have found a config-

uration process that requires fewer configuration steps if we meet
the final state constraints sooner than the final configuration.

To track whether or not a configuration has met the constraints
on the ending configuration Fend, we create a series of variables wT ∈
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to represent whether or not the configuration FT ∈ P satisfies Fend.
or each configuration, FT ∈ P, if Fend is satisifed:

FT ⇒ Fend) ⇒ (wT = 1)

.e., if at any step (up to and including the last step) we satisfy the
nd state requirements, set wT equal to 1. We also require that after
ne step has reached a correct ending configuration, the remaining
teps also keep the correct configuration and do not alter it:

(wT = 1) ⇒ (wT+1 = 1)

(wT = 1) ⇒
(

n∑
i=0

siTT+1 +
n∑

i=0

diTT+1 = 0

)

hen the final configuration is reached, the number of feature
elections,

∑n
i=0siTT+1, and deselections,

∑n
i=0diTT+1, is forced to

e zero by constraining the sum of the selections and deselections
o zero. Thus, MUSCLES does not allow any configurations to have
hanges after the goal state is reached because that would cause

n
i=0siTT+1 +

∑n
i=0diTT+1 to be nonzero.

.12. Path length optimization

We can optimize to find the shortest configuration path to reach
he goals over K steps by asking the solver to maximize:

K−1

T=0

wT

he reason that maximizing this sum minimizes the number of
teps taken to reach the desired end state is that the sooner the
tate is reached, the more steps wT will equal 1.

.13. Cost optimization

We can instruct the solver to minimize the cost of the ending
onfiguration by defining an optimization goal over the variables
n P. Assume that the cost of ith feature at step K is denoted by the
ariable ci ∈ CK, minimize CK, where:

Comprehensive list of feature model constraints in MUSCLES

CSP (single step)

Mandatory Fi = Fj

Optional
if Fj = 0
then Fi = 0

Or

if Fi = 1
then

∑
(Fj, Fk, . . ., Fn)in{1, . . ., n}

else
∑

(Fj, Fk, . . ., Fn) = 0

Alternative

if Fi = 1
then

∑
(Fj, Fk, . . ., Fn) = 1

else
∑

(Fj, Fk, . . ., Fn) = 0

Excludes
if Fi > 0
then Fj = 0

Implies
if Fi > 0
then Fj = 1
K =
n∑

i=0

fi × ci
nd Software 87 (2014) 119–136 127

4.14. Path cost optimization

An optimization to minimize the costs of changes can be defined
based on the weights of the edges. To find the configuration path
with the lowest development cost, where the development cost is
the edge weight the goal is to minimize:

K−1∑
T=0

weight(edge(T, T + 1))

4.15. Optimization flexibility

A subset of the possible objective functions have been defined
above. Other arbitrary objective functions can be defined over the
variables in Msc.

4.16. Catalog of feature model constraints over multiple steps

In this section, we show that any of the feature model constraints
described in the previously discussed semantics by Benavides et al.
(Schobbens et al., 2007; Benavides et al., 2010) can be converted
into a multi-step constraint using MUSCLES. Feature model con-
straint semantics are described by Benavides et al. (Benavides et al.,
2010) both in terms of propositional logic and CSP semantics.
Below is a table that includes each of the constraints described
by Benavides et al. and maps SPL constraints to multi-step
constraints.

CSP with multiple steps (T1, T2, . . ., Tn)

FiT1
= FjT2

if FjT2
= 0

then FiT1
= 0

if FiT1
= 1

then
∑

(FjT2
, FkT3

, . . ., FnTn )in{1, . . ., n}
else

∑
(FjT2

, FkT3
, . . ., FnTn ) = 0

if FiT1
= 1

then
∑

(FjT2
, FkT3

, . . ., FnTn ) = 1

else
∑

(FjT2
, FkT3

, . . ., FnTn ) = 0

if FiT1
> 0

then FjT2
= 0

if FiT1
> 0

then FjT2
= 1

A key aspect to note is that a constraint can be applied at a
specific step. In this case, T0 = T1 = . . . Tn. That is, the constraint
governs the selection state of a set of features all within a single
time step. However, the constraints may also govern the selection
state of features at different points in time, where T0 /= T1 /= . . . Tn.
Moreover, the features and time steps can arbitrarily cross-cut the
steps where portions of the constraint govern feature selection
at one step and other portions of the step relate to the selection
state of features at other steps. For example, feature faT1 can have
an exclusive or relationship with fbT2

and fcT3. In this case, the
constraint would dictate that if feature fa is selected at step T1, then
either fb has to be selected at step T2 or fc has to be selected at step
T3. The feature model constraints governing selection can apply

both, as with existing approaches, within a single step, or span
multiple steps. MUSCLES supports all of the standard feature model
constraints but adds the added ability to specify that the constraint
applies to the selection state of features at different steps.
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Fig. 6. Boeing 78

. Modeling feature model drift

When configuration occurs over multiple steps, the configura-
ion process may span a substantial period of time. For example, the
eronautics development example from Section 1, where features
re being added to a plane, spans several years. In most multi-step
onfiguration problems, such as the Boeing 787, developers may
eed to reason about configuration over a span of days, months, or
ears in order to decide the best path. For example the Boeing 787
xhibited a number of feature model drifts during its configuration.
ig. 6 shows the feature model changes made to this aircraft since
ts first release.1 Fig. 6 shows the changes that occurred over several
ears. In the period, from 2006 to 2014, the option of having 3 rows
nd 290 passengers was added. These improvements required the
emoval of the features “126.920L” and “3 rows/210 passengers”
rom the feature model, as well as the mandatory child relation-
hip between “Seats Configuration” and “3 rows/210 passengers”.
inally, two new features, “3 rows/290 passengers” and “138.700L,”
ere added to the feature model. Further, the next planned release

he plane in 2014 will remove the “3 rows/210 passengers” feature
nd the set relationship for seating and add the feature “3 rows/310
assengers” as the only seating option.

Configuration time frames that span months or years introduce
he possibility for feature model drift. Feature model drift is the
volution of a feature model, through the addition or removal of fea-
ures and model relationships, after the initial configuration step.
he allowed changes depend on the expressiveness of the models
eing used. For example, if cardinality based feature models are
sed, the changes can also incorporate changes in the cardinali-
ies of relationships. If attributed feature models are used, changes
o the values of attributes and attribute relations can be captured
Roos-Frantz et al., 2012). For example, aircraft manufacturers may
ely on suppliers that plan to introduce new features in a compo-
ent at a specific time. Moreover, suppliers may plan to discontinue
upport for older features in the future. Note that, when a feature
odel drifts it is possible that errors may be introduced, such as

ontradictions that yield an unsatisfiable feature model. MUSCLES
ssumes that the feature models at each step are satisfiable and
rror-free. In this paper we do not focus on this problem but it can
e easily addressed by using the error checking techniques listed
y Benavides et al. (2010), and the parsers from FaMa (FaMa, 2013),
VL (Classen et al., 2011) or SPLOT (SPLOT, 2013) for lexer errors.

When using MUSCLES to analyze feature model drift, SPL man-
gers need to be able to predict the changes ahead of time in order

o reason about them, which is not always possible. Sometimes the
rift occurs due to security flaws detected in advanced stages of
evelopment or due to market requirements. MUSCLES is useful

1 http://www.boeing.com/commercial/787family.
ure model drift.

for reasoning about how these changes can or will impact planned
configurations.

In many cases, developers do know ahead of time which fea-
tures or relations will be introduced, discontinued, or replaced.
Moreover, developers often have an estimate of when the avail-
ability of the feature (and its relationships with the rest of the
model) will change based on information provided by a supplier
or other mechanism. This data on feature and constraint modifi-
cation times allows developers to incorporate this knowledge into
the construction of a multi-step configuration problem. This sec-
tion describes how feature model drift can be accounted for in a
multi-step configuration CSP.

5.1. Modifying the CSP model of multiple steps

In the original formulation of the CSP, the set of features that are
present does not change over time. To account for feature model
drift, we show how we can relax our requirement from Section 4.4
that feature model constraints remain static. Once feature model
constraint changes over multiple steps are modeled in the CSP,
the solver can derive a configuration path that respects the fea-
ture model constraints as they drift. This eliminates the burden on
developers to derive configuration paths that must meet complex
drifting feature model requirements. An important point, however,
is that this approach explicitly models the addition, removal of
features and relationships in the future.

As we showed in Section 2.3, we constrain the feature selection
variables FT to respect the feature model constraints. Since each
variable represents the selection state of a feature at a specific step,
we do not have to apply the same constraints to every step. If the jth
feature is an optional child of the ith feature (the software package)
at step T and at step K, the jth feature becomes mandatory, we can
model this as:

(fjT = 1) ⇒ (fiT = 1)

At step K, the jth feature becomes mandatory, changing the con-
straints on selection of the feature:

(fiK = 1) ⇒ (fjK = 1)
(fjK = 1) ⇒ (fiK = 1)

That is, at step T, if fi is selected (fiT = 1) there is no constraint requir-
ing fj to be selected. At step K, however, there is the constrant that
(fiK = 1) ⇒ (fjK = 1), which makes fj mandatory.

Examples of other feature model drifts as CSP constraints are
shown in Fig. 7.

The approach described above can handle arbitrary modifica-

tions to a feature model as long as the modifications yield a new
feature model with at least one valid product. If a contradiction
is introduced via feature model drift and no valid products are
present, the solver will not be able to derive a configuration path.

http://www.boeing.com/commercial/787family
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Fig. 7. A CSP model of feature model drift.

nother possible contradiction is if the edge or point configuration
onstraints contradict the changes introduced by feature model
rift. For example, if a feature that is mandated by a point configu-
ation constraint is removed by feature model drift, a contradiction
ccurs. The approach requires that neither type of contradiction be
resent.

.2. Feature drift epochs

Because feature model drift may take place far in the future,
t may not always be possible to precisely predict the time step
t which a particular feature becomes available. For example, a
upplier may indicate that in the next 3–5 years, they plan to
hase out the usage of a particular component. In these scenarios,
PL engineers need a way to be able to reason about configura-
ion and place bounds, rather than exact times, on feature model
rift.

The formal model of feature model drift that we have presented
an be extended to account for these types of inexact timeframes
n the drift of a feature model. Feature model drift is a change to a
eature model at a future point in time. We introduce a new concept,
hich we call the change epoch, which is the period of time during
hich a change due to feature model drift is in effect.

Each change epoch includes both a start time and a duration.
or example, a supplier may phase out a component in 3–5 years,
ausing the feature model to have several modifications. Let, Ei
e the change epoch of the ith set of changes that need to be
pplied to the feature model as a result of feature model drift.
hen the Ei change epoch is in effect, it means that its starting

oint is Estart
i

and 3 ≤ Estart
i

≤ 5. The duration of the epoch, Edur
i

, is
dur
i

= ∞.
To express feature model epochs, constraints must be added to

ound the values for Estart
i

and Edur
i

. We introduce the function,

(Estart
i , Edur

i , F0, F1, . . ., Fend)
o determine the begining of a change epoch as a value of time and
he configurations of the feature model at each step. For example, if
supplier was expected to phase out a part 3–5 years in the future,

hen:

≥S(Estart
i , Edur

i , F0, F1, . . ., Fend)≥5
Similarly, a separate function,

W(Edur
i , Edur

i , F0, F1, . . ., Fend)

calculates the duration of the change epoch. In the case of a part
phased out of existence, the duration of the change epoch would
be indefinite, or:

W(Edur
i , Edur

i , F0, F1, . . ., Fend) = ∞
An important note is that this approach assumes that the changes
that are applied to the feature model during a change epoch are
assumed to be correct. For example, if a feature is removed in a par-
ticular step, any other modifications to the feature model needed
to bring it to a valid state (e.g., removing dependent cross-tree
constraints, adding replacement features, etc.) are also applied so
that the feature model does not have inconsistent or unsatisfiable
constraints. Moreover, the approach also assumes that objective
functions for the optimization process are not specified in a man-
ner that they are undefined when one or more features are added
or removed. At all steps, it is assumed that the objective function is
defined and all features needed to calculate its value are present.

5.3. Epoch-based feature model constraints

The feature model drift epochs make it possible to model sit-
uations in which the exact step in which a change will occur to a
feature model is not known. Instead, constraints are placed upon
when the feature model drift epochs will occur and their duration.
In order to account for epochs in the multi-step configuration CSP,
additional constraints must be added. In the previous examples, if
the jth feature is an optional child of the ith feature (the software
package) at step T and at step K, the jth feature becomes mandatory,
we can model this as:

(fjT = 1) ⇒ (fiT = 1)

At step K, the jth feature becomes mandatory, changing the con-
straints on selection of the feature:

(fiK = 1) ⇒ (fjK = 1)
(fjK = 1) ⇒ (fiK = 1)

Now, assume that the jth feature is an optional child of the ith
feature (the software package) at the start and at some step, K,
where 3 ≤ K ≤ 5, the jth feature becomes mandatory, we can no
longer directly model this as before. Instead, we must define the
enforcement of the new feature model constraint in terms of its
feature drift epoch. In this situation, we model this as:

(fjT = 1) ⇒ (fiT = 1)

If step K is within the time period of the feature drift epoch,
the jth feature becomes mandatory, changing the constraints on
selection of the feature:

((fiK = 1) ⇒ (fjK = 1)) ⇔ (Estart
i

≤ K ≤ Estart
i

+ Edur
i

)
((fjK = 1) ⇒ (fiK = 1)) ⇔ (Estart

i
≤ K ≤ Estart

i
+ Edur

i
)

where:

3 ≤ Estart
i ≤ 5

Using the concept of a feature model epoch, developers can encode
ambiguity into the feature model drift. Developers can model
periods of time during which changes are expected and reason
about how variations in when those epochs occur will impact

configuration. Most importantly, feature model epochs allow deve-
lopers to create configuration scenarios that more closely mirror
the uncertainty in real-world development at when a particular
feature will be completed and become part of a feature model.
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6.2.2. Experiment design
We measured the solving time of MUSCLES by generat-

ing random multi-step configuration problems and solving for
.4. Ordered epochs

Another issue that developers face is that the development or
eprecation of a feature from a feature model is dependent upon the
evelopment or deprecation of several other features. For example,
evelopers may know that the next generation of a mobile phone
latform is going to support connectors that can communicate with
n aircraft media server. Within 1 year from the time that this new
obile phone platform is developed, they will be able to develop a

ideo player that streams media from the aircraft media server on
he same mobile platform.

In this scenario, the development of the mobile phone server
ideo streamer feature is dependent upon the occurrence of the
obile platform’s server comunication feature. The exact point in

ime at which the diagnostic interface feature will be developed is
nly known relative to the occurrence of another epoch. We term
hese types of epoch constraints, ordered epochs.

Using the modified model of multi-step configuration, we can
efined an ordered epoch by constraining an epoch’s start, Estart

j
,

nd duration, Edur
j

, in terms of another epoch, Ei. For example, if we
ish to define the epoch, Ej, as occuring at least two steps after the

poch, Ei, we can say:

start
j ≥Estart

i + 2

.5. Feature drift branches

Using these CSP constraints, developers can encode ordering
nto the occurrence of epochs. Another key attribute of epoch order-
ng is the ability to introduce branching into the occurrence of
pochs. For example, developers might have a single physical con-
ector on a in-seat screen that they plan to use either to consume
treaming video from a media server or connect to controls for
anaging the above seat lighting and vents, but not both.
To encode branching constraints into feature model drift, deve-

opers can use the Estart
i

variable to encode branching constraints.
or example, if the changes described by the ith feature model drift
re mutually exclusive with the changes in jth feature model drift,
his constraint can be encoded as:

start
i ≥0 ⇔ Estart

j = −1

start
j ≥0 ⇔ Estart

i = −1

here, Estart
j

= −1 indicates that the jth feature model drift never
s in effect. Using this same strategy, arbitrary constraints on the
ranching of feature model drift can be encoded into the CSP.

. Evaluating the scalability of MUSCLES

As described in Section 2.1, configuring an SPL over multiple
teps is a highly combinatorial problem. An automated multi-step
PL configuration technique should be able to scale to hundreds of
eatures and multiple steps. This section presents empirical results
rom experiments we performed to determine the scalability of

USCLES. We tested a number of hypotheses related to the scalabil-
ty of MUSCLES using various SPL configuration parameters, such
s the total number of configuration steps.

.1. Experimental platform
Our first experiment was performed with an implementa-
ion of MUSCLES provided by the open-source Ascent Design
tudio (available from code.google.com/p/ascent-design-studio).
he Ascent Design Studio’s implementation of MUSCLES is built
using the Java Choco open-source CSP solver (available from
choco.sourceforge.net). The experiments were performed on a
computer with an Intel Core DUO 2.4 GHz CPU, 2 GB of memory,
Windows XP, and a version 1.6 Java Virtual Machine (JVM). The
JVM was run in server mode using a heap size of 40 MB (-Xms40m)
and a maximum memory size of 256 MB (-Xmx256m).

The second experiment was performed with an implementa-
tion of the MUSCLES provided by the open-source FAMA tool suite.
FAMA is also built using the Java Choco open-source CSP solver. The
experiments were performed on a rack-mounted DELL PowerEdge
server with 12 cores, 2GB of RAM, and running Ubuntu. The JVM
was run in server mode using a heap size of 40 MB (-Xms40m) and
a maximum memory size of 256 MB (-Xmx256m).

To test the scalability of MUSCLES we needed thousands of fea-
ture models to test with, which posed a problem since there are
not many large-scale feature models available to researchers. A CSP
solver’s performance can vary widely, from extremely fast to expo-
nential time, depending on the constraints of a particular problem
characteristic. In practice, CSP solvers tend to perform very well.
To be thorough, we wanted to test the technique on a large num-
ber of models to get an accurate picture of the solving time. To
solve this problem, we used a random feature model generator
developed in prior work (White et al., 2008a). The feature model
generator and code for these experiments is also available in open-
source form along with the Ascent Design Studio. The feature model
generator takes as input the desired total number of features, max-
imum branching factor, total number of cross-tree constraints, and
maximum depth for the feature model tree. This feature model gen-
erator is based on the techniques developed by Thum et al. (2009).
The generator produces a random feature model that meets the
requirements. We used a maximum branching factor of 5 children
per feature and a maximum of 1/3 of the features were in an XOR
group.2

We also needed the ability to produce valid starting and end-
ing configurations that the solver could derive a configuration
path between. To produce these configurations, we used the CSP
technique developed by Benavides et al. (2005) to derive valid con-
figurations of the feature model. If the CSP technique could not
derive at least two different configurations from the feature model,
it was considered void and thrown out.

Our experiments uncovered trends similar to what observed in
prior work (White et al., 2008a). In particular, the branching factor,
depth, and cross-tree constraints had little effect on configuration
time. The key indicator of the solving complexity was the number of
XOR-feature groups in a model. The other key indicators of solving
complexity where whether or not optimization was used and the
total number of time steps involved in the configuration.

6.2. Experiment: multi-step configuration scalability

6.2.1. Hypothesis
We hypothesized that MUSCLES could scale up to hundreds of

features and 10 or more time steps, having this hypothesis we
designed this experiment to prove it, believing that a CSP solver
would be fast enough to derive a configuration path in a few
seconds. On the other hand, the null hypothesis of this experiment
is that the solver can’t find a suitable solution for the problem in a
reasonable amount of time.
2 XOR feature groups are features that require the set of their selected children to
satisfy a cardinality constraint (the constraint is 1. . .1 for XOR).

http://code.google.com/p/ascent-design-studio
http://choco.sourceforge.net


Table 1
Hypotheses and experiment design.

Hypotheses
Null hypothesis (H0) MUSCLES can rapidly identify the configuration paths from the starting configuration to the final configuration with hundreds features

and 10 or more time steps.
Alt. hypothesis (H1) The complexity of the problem will prevent MUSCLES from finding solutions for problems with hundreds of features and 10 steps.

Design
Dependent variable Time required by MUSCLES to derive a configuration path
Independent variable I Technique used for FM generation Levels: Random models produced by Thum et al.’s

technique(Thum et al., 2009)
Technique for selecting point and edge constraints Levels: Random (Java function applied to the list of model features

traversed inorder.)
Blocking variables Number of steps Levels: 3, 4, 5, 6, 7, 8, 9, 10
Constants CSP solver Value: ChocoReasoner

Heuristic for variable selection in the CSP solver Value: Default
Percentage of cross-tree constraints (constraints/features) Levels: %10
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for special classes of multi-step configuration problems. Based on
the results, we ended agreeing that the null hypothesis we pro-
posed have been proved and MUSCLES can rapidly identify the
Fig. 8. Changing be

onfiguration paths that involved larger and larger numbers of
teps. The problems were created by generating semi-random
eature models with 500 features as well as starting and ending
onfigurations for each model. The models were obtained using
he tool Betty, which provides an implementation of the Thum
t al.(Thum et al., 2009) proposal. The point configuration con-
traints were derived by using a constraint solver to derive a valid
onfiguration for each step. Once a point configuration was chosen
or a step, an edge constraint was added limiting the sum of the fea-
ure selection and deselection costs to be exactly the sum needed to
each the randomly chosen point configuration. Table 1 shows the
etails of the experiment executed. MUSCLES was used to derive a
onfiguration path between the starting and ending configurations.

Our experiments were performed with large-scale configuration
aths, which were produced by forcing the solver to find a config-
ration path that involved switching between two children of the
oot feature that were involved in an XOR group. For a feature model
ith 500 features configured over 3 steps, the worst case solving

ime we observed was ∼3 seconds. The worst case solving time for
eature models configured over 10 steps was 16 seconds. These ini-
ial results indicate that the technique should be sufficiently fast
or feature models with hundreds of features.

Fig. 8 shows an example of a large-scale configuration path
roblem where the solver must derive a configuration path that
witches from including feature A to feature B.

With this type of configuration problem, the solver was forced
o change every feature selection in the starting configuration to
each the end state, i.e., these experiments maximized the differ-
nce between the starting and ending configurations.

We generated and solved temporal configuration path problems
or feature models with 500 features. We successively increased
he number of time steps involved in the configuration path to pro-

uce larger and larger configuration paths. The maximum number
f changes per configuration checkpoint were bounded to 1/4 of
he total number of features. We solved 100 randomly generated
onfiguration path problems per feature model size.
two XOR subtrees.

6.2.3. Results and analysis
The results from the experiment are shown in Fig. 9.
This figure shows the solving time in milliseconds for the con-

figuration path derivation versus the total number of time steps
in the configuration problem. As shown in Fig. 9, the solving time
scales roughly linearly with the number of time steps.

The apparent linear scaling of the technique with respect to
the number of time steps is a promising result. Although more
work is needed to show that this linear scaling continues for dif-
ferent configuration path properties, these results indicate that
the technique may scale well as the number of time steps grows.
Our future work will further investigate the scalability of the tech-
nique and improve MUSCLES’s CSP formulation. We also note that
standard CSP solving algorithms, such as branch and bound appear
to work well for these problems even though they have exponen-
tial worst case time complexity. However, it may be possible to
develop new solving algorithms that provide better performance
Fig. 9. Automated configuration time for varying numbers of time steps.
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Fig. 10. Automated configuration time for feature model drift problems.

onfiguration path with hundreds of features and 10 or more
teps.

.3. Experiment: feature model drift scalability

.3.1. Hypothesis
In this experiment we proposed as a null hypothesis, that MUS-

LES could solve for configuration paths that included feature
odel drift in several seconds. Given that null hypothesis, the alter-

ative hypothesis is that MUSCLES can not solve problems with
rifts in a few seconds.

.3.2. Experiment design
As in the first experiment, we measured the solving time of MUS-

LES by generating random multi-step configuration problems and
olving for configuration paths that involved larger and larger num-
ers of steps. In this second experiment, we introduced changes to
he feature model at each step. At each step, one feature was added
r removed. The feature model was then checked to ensure that
t included one or more valid products using CSP analysis. If the
ew feature model did not contain any valid products, the feature
hange was reversed and another random change attempted. The
eature models were semi-randomly generated with 20–2000 fea-
ures as well as starting and ending configurations for each model.

USCLES was used to derive a configuration path between the two
onfigurations over multiple steps. The properties of the feature
odels described in Experiment 1 were also used for this experi-
ent.
Table 2 shows the details of Experiment 2.

.3.3. Results and analysis
The results from the experiment are shown in Fig. 10. This fig-

re shows the solving time in milliseconds for the configuration
ath derivation versus the total number of features. Overall, the
pproach scaled well for large feature models. At 1000 features, a
olution could be found in 4 seconds or less. We believe that for
he majority of industry problems, being able to deal with feature

odels with 1000 features will be sufficient. Therefore, given those
esults, the null hypothesis proved to be correct.

.4. Experiment limitations and threats to validity

Even though the experiments presented in this paper provide
vidence that the solution proposed is valid, there are some con-
itions that may affect the validity of those experiments. In this
ection we show the different validity threads that could affect the

xperiments.

External validity: The inputs for the experiments presented in
this paper have been inspired by industry problems. However, it is
possible that the feature models that we have experimented with
do not properly reflect real-world models. The major threats to
the external validity of are experiments are: (1) Population valid-
ity, the models used are randomly created and may not mirror
realistic feature models seen in industry. The complexity of the
constraints used and the size of the problem may vary with real
projects. To try to minimize this effect we have relied on the Thum
et al.’s feature model generation approach (Thum et al., 2009)
and its implementation provided by the BeTTy tool (BeTTy, 2013).
(2) Ecological validity, MUSCLES analyses were run individually to
minimize the impact of third-party threads in the time being mea-
sured. However, there might be other threads such as operating
system threads that could impact execution time. To minimize this
effect, we carried out not one execution of a model, but a hundred
executions and used the average as the result.
Internal validity: The time required to analyze a feature model
depends on the number of features and percentage of cross-tree
constraint and deriving SPL configurations has been proven to be
an NP problem in previous research (Benavides et al., 2010; Kang
et al., 1998). Multi-step configuration problems add other inputs
that might affect the performance, such as the number of the steps
required to reach the final configuration. The conducted experi-
ments were designed to not exceed a maximum budget between
successive steps. However, if we add attributes to the experi-
ments, more complex functions than the sum of costs by selecting
and deselecting features can be employed. For example, a more
complex function over the numeric delta between attributes of
successive steps could be used, such as combining carbon emis-
sions with monetary costs. To improve the internal validity of
the experiments we experimented with multiple variations on the
number of features and a variety of step counts.
Construct validity: The first results looks promising in terms of
time required to solve problems with 1000 features. We assume
that most real-world problems will be of similar scale. However,
because the tests were not exhaustive, more analysis of which
solver heuristics provide the best results are needed.

7. Related work

This section compares MUSCLES with related work, such as
automated single-step configuration, staged configuration, legacy
configuration evolution, quality attribute evaluation, and step-wise
refinement.

7.1. Feature model semantics

Prior research has laid out the formal semantics of feature mod-
els, variability, and configuration (Schobbens et al., 2007; Benavides
et al., 2010). MUSCLES builds upon these previously described
semantics and introduces new approaches for dealing with config-
uration over multiple steps. Both the prior semantics and MUSCLES
are complementary research.

7.2. Constraint optimization techniques and scheduling problems

MUSCLES builds upon extensive prior work on constraint sat-
isfaction problems and optimization (Van Hentenryck, 1989).
Constraint satisfaction programming techniques have been used
for a wide variety of related problems in artificial intelligence,
process improvement, operations research, and other areas (Van

Hentenryck, 1989). In particular, the scheduling problem is a well-
known constraint optimization problem that looks at how to
schedule a finite set of resources to complete a task in order to max-
imize or minimize an objective function. This problem is related to



Table 2
Hypotheses and experiment design.

Hypotheses
Null hypothesis (H0) MUSCLES can find solutions for problems that incorporate feature model drift and have a high number of features in several seconds.
Alt. hypothesis (H1) MUSCLES can not solve for solutions within a few seconds if feature model drift occurs.

Design
Dependent variable Time required by MUSCLES to configure a model with varying drifts.
Independent variable Technique used for FM generation Levels: Random models generated using Thum et al.’s technique

(Thum et al., 2009)
Technique for selecting point and edge constraints Levels: Random (Java function applied to the list of model features

traversed inorder)
Blocking variables Number of features Levels: 20, 100, 200, 500, 1000, 2000
Constants CSP solver Value: ChocoReasoner

Heuristic for variable selection in the CSP solver Value: Default
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USCLES but not specific to the multi-step configuration derivation
roblem for feature models that MUSCLES focuses on.

.3. Automated single-step configuration

Several single-step feature model configuration and validation
echniques have been proposed (Benavides et al., 2013; Mannion,
002; Batory, 2005; Beuche, 2004; Buhrdorf et al., 2004; White
t al., 2007). These techniques use CSPs and propositional logic
o derive feature model configurations in a single stage as well as
ssure their validity. These techniques help address the high com-
lexity of finding a valid feature selection for a feature model that
eets a set of intricate constraints.
While these techniques are useful for the derivation and vali-

ation of configurations in a single step, they do not consider
eature configuration over the course of multiple steps. In many
roduction scenarios (such as the avionics example from Section 1)
he ability to reason about configuration over multiple steps is crit-
cal. MUSCLES provides this automated reasoning across multiple
teps. Moreover, MUSCLES can be used for single-step configura-
ions since it is a special case of multi-step configuration with only
ne step K = 1.

Bosch (2002) describe several evolution patterns that appear in
he configuration of SPLs. These patterns incorporate the effects
f manipulating variation points in regards to time and resource
onsumption. In contrast, MUSCLES accounts for this evolution
ariability by spreading feature selections over multiple stages,
uch that an introduction of a new variation point can be taken
nto account.

.4. Configuration workflows

Hubaux et al. (2009) presented a formalism to determine the
ork-flow required to configure a feature model in multiple steps.
USCLES approach also focuses on configuring a model in mul-

iple steps. However, Hubaux et al.’s work does not investigate
eature model drifts or automated derivation of a configuration
ath between a starting and final configuration. Moreover, MUS-
LES also supports optimizations, such as minimizing the number
f changes in the configuration path.

.5. Feature edits

In the work presented by Thum et al., the authors present a cata-
og of possible changes that can be applied to a feature model in the

rocess of model evolution. The authors also discuss approaches for
etermining if the new model is a subset or a super-set of the orig-

nal feature model. This work differs from ours in many aspects.
hum et al. (2009) do not cover multi-step changes nor identify
Levels: %10
Levels: 3
Levels: Random (from the set of valid configurations)

paths between configurations across multiple steps. However, the
random generator used in this research’s experimentation is the
same used by Thum et al.

7.6. Solving product derivation problems

Mendonca et al. (2007) addressed the problem of dealing with
different actors with different interests configuring the model at
the same time by translating the model to a process model. This
process, consists of 4 principal stages: (i) identify the conflicts; (ii)
use the validated model and conflicts sets, and actors decisions to
identify and resolve decision conflicts; (iii) build the process model;
and finally, and (iv) validate the generated process.

7.7. Managing changes using dynamic SPLs

Rosenmüller et al. (2011) investigate unforeseen changes due to
the run-time swapping of components in a SPL. This works differs
from MUSCLES because it focuses on evolution of variants within
the same SPL. MUSCLES’ feature model drift allows modifications
to the structure of the SPL which is not covered in the research by
Rosenmuller et al.

7.8. Staged configuration

Czarnecki et al. (2004) describe a method for using staged
feature selection to achieve a final target configuration. Their multi-
stage selection considers cases in which the selection of features in a
previous stage impacts the validity of later stage feature selections.

MUSCLES is complementary to Czarnecki et al.’s work since
it (1) examines the production of a feature model configuration
over multiple configuration steps and (2) provides a general for-
mal framework that can be used to perform automated reasoning
on staged configuration processes. Moreover, MUSCLES can also be
used to reason about other multi-step configuration processes that
do not fit into the staged configuration model, such as the example
from Section 1 where each step must reach a valid configuration.

Staged configuration can be modeled as a special instance of
multi-step configuration. Specifically, staged configuration is an
instance of a multi-step configuration problem where: E =∅, Fstart =∅,
Fend = (FK−1 ⇒ Fc), K is set to the number of stages, �(FT, FU) is not
defined, and Fc is the set of feature model constraints, i.e., there
are no limitations on the changes that can be made between suc-
cessive configurations, the starting configuration has no features

selected, and the ending configuration yields a valid feature model
configuration. The staged configuration definition can be refined
to guarantee that successive stages only add features: ∀T ∈ (0, . . .,
K − 1), FT ⊂ FT+1.
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Hwan et al. (2005) have looked at mechanisms for synchroniz-
ng specializations of feature models as changes occur over time.
his problem is similar to the feature model drift problem outlined
n this paper. MUSCLES focuses on a different and complementary
spect of the problem, which is reasoning in the face of changes to
he feature model over time. Both synchronization and automated
easoning in the face of changes to the underlying feature model
re needed and each approach addresses a different aspect of the
roblem.

Classen et al. (2009) have investigated creating a formal seman-
ics for staged configuration. Moreover, they provide a definition of
configuration path through a series of stages for a feature model.
hereas Classen et al. focus on configuration paths that continually

educe variability, MUSCLES is a formal model that allows for both
he reduction and introduction of variability in the configuration
rocess. Moreover, MUSCLES can produce a complete configuration
t multiple points in the configuration process.

.9. Supply-chain product-lines

Hartmann et al. (2009) investigate methods of building models
hat incorporate the variability and constraints of multiple sup-
liers into a product-line feature model. The approach described
y Hartmann et al. is orthogonal to MUSCLES. Hartmann’s work
ocuses on the modeling aspects related to capturing and main-
aining the constraints from multiple suppliers whereas MUSCLES
rovides a mechanism to reason about the constraints over time.

.10. Understanding configuration over time

Elsner et al. (2010) have looked at variability over spans of time
nd the issues related to understanding when and how variability
oints relate to each other. MUSCLES focuses on automating three
ey tasks that Elsner et al. identify as needed for managing vari-
bility over time. Specifically, MUSCLES provides capabilities for
utomating and optimizing tasks that Elsner et al. term: (1) proac-
ive planning, (2) tracking, and (3) analysis. Whereas Elsner et al.
ocus on general identification of the issues in managing variability
ver time, MUSCLES focuses on providing a framework for automat-
ng the specific tasks that Elsner et al. identify as needed in this
pace.

.11. Model-driven feature model evolution

A number of approaches have looked at the development of
odeling tools to support feature model evolution. Pleuss et al.

2012), Botterweck et al. (2009) model coherent sets of changes to a
eature model as model fragments and allow modelers to describe
volved versions of feature models at future points in time. Fur-
her, the underlying model-driven tooling allows developers to
heck the correctness of the evolved models or interactively evolve
he model. Whereas these existing approaches focus on the user-
nterface modeling and constraint-checking aspects, MUSCLES
ocuses on complementary automated mechanisms for optimizing
he planning steps of future evolutions of configurations. For exam-
le, Pleuss et al.’s techniques do not provide configuration evolution
ptimization capabilities or automated non-interactive evolution
ased on objective functions, which the MUSCLES technique pro-
ides. MUSCLES can be used to augment model-driven approaches,
uch as Pleuss et al.’s with automated optimization and configura-
ion evolution derivation capabilities.
.12. Quality attribute evaluation

Several techniques have been proposed for evaluating qual-
ty attributes (Etxeberria and Sagardui, 2008; Immonen, 2006;
Olumofin and Misic, 2005) to guide a configuration process. These
techniques provide a framework for assessing the impact of each
feature selection on the overall capabilities of the configured sys-
tem. As a result, quality characteristics, such as reliability, can be
taken into account when selecting features. These techniques are
also designed for single step configuration processes. These tech-
niques could be used in a complementary fashion to MUSCLES to
produce the point configuration, edge, and other constraints in the
multi-step configuration model.

7.13. Step-wise refinement

Batory (2004) describes AHEAD, a technique for the configura-
tion of SPLs. AHEAD utilizes step-wise refinement, in which SPLs are
configured iteratively. Our technique is similar in that it also selects
additional features over the course of multiple-steps in order to
reach a target configuration.

7.14. Re-configuration approaches

Other research has looked at re-configuration or SPL error cor-
rection in a number of different scenarios. For example, Xiong
et al. (2012) researched eCos configuration problems, proposing
a set of solutions for a set of concrete configuration errors. White
et al. (2010) also have investigated automated techniques for fix-
ing feature model configuration conflicts. These prior works differs
significantly from this MUSCLES because they focus on single-step
configuration, where as this paper focuses on reasoning about
multi-step configuration.

8. Concluding remarks and future work

Many SPL scenarios require developers to evolve a configura-
tion over multiple steps, rather than in a single step. Multi-step SPL
configuration, however, must take into account constraints on the
change between successive configurations, such as the increase in
cost of an aircraft’s configuration from one year to the next. More-
over, even though configuration is performed over multiple steps,
a valid configuration must still be produced at the end of each step
(e.g., prior to shipping the new year’s model aircraft), which further
complicates maintaining a functional system configuration.

It is hard to determine a sequence of feature model configu-
rations and feature selections such that an initial configuration
can be transformed into a desired target configuration. This paper
introduces a technique, called the MUlti-step Software Configuration
probLEm Solver (MUSCLES), for modeling and solving multi-step
configuration problems. MUSCLES represents the problem as a CSP,
which enables CSP solvers to determine a path from a starting con-
figuration to a target configuration. The output from MUSCLES is a
valid sequence of feature selections that will lead from a starting
configuration to the desired target configuration, while accounting
for resource constraints.

In future work, we plan to investigate a number of research
questions related to multi-step configuration:

• Real-time configuration process monitoring → Unplanned changes
are almost inevitable in long-term configuration processes. In
future work, we plan to investigate approaches for monitoring
configuration processes in real-time and automatically adjusting
the starting and end configurations, as well as feature model
constraints, as changes occur. Being able to monitor and iden-
tify changes to the configuration process will allow SPL users to

reason about unforeseen changes in real-time.

• Feature-model drifts extended validation → An extended validation
of feature model drifts within a real-world project should be per-
formed. While the current validation is guided by the expertise of
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some authors in the aeronautics industry, an experience report of
feature-model drift should be performed to provide a better vali-
dation of the proposal presented in this paper. Moreover, some
experimentation should be extended. For example, by executing
our experiments with attributes and more complex functions.
Model transformation approaches for turning existing models into
multi-step configuration problems → Although creating a separate
DSML for MUSCLES is one approach to leveraging it, this approach
requires organizations to adopt new modeling languages and
tools. Instead, an alternate approach is to investigate how to
transform arbitrary existing domain models into multi-step con-
figuration problems and document the required expressiveness
of those domain models.
Feature model epoch and epoch ordering validation → In order
to test model epochs, we are working to extend the BeTTY
Framework (BeTTy, 2013), to be able to test feature model drift
operations with ordered epochs.

The Ascent Design Studio (ascent-design-studio.googlecode.
om) and FAMA (famats.googlecode.com/svn/branches/multistep)
rovide open-source implementations of MUSCLES.
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