
WEB APPLICATION TESTING: A SYSTEMATIC LITERATURE REVIEW

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERDAR DOĞAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2013

WEB APPLICATION TESTING: A SYSTEMATIC LITERATURE REVIEW

Submitted by Serdar Doğan in partial fulfillment of the requirements for the
degree of Master of Science in Information Systems, Middle East Technical
University by,

Prof. Dr. Nazife Baykal

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin

Head of Department, Information Systems

Assist. Prof. Dr. Aysu Betin Can

Supervisor, Information Systems, METU

Assoc. Prof. Dr. Vahid Garousi

Co-Supervisor, Information Systems, METU

Examining Committee Members:

Prof. Dr. Semih Bilgen

Electrical & Electronics Engineering, METU

Assist. Prof. Dr. Aysu Betin Can

Information Systems, METU

Assist. Prof. Dr. Erhan Eren

Information Systems, METU

Assoc. Prof. Dr. Altan Koçyiğit

Information Systems, METU

Assoc. Prof. Dr. Pınar Karagöz

Computer Engineering, METU

Date: 03.09.2013

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name and Surname : Serdar DOĞAN

Signature :

iv

ABSTRACT

WEB APPLICATION TESTING: A SYSTEMATIC LITERATURE REVIEW

DOĞAN, Serdar

M.S., Department of Information Systems

Supervisor: Assist. Prof. Dr. Aysu BETİN CAN

Co-Supervisor: Assoc. Prof. Dr. Vahid GAROUSI

September 2013, 88 pages

Context: The Web has had a significant impact on all aspects of our society. As our

society relies more and more on the Web, the dependability of web applications has

become increasingly important. To make these applications more dependable, for

the past decade researchers have proposed various techniques for testing web-

based software applications. Our literature search for related studies retrieved 193

papers in the area of web application testing, which have appeared between 2000

and 2013.

Objective: As this research area matures and the number of related papers

increases, it is important to systematically identify, analyze, and classify the

v

publications and provide an overview of the trends and empirical evidence in this

specialized field.

Method: We systematically review the body of knowledge related to web application

testing through a systematic literature review (SLR) study. This SLR is a follow-up

and complimentary study to a recent systematic mapping (SM) study that has been

conducted in this area. As part of this study, we pose three sets of research

questions, define selection and exclusion criteria, and synthesize the empirical

evidence in this area.

Results: Our pool of studies includes a set of 95 papers (from the 193 retrieved

papers) published in the area of web application testing between 2000 and 2013.

The data extracted during our SLR study is available through a publicly-accessible

online repository. Among our results are the followings: (1) the list of test tools in

this area and their capabilities, (2) the types of test models and fault models

proposed in this domain, (3) the way the empirical studies in this area have been

designed and reported, (4) level of rigor and industrial relevance in empirical studies

and (5) the state of empirical evidence.

Conclusion: We discuss the emerging trends in web application testing, and discuss

the implications for researchers and practitioners in this area. The results of our SLR

can help researchers to obtain an overview of existing web application testing

approaches, fault models, tools, metrics and empirical evidence, and subsequently

identify areas in the field that require more attention from the research community.

Keywords: Systematic literature review, Web application, Testing

vi

ÖZ

WEB UYGULAMASI TESTİ: BİR SİSTEMATİK LİTERATÜR İNCELEMESİ

DOĞAN, Serdar

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Yard. Doç. Dr. Aysu BETİN CAN

Ortak Tez Yöneticisi: Doç. Dr. Vahid GAROUSI

Eylül 2013, 88 sayfa

Bağlam: Web uygulamaları yaşamımızın bir çok alanını önemli ölçüde etkilemiştir. Bu

uygulamalara bağımlı olduğumuz alanlar arttıkça, web uygulamalarının güvenilirliği

daha önemli hale gelmiştir. Web uygulamalarını daha güvenilir kılmak için son on

yılda araştırmacılar web-tabanlı yazılım uygulamalarını test etmek amacıyla çeşitli

teknikler sunmuşlardır. Bu alanda yaptığımız literatür taraması sonucunda 2000 ve

2013 yılları arasında yayınlanmış 193 makale bulunmuştur.

Amaç: Web uygulaması testi alanının olgunlaşmaya devam etmesi ve bu alandaki

makale sayısının giderek artması göz önünde bulundurulduğunda sistematik olarak

bu alandaki yayınları belirlemek, analiz etmek, sınıflandırmak ve bu özelleşmiş

alandaki çalışmaların gidişatı ile birlikte çalışmalarda ortaya konan deneysel kanıtlar

hakkında genel görüntüyü ortaya çıkarmak önem kazanmıştır.

vii

Yöntem: Bu çalışmada web uygulaması testi alanındaki bilgi birikimi “Sistematik

Literatür İnceleme” (Systematic Literature Review - SLR) çalışması ile sistematik

olarak gözden geçirilmiştir. Bu çalışma, bu alanda daha önce yapılmış olan

sistematik eşleme (Systematic Mapping-SM) çalışmasının devamı ve tamamlayıcısı

niteliğindedir. Bu çalışmanın bir parçası olarak üç araştırma soru kümesi ortaya

konulmuş, çalışmaların seçim kriterleri tanımlanmış ve bu alandaki deneysel

kanıtlardan sonuçlar sentezlenmiştir.

Çıktılar: Çalışma havuzumuza web uygulaması testi alanındaki 2000-2013 yılları

arasında yayınlanmış 95 makale (bulunan 193 makale içerisinden elenerek) dahil

edilmiştir. SLR çalışmamızda çıkardığımız veriler genel erişime açık olacak şekilde

web üzerinden erişilebilir durumdadır. Bu çalışma kapsamındaki çıktılarımızın

başlıcaları şöyledir: (1) bu alandaki test araçlarının listesi ve yetenekleri, (2)

sunulmuş olan test ve hata modelleri, (3) bu alandaki deneysel çalışmaların nasıl

tasarlandığı ve raporlandığı, (4) deneysel çalışmalardaki titizlik düzeyi ve endüstriye

uygunluk durumu ve (5) bu alandaki deneysel kanıtlar.

Sonuç: Web uygulaması testi alanında ortaya çıkan eğilimler ve bu eğilimlerin bu

alandaki araştırmacı ve uygulayıcılara etkileri tartışılmıştır. Elde ettiğimiz sonuçlar

mevcut web uygulaması test yaklaşımları, hata modelleri, araçlar, metrikler ve

deneysel kanıtlar hakkında araştırmacılara genel bir bakış sunmakla birlikte daha

fazla ilgi gösterilmesi gereken alanların belirlenmesinde de araştırmacılara yardımcı

olabilecektir.

Anahtar Kelimeler: Sistematik literature gözden geçirmesi, Web uygulaması, Test

viii

DEDICATION

To My Family

ix

ACKNOWLEDGEMENTS

I am deeply grateful to my supervisor Assist. Prof. Dr. Aysu BETİN CAN and my co-

supervisor Assoc. Prof. Dr. Vahid GAROUSI who have guided me throughout this

research with their invaluable suggestions, criticisms and encouragement. They also

provided whole resources, data sheets, extracted data and tools of their recent SM

study which we have used to construct the basis of this study. Since this was a

collaborative research they also studied with me by sacrificing their precious time

without any complaint.

I am also thankful to my family for their patience during this process.

x

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... vi

DEDICATION ... viii

ACKNOWLEDGEMENTS .. ix

LIST OF TABLES .. xiii

LIST OF FIGURES .. xv

LIST OF ABBREVIATIONS .. xvi

CHAPTER

1. INTRODUCTION ... 1

2. BACKGROUND AND RELATED WORK ... 3

2.1. Secondary Studies in Software Testing ... 3

2.2. Online Paper Repositories in SE ... 5

2.3. Secondary Studies in Web Application Testing ... 5

3. RESEARCH METHOD ... 8

3.1. Overview ... 8

3.2. Goal and Research Questions .. 11

3.3. Article Selection .. 15

3.3.1. Source Selection and Search Keywords .. 15

3.3.2. Application of Inclusion/Exclusion Criteria 17

3.4. Final Pool of Articles and the Online Repository 18

xi

3.5. Data Extraction .. 18

3.6. Data Synthesis ... 19

4. RESULTS ... 21

4.1. RQ 1-What types of Test Models, Fault Models and Tools have been

proposed? ... 21

4.1.1. RQ 1.1-What types of input/inferred test models have been

proposed/used? .. 21

4.1.2. RQ 1.2-What types of fault models/bug taxonomy related to web

applications have been proposed? .. 23

4.1.3. RQ 1.3-What tools have been proposed and what are their

capabilities? ... 26

4.2. RQ 2-How are the empirical studies in WAT designed and reported? 28

4.2.1. RQ 2.1-What are the metrics used for assessing cost and effectiveness

of WAT techniques? .. 29

4.2.2. RQ 2.2-What are the threats to validity in the empirical studies? 38

4.2.3. RQ 2.3-What is the level of rigor and industrial relevance of the

empirical studies? ... 47

5. Level of Industrial Relevance .. 51

4.3. RQ 3-What is the state of empirical evidence in WAT? 54

4.3.1. RQ 3.1- Is there any evidence regarding the scalability of the WAT

techniques?.. 54

4.3.2. RQ 3.2-Have different techniques been empirically compared with

each other? .. 56

4.3.3. RQ 3.3-How much empirical evidence exists for each category of

techniques and type of web apps? ... 63

5. DISCUSSIONS .. 67

5.1. Findings, Trends ... 67

5.2. Discussion on Validity Threats .. 69

xii

5.2.1. Internal Validity ... 70

5.2.2. Construct Validity ... 70

5.2.3. Conclusion Validity ... 71

5.2.4. External Validity ... 71

6. CONCLUSIONS & FUTURE WORK .. 72

6.1. Conclusions .. 72

6.2. Future Work ... 75

REFERENCES ... 76

References of Primary Studies ... 76

Other References ... 84

xiii

LIST OF TABLES

Table 1- 22 Secondary Studies in Software Testing ... 4

Table 2- Secondary studies in in web application testing 6

Table 3 Identified SLR Tools ... 10

Table 4- RQs of the SM study (adapted from [2]) ... 13

Table 5- Search Keywords .. 16

Table 6- Fault models/bug taxonomy related to web applications 23

Table 7- Features of the tools available for download/use 27

Table 8- Frequencies of cost measures across empirical studies 29

Table 9- Frequencies of effectiveness measures across Empirical Studies 31

Table 10- Frequency of code coverage metrics used for the purpose of effectiveness

measurement .. 32

Table 11- Model coverage metrics used for the purpose of effectiveness

measurement .. 33

Table 12- Other coverage metrics ... 33

Table 13- Other metrics used/proposed for the purpose of effectiveness

measurement .. 35

Table 14- Validity threats in Empirical Studies .. 39

Table 15- Internal validity threats identified in the studies 41

Table 16- External validity threats identified in the studies 44

xiv

Table 17- Construct validity threats identified in the studies 45

Table 18- Conclusion validity threats identified in the studies 46

Table 19- Scoring rubric for evaluating relevance (adapted from [51]) 48

Studies having highest level of rigor and industrial relevance are given in Table 20

and Table 21. .. 51

Table 22 Primary studies having top level of rigor ... 51

Table 23 Top 10 primary studies having highest level of industrial relevance 51

Table 24- Studies which empirically analyzed scalability issues............................. 55

Table 25- Frequency of empirical studies under each WAT theme area 56

Table 26- List of studies conducting empirical comparisons with other studies/tools

 .. 58

Table 27- Frequency of studies under each WAT theme area 64

Table 28- Empirical studies presenting results on Client-tier web technologies 65

Table 29- Empirical studies presenting results on Server-tier web technologies 65

xv

LIST OF FIGURES

Figure 1- The review protocol used in this SLR study. ... 9

Figure 2- Annual trend of studies included in our pool ... 18

Figure 3- Types and frequencies of inferred test models 22

Figure 4- Number of tools presented in the papers over the years 27

Figure 5- Usage of multiple metrics in each of the studies, as an individual-value

plot .. 37

Figure 6- Bubble-chart of pair of cost and effectiveness metrics used in the studies

 .. 38

Figure 7- Number of papers identifying threats in each type 40

Figure 8- Number of identified threats in each single study 41

Figure 9- Trend of the number of empirical studies and type of identified threats

over the years ... 47

Figure 10- Histograms of Rigor and Relevance for the 58 empirical studies 50

Figure 11- Rigor versus relevance of the empirical studies in this SLR versus [51] . 52

Figure 12- Number of RQs in empirical studies ... 53

Figure 13- Trend of the cumulative number of studies under each WAT theme area

over the years ... 57

Figure 14- Empirical studies break down on the attributes of web applications under

test: location, dynamicity, and synchronicity. ... 64

xvi

LIST OF ABBREVIATIONS

ASP : Active Server Pages

CGI : Computer-generated imagery

DOM : Document Object Model

FSM : Finite State Machine

HTML : Hypertext Markup Language

HTTP : Hypertext Transfer Protocol

J2EE : Java 2 Enterprise Edition

JSP : Java Server Pages

LOC : Lines Of Code

N/A : Not Applicable

PDG : Program Dependence Graph

PHP : Hypertext Preprocessor

RQ : Research Question

SE : Software Engineering

SLR : Systematic Literature Review

SM : Systematic Mapping

SUT : System Under Test

UML : Unified Modeling Language

URL : Uniform Resource Locator

WAT : Web Application Testing

1

CHAPTER
CHAPTER 1

1.INTRODUCTION

The Web has had a significant impact on all aspects of our society, from business,

education, government, entertainment sectors, industry, to our personal lives. The

main advantages of adopting the Web for developing software products include (1)

no installation costs, (2) automatic upgrade with new features for all users, (3)

universal access from any machine connected to the Internet and (4) being

independent of the operating system of clients.

On the downside, the use of server and browser technologies make web

applications particularly error-prone and challenging to test, causing serious

dependability threats. A 2003 study conducted by the Business Internet Group San

Francisco (BIG-SF) [1] reported that approximately 70% of websites and web

applications contain defects. In addition to financial costs, defects in web

applications result in loss of revenue and credibility.

The difficulty in testing web applications is many-fold. First, web applications are

distributed through a client/server architecture, with (asynchronous) HTTP

request/response calls to synchronize the application state. Second, they are

heterogeneous, i.e., web applications are developed using different programming

languages, for instance, HTML, CSS, JavaScript on the client-side and PHP, Ruby,

Java on the server-side. And third, web applications have a dynamic nature; in

many scenarios they also possess nondeterministic characteristics.

During the past decade, researchers in increasing numbers, have proposed different

techniques for analyzing and testing these dynamic, fast evolving software systems.

2

As the research area matures and the number of related papers increases, it is

important to systematically identify, analyze and classify the state-of-the-art and

provide an overview of the trends in this specialized field. In this study, we present

a systematic literature review (SLR) of the Web Application Testing (WAT) research

domain.

In a recent work, V. Garousi et al. conducted a systematic mapping (SM) study [2]

in which 79 papers have been reviewed in the WAT domain. The current SLR is a

follow-up complementary study after that SM study. This SLR continues the study

started by V. Garousi et al. by focusing in depth into the empirical and evidence-

base aspects of the WAT domain. This SLR study has been conducted by paying

close attention to major differences between these two types of secondary studies,

e.g., refer to the SLR guideline by Kitchenham and Charters [3].

The paper selection phase of this study was carried out on April and May 2013, data

extraction lasted until July and data synthesis completed by the end of August 2013.

To the best of our knowledge, this study is the first SLR in the area of WAT. The

remainder of this thesis is outlined as follows. A review of the related work is

presented in Section 2. Section 3 explains our research methodology and research

questions. Section 4 presents the results of the SLR. Section 5 discusses the main

findings, trends and the validity threats. Finally, Section 6 concludes the paper

mentions the future work.

3

CHAPTER 2

2.BACKGROUND AND RELATED WORK

We classify related work into three categories: (1) secondary studies that have been

reported in the broader area of software testing, (2) online repositories in software

engineering, and (3) secondary studies focusing on web application testing.

2.1. Secondary Studies in Software Testing

We were able to find 24 secondary studies [2, 4-26] reported, as of this writing, in

different areas of software testing. We list and categorize these studies in Table 1

along with their study areas. Based on the “year” column, we observe that more

and more SMs and SLRs have recently started to appear in the area of software

testing. As per our literature search, we were able to find eight SMs and five SLRs in

the area, as shown in the table. The remaining 11 studies are “surveys”,

“taxonomies”, “literature reviews”, and “analysis and survey”, terms used by the

authors themselves to describe their secondary studies. The number of primary

studies studied in each study in Table 1 varies from 6 (in [25]) to 264 (in [22]).

The recent SM study [2] reviewed 79 papers in the WAT domain and is considered

the first step (phase) of the current SLR. The mapping (scoping) that has been

conducted in the SM study enabled us to classify the papers and identify empirical

studies. We continue in this SLR the secondary study that has been started in the

SM by focusing in depth into the empirical and evidence-base aspects of the WAT

domain. Note that as discussed by other researchers such as Petersen et al. [27]

and Kitchenham and Charters [3], the goal and scope of SM and SLR studies are

4

quite different and we follow those distinctions between previous SM [2] and this

SLR.

Table 1- 22 Secondary Studies in Software Testing

Type of
Secondary

Study
Secondary Study Area

Number of
Primary
Studies

Year Ref.

SM Non-functional search-based
testing

35 2008 [4]

SOA testing 33 2011 [5]
Testing using requirements
specification

35 2011 [6]

Product lines testing 45 2011 [7]

Product lines testing 64 2011 [8]

Product lines testing tools
Paper

unreachable
2012 [9]

Web application testing 79 2013 [2]
Graphical User Interface (GUI)
testing

136 2013 [26]

SLR Search-based non-functional
testing

35 2009 [10]

Unit testing for Business Process
Execution Language (BPEL)

27 2009 [11]

Formal testing of web services 37 2010 [12]
Search-based test-case
generation

68 2010 [13]

Regression test selection
techniques

27 2010 [14]

Survey/Analysis Object-oriented testing 140 1996 [15]

Testing techniques experiments 36 2004 [16]

Search-based test data generation 73 2004 [17]

Combinatorial testing 30 2005 [18]

SOA testing 64 2008 [19]

Symbolic execution 70 2009 [20]

Testing web services 86 2010 [21]

Mutation testing 264 2011 [22]

Product lines testing 16 2011 [23]
Taxonomy Model-based GUI testing 33 2010 [24]
Literature
review

TDD of user interfaces 6 2010 [25]

5

2.2. Online Paper Repositories in SE

A few recent secondary studies have reported online repositories to supplement

their study with the actual data. These repositories are the by-products of SM or

SLR studies and will be useful to practitioners and researchers by providing a

summary of all the works in a given area. Most of these repositories are maintained

and updated regularly. For instance, Harman et al. have developed and shared two

online paper repositories: one in the area of mutation testing [28], and another in

the area of search-based software engineering (SBSE) [29]. In three recent SM

studies conducted V. Garousi et al., they also shared the paper repositories online

[30-32].

We believe this is a valuable undertaking since maintaining and sharing such

repositories provides many benefits to the broader community. For example, they

are valuable resources for new researchers in the area, and for researchers aiming

to conduct additional secondary studies. Therefore, we provide the details of our

SLR study as an online paper repository [33].

2.3. Secondary Studies in Web Application Testing

We were able to find four secondary studies in the area of WAT [34-37]. A summary

of these works is listed in Table 2. All four works seem to be conventional

(unsystematic) surveys. Also, the size of their pool of studies is rather small,

between 20 and 29 papers.

Kam and Dean [34] conducted a survey of 20 WAT papers classifying them into six

groups: formal, object-oriented, statistical, UML-based, slicing, and user session-

based. Alalfi et al. [35] presented a survey of 24 different modeling methods used in

web verification and testing. The authors categorized, compared and analyzed the

different modeling methods according to navigation, behavior, and content. Di

Lucca and Fasolino [36] presented an overview of the differences between web

applications and traditional software applications, and how such differences impact

the testing of the former. They provide a list of relevant contributions in the area of

functional web application testing. Amalfitano et al. [37] proposed a classification

6

framework for rich internet application testing and describe a number of existing

web testing tools from the literature by placing them in this framework.

All these existing studies have several shortcomings that limit their replication,

generalization, and usability in structuring the research body on WAT. First, they are

all conducted in an ad-hoc manner, without a systematic approach for reviewing the

literature. Second, since their selection criteria are not explicitly described,

reproducing the results is not possible. Third, they do not represent a broad

perspective and their scopes are limited, mainly because they focus on a limited

number of related papers.

Another remotely-related work is [38] in which a SLR of usability evaluation in web

development has been reported, but that work does not cover the area of WAT. To

the best of our knowledge, there has been no SLR so far in the field of WAT.

Table 2- Secondary studies in in web application testing

Paper title Ref. Year
of

primary
studies

Summary

Lessons Learned
from a Survey of
Web Applications
Testing

[34] 2009 20

A survey of 20 papers
classifying them into six groups:
formal, object-oriented,
statistical, UML-based, slicing,
and user session-based

Modelling methods
for web application
verification and
testing: state of the
art

[35] 2009 24

The study surveyed 24 different
modelling methods used in web
site verification and testing.
Based on a short catalogue of
desirable properties of web
applications that require
analysis, two different views of
the methods were presented: a
general categorization by
modelling level, and a detailed
comparison based on property
coverage.

7

Testing Web-based
applications: The
state of the art and
future trends

[36] 2006 27

Surveyed different test-specific
modeling techniques, test-case
design techniques, and test
tools for web applications

Techniques and tools
for rich internet
applications testing

[37] 2010 29

A classification framework for
rich internet application testing
and the list of existing web
testing tools

8

CHAPTER 3

3.RESEARCH METHOD

We discuss next the following aspects of our research method:

• Overview

• Goal and research questions

• Article selection

• Final pool of articles and the online repository

• Data extraction

• Data synthesis

3.1. Overview

This SLR is carried out following the guidelines and process proposed by

Kitchenham and Charters [3], which has the following main steps:

• Planning the review:

• Identification of the need for a review

• Specifying the research questions

• Developing a review protocol

• Evaluating the review protocol

• Conducting the review:

• Identification of research

• Selection of primary studies

• Study quality assessment

• Data extraction and monitoring

• Data synthesis

9

Figure 1- The review protocol used in this SLR study.

9

10

After establishing the need for the review, we specified the research questions

(RQs), which are explained in Section 3.2. The process (review protocol) that we

developed in the planning phase and then used to conduct this SLR study is outlined

in Figure 1. The process starts with article selection (discussed in detail in Section

3.3). Then, we adapted the classification scheme of recent SM study [2] as a

baseline and extended it to address the goals and RQs of this SLR. Afterwards, we

conducted mapping in preparation of the SLR analysis and then synthesis to address

the RQs.

We also searched the existing tools that assist the SLR process. The list of identified

tools is given in Table 3. When we analyzed the web sites and existing

documentation of these tools, we have seen that only “SLRGuide” and “SLuRp”

cover the complete SLR process. We could not find any download information for

“SPIDER”. Other tools are publicly accessible online or available for download.

“SLR+” and “Researchr” aim helping the primary study discovery and selection

phase of SLR but do not cover the subsequent steps. Based on our investigation, we

concluded that “SLRGuide” and “SLuRp” are more mature tools for assisting SLR

studies than others. However in order to be able to import the data and use the

existing infrastructure of recent SM study [2], we preferred to use Google Docs as

our study environment which provides general purpose spreadsheets and file

sharing mechanisms but highly collaborative online study environment.

Table 3- Identified SLR Tools

Tool Name Summary SLR Support
Level

Online
Public
Access

SLRGuide1

An open source web based
SLR tool developed by
Middlesex University.
Supports all phases of an
SLR.

Complete Yes Yes

1 http://www.slrtool.org

11

Researchr2

A web site for finding,
sharing, and reviewing
scientific publications.
Provides an online
repository and enables
classification according to
keywords.

Partial Yes Yes

SLuRp3

A web based java
application supports all
phases of an SLR and it is
available for download.

Complete No Yes

SPIDER4
An experimental tool
targeting the medicine
domain.

Partial No No

SLR+5

An open source prototype
level tool for searching,
downloading and grouping
the studies through multiple
search engines.

Partial No Yes

3.2. Goal and Research Questions

According to the guideline by Kitchenham and Charters [3], the goal of a SM is

classification and thematic analysis of literature on a software engineering topic,

while the goal of a SLR is to identify best practices with respect to specific

procedures, technologies, methods or tools by aggregating information from

comparative studies.

RQs of a SM are generic, i.e., related to research trends, and are of the form: which

researchers, how much activity, what type of studies. On the other hand, RQs of a

SLR are specific, meaning that they are related to outcomes of empirical studies.

SLRs are typically of greater depth than SMs. Often, SLRs include an SM as a part of

their study [27]. In other words, the results of a SM can be fed into a more rigorous

2 http://researchr.org/
3 https://bugcatcher.stca.herts.ac.uk/SLuRp/
4 http://ajot.aotapress.net/content/62/3/335.full.pdf
5 http://sourceforge.net/projects/smtp/

12

SLR study to support evidence-based software engineering and that is exactly what

we have followed in our work.

The goal of our SLR study is to identify, analyze, and synthesize work published

during the past 13 years in the field of WAT with an in-depth focus on the empirical

and evidence-base aspects. Based on our research goal, we formulated three RQs.

To extract detailed information, each question is further divided into a number of

sub-questions, as described below:

• RQ 1-What types of Test Models, Fault Models and Tools have been

proposed?

It is important for new researchers to know the type and characteristics

of the above artifacts to be able to start new research work in this area.

o RQ 1.1-What types of input/inferred test models have been

proposed/used?

o RQ 1.2-What types of fault models/bug taxonomy related to web

applications have been proposed?

o RQ 1.3-What tools have been proposed and what are their

capabilities?

• RQ 2-How are the empirical studies in WAT designed and reported?

A study that has been properly designed and reported is easy to assess

and replicate. The following sub-questions aim at characterizing some of

the most important aspects of the study design and how well studies are

designed and reported:

o RQ 2.1-What are the metrics used for assessing cost and

effectiveness of WAT techniques?

o RQ 2.2-What are the threats to validity in the empirical studies?

o RQ 2.3-What is the level of rigor and industrial relevance of the

empirical studies?

13

• RQ 3-What is the state of empirical evidence in WAT?

This RQ attempts to synthesize the results reported in the studies in

order to assess how much empirical evidence we currently have. To

answer this question, we address the following sub-questions:

o RQ 3.1-Is there any evidence regarding the scalability of the WAT

techniques?

o RQ 3.2-Have different techniques been empirically compared with

each other?

o RQ 3.3-How much empirical evidence exists for each category of

techniques and type of web apps?

Some of the RQs (e.g., RQs 1.1-1.3, 2.3, 3.2 and 3.3) have been raised specific to

our SLR while some others have been adapted from similar SLRs in other areas of

testing, e.g., RQs 2.1, 2.2 and 3.3 have been adapted from another recent SLR on

search-based testing [13].

To further clarify the difference in goals and scope between the previous SM study

and this SLR, the RQs of the SM study are listed in Table 4 (adapted from [2]). We

can see that the two sets of RQs are different from each other and are

complimentary.

Table 4- RQs of the SM study (adapted from [2])

RQ 1 – Systematic mapping:

• RQ 1.1 – type of contribution: How many papers present test

methods/techniques, test tools, test models, test metrics, or test

processes?

• RQ 1.2 – type of research method: What type of research methods are

used in the papers in this area?

• RQ 1.3 – type of testing activity: What type(s) of testing activities are

presented in the papers?

• RQ 1.4 – test location: How many client-side versus server side testing

approaches have been presented?

14

• RQ 1.5 – testing levels: Which test levels have received more attention

(e.g., unit, integration and system testing)?

• RQ 1.6 – source of information to derive test artifacts: What sources of

information are used to derive test artifacts?

• RQ 1.7 – technique to derive test artifacts: What techniques have been

used to generate test artifacts?

• RQ 1.8 – type of test artifact: Which types of test artifacts (e.g., test

cases, test inputs) have been generated?

• RQ 1.9 – manual versus automated testing: How many manual versus

automated testing approaches have been proposed?

• RQ 1.10 – type of the evaluation method: What types of evaluation

methods are used?

• RQ 1.11 – static web sites versus dynamic web applications: How many of

the approaches are targeted at static web sites versus dynamic web

applications?

• RQ 1.12 – synchronicity of HTTP calls: How many techniques target

synchronous calls versus asynchronous Ajax calls?

• RQ 1.13 – client-tier web technologies: Which client-tier web technologies

(e.g., JavaScript, DOM) have been supported more often?

• RQ 1.14 – server-tier web technologies: Which server-tier web

technologies (e.g., PHP, JSP) have been supported more often?

• RQ 1.15 – tools presented in the papers: What are the names of web-

testing tools proposed and described in the papers, and how many of

them are freely available for download?

• RQ 1.16 – attributes of the web software under test: What types of

Systems Under Test (SUT), i.e., in terms of being open-source or

commercial, have been used and what are their attributes, e.g., size,

metrics?

15

RQ 2 – Trends and demographics of the publications:

• RQ 2.1 – publication count by year: What is the annual number of

publications in this field?

• RQ 2.2 – top-cited papers: Which papers have been cited the most by

other papers?

• RQ 2.3 – active researchers: Who are the most active researchers in the

area, measured by number of published papers?

• RQ 2.5 – top venues: Which venues (i.e., conferences, journals) are the

main targets of papers in this field?

3.3. Article Selection

We followed the same article selection strategy as we had used in our SM study. We

briefly discuss next the following aspects of article selection:

• Source selection and search keywords

• Application of inclusion/exclusion criteria

3.3.1. Source Selection and Search Keywords

Based on the SLR and SM guidelines [3, 27], to find relevant studies, we searched

the following six major online search academic article search engines: (1) IEEE

Xplore6, (2) ACM Digital Library7, (3) Google Scholar8, (4) Microsoft Academic

Search9, (5) CiteSeerX10, and (6) Science Direct11. These search engines have also

been used in other similar studies, e.g., [7, 39].

The coverage landscape of this SLR is the area of functional testing of web

applications, as well as (dynamic or static) analysis to support WAT. The set of

search terms were devised in a systematic and iterative fashion, i.e., we started

6http://ieeexplore.ieee.org
7http://dl.acm.org
8http://scholar.google.com
9http://academic.research.microsoft.com
10http://citeseerx.ist.psu.edu
11http://www.sciencedirect.com

16

with an initial set and iteratively improved the set until no further relevant papers

could be found to improve our pool of primary studies. By taking all of the above

aspects into account, we formulated our search query as shown in Table 5. We

searched the whole text of the studies if the search engine is capable of full text

search. If the search engine not permits full text search at least title, abstract and

the keywords of the studies included in the search process.

Table 5- Search Keywords

(web OR website OR “web application” OR Ajax OR JavaScript

OR HTML OR DOM OR PHP OR J2EE OR servlet OR JSP OR .NET OR

Ruby OR ASP OR Python OR Perl OR CGI) AND

(test OR testing OR analysis OR analyzing OR “dynamic

analysis” OR “static analysis” OR verification)

Since the SM study had identified 79 studies through a rigorous search process, we

imported them into the SLR paper pool without an additional scanning. Note that

the SM had considered the papers published until Summer 2011. We searched for

more recent papers between 2011 and 2013 and included them in our candidate

pool. The paper selection phase of this study was carried out on April and May

2013.

To decrease the risk of missing relevant studies, similar to previous SM studies and

SLRs, we searched the following sources as well manually:

• References found in studies already in the pool

• Personal web pages of active researchers in the field of interest: We

extracted the names of active researchers from the initial set of papers

found in the above search engines.

All studies found in the additional venues that were not yet in the pool of selected

studies but seemed to be candidates for inclusion were added to the initial pool.

With the above search strings and search in specific venues, we found 114 studies

which we considered as our initial pool of potentially-relevant studies (also depicted

17

in Figure 1). At this stage, papers in the initial pool were ready for application of

inclusion/exclusion criteria described next.

3.3.2. Application of Inclusion/Exclusion Criteria

Inclusion/exclusion criteria were also same as the SM study. To increase the

reliability of our study and its results, the authors applied a systematic voting

process among the team members in the paper selection phase for deciding

whether to include or exclude any of the papers in the first version of the pool. This

process was also utilized to minimize personal bias of each of the authors. The team

members had conflicting opinions on four papers, which were resolved through

discussions. Our voting mechanism (i.e., exclusion and inclusion criteria) was based

on two questions: (1) Is the paper relevant to functional web application testing and

analysis? (2) Does the paper include a relatively sound validation? These criteria

were applied to all papers, including those presenting techniques, tools, or case

studies/experiments.

Each author then independently answered each of the two questions for each

paper. Only when a given paper received at least two positive answers (from three

voting authors) for each of the two questions, it was included in the pool.

Otherwise, it was excluded. We primarily voted for papers based on their title,

abstract, keywords, as well as their evaluation sections. If not enough information

could be inferred from the abstract, a careful review of the contents was also

conducted to ensure that all the papers had a direct relevance to our focused topic.

In addition to this voting mechanism, we have checked the papers if recent version

of the same study exists in our pool. If any later study found with similar authors

and content, the previous one(s) excluded from the pool with consensus on

exclusion decision. Also since we review primary studies, identified secondary

studies moved to the related studies pool.

18

3.4. Final Pool of Articles and the Online Repository

After the initial search and the follow-up analysis for exclusion of unrelated and

inclusion of additional studies, the pool of selected studies was finalized with 95

studies. The reader can refer to the references section at the end of this thesis for

the full reference list of all primary studies. The final pool of selected studies has

also been published in an online repository using the Google Docs system, and is

publically accessible online at [33]. The classifications of each selected publication

according to the classification scheme presented in [2] and also the empirical data

extracted from the studies are also available in the online repository.

Figure 2 shows the number of papers in the pool by their year of publication. We

can notice that trend has been generally increasing from 2000 until 2010, but there

is a somewhat decreasing trend from 2010-2013. Note that the study was

conducted in the midst of the year 2013, thus the data for this year are partial.

Figure 2- Annual trend of studies included in our pool

3.5. Data Extraction

As discussed above, the recent SM study of V. Garousi et al. was the first step of

the current SLR. The mapping (scoping) that has been conducted in the SM study

19

enabled us to classify the papers and identify empirical studies (using the

classification “research facet” in the SM study). We conducted several new types of

classifications in this SLR to further classify the primary studies as needed by

several of our current RQs, e.g., RQ 1.1 (input/inferred test models), and RQ 2.1

(metrics used for assessing cost and effectiveness of WAT techniques).

The data extraction phase was conducted collaboratively among the authors and

data were recorded in the online spreadsheet [33]. Data extraction phase carried

out in May and June 2013.

3.6. Data Synthesis

After conducting further mapping analysis for the purpose of RQ 1 in this SLR, we

conducted synthesis for answering RQs 2 and 3. To develop our method of

synthesis, we carefully reviewed the research synthesis guidelines in software

engineering, e.g., [40-42], and also other SLRs which had used high-quality

synthesis approaches, e.g., [13, 43].

According to [40], the key objective of research synthesis is to evaluate the included

studies for heterogeneity and select appropriate methods for integrating or

providing interpretive explanations about them [44]. If the primary studies are

similar enough with respect to interventions and quantitative outcome variables, it

may be possible to synthesize them by meta-analysis, which uses statistical

methods to combine effect sizes. However, in software engineering in general and

in our focused WAT domain in particular, primary studies are often too

heterogeneous to permit a statistical summary. Especially for qualitative and mixed

method studies like ours, different methods of research synthesis, e.g., thematic

analysis and narrative synthesis, are required [40].

Based on those guidelines, the fact that the primary studies in our pool were too

heterogeneous and also the type of RQs in our SLR it was imperative to use

thematic analysis and narrative synthesis [40-42] in this work. We followed the

thematic analysis steps recommended by [41] which were as follows: extracting

20

data, coding data, translating codes into themes, creating a model of higher-order

themes, and finally assessing the trustworthiness of synthesis.

Data synthesis and reporting process completed in August 2013. During all phases

of this five-month study we paid attention to refine and validate the results of

previous steps.

21

CHAPTER 4

4.RESULTS

In this section, we present the results of our SLR study.

4.1. RQ 1-What types of Test Models, Fault Models and

Tools have been proposed?

We discuss next results for RQ 1.1, 1.2 and 1.3.

4.1.1. RQ 1.1-What types of input/inferred test models have been

proposed/used?

A large number of studies (40, 42%) proposed test techniques which used certain

models as input or inferred (reverse engineered) them. We classified those test

models as follows and the frequencies are shown in Figure 3:

• Navigation models (for pages): models such as finite-state machines (FSM)

which specify the flow among the pages of a web application.

• Control or data flow models: these models are in unit level and are either

control or data flows inside a single module/function.

• DOM models: The Document Object Model (DOM) is a cross-platform and

language-independent convention for representing and interacting with

objects in HTML, XHTML and XML documents. Several approaches generated

DOM models for the purpose of test-case generation or test oracles.

• Other: Any models other than the above.

22

The navigation models seem to be the most popular as 22 studies used a type a of

navigation models. 7 studies used DOM models for the purpose of testing. Five

studies used control or data flow models. The “Other” category included models

such as: Program Dependence Graphs (PDGs) [S9], Database Extended Finite State

Machine (DEFSM) [S22], a concept analysis model called Lattice [S25], UML models

for test architecture [S26], a model called Abstract Description of Interaction (ADI)

and UML models for business logic [S53], Unified Markov Models (UMMs) [S54],

UML class diagram for ASP pages [S79], Request Dependence Graph (RDG) [S84]

and statistical testing models [S91].

Navigation models [S1, S7, S11, S14, S30, S32, S35, S37, S43,
S51, S54, S55, S56, S58, S60, S70, S81, S82,
S85, S86, S88, S93]

Control or data flow models [S1, S31, S75, S76, S78]

DOM models [S3, S48, S49, S59, S66, S69, S92]

Other
[S9, S22, S25, S26, S53, S54, S79, S84, S91]

Figure 3- Types and frequencies of inferred test models

Navigation models and DOM models especially used in test automation studies for

testing functionality of web applications through the user interface. When we

checked the testing level of studies we have seen that these navigation models are

mostly used in system and integration level testing studies. On the other hand, DOM

models mostly preferred in client side testing studies instead of parsing the complex

HTML code. It facilitates pragmatically analyzing the content and dynamic behavior

of web pages. When we look at the control or data flow models; they are mostly

23

used in white box testing studies for representing the control flow inside a function

or module.

4.1.2. RQ 1.2-What types of fault models/bug taxonomy related to

web applications have been proposed?

To develop effective test techniques, it is important to understand and characterize

faults specific for web applications and to develop bug taxonomies in this domain.

Similar to what was conducted by another SLR in the area of testing concurrent

software [45], we extracted the web fault models and bug taxonomies proposed in

the primary studies, as summarized in Table 6. 21 studies discussed fault models

and some of them conducted fault feeding (mutation testing) based on the

proposed types of faults.

It is worth highlighting two of the studies [S36, S38] in this context. In [S36], a bug

severity taxonomy was proposed which was used to assess the effectiveness and

performance of a mutation testing tool for JavaScript. In [S38], a web fault

taxonomy was proposed, was empirically validated, and used for fault feeding

(mutation testing). In that study, 31 fault types classified under 6 categories were

proposed, e.g., faults related to browser incompatibility, faults related to the needed

plugins, faults in session synchronization, faults in persistence of session objects,

and faults while manipulating cookies.

Table 6- Fault models/bug taxonomy related to web applications

Study Fault types

S2 • Authentication
• Multi-lingual
• Functionality
• Portability
• Navigation
• Asynchronous communication,
• Session,
• Form construction

S13 • Faults in simple link transitions
• Faults in form link transitions
• Faults in component expression transitions
• Faults in operational transitions
• Faults in redirect transitions

24

S16 • Data store: faults that exercise application code interacting with the
data store

• Logic: application code logic faults
• Form: defect in form actions
• Appearance: faults that change the way the page appears

S17 • Link fault: changing a hyperlink’s location

S24 • Multi-tier architecture faults
• GUI faults
• Hyperlinked structure faults
• User authentication faults

S33 • Syntactic HTML faults, e.g., element not allowed, missing attribute,
end tag for unfinished element

S34 • User-event fault: Do not replay the event at the client
• Message fault: Do not forward the message to the server
• Timeout fault: Do not replay the timeout at the client

S36 Bug severity taxonomy:

• Critical: crashes, data loss
• Major: loss of functionality
• Normal: some loss of functionality, regular issues
• Minor: loss of functionality
• Trivial: cosmetic issue

S37 Navigation faults:

• Basic faults. This first category corresponds to errors that can be
reproduced by simply using the application’s navigation links, and
possibly the web browser’s back button and bookmark functionality.

• Multi-window faults: Multi-window Errors. As in the previous
category, these errors can be reproduced solely by using the
application’s and web browser’s buttons; however, they require two
different browser windows.

• Direct URL faults. This type of errors are caused by typing a URL in
the web browser’s location bar from the “wrong” context.

S38 31 fault types classified under 6 categories, e.g.;

• Faults related to browser incompatibility,
• Faults related to the needed plugins,
• Faults in session synchronization,
• Faults in persistence of session objects,
• Faults while manipulating cookies

S40 • Faults specific to PHP: execution failures are caused by missing an
included file, wrong MySQL query and uncaught exceptions

• Producing malformed HTML
S49 • DOM validity

• Back-button compatibility
S50 • DOM modifications

S52 • Scripting faults: This includes faults associated with variables, such
as definitions, deletions, or changes in values, and faults associated
with control flow, such as addition of new blocks, redefinitions of

25

execution conditions, removal of blocks, changes in execution order,
and addition or removal of function calls.

• Forms faults: This includes addition, deletion, or modification of a
forms’ name or predefined values for a name. In our target site,
such faults were seeded in the sections of the scripts that
dynamically generated the html code.

• Database query faults: This consists of the modification of a query
expression, which could affect type of operation, table to access,
fields within a table, or search key or record values.

S54 • Permission denied
• No such file or directory
• Stale NFS file handle
• Client denied by server configuration
• File does not exist
• Invalid method in request
• Invalid URL in request connection

S57 • Blank page
• 404 error
• Cosmetic
• Language error
• CSS error
• Code on the Screen
• Wrong page / no redirect
• Authentication
• Permission
• Session
• Search
• Database
• Failed upload
• Missing image

S59 • Dead or unreachable JSP code, which often indicates unintended
behavior

• Calls to built-in functions with a wrong number of arguments or with
arguments of unexpected types

• Uses of the special JavaScript value undefined (which appears when
attempting to read a missing object property) at dereferences or at
function calls

S63 • Faults in PHP programs: execution faults,
• HTML faults: these involve situations in which generated HTML code

is not syntactically correct, causing them to be rendered incorrectly
in certain browsers.

S69 Ajax faults:

• Incorrect manipulation of the DOM, for example deriving from
assumptions about the DOM structure which become invalid during
the execution because of page manipulation by JavaScript code.

• Inconsistency between code and DOM, which makes the code
reference an incorrect or nonexistent part of the DOM.

• Unintended interleaving of server messages

26

• Swapped callbacks
• Executions occurring under incorrect DOM state

S84 • GUI faults
• Database operation faults
• Navigation faults

S92 • Layout issues
• Differences in element position
• Size
• Visibility or appearance
• Functionality issues

4.1.3. RQ 1.3-What tools have been proposed and what are their

capabilities?

52 of the 95 papers (54%) presented (mostly prototype-level) tool support for the

proposed WAT approaches. In order to count a study as proposing a tool, we looked

if the tool is proposed in that study. We did not count the tools used but not

proposed in the study itself. Also the used existing commercial, open source or

academic tools are not in the scope of this research question. We thought that a

natural question to ask in this context is whether the presented tools are available

for download, so that other researchers and practitioners could use them as well.

We only counted a presented tool available for download if it was explicitly

mentioned in the paper. If the authors had not explicitly mentioned that the

presented tool is available for download, we did not conduct internet searches for

the tool names. Only 11 of the 52 presented tools (21%) were available for

download. We also wanted to know whether more recently-presented tools were

more likely to be available for download. To assess this, Figure 4 shows the annual

trend of the number of tools presented in the papers and whether they are available

for download. We can notice that, in the papers presented after 2008, more and

more tools are available for download, which is a good sign for the community.

27

Figure 4- Number of tools presented in the papers over the years

To further answer RQ1.3, we extracted the features and capabilities of the tools

available for download. They are reported in Table 7.

Table 7- Features of the tools available for download/use

Tool name Study Features URL

MBT4Web S7
Model-based testing framework
for web applications

www.mbt4web.fh-
stralsund.de

MUTANDIS S36

JavaScript mutation testing tool
that leverages static and
dynamic program analysis to
guide the mutation generation
process towards parts of the
code that are error-prone or
likely to influence the program’s
output

www.github.com/saltl
ab/mutandis

ATUSA
S48,
S66

Dependent on Crawljax.
Automatically testing UI states of
AJAX

www.crawljax.com

Crawljax S66
Crawling Ajax-based web
applications and reverse
engineering of their FSMs

www.crawljax.com

JSART S50
Regression testing of JavaScript
code based on assertions

www.salt.ece.ubc.ca/c
ontent/jsart

Tool-suite:
(CreRIA,
CrawlRIA,
Test Case

S67
A tool-suite for dynamic analysis
and automatic regression testing
of JSP applications

wpage.unina.it/ptram
ont/downloads.htm

28

Generator,
Test Case
Reducer,
DynaRIA)

reAJAX S85
A tool for extracting the FSM of
Ajax applications through
dynamic and static code analysis

selab.fbk.eu/marchett
o/tools/ajax/testing1/
experimentData.zip

WebMate S93

A tool-set which systematically
explores all interactions in a web
application and devises a usage
model with all distinct behaviors
of the application. The tool also
creates tests that cover all
distinct behaviors in the usage
model to provide fully automatic
cross-browser compatibility
testing.

www.degesso.de

WebVizOr S94
A visualization tool for applying
automated oracles and analyzing
test results of web applications

www.eecis.udel.edu/
~hiper/webvizor

Web Portal
In-
container
Testing
(WIT)

S95

A tool for in-container testing of
web portals. Using the aspect
technology, the test code is
injected into the application code
allowing the tests to run in the
same environment as the portal
application.

sourceforge.net/proje
cts/wit-ict/files/wit-ict

4.2. RQ 2-How are the empirical studies in WAT designed

and reported?

This research question aims to investigate and assess the design and reporting of

empirical studies in the domain of WAT. To answer this question, we further divided

it into three sub-questions. By answering each sub-question individually, we will

answer the main research question. Though the results are presented in tables that

summarize the main findings, the reader can obtain a breakdown of which papers

led to these findings in the online paper repository [33].

29

4.2.1. RQ 2.1-What are the metrics used for assessing cost and

effectiveness of WAT techniques?

Assessing the cost-effectiveness of WAT techniques is an important objective of

empirical studies in this area. We discuss next the list of metrics used for assessing

cost and effectiveness.

4.2.1.1. Cost Metrics

Based on the type of metrics used in the primary studies, we classified cost metrics

into four categories: (1) effort/test time, (2) test-suite size, (3) memory space, and

(4) other. Frequencies of the cost metrics used in the empirical studies are shown in

Table 8 and discuss them next.

Table 8- Frequencies of cost measures across empirical studies

Effort /

test time
Test-

suite size
Memory

space
Other None

Empirical studies

(N=58)

26 17 7 3 22

44% 29% 12% 6% 37%

Effort / test time

26 studies measured test effort/time and, by doing so, most of them aimed at

assessing the scalability and practicality of the approaches. For example, [S2]

measured “preparation” time of the approach it proposed which was the time

required (in man-hours) to prepare the testing environment (e.g., model extraction,

requirements analysis, model construction, probes insertion, etc.).

In [S5], a module of the test-case generation tool was a constraint solver and a part

of the empirical study was to measure the running time (in seconds) of the solver to

ensure that it will scale up to large SUTs. [S10] is an empirical comparison of three

test-suite reduction techniques for user-session-based testing of web applications:

concept analysis, and two requirements-based approaches. Their study carefully

measures the execution time of each of the phases and compares the time

performance of the three techniques. [S14] measured and reported the crawling

30

time (in minutes) needed for the tool to run. [S16] proposed automated oracles for

web applications and compared their execution times on four case study SUTs. In

the case-study of [S16], the slowest oracle executed in 14 minutes on average,

whereas replaying the test suite took about 90 minutes.

[S48] measured both the amount of manual effort by human in utilizing the

proposed approach and also the tool’s performance. Some studies measured the

amount of overhead time needed to run certain tool, e.g., [S50] presented a tool

called JSART for JavaScript assertion-based regression testing and measured the

extra time needed to execute the application while assertion checks are in place.

[S92] also used execution time to assess scalability. Nine web pages were evaluated

and it was reported that analysis of each of them took the proposed test tool less

than five minutes to complete.

Test-suite size

Test-suite size is one of the oldest and most conventional cost metrics in software

testing, which was measured in 17 studies. In most of the cases, the goal of

measuring test-suite size was to correlate it with effectiveness metrics, e.g.,

coverage and mutation score. For example, in [S3], one of the RQs was to find out

the level of code coverage achieved by each of the test generation algorithms under

consideration that each is allowed to generate the same number of tests.

Another group of works measuring test-suite size were those which aimed at the

classical problem of test suite reduction, i.e., to reduce the test-suite size while

keeping the same fault detection effectiveness. Six studies [S10, S12, S47, S67,

S69, S89] had the above-mentioned objective. For instance, [S10] is an empirical

comparison of three test-suite reduction techniques for user-session-based testing.

[S12] examined the impact of three test-suite reduction techniques on cost/benefit

of test suites.

Memory space

For test techniques to be practical, they should have reasonable memory space

requirements and should scale up for large SUTs. Seven studies [S10, S16, S17,

31

S18, S28, S51, S90] measured this metric. We discuss [S16, S17] as two

representative studies.

[S16] proposed automated oracles for web apps and compared their memory space

requirements on four SUTs. [S17] proposes an automated framework for user-

session-based testing of web-based software that focuses on scalability and

evolving the test suite automatically as the application’s operational profile changes.

To quantitatively measure scalability, the study reported the memory costs of

replaying the test suite for the two case study systems (consuming 4.2 and 18 MB

of RAM).

Other

Three studies [S2, S4, S68] used/proposed other types of cost metrics, which were

related to cost and complexity. [S2] measured test-suite complexity which was

defined as the number of steps (test commands) required to execute whole suite.

Note that this metric is different than test-suite size. [S4] measured number of

states and number of edges in the navigation model, a specific test model that was

generated for the purpose of testing. [S68] reported size metrics of the test models,

finite-state machines, built in the case study, which included the number of states

and edges.

4.2.1.2. Effectiveness Metrics

Distribution of effectiveness measures across empirical studies is shown in Table 9.

Code coverage was the most popular metric (used in 28 studies) followed by

detection of injected faults (mutation score) which is used in 27 studies. We

classified coverage into three categories: coverage of code, coverage of models

(e.g., FSM), and coverage of other artifacts (e.g., URLs). Each metric type is

discussed next.

Table 9- Frequencies of effectiveness measures across Empirical Studies

Empirical studies (N=58)

Coverage (code) 28 29%

32

Coverage (model-based requirements) 9 9%

Coverage (other) 15 16%

Detecting real faults 17 18%

Detecting injected faults 27 28%

Other 10 11%

None 9 15%

Code coverage metrics seem to be quite popular in assessing effectiveness of WAT

techniques. 28 papers used at least one type of code coverage in their evaluations.

We further counted the number of papers using each type of code coverage and

results are shown in Table 10. Statement (also called line or node) coverage was

the most widely used coverage metric. Both data-flow and control-flow metrics have

been used in the studies.

Table 10- Frequency of code coverage metrics used for the purpose of effectiveness
measurement

Metric # of studies % of empirical studies

Statement/line/node 20 34%

Block 3 5%

Branch 6 10%

Condition 1 2%

Path 3 5%

Functions 2 3%

Method 1 2%

All uses 1 2%

All defs 1 2%

All def-use 2 3%

We distinguished model-based coverage metrics from code-based ones since they

were based on inferred models of web applications, e.g., FSM models. We identified

four types of metrics in this category: state coverage, model edge (transition)

coverage, model path coverage and prime path coverage (defined in [S62]). Table

11 shows the references.

33

Table 11- Model coverage metrics used for the purpose of effectiveness
measurement

Model coverage metrics Studies

State coverage S43, S49, S67, S69

Edge (transition) coverage S4, S43, S67, S69, S85

Path coverage S43

Prime path coverage S62

15 empirical studies presented and utilized coverage metrics which were not code or

model-based. We categorized them under the “Coverage (other)” category in in

Table 9. We have summarized the list and brief definition of those metrics in Table

12.

Table 12- Other coverage metrics

Coverage metrics Studies

• Use-case coverage: number of use cases exercised by a test suite.
S2

• Event space coverage: number of events in the GUI space of the
SUT exercised by a test suite.

S5

• All-URL coverage: covering each URL of the application at least
once.

S10

• Page coverage: every page in the SUT is visited at least once in
some test case.

• Hyperlink coverage: every hyperlink from every page in the site is
traversed at least once.

S11,
S77

Three database-specific coverage criteria:
• Page access coverage: measures the adequacy of test cases for

ensuring that all server pages are executed at least once.
• SQL statement coverage: measures the adequacy of test cases to

insure that all possible SQL statements, including dynamically
constructed ones, are tested at least once.

• Server environment variable coverage: Server environment variables
are variables returned by HTTP forms on generated pages using
GET or POST. Server environment variable coverage measures the
adequacy of test cases to insure the coverage of all server
environment variables at the level of the web application.

S20

34

• Single URLs: requires all URLs in the base URL set of a SUT to be
covered at least once by the test suite.

• URL seq2: requires every transition from each URL to any other URL
in the SUT to be covered at least once by the test suite.

• URL names: requires all possible URLs together with variable names
(e.g., login.asp? email&password) to be covered at least once by
the test suite.

• URL seq2 names: requires covering “URL seq2” criterion and also all
the possible variable names on each pair of URLs.

• URL names values: A test set should capture names and values of
variables responsible for the dynamic behavior of a web application
(e.g., login.asp? email=”test@gmail.com”& password=”pass”).

• URL seq2 names values: A test set satisfying URL seq2 names
values should capture control flow as well as the names and values
of variables responsible for changing URL control flow.

S28

• All rules coverage: Given a set of formal business rules, a test suite
should cover them all. An example of a formal business rule:
card_type_record_page.name≠EMPTY ∧
explored(card_type_record_page.insert)

S43

• Input-parameter coverage: covering all possibilities of input
parameters using black-box approaches, e.g., equivalence classing

S45

• Command-form coverage: A coverage criterion specific for database
applications that focuses on adequately exercising the interactions
between an application and its underlying database. It has been
defined in [55].

S45,
S64

• Template variable coverage: Covering all the template variable in
HTML pages.

S62

• Input validation coverage (IVC): At least one path in the program’s
CFG w.r.t. the validation of inputs has been covered.

S76

• All-hyperlinks
• All-input-GUI
• All-events

S78

• Pages
• Index pages,
• Web object with high coupling

S81

• Request coverage
• Data dependence transition relation coverage
• Link dependence transition relation coverage

S84

35

10 studies used metrics other than coverage or mutation score for the purpose of

effectiveness measurement. Table 13 lists those studies and the names of the

metrics. Each metric is briefly discussed next.

Table 13- Other metrics used/proposed for the purpose of effectiveness
measurement

Metrics Studies

False positives, False negatives S30, S21, S50 , S57, S66

Precision, Recall S21, S50 , S57, S64

Number of interfaces discovered S45

Number of DOM violations S49

Reliability growth S54

Test path reduction rates S9

As shown in Table 13, five studies measured the accuracy of their proposed

approaches by measuring false positives and/or false negative metrics. A false

positive is a mistakenly reported fault. A false negative is an undetected real fault.

Three of those studies have gone further and measured the precision and recall,

based on false positive and false negative metrics.

[S45] presented an approach for test-case generation for web applications using

automated interface discovery. To assess effectiveness, besides a few coverage

metrics, the study measured the number of interfaces discovered in its case study.

[S49] presented an invariant-based automatic testing approach for AJAX

applications. A metric used for assessing the effectiveness of the approach was the

number of DOM violations, given a set of invariants.

In [S54], usage and reliability of web applications was measured and modeled for

the purpose of statistical web testing. Test effectiveness was measured by the

reliability change (or growth) through the testing process. This reliability change

was evaluated by software reliability growth models (SRGMs), i.e., Goel-Okumoto

model.

36

[S9] presented a regression testing approach for PHP web applications. As we

know, test reduction is an important goal in regression testing. Thus, this study

measured a relevant metric, i.e., test path reduction rates.

Detecting injected faults metric is the second mostly used effectiveness metric in

28% of the empirical studies. In order the compare the fault detection capability of

techniques, tools etc. source of the subject application is modified for injecting

artificial faults which is called mutation. Then the number, severity or other

attributes of detected injected faults compared for evaluating effectiveness. E.g.,

[S2] evaluates the fault detection capability of their state-based testing technique,

developed to test AJAX-based applications, by comparing the revealed injected

faults with existing other web testing techniques. Another study [S16] presents a

suite of automated oracle comparators for testing web applications and evaluates

the effectiveness of these comparators by comparing the number of injected faults

each oracle correctly identifies.

17 studies used detecting real faults metric for effectiveness evaluation. This metric

is similar to detecting injected faults metric but here the faults are not artificial.

These studies use real subject applications without any mutation and evaluate the

capability of an approach or tool of revealing already existing real faults in the

application. [S3] proposes a framework for automated testing of JavaScript web

applications using feedback-directed automated test generation for JavaScript. They

experimented their framework on 10 open source web applications and evaluated

the effectiveness by using achieved code coverage as well as the number of

detected real HTML validity and runtime errors for their different algorithms.

4.2.1.3. Usage of Multiple Metrics

We noticed that many studies have measured and reported multiple metrics.

Furthermore, we hypothesized that studies with more mature research facet

(validation research vs. more mature evaluation research approaches) might use

more metrics in their evaluations. To evaluate this hypothesis, we plotted the

number of cost and effectiveness metrics in each study, grouped by the two above

research facet types as shown as an individual-value plot in Figure 5.

37

Although we do not notice statistically significant differences between the research

facet types, it is interesting to observe that, generally, for the number of

effectiveness metrics, at least, studies with evaluation research approaches tend to

use slightly more metrics compared to validation research studies.

Figure 5- Usage of multiple metrics in each of the studies, as an individual-value

plot

4.2.1.4. Pairs of Cost and Effectiveness Metrics

In a follow-up to usage of multiple metrics in each study, we wanted to find out

which pairs of cost and effectiveness metrics have been used more often in the

studies. To analyze this objective, we counted the number of studies which had

used each pair of the metrics discussed in previous sections. The results are shown

using a bubble chart in Figure 6.

As we can observe, the three most widely used metric pairs are:

• (detecting injected faults, effort)

• (detecting injected faults, test-suite size)

• (code coverage, effort)

Research Facet
Num. of Cost / effort metricsNum. of effectiveness metrics

EvaluationValidationEvaluationValidation

5

4

3

2

1

0

N
u

m
b

e
r

o
f

m
e

tr
ic

s

38

These pairs of metrics are commonly used in the general software testing literature

for the purpose of assessing test effectiveness, e.g., [46, 47] and it thus seems that

researchers in the WAT domain have adapted those metrics as well.

Figure 6- Bubble-chart of pair of cost and effectiveness metrics used in the studies

4.2.2. RQ 2.2-What are the threats to validity in the empirical

studies?

Identification and discussion of validity threats is the one of the most important

aspects of empirical research in software engineering [48]. Several studies have

presented classifications and have analyzed the validity threats in software

engineering in order to guide researchers on how validity threats are analyzed and

alleviated in empirical software engineering [49, 50].

In our set of primary studies, most of the empirical studies mentioned these threats

explicitly, while some have referred to these threats as limitations [S33, S37, S62,

S91, S92, S93]. We have extracted the threats in instances when authors explicitly

identified them as validity threats. The types of validity threats are classified into the

following four types [48]:

10

9

5

4

7

5

1

7

5

2

1

7

2

16

13

1

1

8

7

C
o

s
t

m
e

tr
ic

Effectiveness metrics

Other

Memory space

Test-suite size

Effort / test time

39

• Internal validity threats: Threats which may have affected the results and

have not been properly taken into account.

• Construct validity threats: Threats about the relationship between theory

and observation(s).

• Conclusion validity threats: Possibility to derive inaccurate conclusions from

the observations.

• External validity threats: Threats that affect the generalization of results.

We extracted the threats from the papers which we have identified as validation and

evaluation research. In those papers that have a “Threats to Validity” section but

have not mentioned the type of threats explicitly, we have identified the threat

types according the classification above. In order to synthesize the validity threat

data, we needed a threat classification in higher level of granularity. To the best of

our knowledge, there is no such classification for validity threats of WAT studies in

the literature. To overcome this problem, we classified the threats according to their

reasons by defining short phrases for each type of threat based on the description

in the paper text. E.g. “representativeness of SUTs”, “error in human-based

identification”. This brought us a new classification scheme for validity threat types

as given in Table 15-Table 18.

Since RQ 2.2 focuses on empirical studies, the papers which are categorized as

validation or evaluation research were taken into account when analyzing the

validity threats. Out of the 13 studies categorized under “Evaluation Research”, all

of them identified at least one threat, while out of the 45 studies categorized under

“Validation Research”, only 23 (51%) of them identified at least one threat (Table

14).

Table 14- Validity threats in Empirical Studies

Type of Paper

Research Facet

Number of

Empirical Studies

Identified at Least

one Validity Threat
Percent

Evaluation Research 13 13 100%

Validation Research 45 23 51%

Total 58 36 62%

40

During the extraction of validity threats, we realized that some threats were

categorized under more than one category, e.g., “representativeness of seeded

faults” was referred to as an external threat in three studies [S17, S28, S65], but

most of the other studies categorized this threat as an internal threat. According to

our understanding and interpretation of the empirical software engineering

literature, we treated this threat as an internal threat.

As Figure 7 shows, external and internal validity threats are the most addressed

threats. Construct and conclusion threats were identified in only 9 and 6 studies

respectively.

Figure 7- Number of papers identifying threats in each type

We also wanted to assess the number of identified threat types in each single study.

Figure 8 shows the histogram of the data. 22 of the 58 empirical studies did not

identify any type of validity threats, while 5 studies identified one type of threat and

3 studies [S2, S29, S38] identified all four types.

41

Figure 8- Number of identified threats in each single study

We list in Table 15 the list of internal validity threats identified in the empirical

studies. In total, 20 types of internal validity threats were identified in 30 studies.

“Representativeness of injected faults/mutations” appeared in 17 studies and is the

most addressed internal validity threat. “Dependence on third party tools/libraries”

and “Error in human-based identification” are the next two mostly addressed

threats.

Table 15- Internal validity threats identified in the studies

Type Explanation Studies Count

Representativeness
of injected
faults/mutations

• Selection process for faults
may be affected by
researchers’ bias (e.g. from
fault models they have)

• Hand-seeded faults
• Type of mutations
• Faults may not represent real

world situations
• Even distribution of

mutations

S2, S13, S16,
S17, S21, S28,
S34, S40, S47,
S48, S49, S52,
S57, S63, S65,
S85, S90

17

42

Dependence on 3rd
party tools/libraries

• Faults in used 3rd party
tools/libraries

• Change in implementation of
3rd party tools/libraries may
affect results

S14, S45, S48,
S61

4

Error in human-
based identification

• Some steps and
identifications done by
human

• Human training bias also
included in this category

S21, S29, S36,
S57

4

Simplicity of the
SUTs

• More complex SUTs may
change the empirical results

S10, S17 2

Subjectivity in
applying techniques

• Proposed technique includes
human dependent manual
steps

S2 1

Not considering all
important metrics

• e.g. cost effectiveness S52 1

Representativeness
of human subjects

• The experience level and
expertise of human subjects
in manual steps of the study

S57 1

Faults in
implemented tool • Quality of the proposed tool S61 1

Different behavior of
browsers

• Study applied on one or
limited number of browsers,
results may change on other
browsers.

S16 1

Limited source of
information to derive
test artifacts

• e.g. lack of a large number
of user sessions that
constitute the requirements
universe.

S28 1

Small number of
classifiers

• In taxonomy studies, having
more human classifiers would
lead to better results

S38 1

Automatically
generated inputs

• Automatically generated or
classified information to
generate test artifacts

S51 1

43

Time costs
depending on case

• Execution time depends on
the machine used or test
case characteristics

S65 1

Error in oracle
comparators

• Oracle comparators can have
false positives and false
negatives

S65 1

Test suite size • Size of test suite affecting
the results

S85 1

Biased SUT selection

• Selection process for the
subjects is not randomized.
Researcher’s bias affects the
choice.

S93 1

Selection of criteria
to generate test
artifacts

• e.g. results are influenced by
the used criterion to extract
test cases from the built
models

S70 1

Initial results
affecting subsequent
ones

• e.g. failure in a test case
affects next one

S66 1

Dependence to
database state and
configuration

• Behavior of SUTs which are
using a database may
change according to different
state and configuration.

S19 1

Error in human
based code
modification

• Manually changing
statements in a program
during a phase of the
approach,

• Removing or fixing any
dynamic environment
variables manually.

S9 1

Total number of papers identifying an internal validity
threat

30

External validity threats are one of the mostly addressed types of threats. We list in

Table 16 the list of external validity threats identified in the empirical studies. 7

distinct types of external validity threats were identified in 36 papers. According to

the results, “Representativeness of SUTs” is the mostly addressed external validity

threat with 55% of the empirical studies in our pool.

44

Table 16- External validity threats identified in the studies

Type Explanation Study Count

Representativeness
of SUTs

• Size, technology, context,
type etc. of subject
applications cannot be
generalized to whole target
domain.

S2, S3, S9,
S12, S13, S14,
S16, S17, S18,
S19, S21, S28,
S29, S34, S47,
S36, S45, S47,
S48, S51, S52,
S57, S59, S61,
S63, S65, S66,
S69, S70, S85,
S90, S93

32

Need for more
real-world studies

• Empirical comparison needs
to be evaluated further by
experimenting with more real-
world web applications

S4, S10, S49 3

Lack of comparison
to other studies

• Not comparing the study with
related studies.

S36, S40 2

Scalability not sure • Empirical study not applied on
realistic large scale subjects

S2 1

Representativeness
of bug dataset

• (Mostly in taxonomy studies)
The input data set is relatively
small.

S38 1

Interaction style of
web app users

• Participants’ interaction
patterns with the system are
not sufficient for representing
potential users and real world
system characteristics.

S52 1

Total number of papers identifying an external validity
threat

36

We list in Table 17 the list of construct validity threats identified in the empirical

studies. 10 distinct types of construct validity threats were identified in 9 papers.

45

Table 17- Construct validity threats identified in the studies

Type Explanation Study Count

Minimization of
false positives at
the risk of not
detecting faults.

• Trying to minimize false
positives rises the number of
false negatives

S90 1

Inadequacy of test
input generation
strategy

• Efficiency and effectiveness
of the approach used in
generation of test inputs and
artifacts has important
impacts on the results.

S45 1

Subjectivity in bug
classification

• Human based classification of
faults

S38 1

Inadequate bug
location report • Fault localization is weak S40 1

Not considering the
severity of the
faults

• E.g. potential impact of fault
severity on the used
techniques and oracle
comparators.

S17 1

Subjectivity in
choosing metrics

• Human based metric
selection may include a level
of subjectivity

S2 1

Faults in
implemented tool

• Depends on the quality and
the reliability of implemented
tool

S13 1

Dependence on
crawler’s
capabilities,

• Quality of 3rd party crawler
tool affects would affect the
results.

S29 1

Dependence on
definition of metrics

• E.g. different definitions of
crawlability metrics may lead
to different results

S29 1

Dependence on
third party tool

• E.g. dependence to a third
party tool for measuring
coverage

S93 1

Total number of papers identifying a construct validity
threat

9

46

The results of conclusion validity threats are similar to construct validity threats.

There is no trend that shows a type of threat is addressed more than others. Also

this kind of validity threats are the least addressed threats in the studies. We list in

Table 18 the list of conclusion validity threats identified in the empirical studies. 7

distinct types of conclusion validity threats were identified in 6 papers.

Table 18- Conclusion validity threats identified in the studies

Type Explanation Study Count

Not considering all
types of effort
spent

• E.g. experiment does not
consider the effort required to
select inputs and oracles of
each test case but only the
number of the test cases.

S70 1

Results rely on
interpretation of
metrics

• E.g. taxonomy assessed
through metrics manually.

S38 1

Results rely on
human based
classification

• E.g. human based
classification of faults in
taxonomy studies.

S38 1

Not using statistical
tests

• E.g. To reject the null
hypotheses

S2 1

Not including fault
severity

• conclusions of the experiment
could be different if the
results were weighted by fault
severity

S12 1

Dependence on
used statistical
technique

• Using different statistical
techniques may affect the
outcome

S29 1

Need to maintain
the state of the
application

• Applying same methods and
techniques on different state
of same SUT may provide
different results

S10 1

Total number of papers identifying a conclusion validity
threat

6

We also asked if there is any trend between year of publication and the discussion

of validity threats. Results are given in Figure 9. We could not see any visible trend

between threat identification and publications years of papers.

47

Figure 9- Trend of the number of empirical studies and type of identified threats

over the years

When we consider all types of threats, total number representativeness of SUTs and

representativeness of injected faults/mutations is almost equal to the total number

of whole others. From this point, it is easy to say that these two are the main

threats to validity of WAT studies.

4.2.3. RQ 2.3-What is the level of rigor and industrial relevance of

the empirical studies?

Ivarsson and Gorschek presented in [51] a method for evaluating rigor and

industrial relevance of empirical studies. The authors argue that, to impact industry,

software engineering researchers developing technologies in academia need to

provide tangible evidence of the advantages of using them. This can be done trough

step-wise validation, enabling researchers to gradually test and evaluate

technologies to finally try them in real settings with real users and applications. The

evidence obtained, together with detailed information on how the validation was

conducted, offers rich decision support material for industry practitioners seeking to

adopt new technologies and researchers looking for an empirical basis on which to

build new or refined technologies.

The model presented in [51] approached the measurement of rigor and industrial

relevance as follows. For assessing rigor of an empirical study, three aspects should

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
02

20
01

12

10

8

6

4

2

0

Year

N
u

m
b

e
r

o
f

p
a

p
e

rs

Num. of Empirical Studies
Identified Internal Validity
Identified Construct Validity
Identified Conclusion Validity
Identified External Validity

48

be measured: (1) context described, (2) study-design described, and (3) validity

discussed. The rubric used for these measurements is: strong description (1),

medium description (0.5), and weak description (0).

For the industrial relevance of an evaluation, the model proposes two aspects. First,

the realism of the environment in which the results are obtained influence the

relevance of the evaluation. Three aspects of evaluations are considered in

evaluating the realism of evaluations: subjects, scale and context. Second, the

research method used to produce the results influence the relevance of the

evaluation. A diverse set of research methods is included in the model to cover a

wide range of activities from application (test/illustration) of a technology to

experiments and any sort of empirical evaluation.

The scoring rubrics used to assess these relevance aspects as presented in [51] are

shown in Table 19. We made a slight adjustment to the “scale” aspect: if the sum of

LOC of the SUTs in a study was less than 1,000 LOC, we assigned 0, if it was

between 1,000 and 10,000 LOC, we assigned 0.5, and if larger than 10,000 LOC, we

assigned 1. Note that we assessed rigor and industrial relevance for the 58 empirical

studies only.

Table 19- Scoring rubric for evaluating relevance (adapted from [51])

Aspect
Contribute to relevance

(1)
Do not contribute to relevance

(0)

Context

The evaluation is performed
in a setting representative of
the intended usage setting,
i.e., industrial setting.

The evaluation is performed in a
laboratory situation or other setting
not representative of a real usage
situation.

Users/
subjects

The subjects used in the
evaluation are representative
of the intended users of the
technology, i.e., industry
professionals.

The subjects used in the evaluation
are not representative of the
envisioned users of the technology
(practitioners).

49

Scale

The scale of the applications
used in the evaluation is of
realistic size, i.e., the
applications are of industrial
scale.

The evaluation is performed using
applications of unrealistic size.

Research
method

The research method
mentioned to be used in the
evaluation is one that
facilitates investigating real
situations and that is relevant
for practitioners, e.g., action
research

The research method mentioned to
be used in the evaluation does not
lend itself to investigate real
situations, e.g., conceptual analysis
laboratory experiment

The histograms of Figure 10 show the data. Note that, for the case of

“Users/subjects”, the chosen rubric value was N/A (not applicable) since many

studies in our pool did not involve human-based experiments. We discuss below our

main observations based on the two histograms.

In terms of rigor, we can observe that:

• In most of the empirical studies (47 of the 58), the context of the empirical

study has described to a degree where a reader can understand and

compare it to another context.

• Study design has been also explained well in most of the studies (43 of the

58).

• In terms of validity discussion, 17 of the 58 studies have not discussed the

validity of the study at all, 19 have explained very briefly including 5 papers

which have mentioned the limitations [S33, S37, S62, S91, S92, S93], and

22 have explained in enough detail.

For industrial relevance of studies, we can observe that:

• In terms of context, 40 of the 58 studies were performed in a laboratory

setting, while 18 were conducted in industrial context or on an industrial real

web application

50

• As long as the research methods are concerned, none of the studies used

methods relevant for practitioners, e.g., action research.

• Users/subjects: For 55 papers, the aspect of users was N/A. For the

remaining three studies [S18, S38, S91], industry users were involved. In

[S18], a group of 14 participants exercised the SUTs and session data were

then collected. In [S38], expert testers were hired to classify defects. In

[S91], industry professionals helped in gathering data.

• In terms of the scale aspect, 35 of the 58 studies used SUTs larger than

10,000 LOC, which is a good indication denoting that most studies have

used non-toy applications.

Figure 10- Histograms of Rigor and Relevance for the 58 empirical studies

1.00.90.80.70.60.5

40

30

20

10

0
1.00.80.60.40.20.0

40

30

20

10

0

1.00.80.60.40.20.0

20

15

10

5

0

Context-Rigor

Fr
e

q
u

e
n

cy

Study design

Validity

47

0000

11

43

0000

14

00001

20

0000

19

0000

19

Rigor

10

40

30

20

10

0
0

60

45

30

15

0

1

3

2

1

0
1.00.80.60.40.20.0

40

30

20

10

0

Context-Relevance

Fr
e

q
u

e
n

cy

Research method

User/ Subject Scale

18

40 58

3
35

0000

8

0000

15

Relevance

51

Studies having highest level of rigor and industrial relevance are given in Table 20

and Table 21.

Table 20 Primary studies having top level of rigor

Study
Level of Rigor

Context
Described

Study Design
Described

Validity
Discussed

Total

1 S2 1 1 1 3
2 S9 1 1 1 3
3 S10 1 1 1 3
4 S12 1 1 1 3
5 S13 1 1 1 3
6 S17 1 1 1 3
7 S18 1 1 1 3
8 S19 1 1 1 3
9 S36 1 1 1 3
10 S38 1 1 1 3
11 S48 1 1 1 3
12 S49 1 1 1 3
13 S52 1 1 1 3
14 S65 1 1 1 3
15 S66 1 1 1 3
16 S70 1 1 1 3
17 S85 1 1 1 3
18 S90 1 1 1 3

Table 21 Top 10 primary studies having highest level of industrial relevance

 Study

5.Level of Industrial Relevance

Context
Research
Method

User /
Subject

Scale Total

1 S76 1 0 1 1 3

2 S14 1 0 N/A 1 2
3 S34 1 0 N/A 1 2
4 S37 1 0 N/A 1 2
5 S49 1 0 0 1 2
6 S65 1 0 0 1 2
7 S70 1 0 0 1 2

52

8 S85 1 0 0 1 2
9 S90 1 0 0 1 2
10 S91 1 0 1 0 2

Figure 11- Rigor versus relevance of the empirical studies in this SLR versus [51]

53

Our next analysis was to assess the pair of rigor and relevance assessments for

each pair, similar to what was done in [51]. The model was applied in [51] as part

of a SLR of requirements engineering techniques in which 349 primary studies were

analyzed. The pair-wise comparison of rigor and relevance in this SLR versus [51] is

shown in Figure 11. A large portion of studies in [51], i.e., 116 articles, had zero

rigor and relevance. This means that about one third of all the evaluations included

in that SLR were experiments in which aspects related to rigor were not described

or were application of a technology done by either students or researchers in

academia in toy examples. However, since we only assessed the rubrics for papers

with research facets of “validation research” and “evaluation research” in our study,

the trends are better, in that we are observing quite a reasonable level of rigor and

low to medium degree of relevance.

In addition to using the [51] to analyze the rigor of the studies, we also counted the

number of RQs in each empirical study. From the top-cited guidelines on conducting

empirical and case studies (e.g., [48]), it is evident that raising meaningful RQs for

an empirical study will help better direct the study and the relevant measurements.

Figure 12 shows the histogram of that data. 21 of the empirical studies in our pool

did not raise any RQs. None had one RQ. A decreasing number of studies had

between 2 and 5 RQs.

Figure 12- Number of RQs in empirical studies

543210

20

15

10

5

0

Number of RQs

Fr
e

q
u

e
n

cy

2

7

11

17

0

21

54

By putting the results of RQs 2.2 and 2.3 together, similar to other SLRs (e.g., the

one on search-based testing [13]), we can highlight the most frequently omitted

aspects in the reporting of empirical studies in WAT. It is important that each

empirical study is properly designed and reported so that it is easy to assess and

replicate. Researchers should ensure to identify, report and address all relevant

threats to validity of their studies and also aim at increasing the rigor and industrial

relevance of the empirical studies as discussed above.

4.3. RQ 3-What is the state of empirical evidence in WAT?

We discuss results for RQ 3.1, 3.2, and 3.3 in the following.

4.3.1. RQ 3.1- Is there any evidence regarding the scalability of the

WAT techniques?

Among the empirical studies, three [S18, S49, S68] explicitly studied scalability and

reported the corresponding evidence. A summary of these works are shown in Table

22.

The study reported in [S18] presented results concerning the scalability of the

approach, indicating that the performance of the algorithm will allow it to be used

even in demanding scenarios such as those where daily regression testing is

required. One of the two RQs in [S18] was: “Is the approach sufficiently

computationally cheap to be applicable?” Authors raised the point that in order for

the approach to be applicable, it must be possible to perform the entire repair

process in a period of time that is commensurate with the time allocated to all other

regression testing activities. As the results showed, the tool was able to complete its

entire white-box analysis phase within three minutes for all of the applications

considered. This suggested that the analysis phase of the algorithm and the tool

that implements it are likely to have an acceptable performance, even for the most

demanding web application regression testing scenarios. However, the four subject

SUTs chosen in that study could only be considered medium scale (between 4 and

52 files with number of URLs between 14-150).

55

Table 22- Studies which empirically analyzed scalability issues

Study Approach Method to study scalability Summary of results

S18

Automated Session
Data Repair for Web
Application Regression
Testing

Measuring the execution time of
the repair process for the four
subject SUTs with different
number of sessions (between 3-
40).

The tool was able to complete its entire white-box analysis
phase within three minutes for all of the applications
considered.

S49

Invariant-based
automatic testing of
AJAX user interfaces

Measuring the execution time of
the test tool ATUSA

The manual effort involved in setting up ATUSA (less than half
an hour in the case study) is minimal. The scalability of the
crawling and testing process is acceptable (it takes ATUSA less
than 6 minutes to crawl and test TUDU, analyzing 332
clickables and detecting 34 states). The main component that
can influence the performance and scalability is the crawling
part. The performance of ATUSA in crawling an AJAX site
depends on many factors such as the speed at which the
server can handle requests, how fast the client-side JavaScript
can update the interface, and the size of the DOM tree. ATUSA
can scale to sites comprised of thousands of states easily.

S68
Using constraints on
the inputs to reduce
the number of
transitions, thus
compressing FSMs

Measuring the test model (FSM)
size metrics, e.g., number of
links and transitions

Both case studies show substantial savings by using the
FSMWeb modeling technique over traditional FSMs for the
modeling of web applications. These values lead to a 99.97%
overall reduction in the number of states, and a 99.93% overall
reduction in the number of transitions.

55

56

The study reported in [S49] presented an automatic testing approach for AJAX user

interfaces based on invariants. In scalability analysis of the proposed test tool

ATUSA, the authors found that the main component that can influence the

performance and scalability is the crawling part. They then identified the factors

impacting the performance of ATUSA in crawling an AJAX site, as shown in Table

22.

The study reported in [S68] used constraints on the inputs of a web application to

reduce the number of transitions in its test model (FSM), thus compressing FSMs.

To evaluate scalability, they measured the test model (FSM)’s size metrics, e.g.,

number of links and transitions. The reduction technique reduced the size of the

FSMs significantly (see Table 22), thus helping the approach become more scalable.

4.3.2. RQ 3.2-Have different techniques been empirically compared

with each other?

To answer this RQ and to be able to compare relevant techniques with one another,

we utilized thematic analysis to group studies in relevant WAT areas together. We

followed the thematic analysis guidelines [40-42] and developed a set of ten WAT

theme areas, as shown in Table 23. Frequency of studies under each WAT theme

area and the trend of the number of studies under each area are shown in Table 23

and Figure 13, respectively. Note that each paper was only classified under one

theme area in this case. Each paper was classified under the theme area which was

the most applicable for it.

Table 23- Frequency of empirical studies under each WAT theme area

Theme area # of papers Percentage References

White box 7 12%
S19, S28, S33, S40,
S45, S47, S62

Black box, FSM, model-
based

5 9%
S3, S47, S68, S77,
S90

Mutation 3 5% S13, S36, S70

57

AJAX testing 6 10%
S2, S48, S49, S66,
S69, S85

Session-based testing
(navigation models, logs)

16 28%

S4, S10, S12, S17,
S18, S24, S37, S43,
S51, S52, S54, S65,
S67, S83, S84, S93

Cross-Browser
Compatibility Testing

3 5% S14, S30, S92

Regression testing 5 9%
S9, S18, S21, S50,
S66

Oracle 4 7% S16, S17, S22, S95

Support for testing 9 16%
S5, S29, S38, S46,
S57, S59, S61, S64,
S76

Other 4 7% S15, S34, S63, S91

Figure 13- Trend of the cumulative number of studies under each WAT theme area
over the years

To answer the RQ, using the above theme areas, we extracted the list of studies

which have explicitly conducted empirical comparisons with other studies. We found

11 such studies (Table 24). The studies have been divided into the WAT theme

areas and we synthesize next the empirical comparisons under each theme area.

20132012201120102009200820072006200520042003200220012000

18

16

14

12

10

8

6

4

2

0

N
u

m
b

e
r

o
f

p
a

p
e

rs

Other

White-box
Black-box testing, FSM, model-b
Mutation
AJAX testing
Session-based testing (navigati
Cross-Browser Compatibility Tes
Regression testing
Test Oracle
Support for testing

58

Table 24- List of studies conducting empirical comparisons with other studies/tools

Study Year of publication Compared studies/tools

White-box testing

[S40] 2008 [S45, S72]

Session-based testing

[S10] 2005 [S12], [52]

[S24] 2009 [S12], [52]

[S47] 2006 [52]

[S52] 2005 [S11]

[S65] 2008 [S12, S16, S17]

[S83] 2006 [S54]

[S93] 2013
A web scraping/crawling framework called
Scrappy (www.scrapy.org)

AJAX testing

[S2] 2008 [S1, S69, S81]

Cross-Browser Compatibility Testing

[S30] 2012 [S92, S14]

Support for testing

[S64] 2009
[S45][53], and a crawler called Spider
(www.owasp.org)

4.3.2.1. White-box testing

There was one paper, [S40], which conducted comparative empirical study in the

theme area of white-box testing. The authors of [S40] proposed a dynamic test

generation technique, based on combined concrete and symbolic execution, for PHP

applications. The authors compared their technique and tool (called Apollo) to two

other approaches. First, they implemented an approach similar to [S45] for

JavaScript testing (referred to as Randomized). Second, they compared their results

to those reported by a static analysis technique [S72], on the same subject

programs.

59

Apollo test generation strategy outperformed the randomized testing (proposed by

[S45]) by achieving an average line coverage of 58.0%, versus 15.2% for

Randomized. The Apollo strategy significantly outperformed the Randomized

strategy by finding a total of 214 faults in the subject applications, versus a total of

59 faults for Randomized.

For the three overlapping subject programs, Apollo was both more effective and

more efficient than the tool presented in [S72]. Apollo found 2.7 times as many

HTML validation faults found by [S72]’s tool (120 vs. 45). Apollo found 83 execution

faults, which are out of reach for [S72]’s tool. Apollo is also more scalable on

schoolmate, the largest of the programs, Apollo found 104 faults in 10 minutes,

while [S72]’s tool found only 14 faults in 126 minutes. The authors discussed that

the time spent in [S72]’s tool is due to constructing large automata and to the

expensive algorithm for checking disjointness between regular expressions and

context-free languages.

4.3.2.2. Session-based testing

There were seven papers which conduced comparative empirical studies in the

theme area of session-based testing, which are discussed next.

The study [S10] was an empirical comparison of three test-suite reduction

techniques for user-session-based testing: (1) concept analysis [S12], (2) the HGS

requirements-based approach [52], and (3) the Greedy requirements-based

approach [52]. Note that the paper [52] is not in our pool, since it is not a WAT-

specific paper, but rather is in the general area of software testing. They compared

the reduced test suite size, program coverage, fault detection, and time and space

costs of each of the techniques for two web applications. The results showed that

concept analysis-based reduction is a cost-effective alternative to requirements-

based approaches.

The study [S24] presents a user-session based testing technique that clusters user

sessions based on the service profile and selects a set of representative user

sessions from each cluster. Two empirical studies are then presented to compare

60

the proposed approach with the approaches reported in S12 (based on concept

analysis) and [52] (based on URL coverage). The results demonstrated that the

proposed approach consistently detected the majority of the known faults by using

a relatively small number of test cases in both studies, and performed better than

the two other approaches.

In [S47], the authors explored three different strategies to integrate the use of

coverage-based requirements and usage-based requirements in relation to test suite

reduction for web applications. They investigated the use of usage-based test

requirements for comparison of test suites that have been reduced based on

program coverage-based test requirements. They examined the effectiveness of a

test suite reduction process based on a combination of both usage-based and

program coverage-based requirements. Finally, they modified a popular test-suite

reduction algorithm [52] to replace part of its test selection process with selection

based on usage-based test requirements. The case study results suggested that

integrating program coverage-based and usage-based test requirements has a

positive impact on the effectiveness of the resulting test suites.

The study [S52] reports a comprehensive study comparing seven user-session-

based test techniques: (white box techniques) (1) WB-1 (white box); the simplest

implementation by Ricca and Tonella [S11], (2) WB-2: WB-1 with boundary values,

(User-session based techniques) (3) US-1: Direct reuse of user sessions, (4) US-2:

Combining different user sessions, (5) US-3: Reusing user sessions with form

modifications, and (Hybrid approaches) (6) HYB-1: Partially satisfying testing

requirements with user session data, and (7) HYB-2: Satisfying testing requirements

with user session data and tester input. The empirical study of [S52] found that

WB-2 provided the greatest code coverage with 76% and 99% of the blocks and

functions covered, respectively. US-3 provided the greatest fault detection

capabilities with 63% of the faults detected. An important finding from this paper is

that user session data can be used to produce test suites more effective overall than

those produced by the white-box techniques considered; however, the faults

detected by the two classes of techniques differ, suggesting that the techniques are

complementary.

61

The study [S65] proposed several new test suite prioritization strategies for web

applications and examined whether these strategies can improve the rate of fault

detection for three web applications and their preexisting test suites. Experimental

results show that the proposed prioritization criteria often improve the rate of fault

detection of the test suites when compared to random ordering of test cases. [S65]

borrowed the experimental objects and methodology from [S12, S16, S17]. The

goal of empirical study in [S65] was to assess the effectiveness of the prioritization

strategies by evaluating their fault detection rate, i.e., finding the most faults in the

earlier tests. The study concluded that none of their prioritization criteria is clearly

the “best criteria” for all cases, but depending on the tester’s goal and the

characteristics of the web applications, different prioritization strategies may be

useful. Specific guidelines were given in this regard.

The study [S83] describes two experiments that replicated Kallepalli and Tian’s work

[S54], which had used Unified Markov Models (UMMs) as usage-based statistical

model, built from Web server access logs, as basis for test case selection. In

addition, server error logs were also used to measure a Web application’s reliability

and consequently to investigate the effectiveness of UMMs as a suitable testing

mechanism. Their results showed that, in contrast to findings of [S54], multiple set

UMMs were needed for trustworthy test case generation. In addition, the reliability

assessment reported in [S83] corroborated results from [8], confirming that UMMs

seem to be a suitable testing mechanism to use for testing web applications.

The study [S93] presented an approach and a prototype tool called WebMate which

systematically explores and tests all distinct functions of a web application. The

prototype tool handles interfaces as complex as Facebook and is able to cover up to

7 times as much code as existing tools. The only requirements to use WebMate are

the URL of the application and, if necessary, user name and password. The

empirical study reported in [S93] compared the performance of WebMate versus a

popular open-source web scraping framework for Python called Scrappy. When

compared to alternative tool Scrappy, WebMate achieved higher coverage (seven

times better for one SUT and four times better for 2 other SUTs).

62

4.3.2.3. AJAX testing

Out of the six studies focusing on AJAX testing [S2, S48, S49, S66, S69, S85], the

only comparative study that we found in the theme area of AJAX testing is [S2]. The

authors of [S2] had proposed a state-based testing technique for AJAX in an earlier

work [S69]. [S2] reported a case study-based comparison of four types of testing

techniques applied to AJAX web applications: (1) state-based testing [S69], (2)

coverage-based/white-box testing [S1], (3) black-box (record and playback tools),

and (4) UML model-based testing [S81]. The study was quite rigorous in its

comparative analysis as it explicitly followed a systematic approach for comparing

efficiency, effectiveness and applicability of testing techniques [54]. The study

found that state-based testing is complementary to the existing AJAX testing

techniques and can reveal faults otherwise unnoticed or hard to reveal with the

other techniques. Also, the study reported that, overall, state-based testing involves

more effort than the other considered techniques; hence, there is a trade-off

between fault revealing potential and effort involved.

4.3.2.4. Cross-Browser Compatibility Testing

Out of the three studies focusing on cross-browser compatibility testing [S14, S30,

S92], there was one comparative study [S30] which compared its proposed tool

(called CrossCheck) to the two tools (CrossT and WebDiff) proposed in the two

earlier studies [S92, S14].

As the metrics used for comparisons, the study measured trace-level (TL) and

screen-level (SL) cross-browser compatibility differences. Executed on six open-

source case-study systems, CrossCheck outperformed CrossT and WebDiff. The

improvement over CrossT was attributed to a better screen-level matching in

CrossCheck, whereas the improvement over WebDiff is due to the use of the

machine learnt classifier for visual comparison.

63

4.3.2.5. Support for testing

Among the nine studies which were classified under the “support for testing” theme

area, one [S64] conducted a comparative study. This study proposed an approach

for precise interface identification to improve testing and analysis of web

applications. The empirical study was conducted to assess the efficiency, precision,

and usefulness of the approach for interface identification (named wam-se). To do

so, the authors compared wam-se against three other approaches: wam-df [S45],

dfw [53], and a tool called Spider. In the empirical evaluation, the authors show

that the set of interfaces identified by their approach is more accurate than those

identified by other approaches. They also showed that this increased accuracy

would lead to improvements in several important quality assurance techniques for

web applications: test-input generation, penetration testing, and invocation

verification.

4.3.3. RQ 3.3-How much empirical evidence exists for each category

of techniques and type of web apps?

To address this question, we examined the distribution of empirical studies on their

target type of web applications and the target technologies.

We considered the following attributes to categorize a web application: location of

the application under test (server side or/and client side), dynamicity (static or

dynamic pages), and synchronicity of HTTP calls (asynchronous e.g. Ajax, or

synchronous). Figure 14 shows the results for each attribute and Table 25 shows

the combined picture.

64

Figure 14- Empirical studies break down on the attributes of web applications under
test: location, dynamicity, and synchronicity.

As Figure 14 shows, most of the empirical studies (62% of the studies, 36 papers)

target the server side applications, 26 studies (45%) target client side applications

and only 5 studies (9%) provide empirical results on both sides of a web

application. As for the dynamicity, the figure shows that the majority of the studies

generated empirical evidence on testing dynamic web applications (54 papers, 93%)

and only 3 papers aim for testing static web applications. Finally, Figure 14 shows

that only 17 studies focus on asynchronous HTTP communication (Ajax). Since

implementation of such communication is highly related to client side of a web

application, we considered the 26 studies that investigated testing on the client side

applications. 65% of these studies provided empirical evidence on Ajax applications.

Table 25- Frequency of studies under each WAT theme area

 Dynamic Application Static Application

Validation Evaluation Validation Evaluation

Server side

S9, S12, S15,
S16, S17, S18,
S21, S22, S24,
S28, S33, S37,
S40, S43, S45,
S47, S51, S63,
S64, S68, S76,
S77, S83, S84,
S94

S4, S10,
S19, S52,
S65, S90

S83 --

65

Client
side

Asynchronous
(Ajax)

S3, S14, S34,
S43, S50, S67,
S69, S92, S93

-- -- --

Synchronous
S5, S30, S54,
S59, S61, S62,
S91

S2, S36,
S49, S57,
S66, S85

S54, S91 --

Both

Asynchronous
(Ajax)

-- -- -- --

Synchronous
S13, S29, S38,
S46

S48 -- --

Unspecified S70 -- --

We also investigated how much evidence exists on the client-tier technology and on

the server-tier technology. Table 26 shows the distribution of the 26 client side

testing studies. The table shows that the most of the evidence, as expected, is on

HTML with 26 studies. There are 13 empirical studies on JavaScript and 12 studies

on DOM technologies.

Table 26- Empirical studies presenting results on Client-tier web technologies

 HTML DOM JavaScript

Validation

S3, S13, S16, S17, S24, S28,
S29, S38, S43, S46, S50,
S51, S54, S61, S62, S70,
S83, S91, S92, S93, S94

S14, S30, S34,
S43, S50, S59,
S61, S62, S67,
S69, S70, S92

S3, S5, S14, S29, S30,
S34, S38, S46, S50,
S59, S69, S92, S93

Evaluation S2, S19, S49, S57 0 0

Table 27 shows the distribution of the 36 studies that provided empirical results on

the server side. Most of the evidence we have is on the J2EE technology (21

studies, 58%), followed by the PHP technology with 12 studies. There are two

studies on .Net framework, two studies on Perl/CGI technology, and one study on

LISP [S85].

Table 27- Empirical studies presenting results on Server-tier web technologies

66

 PHP J2EE .Net Perl/CGI Other

Validation
S9, S21, S29,
S37, S38, S40,
S63, S70,S92

S12, S13, S15, S16,
S17, S24, S28, S43,
S47, S51, S64, S67,
S69, S76, S84

S33,
S38

S22 -

Evaluation S10, S19, S49
S4, S10, S49, S65,
S85,S90

- S52 S85

67

CHAPTER 5

5.DISCUSSIONS

Summarized discussions and findings of this study along with potential threats to

validity are presented in this section.

5.1. Findings, Trends

We summarize and discuss findings and trends for each of the RQs next;

RQ 1.1-Types of input/inferred test models: The navigation models seem to be the

most popular as 22 studies used a type a of navigation models. Examples include

finite-state machines (FSM) which specify the flow among the pages of a web

application. Control and data flow models in unit level and also DOM models have

also been used in several studies. Other types of models such as: program

dependence graphs (PDGs) and Database Extended Finite State Machine (DEFSM)

have also been proposed.

RQ 1.2-Types of fault models/bug taxonomy: 21 studies discussed fault models

specific to web applications. Over 50 types of faults (e.g., faults related to browser

incompatibility, and faults in session synchronization) have been discussed. Test

techniques targeting some of these fault types have been proposed.

RQ 1.3-Tools and their capabilities: 52 of the 95 papers (54%) presented (mostly

prototype-level) tool support for the proposed WAT approaches. Only 11 of the 52

presented tools (21%) were available for download. We noticed that in the papers

presented after 2008, more and more tools are available for download, which is a

68

good sign for the community. We extracted the features and capabilities of the tools

available for download.

RQ 2.1-Metrics used for assessing cost and effectiveness: There have been four

types of cost metrics used in the empirical studies in this area: (1) effort/test time,

(2) test-suite size, (3) memory space, and (4) other. Measuring test effort/time was

the most frequent. We categorized the effectiveness metrics as the following: (1)

code coverage, (2) model or requirements coverage, (3) other types of coverage,

(4) detecting real faults, (5) detecting injected faults, and (6) other metrics such as

number of DOM violations or reliability growth. Code coverage was the most

frequent metric in this category.

RQ 2.2-Threats to validity in the empirical studies: external and internal validity

threats are the mostly addressed threats, in 36 and 30 studies, respectively.

Construct and conclusion threats were identified in 9 and 6 studies only.

Representativeness of injected faults/mutations was the most frequent identified

type of internal validity threats (in 17 studies). Representativeness of SUTs was the

most frequent identified type of external validity threats (in 32 studies). Examples of

construct validity threats identified in the studies are: subjectivity in bug

classification, and not considering the severity of the faults. Examples of conclusion

validity threats identified in the studies are: not considering all types of effort spent,

results relying on interpretation of metrics, and results relying on human based

classification.

RQ 2.3-The level of rigor and industrial relevance: In most of the empirical studies

(47 of the 58), the context of the empirical study has described to a degree where a

reader can understand and compare it to another context. Study design has been

also explained well in most of the studies (43 of the 58). 40 of the 58 studies were

performed in a laboratory setting, while 18 were conducted in industrial context or

on an industrial real web application. As long as the research methods are

concerned, none of the studies used methods relevant for practitioners, e.g., action

research.

69

RQ 3.1-Evidence regarding the scalability: Among the empirical studies, three of

them explicitly studied scalability and reported the corresponding evidence. The

methods they used to study scalability were as follows: measuring the execution

time of the repair process for the subject SUTs with different number of sessions,

measuring the execution time of the test tool, measuring the test model (FSM) size

metrics, e.g., number of links and transitions.

RQ 3.2-Empirical comparison of techniques: We found 11 studies which have

conducted empirical comparisons with other studies/tools. We divided those papers

into the WAT theme areas and we synthesized the empirical comparisons under

each theme area.

RQ 3.3-Empirical evidence for each category of techniques: Most of the empirical

studies (62% of the studies, 36 papers) target the server side, 26 studies (45%)

target the client side and only 5 studies (9%) provide empirical results on both sides

of a web application. As for the dynamicity, the majority of the studies reported

empirical evidence on testing dynamic web applications (54 papers, 93%) and only

3 papers aim for testing static web applications. 17 studies focus on asynchronous

HTTP communication (Ajax). 65% of these 26 studies provided empirical evidence

on Ajax applications. When we consider the client-tier technology, most of the

evidence, as expected, is on HTML with 26 studies (all client-side studies), 13

empirical studies on JavaScript and 12 studies on DOM technologies. On the other

hand, in server-side studies, most of the evidence is on the J2EE technology (21

studies), followed by the PHP technology with 12 studies.

5.2. Discussion on Validity Threats

The results of a SLR can be affected by a number of factors such as the researchers

conducting the study, the data sources selected, the search term, the chosen time-

frame, and the pool of primary studies. Below we discuss potential threats to

validity of this study and the steps we have taken to mitigate or minimize them.

70

5.2.1. Internal Validity

One threat could be incomplete selection of publications. We presented in Section

3.3 a detailed discussion around the concrete search terms and the databases used

in our study. In order to obtain a complete set of primary studies covering the given

research topic as possible, the search term was derived systematically. Different

terms for web application testing and analysis were determined with many

alternatives and different combinations. However, the list might not be complete

and additional or alternative terms might have affected the number of papers

found.

Furthermore, our inclusion and exclusion criteria were discussed in Section 3.3.2.

The decision on which papers to include in the final pool depended on the group

judgment of the researchers conducting the SLR. As discussed in Section 3, the

authors adopted a defined systematic voting process among the team in the paper

selection phase for deciding whether to keep or exclude any of the papers in the

first version of the pool. This process was also carried out to minimize personal bias

of each of the authors. When the authors of the study disagreed, discussions took

place until an agreement was reached. A high conformance value was achieved,

which indicates a similar understanding of relevance.

Though a replication of this SLR may lead to a slightly different set of primary

studies, we believe the main conclusions drawn from the identified set of papers

should not deviate from our findings.

5.2.2. Construct Validity

Construct validity is concerned with the extent to what was to be measured was

actually measured. In other words, threats to construct validity refer to the extent

to which the study setting actually reflects the construct under study. As discussed,

based on the classification scheme developed in the earlier SM study [2], after the

papers in the pool were systematically mapped, the actual data extraction and

synthesis took place. The pool of papers was partitioned among the authors. Each

author first extracted the data by mapping the paper inside the classification

71

scheme and also extracting the evidence and empirical aspects of each paper

independently. Then a systematic peer review process among the authors was

conducted in which the data and attributes extracted by each researcher were

cross-checked by another researcher. In case of differences in opinions, online

discussions (e.g., email, Skype) were conducted to resolve the differences. This

cross-check helped the team to extract the data and conduct the measurement in a

reliable manner. The above steps mitigate some of the threats to construct validity

of our study.

5.2.3. Conclusion Validity

It is important for a SLR study to present results and conclusions that are directly

traceable to data and results that have in turn been carefully extracted from the

primary studies, and can be reproduced by other researchers. To ensure conclusion

validity of our study, we presented throughout the Section 4 graphs generated

directly from the data and discussed the explicit observations and trends based on

synthesis of those data. This ensures a high degree of traceability between the data

and conclusions. Furthermore, to ensure traceability of the extracted data, evidence

and synthesis, the entire raw data of the SM and the SLR are available online in the

form of a spreadsheet in the Google Docs system [33]. This will enable

transparency and also replicability of our analysis.

5.2.4. External Validity

The results of the SLR study were considered with respect to approaches in the

software engineering domain. Thus, the data and findings presented and the

conclusions drawn are only valid in the given context (web application testing).

Additional papers and approaches that are identified in the future can be

categorized and synthesized accordingly. Due to the systematic procedure followed

during the SLR study, we believe our study is repeatable.

72

CHAPTER 6

6.CONCLUSIONS & FUTURE WORK

6.1. Conclusions

The web has proven to be a powerful medium for delivering software services over

the Internet. Due to its inherited distributed complexity and dynamism, testing is

known to be a challenge for web developers. That is why many researchers have

worked in this domain from the early days of the web.

In this thesis study, we presented first SLR in the domain of web application

functional testing (WAT), targeting the studies published between 2000 and 2013.

Our initial search retrieved 193 papers of which 95 were included in this study using

a selection strategy. This is as a follow-up complementary study of a recent SM

study conducted by V. Garousi et al.

The complete process that we have used in this study; consisting of article selection

strategy, article voting for inclusion and exclusion, identification of research

questions, identification of attributes for data extraction, data extraction and

synthesis, has been described in more detail to assist similar future researches. In

order to provide more transparent, reproducible and extensible study, the primary

studies that we have used in our pool were uploaded to Google Docs system and

made available to public access. Also the whole extracted data, our comments and

discussions are available online in Google Docs as a spreadsheet [33]. Our publicly

available online repository of studies in WAT domain and Google Docs study

environment would be a source of inspiration to further similar SLR studies.

Our study indicates that web testing is an active area of research with an increasing

number of publications. Among other results, we synthesized the following

73

data/findings from the papers to answer our RQs: (1) the types of input/inferred

test models, (2) the fault models/bug taxonomy related to web applications, (3) test

tools proposed in this area and their capabilities, (4) metrics used for assessing cost

and effectiveness of WAT techniques, (5) the threats to validity in the empirical

studies, (6) level of rigor and industrial relevance of the empirical studies, (7)

evidence regarding the scalability of the WAT techniques, (8) empirical comparisons

in WAT domain and (9) amount of empirical evidence for each category of

techniques and type of web applications. Our SLR shows the state-of-the-art in web

application testing, areas that have been covered and techniques/tools that have

been proposed. It provides a guideline to assist researchers in planning future work

by analyzing the existing evidence for different WAT techniques and their

effectiveness and also by spotting research areas that need more attention.

Identified types of input/inferred test models which were used or proposed in the

WAT studies showed that the navigation models are the most preferred models

followed by DOM models. These two models especially used in system and

integration level testing. Control and data flow models are the next popular models

mostly used in unit level testing with the aim of modeling the flow inside a function

or module.

We extracted the features and capabilities of the WAT tools presented in the studies

which will contribute future researches by enabling access to the information of all

proposed tools in WAT domain in single point. 54% of the studies presented (mostly

prototype-level) new tool for the proposed WAT approaches. However, only 21% of

the presented tools were available for download. In order to improve the

contribution to the community with presented tools and enable improvement of the

tool by other researchers and industry, making both the executable and source code

of the tools available for download is important. When we checked the trend among

the years, we noticed that after 2008, more and more tools are available for

download, which is a good sign for the community.

“Threats to validity” is one of the important topics that we have analyzed and

discussed in this study. In order extract the threat data from the studies, we

created a classification using descriptions about the causes of threats. This

74

classification can contribute future studies that need a WAT threat classification or

researchers could benefit for identifying their validity threats. The overall picture

showed us that the mostly addressed validity threats are “representativeness of

SUTs” as external and “representativeness of injected faults/mutations” as internal

validity threat. The sum of these two corresponds to almost half of the total number

of all threats. From this point forward, it is easy to say that these two are the main

threats to validity of WAT studies.

In most of the empirical studies (81%), the context of the empirical study has

described to a degree where a reader can understand and compare it to another

context. Study design has been also explained well in most of the studies (74%).

However, only 22 out of 58 studies described the validity threats in enough detail.

Validity discussion seems to be the most omitted aspect in empirical studies which is

an important argument for evaluating the level of rigor. On the other hand, when

we focus on industrial relevance, 69% of the empirical studies were performed in a

laboratory setting, while remaining few were conducted in industrial context or on

an industrial real web application. When the research methods are concerned, none

of the studies used methods relevant for practitioners, e.g., action research. %60 of

the studies used relatively large scale SUTs which is the only one good indicator for

industrial relevance. These results show us that in most of the empirical studies,

potential of impact on industry was not considered or sufficient attention was not

shown, which is a very important factor for determining the success of a study in

this applied research field.

Among the empirical studies, three of them explicitly studied scalability and reported

the corresponding evidence. Scalability was also identified as a type of external

validity threat. Most of the studies mentioned “Representativeness of SUTs” threat

considering the small size and low complexity of SUTs which also corresponds to

scalability. But almost none of these studies have measured the scalability of their

approach. We also faced the scalability factor while analyzing the industrial

relevance. The context of the study and the scale of the applications used in the

evaluations are closely related to scalability issue and are important arguments for

evaluating the industrial relevance. All these findings showed us that, evidences

75

regarding the scalability of approaches are not sufficient and measurement of the

scalability is an omitted aspect of empirical WAT studies.

6.2. Future Work

When we look at the types of fault models and bug taxonomies specific to web

applications, we see that over 50 types of faults have been discussed. Test

techniques targeting some of these fault types have been proposed. It is worth

conducting more in-depth studies in future to ensure coverage of all the fault types

by the test techniques and also the effectiveness of those techniques on detecting

each specific fault type.

We have highlighted the current state of model usage in WAT studies. Further

studies could be conducted for deeply evaluating the capabilities, advantages and

disadvantages of each distinct model in specific WAT problems.

As we identified two types of validity threats were the mostly addressed ones in

WAT studies. Conducting further studies targeting the minimization of these two

main threats would bring a great impact on the validity of WAT studies.

According to our findings, industrial relevance is the one of the most omitted

aspects in empirical WAT studies. However, this is a very important factor for the

success of a study in this applied research field. It is obvious that this aspect of the

studies requires more attention for impacting the industry.

As we discussed that evidences regarding the scalability of approaches are not

sufficient and measurement of the scalability is an omitted aspect of empirical WAT

studies. Further attention to scalability of approaches would either enhance the

external validity or the industrial relevance of empirical studies.

As this study focus on functional WAT, a future SM or SLR study can be conducted

for non-functional side of WAT (e.g. security, scalability, performance, usability…)

using our process and similar research questions.

76

REFERENCES

References of Primary Studies

[S1] P. Tonella and F. Ricca, “A 2-layer model for the white-box testing of Web
applications,” IEEE International Workshop on Web Site Evolution, pp. 11–
19, 2004

[S2] A. Marchetto, F. Ricca, and P. Tonella, “A case study-based comparison of
web testing techniques applied to AJAX web applications,” International
Journal on Software Tools for Technology Transfer, vol. 10, no. 6, pp. 477–
492, Oct. 2008

[S3] S. Artzi, J. Dolby, S. H. Jensen, A. Moller, and F. Tip, “A framework for
automated testing of JavaScript web applications,” International Conference
on Software Engineering, pp. 571–580, 2011

[S4] S. Sprenkle, L. Pollock, and L. Simko, “A Study of Usage-Based Navigation
Models and Generated Abstract Test Cases for Web Applications,” IEEE
International Conference on Software Testing Verification and Validation, pp.
230–239, 2011

[S5] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, “A
Symbolic Execution Framework for JavaScript,” IEEE Symposium on Security
and Privacy, pp. 513–528, 2010

[S6] G. a Di Lucca, a R. Fasolino, and P. Tramontana, “A Technique for Reducing
User Session Data Sets in Web Application Testing,” IEEE International
Symposium on Web Site Evolution, pp. 7–13, 2006

[S7] A.M. Törsel, “A Tool for Web Applications Using a Domain-Specific Modelling
Language and the NuSMV Model Checker”, IEEE International Conference on
Software Testing, Verification and Validation, 2013

[S8] Y. Qi, D. Kung, and E. Wong, “An agent-based data-flow testing approach
for Web applications,” Information and Software Technology, vol. 48, no. 12,
pp. 1159–1171, 2006

[S9] A. Marback, H. Do, and N. Ehresmann, “An Effective Regression Testing
Approach for PHP Web Applications,” IEEE International Conference on
Verification and Validation, pp. 221-230, 2012

[S10] S. Sprenkle, S. S. S. Sampath, E. Gibson, L. Pollock, and a Souter, “An
empirical comparison of test suite reduction techniques for user-session-

77

based testing of Web applications,” IEEE International Conference on
Software Maintenance, pp. 587–596, 2005.

[S11] F. Ricca and P. Tonella, “Analysis and testing of Web applications,”
Proceedings of the 23rd International Conference on Software Engineering,
vol. 47, no. 6, pp. 25–34, 2001.

[S12] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and a S. Greenwald,
“Applying Concept Analysis to User-Session-Based Testing of Web
Applications,” IEEE Transactions on Software Engineering, vol. 33, no. 10,
pp. 643–658, 2007.

[S13] U. Praphamontripong and J. Offutt, “Applying Mutation Testing to Web
Applications,” International Conference on Software Testing Verification and
Validation Workshops, pp. 132–141, 2010

[S14] A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility
testing,” International Conference on Software Engineering, pp. 561–570,
2011

[S15] W. G. J. Halfond and A. Orso, “Automated identification of parameter
mismatches in web applications,” Proceedings of the ACM SIGSOFT
International Symposium on Foundations of software engineering, p. 181,
2008

[S16] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and S. Ecott, “Automated
Oracle Comparators for Testing Web Applications.” IEEE International
Symposium on Software Reliability, pp. 117-126, 2007

[S17] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock, “Automated replay and
failure detection for web applications,” Proceedings of the IEEEACM
international Conference on Automated software engineering, pp. 253–262,
2005

[S18] M. Harman and N. Alshahwan, “Automated Session Data Repair for Web
Application Regression Testing,” 2008 International Conference on Software
Testing, Verification, and Validation, pp. 298–307, 2008

[S19] N. Alshahwan and M. Harman, “Automated web application testing using
search based software engineering,” IEEEACM International Conference on
Automated Software Engineering, pp. 3–12, 2011.

[S20] M. H. Alalfi, J. R. Cordy, and T. R. Dean, “Automating Coverage Metrics for
Dynamic Web Applications,” European Conference on Software Maintenance
and Reengineering, pp. 51–60, 2010.

78

[S21] K. Dobolyi, E. Soechting, and W. Weimer, “Automating regression testing
using web-based application similarities,” International Journal on Software
Tools for Technology Transfer, vol. 13, no. 2, pp. 111–129, 2010.

[S22] L. Ran, C. Dyreson, A. Andrews, R. Bryce, and C. Mallery, “Building test
cases and oracles to automate the testing of web database applications,”
Information and Software Technology, vol. 51, no. 2, pp. 460–477, 2009

[S23] J. Offutt, Y. Wu, X. Du, and H. Huang, “Bypass testing of Web applications,”
International Symposium on Software Reliability Engineering, pp. 187–197,
2004.

[S24] X. Luo, F. Ping, and M.-H. Chen, “Clustering and Tailoring User Session Data
for Testing Web Applications,” International Conference on Software Testing
Verification and Validation, pp. 336–345, 2009

[S25] S. Sampath, V. Mihaylov, A. Souter, and L. Pollock, “Composing a Framework
to Automate Testing of Operational Web-Based Software,” Proceedings of
the 20th IEEE International Conference on Software Maintenance, pp. 104-
113, 2004

[S26] W. I. C. C. Hu, “Constructing an Object-Oriented Architecture for Web
Application Testing,” J. Inf. Sci. Eng. 18, no. 1, pp. 59–84, 2002.

[S27] F. Ricca and P. Tonella, “Construction of the system dependence graph for
Web application slicing,” Proceedings IEEE International Workshop on
Source Code Analysis and Manipulation, pp. 123–132, 2002.

[S28] S. Sampath, E. Gibson, S. Sprenkle, and L. Pollock, “Coverage Criteria for
Testing Web Applications,” Computer and Information Sciences, University of
Delaware, Tech. Rep, 2005-017, 2005

[S29] N. Alshahwan, M. Harman, A. Marchetto, R. Tiella, P. Tonella, and F. B.
Kessler, “Crawlability Metrics for Web Applications,” IEEE International
Conference on Software Testing, Verification and Validation, pp. 151-160,
2012.

[S30] S. R. Choudhary, M. R. Prasad, and A. Orso, “Crosscheck: Combining
crawling and differencing to better detect cross-browser incompatibilities in
web applications”. International Conference on Software Testing, Verification
and Validation, pp. 171-180, Apr.2012.

[S31] C.-H. Liu, “Data flow analysis and testing of JSP-based Web applications,”
Information and Software Technology, vol. 48, no. 12, pp. 1137–1147, Dec.
2006.

79

[S32] E. Di Sciascio, F. M. Donini, M. Mongiello, R. Totaro, and D. Castelluccia,
“Design Verification of Web Applications Using Symbolic Model Checking,”
Web Engineering. Springer Berlin Heidelberg, pp. 69–74, 2005.

[S33] M. Ozkinaci and A. Betin Can, “Detecting Execution and HTML Errors in ASP
.Net Web Applications,” Proceedings of the 6th International Conference on
Software and Data Technologies, pp. 172–178, 2011.

[S34] K. Pattabiraman and B. Zorn, “DoDOM: Leveraging DOM Invariants for Web
2.0 Application Robustness Testing,” IEEE International Symposium on
Software Reliability Engineering, pp. 191–200, Nov. 2010.

[S35] P. Tonella and F. Ricca, “Dynamic model extraction and statistical analysis of
Web applications,” Proceedings International Workshop on Web Site
Evolution, pp. 43–52, 2002.

[S36] S. Mirshokraie, A. Mesbah and K. Pattabiraman, “Efficient JavaScript
Mutation Testing,” IEEE International Conference on Software Testing,
Verification and Validation, 2013.

[S37] T. Ettema and C. Bunch, “Eliminating Navigation Errors in Web Applications
via Model Checking and Runtime Enforcement of Navigation State Machines,”
Proceedings of the IEEE/ACM international conference on Automated
software engineering ACM, pp. 235-244, 2010.

[S38] A. Marchetto, F. Ricca, and P. Tonella, “Empirical Validation of a Web Fault
Taxonomy and its usage for Fault Seeding,” IEEE International Workshop on
Web Site Evolution, pp. 31–38, 2007.

[S39] H. Bajwa, W. Xiong, and F. Maurer, “Evaluating Current Testing Processes of
Web-Portal Applications,” Web Engineering Springer Berlin Heidelberg, vol.
1, no. 403, pp. 603–605, 2005.

[S40] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst,
“Finding bugs in dynamic web applications,” Proceedings of the international
symposium on Software testing and analysis, p. 261, 2008.

[S41] B. Stepien, L. Peyton, and P. Xiong, “Framework testing of web applications
using TTCN-3,” International Journal on Software Tools for Technology
Transfer, vol. 10, no. 4, pp. 371–381, Apr. 2008.

[S42] E. C. B. Matos and T. C. Sousa, “From formal requirements to automated
web testing and prototyping,” Innovations in Systems and Software
Engineering, vol. 6, no. 1–2, pp. 163–169, Jan. 2010.

[S43] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra,
“Guided Test Generation for Web Applications,” Proceedings of the
International Conference on Software Engineering, pp. 162–171, 2013.

80

[S44] H. Raffelt, T. Margaria, B. Steffen, and M. Merten, “Hybrid test of web
applications with webtest,” Proceedings of workshop on Testing analysis and
verification of web services and applications, pp. 1–7, 2008.

[S45] W. G. J. Halfond and A. Orso, “Improving test case generation for web
applications using automated interface discovery,” Proceedings of the joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, p. 145,
2007.

[S46] N. Alshahwan, M. Harman, a Marchetto, and P. Tonella, “Improving web
application testing using testability measures,” IEEE International
Symposium on Web Systems Evolution, pp. 49–58, 2009.

[S47] S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock, “Integrating Customized
Test Requirements with Traditional Requirements in Web Application
Testing,” Proceedings of the workshop on Testing, analysis, and verification
of web services and applications, pp. 23-32, 2006

[S48] A. Mesbah, & A. Van Deursen, “Invariant-based automatic testing of AJAX
user interfaces,” Proceedings of IEEE International Conference on Software
Engineering, pp. 210-220, 2009

[S49] A. Mesbah, A. Van Deursen and D. Roest, “Invariant-Based Automatic
Testing of Modern Web Applications,” IEEE Transactions on Software
Engineering, vol. 38, no. 1, pp. 35–53, 2012.

[S50] S. Mirshokraie and A. Mesbah, “JSART: JavaScript Assertion-based
Regression Testing,” Web Engineering Springer Berlin Heidelberg, no. 1, pp.
238-252, 2012

[S51] S. Sprenkle, C. Cobb, and L. Pollock, “Leveraging User-Privilege Classification
to Customize Usage-based Statistical Models of Web Applications.” IEEE
International Conference on Software Testing, Verification and Validation,
pp. 161-170, 2012.

[S52] S. Elbaum, G. Rothermel, S. Karre, and M. F. Ii, “Leveraging user-session
data to support Web application testing,” IEEE Transactions on Software
Engineering, vol. 31, no. 3, pp. 187–202, 2005.

[S53] B. Bordbar and K. Anastasakis, “MDA and Analysis of Web Applications,”
Trends in Enterprise Application Architecture, Springer Berlin Heidelberg, pp.
44–55, 2006.

[S54] C. Kallepalli and J. Tian, “Measuring and modeling usage and reliability for
statistical Web testing,” IEEE Transactions on Software Engineering, vol. 27,
no. 11, pp. 1023–1036, 2001.

81

[S55] P. Koopman, P. Achten, and R. Plasmeijer, “Model-based testing of thin-
client web applications and navigation input,” Lecture Notes in Computer
Science including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics, vol. 4902 LNCS, pp. 299–315, 2007.

[S56] J. Ernits, R. Roo, J. Jacky, and M. Veanes, “Model-Based Testing of Web
Applications Using NModel,” Proceedings of the IFIP WG International
Conference on Testing of Software and Communication Systems and
International FATES Workshop, vol. 5826, pp. 211–216, 2009.

[S57] K. Dobolyi and W. Weimer, “Modeling consumer-perceived web application
fault severities for testing,” Proceedings of the international symposium on
Software testing and analysis, p. 97, 2010.

[S58] J. Offutt and Y. Wu, “Modeling presentation layers of web applications for
testing,” Software & Systems Modeling, vol. 9, no. 2, pp. 257–280, 2009

[S59] S. H. Jensen and A. Møller, “Modeling the HTML DOM and Browser API in
Static Analysis of JavaScript Web Applications.” Proceedings of the ACM
SIGSOFT symposium and the European conference on Foundations of
software engineering, pp. 59-69, 2011

[S60] B. Song and H. Miao, “Modeling Web Applications and Generating Tests: A
Combination and Interactions-guided Approach,” IEEE International
Symposium on Theoretical Aspects of Software Engineering, no. 2007, pp.
174–181, 2009

[S61] N. Li, T. Xie, M. Jin, and C. Liu, “Perturbation-based user-input-validation
testing of web applications,” Journal of Systems and Software, vol. 83, no.
11, pp. 2263–2274, Nov. 2010.

[S62] K. Sakamoto, K. Tomohiro, D. Hamura, H. Washizaki and Y. Fukazawa,
“POGen: a test code generator based on template variable coverage in gray-
box integration testing for web applications,” Fundamental Approaches to
Software Engineering , Springer Berlin Heidelberg, pp. 343-358., 2013

[S63] S. Artzi and M. Pistoia, “Practical Fault Localization for Dynamic Web
Applications,” Proceedings of the 2nd ACM/IEEE International Conference on
Software Engineering, vol 1, pp. 265–274, May 2010

[S64] W. G. J. Halfond, S. Anand, and A. Orso, “Precise interface identification to
improve testing and analysis of web applications,” Proceedings of the
international symposium on Software testing and analysis, p. 285, 2009.

[S65] S. Sampath and C. Bryce, “Prioritizing User-session-based Test Cases for
Web Applications Testing,” International Conference on Software Testing,
Verification, and Validation, no. 1, pp. 141-150, 2008.

82

[S66] D. Roest, A. Mesbah, and A. Van Deursen, “Regression Testing Ajax
Applications: Coping with Dynamism,” International Conference on Software
Testing, Verification and Validation, pp. 127–136, 2010.

[S67] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “Rich Internet Application
Testing Using Execution Trace Data,” International Conference on Software
Testing, Verification, and Validation Workshops, pp. 274–283, Apr. 2010.

[S68] A. a. Andrews, J. Offutt, C. Dyreson, C. J. Mallery, K. Jerath, and R.
Alexander, “Scalability issues with using FSMWeb to test web applications,”
Information and Software Technology, vol. 52, no. 1, pp. 52–66, Jan. 2010.

[S69] A. Marchetto, P. Tonella, and F. Ricca, “State-Based Testing of Ajax Web
Applications,” International Conference on Software Testing, Verification,
and Validation, pp. 121–130, 2008.

[S70] A. Marchetto, “Talking about a Mutation-Based Reverse Engineering for Web
Testing: A Preliminary Experiment,” International Conference on Software
Engineering Research, Management and Applications, pp. 161–168, 2008.

[S71] Y. Gerlits, “Testing AJAX functionality with UniTESK,” Proceedings of the 4th
Spring/Summer Young Researchers’ Colloquium on Software Engineering,
pp. 50–57, 2010.

[S72] Y. Minamide and D. S. Engineering, “Static Approximation of Dynamically
Generated Web Pages,” Proceedings of international conference on World
Wide Web, pp. 432-441, 2005.

[S73] Y. Zheng, T. Bao, X. Zhang, and W. Lafayette, “Statically Locating Web
Application Bugs Caused by Asynchronous Calls,” Distribution, vol. 195, no.
6, pp. 805–814, 2011.

[S74] P. Tonella and F. Ricca, “Statistical testing of Web applications,” Journal of
Software Maintenance and Evolution: Research and Practice, vol. 16, no. 12,
pp. 103–127, 2004.

[S75] C.-H. L. C.-H. Liu, D. C. Kung, P. H. P. Hsia, and C.-T. H. C.-T. Hsu,
“Structural testing of Web applications,” Proceedings International
Symposium on Software Reliability Engineering ISSRE 2000, pp. 84–96,
2000.

[S76] H. Liu and H. B. Kuan Tan, “Testing input validation in Web applications
through automated model recovery,” Journal of Systems and Software, vol.
81, no. 2, pp. 222–233, 2008.

[S77] F. Ricca and P. Tonella, “Testing Processes of Web Applications,” Annals of
software engineering, 14(1-4), pp. 93–114, 2002.

83

[S78] N. Mansour and M. Houri, “Testing web applications,” Information and
Software Technology, vol. 48, no. 1, pp. 31–42, Jan. 2006.

[S79] G. D. Lucca, A. Fasolino, and F. Faralli, “Testing web applications,”
Proceedings of the International Conference on Software Maintenance , pp.
310–319, 2002.

[S80] A. A. Andrews, J. Offutt, and R. T. Alexander, “Testing Web applications by
modeling with FSMs,” Software Systems Modeling, vol. 4, no. 3, pp. 326–
345, 2005.

[S81] C. Bellettini, A. Marchetto, A. Trentini, and V. Comelico, “TestUml : user-
metrics driven Web Applications testing,” Proceedings of the ACM
symposium on Applied computing, pp. 1694–1698, 2005.

[S82] D. Amyot, J. Roy and M. Weiss, “UCM-Driven Testing of Web Applications,”
Proceedings of the International SDL Forum, pp. 247–264, 2005.

[S83] J. Hao and E. Mendes, “Usage-based statistical testing of web applications,”
Proceedings of the International Conference on Web Engineering (ICWE),
pp. 17–24, 2006.

[S84] X. Peng and L. Lu, “User-session-based automatic test case generation using
GA,” Journal of Physical Sciences, vol. 6, no. 13, pp. 3232–3245, 2011.

[S85] A. Marchetto and P. Tonella, “Using search-based algorithms for Ajax event
sequence generation during testing,” Empirical Software Engineering, vol.
16, no. 1, pp. 103–140, Dec. 2010.

[S86] D. Licata and S. Krishnamurthi, “Verifying interactive web programs,”
Proceedings of the International Conference on Automated Software
Engineering , pp. 164–173, 2004.

[S87] M. Benedikt, J. Freire, and P. Godefroid, “VeriWeb : Automatically Testing
Dynamic Web Sites.” Proceedings of the International World Wide Web
Conference (WWW), 2002

[S88] D. Castelluccia, M. Mongiello, M. Ruta, and R. Totaro, “WAVer: A Model
Checking-based Tool to Verify Web Application Design,” Electronic Notes in
Theoretical Computer Science, vol. 157, no. 1, pp. 61–76, May 2006.

[S89] P. Tonella and F. Ricca, “Web Application Slicing in Presence of Dynamic
Code Generation,” Automated Software Engineering, vol. 12, no. 2, pp. 259–
288, 2005.

[S90] S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock, “Web Application Testing
with Customized Test Requirements - An Experimental Comparison Study,”

84

International Symposium on Software Reliability Engineering, pp. 266–278,
2006.

[S91] J. Tian and L. I. Ma, “Web Testing for Reliability Improvement,” Advances in
Computers, 67, pp. 178–225, 2006.

[S92] S. R. Choudhary, H. Versee, and a Orso, “WEBDIFF: Automated identification
of cross-browser issues in web applications,” Software Maintenance IEEE
International Conference on, pp. 1–10, 2010.

[S93] V. Dallmeier, M. Burger, T. Orth, and A. Zeller, “WebMate : Generating Test
Cases for Web 2.0,” Software Quality. Increasing Value in Software and
Systems Development, pp. 55-69, 2013.

[S94] S. Sprenkle, H. Esquivel, B. Hazelwood, and L. Pollock, “WEBVIZOR: A
Visualization Tool for Applying Automated Oracles and Analyzing Test Results
of Web Applications,” pp. 89–93, 2008.

[S95] W. Xiong, H. Bajwa, and F. Maurer, “WIT: A Framework for In-container
Testing of Web-Portal Applications 2 Problems Needed to Be Addressed by
ICT,” vol. 1, no. 403, pp. 87–97, 2005.

Other References

[1] Business Internet Group San Francisco (BIG-SF), "Black Friday Report on
Web Application Integrity," The Business Internet Group of San Francisco,
http://www.tealeaf.com/news/press_releases/2003/0203.asp, 2003.

[2] V. Garousi, A. Mesbah, A. Betin-Can, and S. Mirshokraie, "A Systematic
Mapping of Web Application Testing," Information and Software Technology,
in press, 2013.

[3] B. Kitchenham and S. Charters, "Guidelines for Performing Systematic
Literature Reviews in Software engineering," in Evidence-Based Software
Engineering," Evidence-Based Software Engineering, 2007.

[4] W. Afzal, R. Torkar, and R. Feldt, "A systematic mapping study on non-
functional search-based software testing," in International Conference on
Software Engineering and Knowledge Engineering, 2008, pp. 488-493.

[5] M. Palacios, J. García-Fanjul, and J. Tuya, "Testing in service oriented
architectures with dynamic binding: A mapping study," Information and
Software Technology, vol. 53, pp. 171-189, 2011.

[6] Z. A. Barmi, A. H. Ebrahimi, and R. Feldt, "Alignment of requirements
specification and testing: A systematic mapping study," in Proceedings of the
IEEE Fourth International Conference on Software Testing, Verification and
ValidationWorkshops, 2011, pp. 476 - 485.

85

[7] P. A. d. M. S. Neto, I. d. C. Machado, J. D. McGregord, E. S. d. Almeida, and
S. R. d. L. Meira, "A systematic mapping study of software product lines
testing," Information and Software Technology, vol. 53, pp. 407 - 423, 2011.

[8] E. Engström and P. Runeson, "Software product line testing - a systematic
mapping study," Journal of Information and Software Technology, vol. 53,
pp. 2 - 13, 2011.

[9] C. R. L. Neto, P. A. d. M. S. Neto, E. S. d. Almeida, and S. R. d. L. Meira, "A
mapping study on software product lines testing tools," in Proceedings of
International Conference on Software Engineering and Knowledge
Engineering, 2012.

[10] W. Afzal, R. Torkar, and R. Feldt, "A systematic review of search-based
testing for non-functional system properties," Information and Software
Technology, vol. 51, pp. 957 - 976, 2009.

[11] Z. Zakaria, R. Atan, A. A. A. Ghani, and N. F. M. Sani, "Unit testing
approaches for BPEL: a systematic review," in Proceedings of the Asia-Pacific
Software Engineering Conference, 2009, pp. 316 - 322.

[12] A. T. Endo and A. d. S. Simao, "A systematic review on formal testing
approaches for web services," in Brazilian Workshop on Systematic and
Automated Software Testing, International Conference on Testing Software
and Systems, 2010, p. 89.

[13] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A systematic
review of the application and empirical investigation of searchbased test
case generation," IEEE Transactions on Software Engineering, vol. 36, pp.
742 - 762, 2010.

[14] E. Engström, P. Runeson, and M. Skoglund, "A systematic review on
regression test selection techniques," Journal of Information and
SoftwareTechnology, vol. 53, pp. 14 - 30, 2010.

[15] R. V. Binder, "Testing object-oriented software: a survey," in Proceedings of
the Tools-23: Technology of Object-Oriented Languages and Systems, 1996,
p. 374.

[16] N. Juristo, A. M. Moreno, and S. Vegas, "Reviewing 25 years of testing
technique experiments," Empirical Software Engineering, vol. 9, pp. 7 - 44,
2004.

[17] P. McMinn, "Search-based software test data generation: a survey: Research
articles," Software Testing, Verification & Reliability, vol. 14, pp. 105 - 156,
2004.

[18] M. Grindal, J. Offutt, and S. F. Andler, "Combination testing strategies: A
survey," Software Testing, Verification, and Reliability, vol. 15, 2005.

86

[19] G. Canfora and M. D. Penta, "Service-oriented architectures testing: a
survey," in International Summer Schools on Software Engineering, 2008,
pp. 78 –105.

[20] C. S. Păsăreanu and W. Visser, "A survey of new trends in symbolic
execution for software testing and analysis," International Journal on
Software Tools for Technology Transfer, vol. 11, pp. 339 - 353, 2009.

[21] M. Bozkurt, M. Harman, and Y. Hassoun, "Testing web services: a survey,"
Technical Report TR-10-01, Department of Computer Science, King’s College
London2010.

[22] Y. Jia and M. Harman, "An analysis and survey of the development of
mutation testing," IEEE Transactions of Software Engineering, vol. 37, pp.
649 – 678, 2011.

[23] P. A. d. M. S. Neto, P. Runeson, I. d. C. Machado, E. S. d. Almeida, S. R. d.
L. Meira, and E. Engström, "Testing Software Product Lines," IEEE Software,
vol. 28, pp. 16 - 20, 2011.

[24] A. M. Memon and B. N. Nguyen, "Advances in automated model-based
system testing of software applications with a GUI front-end," Advances in
Computers, vol. 80, pp. 121–162, 2010.

[25] T. D. Hellmann, A. Hosseini-Khayat, and F. Maurer, "Agile Interaction Design
and Test-Driven Development of User Interfaces - A Literature Review," in
Agile Software Development: Current Research and Future Directions, 2010.

[26] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, "Graphical User Interface
(GUI) Testing: Systematic Mapping and Repository," Information and
Software Technology, in press, 2013.

[27] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic mapping
studies in software engineering," presented at the 12th International
Conference on Evaluation and Assessment in Software Engineering (EASE),
2008.

[28] Y. Jia and M. Harman, " Mutation Testing Paper Repository," in
http://www.dcs.kcl.ac.uk/pg/jiayue/repository, Last accessed : July 2013.

[29] Y. Zhang, "Repository of Publications on Search based Software
Engineering," in http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/,
Last accessed : July 2013.

[30] V. Garousi, "Online Paper Repository for Software Test-Code Engineering: A
Systematic Mapping," in http://www.softqual.ucalgary.ca/projects/SM/STCE,
Last accessed : Dec. 5, 2012.

87

[31] V. Garousi, "Online Paper Repository for GUI Testing," in
http://www.softqual.ucalgary.ca/projects/2012/GUI_SM/, Last accessed :
Dec. 5, 2012.

[32] V. Garousi, "Online Paper Repository for Developing Scientific Software: A
Systematic Mapping," in http://softqual.ucalgary.ca/projects/2012/SM_CSE/,
Last accessed : Dec. 1, 2012.

[33] S. Dogan, A. Betin-Can, and V. Garousi, "Online SLR Data for Web
Application Testing (WAT)," in http://goo.gl/VayAr, Last accessed : July 15,
2013.

[34] B. Kam and T. R. Dean, "Lessons Learned from a Survey of Web Applications
Testing," in Proceedings of the International Conference on Information
Technology: New Generations, 2009.

[35] M. H. Alalfi, J. R. Cordy, and T. R. Dean, "Modelling methods for web
application verification and testing: state of the art," Journal Software
Testing, Verification & Reliability, vol. 19, pp. 265-296, 2009.

[36] G. A. D. Lucca and A. R. Fasolino, "Testing Web-based applications: The
state of the art and future trends," Information and Software Technology,
vol. 48, pp. 1172-1186, 2006

[37] D. Amalfitano, A. Fasolino, and P. Tramontana, "Techniques and tools for
rich internet applications testing," in Proceedings IEEE International
Symposium on Web Systems Evolution, 2010, pp. 63–72.

[38] E. Insfran and A. Fernandez, "A systematic review of usability evaluation in
Web development," in Proceedings of Web Information Systems
Engineering, 2008, pp. 81-91.

[39] F. Elberzhager, J. Münch, and V. T. N. Nha, "A systematic mapping study on
the combination of static and dynamic quality assurance techniques,"
Information and Software Technology, vol. 54, pp. 1-15, 2012.

[40] D. S. Cruzes and T. Dybå, "Synthesizing Evidence in Software Engineering
Research," in Proceedings of the ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, 2010

[41] D. S. Cruzes and T. Dybå, "Recommended Steps for Thematic Synthesis in
Software Engineering," in Proc. International Symposium on Empirical
Software Engineering and Measurement, 2011, pp. 275-284.

[42] D. S. Cruzesa and T. Dybåb, "Research synthesis in software engineering: A
tertiary study," Information and Software Technology, vol. 53, pp. 440–455,
2011.

88

[43] G. S. Waliaa and J. C. Carverb, "A systematic literature review to identify and
classify software requirement errors," Information and Software Technology,
vol. 51, pp. 1087–1109, 2009.

[44] H. Cooper, L. V. Hedges, and J. C. Valentine, "The Handbook of Research
Synthesis and Meta-Analysis," 2nd ed: Russell Sage Foundation, 2009.

[45] S. R. S. Souza, M. A. S. Brito, R. A. Silva, P. S. L. Souza, and E. Zaluska,
"Research in Concurrent Software Testing: A Systematic Review," in
Proceedings of the Workshop on Parallel and Distributed Systems: Testing,
Analysis, and Debugging, 2011, pp. 1-5.

[46] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, "Using Mutation
Analysis for Assessing and Comparing Testing Coverage Criteria," IEEE
Transactions on Software Engineering, vol. 32, pp. 608-624, 2006.

[47] E.J.Weyuker, "Can we measure software testing effectiveness?," in Proc. of
IEEE Software Metrics Symposium, 1993, pp. 100-107.

[48] F. Shull, J. Singer, and D. I. K. Sjøberg, Guide to Advanced Empirical
Software Engineering: Springer, 2008.

[49] R. Feldt and A. Magazinius, "Validity Threats in Empirical Software
Engineering Research-An Initial Survey," in Proceedings of the Software
Engineering and Knowledge Engineering Conference, 2010.

[50] N. K. Liborg, "A study of threats to validity in controlled software engineering
experiments," Masters thesis, University of Oslo,
https://www.duo.uio.no/handle/10852/9155, 2004.

[51] M. Ivarsson and T. Gorschek, "A method for evaluating rigor and industrial
relevance of technology evaluations," Empir Software Eng, vol. 16, pp. 365–
395, 2011.

[52] M. J. Harrold, R. Gupta, and M. L. Soffa, "A methodology for controlling the
size of a test suite," ACM Transactions on Software Engineering and
Methodology, vol. 2, pp. 270 - 285, 1993.

[53] Y. Deng, P. Frankl, and J. Wang, "Testing web database applications," ACM
SIGSOFT Software Engineering Notes, vol. 29, pp. 1-10, 2004.

[54] S. Eldh, H. Hansson, S. Punnekkat, A. Pettersson, and D. Sundmark, "A
framework for comparing efficiency, effectiveness and applicability of
software testing techniques," in Testing: Academic & Industrial Conference-
Practice And Research Techniques, 2006, pp. 159 - 170.

[55] W. G. Halfond, and A. Orso, "Command-form coverage for testing database
applications," 21st IEEE/ACM International Conference on Automated
Software Engineering ASE'06, pp. 69-80, 2006

 TEZ FOTOKOPİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

Sosyal Bilimler Enstitüsü

Uygulamalı Matematik Enstitüsü

Enformatik Enstitüsü

Deniz Bilimleri Enstitüsü

YAZARIN

Soyadı : Doğan

Adı : Serdar

Bölümü : Bilişim Sistemleri

TEZİN ADI (İngilizce) : Web Application Testing: A Systematic Literature

Review

TEZİN TÜRÜ : Yüksek Lisans Doktora

1. Tezimin tamamı dünya çapında erişime açılsın ve kaynak gösterilmek

şartıyla tezimin bir kısmı veya tamamının fotokopisi alınsın.

2. Tezimin tamamı yalnızca Orta Doğu Teknik Üniversitesi kullancılarının

erişimine açılsın. (Bu seçenekle tezinizin fotokopisi ya da elektronik

kopyası Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.)

3. Tezim bir (1) yıl süreyle erişime kapalı olsun. (Bu seçenekle tezinizin

fotokopisi ya da elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına

dağıtılmayacaktır.)

Yazarın imzası Tarih

