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Abstract

In this paper, we propose a defect prediction approach centered on more robust evidences to-

wards causality between source code metrics (as predictors) and the occurrence of defects. More

specifically, we rely on the Granger Causality Test to evaluate whether past variations in source

code metrics values can be used to forecast changes in a time series of defects. Our approach

triggers alarms when changes made to the source code of a target system have a high chance of

producing defects. We evaluated our approach in several life stages of four Java-based systems.

We reached an average precision of 50% in three out of the four systems we evaluated. Moreover,

by comparing our approach with baselines that are not based on causality tests, it achieved a

better precision.

1 Introduction

Defect prediction is a central challenge for software engineering research [2,9,12,20,32]. The goal is

to discover reliable predictors that can indicate in advance those components of a software system

that are more likely to fail. Clearly, this information is of central value for software quality assurance.

For example, it allows quality managers to allocate more time and resources to test—or even to

redesign and reimplement—those components predicted as defect-prone.

Due to its relevance to software quality, various defect prediction techniques have been proposed.

Essentially, such techniques rely on different predictors, including source code metrics (e.g., cou-

pling, cohesion, size) [2,25,31], change metrics [17], static analysis tools [1,6,24], and code smells [8].

However, the typical experiments designed to evaluate defect prediction techniques do not investi-

gate whether the discovered relationships indicate cause-effect relations or whether they are mere

statistical coincidences. More specifically, it is well known that regression models—the most com-

mon statistical technique used by bug predictors—cannot filter out spurious relations [11]. In other
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words, events that represent mere coincidences can undermine the predictions performed by stan-

dard regression models, especially when the proposed models are applied to systems maintained for

years or decades.

In this paper, we propose a defect prediction approach centered on causality relationships be-

tween variations in source code metrics values (as predictors) and the occurrence of defects. More

specifically, we rely on a statistical hypothesis test proposed by Clive Granger to evaluate whether

past changes to a given time series are useful to forecast changes to another series. Granger Test

was originally proposed to evaluate causality between time series of economic data (e.g., to show

whether changes in oil prices cause recession) [13, 14]. Although extensively used by econometri-

cians, the test has been applied in bioinformatics (to identify gene regulatory relationships [23]) and

recently in software maintenance (to detect change couplings spread over an interval of time [4]).

In a recent paper, we described a study that investigated the feasibility of applying Granger

to detect causal relationships between time series of source code metrics and defects [7]. In this

paper we leverage this initial study by proposing and evaluating a defect prediction model based

on causality tests. Unlike common approaches in the literature, the models we propose do not aim

to predict the number or the existence of defects in a class in a future time frame [2, 3, 9, 15, 31].

Instead, our central goal is to predict defects as soon as they are introduced in the source code. More

specifically, we aim to identify the changes to a class that have more chances to generate defects. For

this purpose, we rely on input from the Granger Test to trigger alarms whenever a change performed

to a class reproduces similar variations in the class’ source code properties that in the past caused

defects. We also extended a dataset proposed to evaluate defect prediction approaches, by almost

doubling the number of source code versions included in this dataset. Finally, we evaluated our

approach in several life stages of four open-source systems included in the aforementioned dataset.

Our approach reached an average precision of 50% considering three out of the four systems we

evaluated. Moreover, our results show that the precision of the alarms changes with time. For

example, for the Eclipse JDT Core, we achieved an average precision of 56% considering 144 models

covering seven years of the system’s history, and including a minimal and maximal precision of 30%

and 100%, respectively. On the other hand, we were not able to predict all defects using times series

of source code metrics. On average, we achieved recall rates ranging from 12% (Equinox) to 21%

(Eclipse JDT Core). In fact, we argue that it is not feasible to expect that alarms based on source

code metrics variations can cover the whole spectrum of bugs reported to a system, particularly

bugs denoting logic or semantic errors. Finally, we show that our models outperform models that

trigger alarms without considering causality relationships.

The remainder of this paper is organized as follows. We start with an overview on Granger

Causality (Section 2). Next, we describe the steps to build the proposed model (Section 3), including

the time series extraction, the application of the Granger Test, and the identification of thresholds

in metrics variations that may lead to defects. Section 4 describes our dataset including time series

of source code metrics and defects for four real world systems (Eclipse JDT Core, Eclipse PDE

UI, Equinox, and Lucene). Section 5 describes a feasibility study designed to illustrate and to
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evaluate the application of Granger on defects prediction. We present an evaluation of the proposed

prediction model in Section 6. We describe the threats to validity in Section 7. Section 8 discusses

related work, and Section 9 concludes the paper.

2 Granger Causality

In this section, we start first by describing a precondition that Granger requires the time series to

follow (Section 2.1). Next, we present and discuss the test (Section 2.2).

2.1 Stationary Time Series

The usual pre-condition when applying forecasting techniques—including the Granger Test de-

scribed in the next subsection—is to require a stationary behavior from the time series [11]. In

stationary time series, properties such as mean and variance are constant over time. Stated other-

wise, a stationary behavior does not mean the values are constant, but that they fluctuate around

a constant long run mean and variance. However, most time series of software source code metrics

and defects when expressed in their original units of measurements are not stationary. The reason

is intuitively explained by Lehman’s Law of software evolution, which states that software measures

of complexity and size tend to grow continuously [22]. This behavior is also common in the original

domain of Granger application, because time series of prices, inflation, gross domestic product, etc

also tend to grow along time [14].

When the time series are not stationary, a common workaround is to consider not the absolute

values of the series, but their differences from one period to the next1. More specifically, suppose a

time series x(t). Its first difference x′(t) is defined as x′(t) = x(t)− x(t− 1).

Example #1: To illustrate the notion of stationary behavior, we will consider a time series that

represents the number of methods (NOM), extracted for the Eclipse JDT Core system, in intervals

of bi-weeks, from 2001 to 2008. Figure 1(a) illustrates this series. As we can observe, the series is

not stationary, since it has a clear growth trend, with some disruptions along the way. Figure 1(b)

shows the first difference of NOM. Note that most values are delimited by a constant mean and

variance. Therefore, NOM in first difference has a stationary behavior.

2.2 Granger Test

Testing causality between two stationary time series x and y, according to Granger, involves using

a statistical test—usually the F-Test—to check whether x helps to predict y at some stage in

the future [13]. If this happens, we can conclude that x Granger-causes y. The most common

implementation of the Granger Causality Test uses bivariate and univariate auto-regressive models.

A bivariate auto-regressive model includes past values from the independent variable x and from

1It is worth mentioning that we adopted this strategy in the two studies presented in this paper
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(b) NOM series in first difference (stationary behavior)

Figure 1: NOM for Eclipse JDT core

the dependent variable y. On the other hand, a univariate auto-regressive model considers only

past values of the variable y.

To apply Granger, we must first calculate the following bivariate auto-regressive model [4]:

yt = α0 + α1yt−1 + α2yt−2 + · · ·+ αpyt−p + β1xt−1 + β2xt−2 + · · ·+ βpxt−p + ut (1)

where p is the auto-regressive lag length (an input parameter of the test) and ut is the residual.

Essentially, p defines the number of past values—from both x and y—considered by the regressive

models. Furthermore, Equation 1 defines a bivariate model because it uses values of x and y, limited

by the lag p.

To test whether x Granger-causes y, the following null hypothesis must be rejected:

H0 : β1 = β2 = · · · = βp = 0

This hypothesis assumes that the past values of x do not add predictive power to the regression.

In other words, by testing whether the β coefficients are equal to zero, the goal is to discard the

possibility that the values of x can contribute to the prediction.

To reject the null hypothesis, we must first estimate the following auto-regressive univariate

model (i.e., an equation similar to Equation 1 but excluding the values of x):

yt = γ0 + γ1yt−1 + γ2yt−2 + · · ·+ γpyt−p + et (2)

Finally, to evaluate the precision of both models, we must calculate their residual sum of squares
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(RSS):

RSS1 =
T∑
t=1

û2
t RSS0 =

T∑
t=1

ê2
t

If the following test

S1 =
(RSS0 −RSS1)/p

RSS1/(T − 2p− 1)
∼ Fp,T−2p−1

exceeds the critical value of F with a significance level of 5% for the distribution F (p, T−2p−1), the

bivariate auto-regressive model is better (in terms of residuals) than the univariate model. There-

fore, the null hypothesis is rejected. In this case, we can conclude that x causes y, according to the

Granger Causality Test.

Example #2: For our previous Eclipse JDT Core example, we have applied Granger to evaluate

whether the number of public methods (NOPM), in the Granger sense, causes NOM. Although

the common intuition suggests this relation truly denotes causality, it is not captured by Granger’s

test. Particularly, assuming p = 1 (the lag parameter), the F-Test has returned a p-value of 0.32,

which is superior to the defined threshold of 5%. To explain this lack of Granger-causality, we have

to consider that variations in the number of public methods cause an immediate impact on the

total number of methods (public, private etc). Therefore, Granger’s application is recommended in

scenarios where variations in the independent variable are reflected in the dependent variable after

a certain delay (or lag).

Example #3: To explain the sense of causality captured by Granger in a simple and comprehensive

manner, suppose a new time series defined as:

NOM ′(t) =

{
NOM(t) if t ≤ 5

NOM(t− 5) if t > 5

Basically, NOM’ reflects with a lag of five bi-weeks the values of NOM. We have reapplied

Granger to evaluate whether NOPM causes NOM’, in the Granger sense. In this case, the result

was positive, assuming p = 5. Therefore, knowing the NOPM values at a given bi-week helps to

predict the value of NOM’. Figure 2 illustrates the behavior of both series. For example, we can

observe that just before bi-week 21 a significant increase occurred in the number of public methods.

By knowing this information, one could predict an important increase in NOM’ in the following

bi-weeks. In fact, the figure shows that this increase in NOPM was propagated to NOM’ in few

bi-weeks (we circled both events in the presented series).

Example #4: To illustrate the application of Granger in a real example, Figure 3 shows the time

series of LOC (lines of code) and defects for four classes of the JDT Core system. These time series
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Figure 2: NOPM and NOM’ time series. The increase in NOPM values just before bi-week 21 has
been propagated to NOM’ few weeks later

were created in intervals of bi-weeks from 2001 to 2008. In the figure, we circled the events in

the time series of LOC that probably anticipated similar events in the time series of defects. For

example, in the SearchableEnvironmentRequestor class (first graphic), the increase in LOC just

before bi-week 87 generated an increase in the number of defects few weeks later. In these classes

specifically, a Granger-causality has been detected between LOC and defects, assuming p = 3.

3 Proposed Approach

The ultimate goal of our approach is to predict defects using a model centered on Granger-causality

relations between source code metrics (independent variables) and defects (dependent variable).

Our approach relies on historical data such as bug histories (extracted from bug tracking platforms)

and source code versions (extracted from version control platforms). This data is used to create

time series of source code metrics and defects for the classes of a target system. Next, we rely on

the Granger Causality Test for inferring causal relations between the time series of metrics and

defects. After that, we build a defect prediction model that triggers alarms when changes made to

the target system have a high chance of producing defects.

As illustrated in Figure 4, we propose the following steps to build a defect prediction model:

1. We create time series of source code metrics for each class of the target system. In order to

create such series, source code versions of the target system are extracted from its version

control platform in a predefined time interval (e.g., bi-weeks). After that, the values of the

considered source code metrics are calculated for each class of each extracted version.

2. We create a time series with the number of defects in each class of the target system from the
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Figure 3: Examples of Granger Causality between LOC and defects.

bugs history. Basically, we map the bugs reported in bug tracking platforms to their respective

commits using the bug identifier. Next, the files changed by such commits are used to identify

the classes changed to fix the respective defects (i.e., the defective classes). Section 3.1 details

the methodology we follow to generate the defects time series.

3. We apply Granger Causality Test considering the metrics and defects time series. More

specifically, Granger is responsible for identifying causal relations on time series of source

code metrics and defects. Section 3.2 describes the methodology we follow to apply Granger.

4. As a distinguishing aspect of our approach, we identify thresholds for variations in metrics

values that may contribute according to Granger to the occurrence of defects. More specifi-

cally, we build a model that relies on such thresholds to alert developers about future defects
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Figure 4: Steps proposed to build a model for defect prediction

whenever a risky variation in the values of a metric happens due to changes in the system.

Section 3.3 describes the proposed approach to identify alarms thresholds.

3.1 Extracting the Time Series of Defects

We consider that bugs are failures in the observable behavior of the system. Bugs are caused by one

or more errors in the source code, called defects [30].We count defects at the class level since our

ultimate goal is to trigger alarms due to changes in classes. More specifically, each class changed to

fix a given bug is counted as a defective class. Therefore, whenever we mention that a system has

n defects in a given time frame, we are actually stating that we counted n defective classes in this

time frame (i.e., classes that were later changed to fix the defect). Classes with multiple defects

related to the same bug are counted only once; on the other hand, defects in the same class but due

to different bugs are counted separately. Finally, we do not consider open or non-fixed bugs.

To create the time series of defects, the bugs—or more precisely, the maintenance requests—

reported in the bug tracking platforms must be collected during the same time frame used to extract

the source code versions. In a second step, each bug b is linked to the classes changed to fix b, using

the following procedure (which is also adopted in other studies on defect prediction [9, 29,33]):

1. Suppose that Bugs is the set containing the IDs of all bugs reported during the time frame

considered in the analysis.

2. Suppose that Commits is the set with the IDs of all commits in the version control platform.

Suppose also that Cmts[c] and Chg [c] are, respectively, the maintainer’s comments and the

classes changed by each commit c ∈ Commits.

3. The classes changed to fix a given bug b ∈ Bugs are defined as:

⋃
∀c∈Commits

{ Chg [c] | substr(b,Cmts[c]) }

This set is the union of the classes changed by each commit c whose textual comments provided

by the maintainer includes a reference to the bug with ID b. The predicate substr(s1, s2) tests

whether s1 is a substring of s2.
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Figure 5: Example of extracting time series of defects

Finally, suppose that in order to fix a given bug b changes have been applied to the class C. In

this case, a defect associated to b must be counted for C during the period in which b remained

open, i.e., between the opening and fixing dates of b. More specifically, a defect is counted for the

class C at a time interval t whenever the following conditions hold: (a) b has been opened before the

ending date of the time interval t; (b) b has been fixed after the starting date of the time interval t.

Figure 5 shows an example regarding the extraction of a time series of defects with three bugs

and three classes and spanning a time interval of five bi-weeks. The left table shows data on the

bugs and the right figure shows the time series of defects extracted from these bugs. As we can

observe, bug #1 was opened in 2010-01-07 (bi-week 1) and fixed in 2010-03-10 (bi-week 5). In order

to fix this bug, changes were applied to the class A. In this case, a defect associated to bug #1 was

counted for the class A during five bi-weeks.

3.2 Applying the Granger Test

To apply the Granger Causality Test in order to identify causal relations on the time series of source

code metrics and defects, we propose the following algorithm:

1: foreach c in Classes

2: d = Defects[c];

3: if d_check(d)

4: for n = 1 to NumberOfMetrics do

5: m = M[n][c];

6: if m_check(m)

7: granger(m, d);

8: endif

9: endfor

10: endif

11: endforeach

In this algorithm, Classes is the set of all classes of the system (line 1) and Defects[c] is the

time series with the number of defects (line 2). The algorithm relies on function d check (line 3)

to check whether the defects in the time series d conform to the following preconditions:
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• P1: The time series must have at least k values, where k represents the minimum size that a

series must have to be considered by the prediction model. Therefore, time series that only

existed for a small proportion of the time frame considered in the analysis—usually called

dayfly classes [21]—are discarded. The motivation for this precondition is the fact that such

classes do not present a considerable history of defects to qualify their use in predictions.

• P2: The values in the time series of defects must not be all null (equal to zero). Basically, the

goal is to discard classes that never presented a defect in their lifetime (for instance, because

they implement a simple and stable requirement). The motivation for this precondition is

that it is straightforward to predict defects for such classes; probably, they will remain with

zero defects in the future.

• P3: The time series of defects must be stationary, which is a precondition required by Granger,

as reported in Section 2.1.

Suppose that a given class c has passed the previous preconditions. For this class, suppose also

that M[n][c] (line 5) is the time series with the values of the n-th source code metric considered

in the study, 1 ≤ n ≤ NumberOfMetrics. The algorithm relies on function m check (line 6) to test

whether time series m—a time series with metrics values—conforms to the following preconditions:

• P4: The time series of source code metrics must not be constant. In other words, metrics

time series whose values never change must be discarded, since variations in the independent

variables are the key event to observe when computing Granger causality.

• P5: The time series of source code metrics must be stationary, as defined for the defects series.

Finally, for the time series m (source code metrics) and d (defects) that passed preconditions

P1 to P5, function granger(m,d) checks whether m Granger-causes d (line 7). As described in

Section 2, Granger is sensitive to the lag selection. For this reason, in the proposed algorithm the

test is not applied for a single lag value, but several times, with the lags ranging from 1 to l. In

this way, we consider that a metric m is a Granger-cause of defects in a given class c whenever one

of the tested lags return a positive result.

3.3 Calculating Thresholds to Trigger Alarms

As described in Section 2.2, Granger Causality Test identifies whether an independent variable x

contributes to predict a dependent variable y at some stage in the future. However, the test does

not establish the thresholds for relevant variations of the values of x that may impact y. Therefore,

this step aims to calculate the thresholds used by our model to trigger alarms, as follows:
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Figure 6: Example of a threshold for the LOC metric

1. For each time series of source code metrics that Granger returned a positive result, we compute

the positive variations in the series values, by subtracting the values at consecutive bi-weeks2.

2. A threshold to trigger alarms for a given class C and metric m is the arithmetic mean of the

variations of m computed for C, as defined in the previous step.

Figure 6 shows a time series for one of the classes of the Eclipse JDT Core system where

Granger returned a positive result between the values of LOC and defects. In this figure, we circled

the positive variations used to calculate the alarms thresholds. As can be observed, the threshold

for the class BindingResolver is 33.1, which is the arithmetic mean of the values we circled. Our

defect prediction model relies on this threshold to alert maintainers about future defects in this

class. More specifically, an alarm is triggered for future changes adding more than 34 LOC to the

class.

3.4 Defect Prediction Model

Figure 7 illustrates the inputs and the output of our prediction model. Basically, the model re-

ceives as input two values for a given source code metric m, mv and mv′ , where mv is the value of

the metric regarding a class C that was just changed (for example, to support a new feature, to

support an improvement in the system requirements, or to fix a bug). Moreover, mv′ is the value

of the metric in the previous version of C in the version control platform. The proposed model

2We decided to compute the positive variations instead of the negative variations, because positive variations in
source code metrics indicate typically a “quality degradation of the source code”, which can influence the occurrence
of future defects. Therefore, at least in principle, it does not make sense to trigger alarms in cases where the variations
in the metric values are negatives, i.e., when the source code quality improves.
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verifies whether m Granger-causes defects in C and whether the difference (mv −mv′) is greater

or equal to the threshold identified for variations in the metric values. When both conditions hold,

the model triggers an alarm. Basically, such alarm indicates that, according to the Granger Test,

similar variations in the values of this metric in the past resulted in defects.

Figure 7: Defect prediction model

Using the Prediction Model: With this model in hand, a maintainer before making a commit

on the version control platform with changes to a given class can verify whether such changes may

lead to defects. If our model triggers an alarm for the class warning about future occurrences of

defects, the maintainer can for example perform extra software quality assurance activities (e.g.,

unit testing or a detailed code inspection) in the class before executing the commit.

4 Dataset

The evaluation reported on this paper is based on a dataset made public by D’Ambros et al. to

evaluate defect prediction techniques [9, 10]. This dataset includes temporal series for seventeen

source code metrics, including number of lines of code (LOC) and the CK (Chidamber and Kemerer)

metrics suite [5]. The metrics were extracted in intervals of bi-weeks for four well-known Java-based

systems: Eclipse JDT Core, Eclipse PDE UI, Equinox, and Lucene. Table 1 provides detailed

information on this original dataset. In this table, column Period informs the time interval in

which the metrics were collected by D’Ambros et al.. In total, the dataset has 4,298 classes, each

of them with at least 90 bi-weekly versions (which is equivalent to around three and a half years).

Table 1: Original dataset
System Period Classes Versions

Eclipse JDT Core 2005-01-01 − 2008-05-31 1,041 90
Eclipse PDE UI 2005-01-01 − 2008-09-06 1,924 97
Equinox 2005-01-01 − 2008-06-14 444 91
Lucene 2005-01-01 − 2008-10-04 889 99
Total 4,298 377

4.1 Extended Dataset

We extended this dataset as described next: (a) by considering more versions and classes and (b)

by creating a time series of defects. Table 2 provides detailed information on our extended dataset.

12



As can observed, our extension has approximately twice the number of versions (723 versions) and

45% more classes (6,223 classes). Basically, we extended the original dataset to consider—whenever

possible—the whole evolution history of the considered systems, starting from the first version

available in their version repositories.

Table 2: Extended dataset
System Period Classes Versions

Eclipse JDT Core 2001-07-01 − 2008-06-14 1,370 183
Eclipse PDE UI 2001-05-24 − 2008-04-03 3,478 180
Equinox 2003-11-25 − 2010-10-05 615 180
Lucene 2002-06-22 − 2009-05-02 760 180
Total 6,223 723

Similar to the original dataset, our extension does not include test classes. Test classes were

discarded because they are not related to the core functionality of their systems and therefore they

may statistically invalidate attempts to perform predictions. More specifically, we removed the

directories and subdirectories whose name starts with the words “Test” or “test”. The number of

removed classes is as follows (for the last versions included in our dataset): 3452 classes for Eclipse

JDT Core, 208 classes for Eclipse PDE UI, 816 classes for Equinox, and 360 classes for Lucene.

Furthermore, we consider a reduced number of source code metrics, as indicated in Table 3.

More specifically, we reduced the number of source code metrics from seventeen to seven, for the

following reasons:

• The seven metrics we selected cover different properties of code, such as complexity (WMC),

coupling (FAN-IN and FAN-OUT), cohesion (LCOM) and size (NOA, LOC, and NOM).

• The metrics related to inheritance—such as Depth of Inheritance Tree (DIT) and Number

of Children (NOC)—usually do no present positive results regarding the Granger Causality

Test, at least according to our previous study [7].

• There is a considerable degree of affinity between some of the source code metrics included in

the original dataset. For example, this dataset includes metrics that measure both Number

of Attributes (NOA) and Number of Private Attributes (NOPRA). These measures are quite

related and therefore they tend to correlate.

On the other hand, it is worth mentioning that the important factors of our approach are not

the kind of software properties measured by metrics and nor the number of metrics used to build

the prediction model. In particular, any metric and any amount of metrics can be used to build

our model. In practice, the most important factors are if the considered metrics returned a positive

result for the Granger Test when compared with the time series of defects and also if future variations

in the metrics values can result in alarms triggered by our model.
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Table 3: Metrics considered in our dataset
Metrics Description Category

1 WMC Weighted methods per class Complexity
2 LCOM Lack of cohesion in methods Cohesion
3 FAN-IN Number of classes that reference a given class Coupling
4 FAN-OUT Number of classes referenced by a given class Coupling
5 NOA Number of attributes Size
6 LOC Number of lines of code Size
7 NOM Number of methods Size

4.2 Data Collection

To create the time series of source code metrics, we extracted the source code of each considered

version from the version control platform in intervals of bi-weeks. We then used the Moose platform3

to calculate the metrics values for each class of each considered version, excluding only test classes.

Particularly, we relied on VerveineJ—a Moose application—to parse the source code of each version

and to generate MSE files. MSE is the default file format supported by Moose to persist source

code models. We extended the Moose platform with a routine to calculate LCOM, since the current

version of Moose does not support this metric.

Another important difference between the datasets is the fact that D’ambros’ dataset only

provides information on the total number of defects for each class. Thus, in order to apply Granger

we distributed this value along the bi-weeks considered in our evaluation. To create the time series

of defects, we followed the methodology described in Section 3.1. We initially collected the issues

(bugs) reported in the Jira and Bugzilla platforms (the bug-tracking platforms of the considered

systems) that meet the following conditions:

• Issues reported during the time interval considered by our dataset (as described in Table 2).

• Issues denote real corrective maintenance tasks. Our goal was to distinguish between issues

demanding corrective maintenance tasks and issues that in fact are requests for adaptive,

evolutive or perfective maintenance. Jira has a field that classifies the issues as bug, improve-

ment, and new feature. Therefore, we collected only issues classified as bug. On the other

hand, Bugzilla works mainly for corrective maintenance tasks (at least for Eclipse Founda-

tion systems). Despite that, some issues were classified as enhancement in the Severity field.

Therefore, we also discarded them.

• Issues that have fixed status. In other words, we discarded open, duplicate, invalid, and

incomplete issues.

In a second step, we mapped the bugs to defects in classes and created the time series of defects

for each class. Table 4 shows the number of bugs opened via Bugzilla or Jira for each of the systems.

3http://www.moosetechnology.org.
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As can be observed, we collected a total of 6,614 bugs. This table also shows information on the

considered time series, including four values: number of bugs we collected, number of defects that

caused such bugs (i.e., number of classes changed to fix such bugs), number of defective classes

(i.e. number of classes associated to at least one bug), and the average number of defects per bug.

As can be observed, on average each bug required changes in 2.18 classes. Therefore, at least in our

dataset, changes to fix bugs do not present a scattered behavior.

Table 4: Number of bugs, defects, and defects per bugs
System Bugs Defects Defective Classes Defects/Bugs

Eclipse JDT Core 3,697 11,234 833 3.04
Eclipse PDE UI 1,798 3,566 1,019 1.99
Equinox 784 1,478 292 1.88
Lucene 335 615 157 1.83
Total 6,614 16,893 2,297 2.18

5 Feasibility Study

In this section, we describe a first study designed to evaluate our approach for defect prediction

using Granger Causality Test. Besides illustrating the use of Granger, we investigate the feasibility

of using the approach proposed in Section 3 to predict defects in the dataset described in Sec-

tion 4. More specifically, we focus on the following questions: (a) How many time series pass the

preconditions related to defects (preconditions P1, P2, P3)? (b) How many time series pass the pre-

conditions related to source code metrics (preconditions P4 and P5)? (c) How many classes present

positive results on the Granger Test? (d) What is the number of defects potentially covered by our

approach? (e) What are the lags that most led to positive results regarding Granger-causality?. To

answer these questions, we used the entire dataset described in Section 4. Therefore, we analyzed

6,223 classes, 16,893 defects and approximately 50,000 time series of source code metrics and de-

fects, with a maximum size of 183 bi-weeks (JDT Core) and a minimal size of 180 bi-weeks (PDE

UI, Equinox, and Lucene).

Parameters Setting: An important decision when applying the proposed defect prediction model

is setting the parameters used in the preconditions, as described in Section 3.2. In practice, we

decided to set such parameters in the following way:

• Minimum size: We defined that the classes should have a lifetime of at least 30 bi-weeks

(approximately one year). Our goal is to select classes with a sufficient history of defects that

qualify their use in predictions (and therefore to tackle the cold-start problem typically when

making predictions [27]).

• Maximum lag: We computed the tests using a lag ranging from 1 to 6. To set this maximum

lag, we analyzed the time interval between the opening and fixing dates of the bugs in our
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dataset. On average, 84% of the bugs were fixed within six bi-weeks.

• Significance level: We computed the tests using a significance level of 95% (α = 0.05). We

counted as causality the cases where the p-value obtained by applying the F-Test was less

than or equal to α, i.e., p-value ≤ 0.05.

Tool Support: The algorithm described in Section 3.2 was implemented in the R statistical sys-

tem. We considered all times series in first difference (see Section 2.1) to maximize the number

of stationary time series—a precondition to apply the Granger Test. To identify stationary time

series, we relied on function adf.test() of the tseries package. This function implements the Aug-

mented Dickey-Fuller Test for stationary behavior [11]. More specifically, this function receives as

parameters the time series to be checked and a lag. Particularly, we have relied on the default lag

suggested by the function. To apply the Granger Test, we used function granger.test() provided by

the msbvar package.

5.1 Preconditions on Time Series of Defects

The algorithm proposed in Section 3.2 first checks whether the defects times series pass the pre-

conditions P1, P2, and P3 using function d check. Table 5 shows the percentage and the absolute

number of classes that survived these preconditions. We can observe that 57% of the classes survived

precondition P1 (lifetime greater than 30 bi-weeks) and that 34% of the classes survived both P1

and P2 (at least one defect in their lifetime). Finally, our sample was reduced to 31% of the classes

after applying the last precondition (test for stationary behavior). In summary, after checking the

preconditions P1, P2, and P3, our sample was reduced significantly.

Table 5: Percentage and absolute number of classes conforming to preconditions P1, P2, and P3
System P1(%) Classes P1+P2(%) Classes P1+P2+P3(%) Classes

Eclipse JDT Core 80 1090 59 811 57 779
Eclipse PDE UI 45 1582 26 918 23 788
Equinox 65 397 44 271 36 219
Lucene 59 450 19 142 17 131

57 3,519 34 2,142 31 1,917

5.2 Preconditions on Time Series of Source Code Metrics

The second step of the algorithm described in Section 3.2 relies on function m check to evaluate the

preconditions P4 and P5. Considering only the classes passing preconditions P1, P2, and P3, Table 6

shows the percentage of source code time series that passed preconditions P4 and P5. As defined

in Section 3.2, precondition P4 states that the time series must not be constant and P5 requires

the series to be stationary. By observing the values in Table 6, we conclude that constant time

series are common for some metrics. For example, for LCOM, FAN-IN, and NOA approximately
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40% of the considered classes presented a constant behavior (column Total). Furthermore, we can

observe that the number of series with non-stationary behavior—even when considering the first

differences—is not negligible. For example, for WMC, 84% of the series survived P4, but only 74%

survived P5. In summary, after checking the preconditions P4 and P5, our sample of time series of

source code metrics was reduced to 65%.

Table 6: Percentage of time series conforming successively to preconditions P4 and P5

JDT Core (%) PDE UI (%) Equinox (%) Lucene (%) Total (%)
P4 P4+P5 P4 P4+P5 P4 P4+P5 P4 P4+P5 P4 P4+P5

LCOM 70 66 53 43 64 53 63 59 62 54
WMC 88 84 79 64 84 72 85 84 84 74
FAN-IN 60 57 47 39 50 43 76 73 55 49
FAN-OUT 76 72 80 69 76 67 75 73 78 70
NOA 61 57 60 51 62 53 59 55 61 54
LOC 94 91 92 73 90 79 95 89 93 82
NOM 80 75 76 62 76 66 79 76 77 69
Total 76 72 70 57 72 62 76 73 73 65

5.3 Defects Covered by Granger

After checking the proposed preconditions, the algorithm computes function granger to check the

existence of Granger-causality. Table 7 shows for each class c the number of tests with a positive

result considering the series M[n][c] and Defects[c], where M[n][c] is one of the seven series of

metrics for a given class c (1 ≤ n ≤ 7) and Defects[c] is the series of defects for this class. For

example, for Eclipse JDT Core, 62% of the classes have no Granger-causality relationship between

their defects series and one of the metrics series (Table 7, first line). Stated otherwise, in 38% of the

classes in the Eclipse JDT Core (i.e., 521 classes), we were able to detect a Granger-causality relation

between the series of defects and at least one of the seven series of metrics; in around 9% of the classes

Granger returned a positive result for a single series of metrics, and so on. In the remaining three

systems—Eclipse PDE UI, Equinox, and Lucene—the percentage of classes where the test found a

Granger-causality connection between metrics and defects was 12% (411 classes), 20% (124 classes),

and 10% (78 classes), respectively. In summary, our sample was reduced considerably to 18%

(1,134 classes) of its original size after applying Granger.

Finally, it is fundamental to check the number of defects in this subset of 1,134 classes. Table 8

shows the following results: number of classes, number of Granger positive classes (column GPC),

number of bugs we initially collected, number of defects that caused such bugs, and number of

defects detected in our subset of 1,134 classes (column DGC). More specifically, considering the

classes with at least one positive result for Granger, Table 8 shows that 73% of the defects collected

in our dataset were detected in such classes. Therefore, by combining the results in Tables 7 and 8,

we conclude that our preconditions and the Granger results reduced our sample to 18% of its original
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Table 7: Percentage and absolute values of classes with n positive results for Granger

n JDT Core PDE UI Equinox Lucene
% Classes % Classes % Classes % Classes

0 62 849 88 3067 80 491 90 682
1 9 122 4 141 5 31 2 16
2 7 99 2 71 3 18 2 13
3 6 78 2 55 4 23 2 13
4 6 77 2 53 4 22 1 9
5 4 53 1 45 3 20 2 13
6 4 49 1 36 1 7 1 11
7 2 43 0 10 0 3 0 3

Total 100 1,370 100 3,478 100 615 100 760

size. However, such classes concentrate 73% of the defects in our dataset. Considering that there

are many bugs not related to variations in source code metrics, it is natural to expect that our

coverage would be significantly less than 100%. On the other hand, an average coverage of 73%

shows that it is at least feasible to rely on Granger to predict defects in software systems.

Table 8: Classes, Granger positive classes (GPC), number of bugs, defects, defects in Granger
positive classes (DGC)

System Classes GPC Bugs Defects DGC DGC/Defects
Eclipse JDT Core 1,370 521 3,697 11,234 8,781 78%
Eclipse PDE UI 3,478 411 1,798 3,566 2,391 67%
Equinox 615 124 784 1,478 766 52%
Lucene 760 78 335 615 462 75%
Total 6,223 1,134 6,614 16,893 12,400 73%

As previously described, the Granger tests were calculated using a significance level of 95%

(α = 0.05). In other words, we counted as a Granger-causality the cases where the p-value obtained

by applying the Granger Test was less than or equal to α, i.e., p-value ≤ 0.05. Table 9 shows

the percentage of tests with a positive result distributed in intervals of 1%. As can be observed,

approximately 70% of the tests with a positive result returned a p-value less than 0.01 for all

considered systems.

5.4 Lags Considered by Granger

It is well known that the Granger Test is sensitive to the lag selection [14]. For this reason, as

described in Section 3.2, we do not fix a single lag, but calculate the test successively for each pair

of series, with the lags ranging from one to six. Whenever one of such lags returns a positive result,

we assume the existence of causality.

Table 10 shows the lags that were most successful in returning positive results. When multiple

lags returned causality, we chose the one with the lowest p-value. As we can note, we achieved
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Table 9: Granger positive p-values

JDT Core (%) PDE UI (%) Equinox (%) Lucene (%)
0.04 < p-value ≤ 0.05 5 5 3 2
0.03 < p-value ≤ 0.04 5 5 3 2
0.02 < p-value ≤ 0.03 5 7 6 6
0.01 < p-value ≤ 0.02 10 8 8 6
0.00 < p-value ≤ 0.01 65 70 70 64
Total 100 100 100 100

different results for each system. For Eclipse JDT Core, 33% of the Granger-causalities were estab-

lished for a lag equal to six bi-weeks. For PDE UI and Equinox, the most successful lag was equal

to one bi-week. For Lucene, the distribution was almost uniform among the six tested lags.

Table 10: Percentage of lags with a positive result for Granger-causality (highest values in bold)

Lag JDT Core PDE UI Equinox Lucene
1 15 30 40 19
2 17 15 11 12
3 14 15 18 14
4 11 12 10 18
5 10 12 11 17
6 33 16 10 20

Total 100 100 100 100

We can interpret such results as follows. First, changes were made to the considered systems

(which we will call event A). Such changes have an impact in the values of the metrics considered

in our study (event B). Frequently, such changes also introduced defects in the source code (event

C) and some of them became bugs reported in the system’s bug tracking platform (event D). In

this description, events A, B, and C can be considered as happening at the same time and they are

succeeded by event D. Essentially, we rely on Granger to show the existence of causality between

events C and D. According to this interpretation, Granger’s lag is the typical distance between such

events in the time. Therefore, the results in Table 10 suggest that in the case of the Eclipse JDT

Core and Lucene most bugs were perceived by the developers in six bi-weeks. In contrast, for the

Eclipse PDE UI and Equinox, this interval was of just one bi-week, in most of the cases.

To summarize, when applying the Granger Test to uncover causal relations between source code

metrics and defects, it is important to run the tests with various lags. The reason is that the time

between the inception of a defect in the source code and its perception by the maintainers as a bug

can vary significantly.
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6 Model Evaluation

Motivated by the positive results coming from our feasibility study, we decided to conduct a second

study to evaluate our model for triggering defects alarms. More specifically, this study aimed to

answer the following research questions:

RQ1: What is the precision and recall of our approach? With this question, we want to

investigate whether our defect prediction models provide reasonable levels of precision and

recall.

RQ2: How does our approach compares with the proposed baselines? Our aim with

this question is to analyze the precision of our approach when compared to three baselines.

The first baseline does not consider the results of the Granger Test, the second one does not

consider both the preconditions defined in Section 3.2 and the results of the Granger Test and

the third one uses simple linear regression as a prediction technique.

In this section, we start by presenting the methodology followed in our evaluation (Section 6.1).

After that, we provide answers and insights for our research questions (Section 6.2).

6.1 Evaluation Setup

We performed the following steps to answer the proposed research questions:

1. We divided the time series (considering in their first differences) in two parts. We used the

first part (training series) to build a defect prediction model and the second part (validation

series) to validate this model. Moreover, we defined that our time series start in the first

bi-week with a reported defect. For example, for the Eclipse JDT Core, our training series

start in the bi-week 8, because we have not found defects in the previous bi-weeks. We also

defined the size of the validation series as including exactly 18 bi-weeks, i.e., approximately six

months (which is a time frame commonly employed in studies on defect prediction [9,19,28]).

Consequently, each considered training series have the whole size of the time series minus 18

bi-weeks. In addition, we discarded the first bi-weeks without defects. For example, for a time

series with 50 bi-weeks in the Eclipse JDT Core, we discarded the first seven bi-weeks (since

the first defect appeared only in the 8th bi-week). We used the next 25 bi-weeks for training,

and the 18 remaining bi-weeks for validation.

2. We created a defect prediction model for each system according to the methodology described

in Sections 3.2, 3.3, and 3.4. More specifically, we first checked the preconditions and applied

the Granger Test considering the source code metrics (independent variables) and the defects

(dependent variable) time series. Next, we identified the thresholds for variations in the

metrics values that may have contributed to the occurrence of defects. Finally, we created a

defect prediction model that triggers defects alarms.
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3. We defined three baselines to evaluate the models constructed in the Step 2. In these baselines,

the way to calculate the thresholds is the same one used by our approach, i.e, the arithmetic

mean of the positive variations of the metrics. However, they differ on the preconditions and

on the use of the Granger Test, as described next:

(a) The first baseline is a model created using time series meeting the preconditions P1 to

P5, but that does not consider the results of the Granger Test. Therefore, variations in

any source code metrics that respect the preconditions can trigger alarms (i.e., even when

a Granger-causality is not detected). The purpose of this baseline is to check whether

the Granger Test contributes to improve the precision of the proposed models.

(b) The second baseline considers time series meeting only precondition P1 (i.e., this model

does not consider the preconditions P2 to P5 and the results of the Granger Test). We

preserved precondition P1 because it is fundamental to remove classes with a short life-

time that probably do not help on reliable predictions. An alarm is triggered by variations

in any metric that respects the first precondition, even when a Granger-causality is not

detected. The central purpose of this second baseline is to evaluate the importance of

the preconditions in the proposed model.

(c) The third baseline considers time series meeting the preconditions P1 to P5, but instead of

applying the Granger Test, we created a simple linear regression model. More specifically,

this model includes linear equations that correlate each source code metric separately

(independent variable) and the defects time series (dependent variable). We checked

the significance of the individual coefficients of the regressions in order to identify if a

given metric is effective to predict the occurrence of defects. Therefore, alarms are only

triggered due to variations in the metrics whose individual coefficients are statistically

significant (α = 0.05). The main goal of this third baseline is to evaluate whether the

Granger Test is more effective than linear regressions to capture relations between source

code metrics and defects.

4. We evaluated our models using precision and recall measures. Precision evaluates whether the

alarms issued by the model are confirmed by defects. To calculate precision, we used only the

validation time series, i.e., series with values not considered during the model construction

phase. An alarm issued in a given bi-week t is classified as a true alarm when a new defect

is identified at most six bi-weeks after bi-week t. Therefore, we calculate precision in the

following way:

precision =
number of true alarms

number of alarms

Conversely, recall measures whether the alarms triggered by our approach cover all the oc-

currences of defects. To calculate recall we checked whether the occurrences of defects in the
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validation series were preceded by an alarm. More specifically, we checked whether a defect

in a given bi-week t was preceded by an alarm in at most six bi-weeks before t. We calculated

recall in the following way:

recall =
number of true alarms

number of defects

5. We repeated Steps 1 to 4 for several time frames, i.e., for multiple training and validation

time series. Our main goal is to evaluate the proposed approach in different life stages of the

considered systems. Figure 8 illustrates the time frames considered for the Eclipse JDT Core.

As presented, we created and validated 144 different models, considering different time frames.

The first time frame has 30 bi-weeks, including 12 bi-weeks to build the model (training time

series) and 18 bi-weeks to validate the model (validation time series). To generate a new

model, we extended the previous training series in one bi-week. For example, the second time

frame has 31 bi-weeks, the third one has 32 bi-weeks, etc. Finally, the last time frame has 174

bi-weeks. For the systems Eclipse PDE UI, Equinox, and Lucene, we created and validated

125, 145, and 115 models, respectively.

Figure 8: Training and validation time series (Eclipse JDT Core)

6.2 Results

In this section, we provide answers to our research questions.

6.2.1 RQ1: What is the precision and recall of our approach?

To address this research question, we followed Steps 1 to 5 described in Section 6.1. Therefore, we

created and validated models for each time frame of the systems considered in this evaluation. Our

main goal was to evaluate the proposed approach in different life stages of the considered systems.

Table 11 shows the values we measured for true alarms, precision, and recall for the considered

systems. Considering all time frames, the table reports the following results: maximum value

(Max), the top 5%, 10%, and 20% values, minimum value (Min), average, median, and standard

deviation (Std Dev). As can be observed, our approach reached an average precision ranging from

28% (Eclipse PDE UI) to 58% (Eclipse JDT Core) and a median precision ranging from 31%
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(Eclipse PDE UI) to 58% (Eclipse JDT Core). Furthermore, some particular models presented high

precisions, 90%, 60%, 100%, and 88%, for the Eclipse JDT Core, Eclipse PDE UI, Equinox and

Lucene, respectively.

In general terms, we can conclude that our approach reached reasonable levels of precision

in many life stages of the considered systems. This result is a distinguishing contribution of our

evaluation, since defect prediction approaches typically analyze a single time frame [6,9,12,19,20].

For example, D’Ambros et al. created and validated their defect prediction models for the Eclipse

JDT Core for a single time frame (2005-01-01 to 2008-06-17) [9]. For the same system, we created

and validated defect prediction models for 144 time frames achieving an average precision of 58%.

Table 11: Number of true alarms (TA), precision (Pre), and recall (Rec) for all models

JDT PDE Equinox Lucene
(144 models) (125 models) (145 models) (115 models)

TA Pre Rec TA Pre Rec TA Pre Rec TA Pre Rec
Max 168 90% 68% 36 60% 44% 21 100% 31% 16 88% 52%
Top 5% 118 88% 48% 33 41% 36% 9 88% 25% 16 80% 50%
Top 10% 95 82% 40% 31 40% 33% 8 80% 22% 14 78% 45%
Top 20% 82 67% 32% 27 36% 29% 7 75% 19% 13 67% 43%
Min 2 27% 7% 1 6% 6% 1 22% 5% 0 0% 0%
Mean 56 58% 24% 16 28% 24% 5 53% 13% 8 51% 31%
Median 49 58% 23% 16 31% 23% 4 46% 12% 7 48% 30%
Std Dev 34 14% 13% 11 11% 7% 3 21% 7% 5 19% 13%

On the other hand, specifically for the Eclipse PDE UI system, our approach obtained an average

precision of just 28%. Probably, this result was due to the low mapping rate between bugs and

commits we achieved for this system. While for Eclipse JDT Core, Equinox, and Lucene we obtained

a mapping rate of approximately 70%, PDE UI reached a mapping rate around 45% (i.e., from the

3,913 bugs reported on the bug tracking platform, only 1,798 were linked to a commit on the version

control platform).

We can also observe that some of the evaluated models triggered a significant number of true

alarms. For example, for the system Eclipse JDT Core, the maximum number of true alarms

triggered by a given model was 168 (for the model constructed in the time frame 49). Probably,

this result is explained by a major refactoring activity in the system during the validation period of

this model. We measured on average 277 classes changed per bi-week in this particular validation

period, while this rate considering the entire period of analysis is 218. Figure 9 illustrates some

validation time series where an alarm triggered by this model was later confirmed by the occurrence

of defects. In this figure, we circled the true alarms issued by our model.

Despite such encouraging results regarding precision, our approach presented an average recall

ranging from 11% (Equinox) to 31% (Lucene) and a median recall ranging from 12% (Equinox) to

30% (Lucene). In practice, this result shows that we were not able to cover all defects in all life stages
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Figure 9: True alarms raised by our approach

of the considered systems. We argue that the main reason is the fact that there is a large spectrum

of bugs that can be reported for any system. Probably, some types of bugs are less impacted by

variations in the values of the source code metrics. For example, we can mention bugs related to

usability, internationalization, Javadoc, like the following bug reported for the Eclipse JDT Core

system: “Bug 10495 - typo in ASTNode::MALFORMED javadoc, ’detcted’ should be ’detected’”.

Despite this fact, we achieved reasonable levels of recall in particular time frames. For example, for

the Eclipse JDT, Eclipse PDE UI, Equinox, and Lucene systems, the measured maximum values

for recall were 63%, 44%, 31%, and 52%, respectively.
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RQ1: Our approach reached an average precision greater than 50% in three out of the four

systems we evaluated. On the other hand, as expected, we were not able to trigger alarms for all

defects using times series of source code metrics as predictors. On average, we achieved recall

rates ranging from 13% (Equinox) to 31% (Lucene).

6.2.2 RQ2: How does our approach compares with the proposed baselines?

This research question aims to compare the precision of our approach with three baselines. Figure 10

shows for each time frame the precision results for the following models: (a) our approach (Granger);

(b) Baseline1 (baseline that does not consider the results of the Granger Test); (c) Linear (baseline

that uses simple linear regression as a prediction technique). As we can note, the initial time

frames have no precision results. This lack of precision happened because we discarded results

coming from unstable models, i.e., models reporting zero alarms or whose precision values alternate

between 0 and 1. As we can observe in the figure, in most time frames, our approach (solid line)

shows a precision greater than Baseline1 (long dash line) and Linear (dotted line). To confirm this

assumption, for each pair of samples (Granger vs. Baseline1 and Granger vs. Linear), we applied

a paired test for means (Student’s t-test) using a significance level of 95%. This test confirmed

that the mean precision of our approach (Granger) is significantly different from Baseline1 in three

(Eclipse PDE UI, Equinox, and Lucene) out of the four systems. Furthermore, the mean precision

of our approach is also significantly different from Linear in three (Eclipse JDT Core, Eclipse PDE

UI, and Equinox) out of the four systems.

It is worth mentioning that Figure 10 also shows that in several time frames our approach

reached high precision measures. For instance, for Eclipse JDT Core, between time frames 36 and

47, our models achieved a precision ranging from 83% to 90%, with the number of true alarms

ranging from 40 to 138. For Eclipse PDE UI, our approach in the time frame 24 reached a precision

of 60%, with three true alarms. For Equinox, between time frames 95 and 107, our approach reached

a precision ranging from 60% to 75%, with the number of true alarms ranging from 6 to 11. Finally,

for Lucene, between time frames 79 and 88, our approach reached a precision ranging from 66% to

87%, with the number of true alarms ranging from 2 to 7.

Figure 11 shows for each time frame the precision results for the following models: (a) Baseline1

and; (b) Baseline2 (baseline that only considers precondition P1). As we can observe, in most time

frames, Baseline1 (solid line) shows a precision greater than Baseline2 (long dash line). In fact, the

t-test asserted that the mean precision of Baseline1 is significantly different from Baseline2 (for this

reason, we omitted Baseline2 from Figure 10.

To summarize, two conclusions can be derived from our investigation concerned this research

question: (i) based on the fact that the Baseline1 outperformed the Baseline2, we can conclude

that when building defect prediction model, it is important to remove classes with zero defects

(that make the predictions trivial), classes with a constant behavior (that do not contribute with
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Figure 10: Precision results

predictive power), and classes with non-stationary time series (that may statistically invalidate the

findings); and (ii) from the fact that Granger outperformed both Baseline1 and Linear, we can

conclude that it is possible to achieve gains in precision by considering the Granger Test to raise

alarms for defects (instead of traditional models, based for example on standard regressions).

RQ2: The precision achieved by our approach was statistically better than the proposed baselines

in three out of the four systems, which confirms the gains achieved by considering Granger-

causality when predicting defects using source code metrics.
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Figure 11: Precision results of Baseline1 and Baseline2

Table 12: Distribution of bugs by severity (Eclipse JDT Core)

Severity
Total Bugs Linked Bugs Granger Bugs
Bugs % Bugs % Bugs %

Blocker 49 1 38 1 11 1
Critical 167 3 131 4 24 3
Major 407 8 311 8 61 7
Minor 202 4 156 4 33 4
Normal 4063 82 3001 81 694 84
Trivial 70 1 60 2 4 0
Total 4958 100 3697 100 827 100

6.2.3 RQ3: What are the most precise thresholds to triggers alarms?

7 Threats to Validity

In this section, we discuss potential threats to the validity of our study. We arranged possible

threats in three categories: external, internal, and construct validity [26]:
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Table 13: Average precision results by threshold

Threshold JDT Core (%) PDE UI (%) Equinox (%) Lucene (%)
Mean 58 28 52 51
Min 61 27 49 51
1st Quartile 60 27 50 52
Median 59 27 49 53
3rd Quartile 57 25 51 50
Max 51 28 51 50

Bold values are significantly different from all other values in the same column.

External Validity: Our study to evaluate the proposed defect prediction model involved four medium-

to-large systems, including three systems from the Eclipse project and one system from the Apache

Foundation, with a total of 6,223 classes. Therefore, we claim this sample includes a credible num-

ber of classes, extracted from real-world and non-trivial applications, with a consolidated number

of users and a relevant history of bugs. Despite this observation, we can not guarantee—as usual

in empirical software engineering—that our findings apply to other systems, specifically to systems

implemented in other languages or to systems from different domains, such as real-time systems

and embedded systems.

Internal Validity: This form of validity concerns to internal factors that may influence our observa-

tions. A possible internal validity threat concerns the procedure to identify the thresholds used by

our model to trigger alarms. We rely on the average of the positive variations in the metric values

to define such thresholds. We acknowledge that the use of the average in this case is not strictly

recommended, because we never checked whether the positive variations follow a normal distribu-

tion. On the other hand, our intention was not to compute an expected value for the distribution,

but simply to identify the most relevant variations in metric values that may contribute to defects

in classes already showing positive results for the Granger Test.

Another possible internal validity threat concerns the multiple comparisons or multiple testing

problem. Our approach performs multiple testing because the Granger Test is not applied for a

single lag value, but several times, with the lags ranging from 1 to 6. A common workaround in

order to minimize the impact of this threat is to perform multiple testing corrections (e.g., Ben-

jamini/Hochberg or Bonferroni procedures). Basically, the central purpose of multiple testing cor-

rections is to reduce the number of false positives. In our approach specifically, the goal of multiple

testing corrections is to determine a stronger Granger-causality relationship between source code

metrics and defects, decreasing the number of false alarms and increasing the precisions of our

models. We performed Benjamini/Hochberg and Bonferroni corrections. The results showed that

the precision mean of our approach, our approach using the procedure of Benjamini/Hochberg, and

our approach using the procedure of Bonferroni are not significantly different for the PDE UI and
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Lucene systems. For the JDT Core and Equinox systems, the results showed that the mean preci-

sion are significant difference between the approaches. However, the mean precision decreased by

performing multiple testing corrections for both systems. Therefore, the multiple testing corrections

are not necessary.

Construct Validity: This form of validity concerns the relationship between theory and observation.

A possible threat concerns the way we linked bugs to defects in classes. Particularly, we discarded

bugs without explicit references in the textual description of the commits. However, the percentage

of such bugs was not large, around 36% (4,093/11,165) of the bugs considered in our evaluation.

Moreover, this approach is commonly used in studies that involve mapping bugs to classes [9,29,33].

8 Related Work

A recent systematic literature review identified 208 defect prediction studies—including some of the

works presented in this section—published from January 2000 to December 2010 [16]. The studies

differ in terms of the software metrics used for prediction, the modeling technique, the granularity

of the independent variable, and the validation technique. Typically, the independent variables

can be classified into source code metrics, change metrics, bug finding tools, and code smells. The

modeling techniques vary with respect to linear regression, logistic regression, näıve bayes, neural

networks, etc. The granularity of the prediction can be at the method level, file/class level, or

module/package level. The validation can be conducted using classification or ranking techniques.

It is worth noting that neither of the 208 surveyed studies rely on causality tests as the underlying

modeling technique.

The defect prediction approaches we discuss in this section can be arranged in two groups: (a)

source code metrics approaches; and (b) process metrics approaches. Approaches based on source

code metrics consider that the current design and structure of the program may influence the pres-

ence of future defects. On the other hand, approaches based on process metrics consider that

information extracted from version control platforms such as code changes influence the occurrence

of defects. In this section, approaches that use both source code and process metrics as independent

variables appear only in one group, based on the best results they achieved. Finally, we have a third

group that presents a single study on the application of the Granger Test in software maintenance.

Source code metrics approaches: Basili et al. were one of the first to investigate the use of CK

metrics as early predictors for fault-prone classes [2]. In a study on eight medium-sized systems they

report a correlation between CK metrics (with the exception of the NOC metric) and fault-prone

classes. Subramanyam et al. later relied on the CK metrics to predict defect-prone components in

an industrial application with subsystems implemented in C++ and Java [31]. They concluded that

the most useful metrics to predict defects may vary across these languages. For modules in C++,

they report that WMC, DIT, and CBO with DIT had the most relevant impact on the number of
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defects. For the modules in Java, only CBO with DIT had an impact on defects.

Nagappan et al. conducted a study on five components of the Windows operating system in order

to investigate the relationship between complexity metrics and field defects [25]. They concluded

that metrics indeed correlate with defects. However, they also highlight that there is no single

set of metrics that can predict defects in all the five Windows components. As a consequence of

this finding, the authors suggest that software quality managers can never blindly trust on metrics,

i.e., in order to use metrics as early bug predictors we must first validate them using the project’s

history [32].

Later, the study of Nagappan et al. was replicated by Holschuch et al. using a large ERP sys-

tem (SAP R3) [19]. However, both studies rely on linear regression models and correlation tests,

which consider only an “immediate” relation between the independent and dependent variables.

On the other hand, the dependency between bugs and source code metrics may not be immediate,

i.e., usually exists a delay or lag in this dependency. In this paper, we presented a new approach

for predicting bugs that considers this lag.

Process metrics approaches: D’Ambros et al. provided the original dataset with the historical

values of the source code metrics we extended in this paper [9,10]. By making this dataset publicly

available, their goal was to establish a common benchmark for comparing bug prediction approaches.

They relied on this dataset to evaluate a representative set of prediction approaches reported in

the literature, including approaches based on change metrics, bug fixes, and entropy of changes.

The authors also propose two new metrics called churn and entropy of source code. Finally, the

authors report a study on the explanative and predictive power of the mentioned approaches. Their

results shows that churn and entropy of source code achieved a better adjusted R2 and Spearman

coefficient in four out of the five analyzed systems. However, the results presented by D’Ambros et

al. can not be directly compared with our results, because they use standard regression models and

we used the Granger Test, which is a test based on bivariate autoregressive models. Moreover, their

approach do not aim to trigger defects alarms as soon as risky changes are applied to the classes of

a target system.

Emanuel et al. proposed a defect prediction model at the method-level, using four classification

methods: Random Forest (RndFor), Bayesian Network (BN), Support Vector Machine (SVM),

and J48 Decision Tree [12]. More specifically, the proposed model is used to identify defect-prone

methods using 24 method level change and source code metrics. They performed an experiment

using 21 open-source systems to assess the efficacy of the prediction models. The results indicated

that the model based on RndFor reached a precision of 85% and a recall of 95%. However, they

evaluate the models using a 10-fold cross-validation technique. On the other hand, cross-validation

operates on a single time frame and therefore does not consider the temporal aspect. In this paper,

we trained our models using data from a time frame and validated them using data from future

time frames.

Typically, defect prediction models are used to identify defect-prone methods, files, or packages.
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Kamei et al. proposed a new approach for defect prediction called “Just-In-Time Quality Assurance”

that focus on identifying defect-prone software changes instead of methods, files or packages [20].

Based on logistic regression, the models they propose identify whether or not a change is defect-

prone using change metrics, such as number of modified files, number of developers involved in the

change, lines of code added and deleted, etc. They performed an empirical study with six open-

source and five commercial systems to evaluate the performance of the models. The results showed

an average precision of 34% and an average recall of 64%. Similar to the study of Emanuel et al.,

the models are not validated in future time frames.

Hassan and Holt’s Top Ten List is an approach that highlights to managers the ten most fault-

prone subsystems of a given software, based on the following heuristics: Most Frequently/Recently

Modified, Most Frequently/Recently Fixed [18]. The goal is to provide guidance to maintainers, by

suggesting they must invest their limited resources on the recommended subsystems. Similarly, our

goal is to provide guidance to maintainers, but by triggering alarms when risky changes—according

to Granger Causality Test—are applied to classes.

Application of Granger in Software Maintenance: Canfora et al. propose the use of the

Granger Test to detect change couplings, i.e., software artifacts that are frequently modified to-

gether [4]. They claim that conventional techniques to determine change couplings fail when the

changes are not “immediate” but due to subsequent commits. Therefore, they propose to use

Granger Causality Test to detect whether past changes in an artifact a can help to predict future

changes in an artifact b. More specifically, they propose the use of a hybrid change coupling rec-

ommender, obtained by combining Granger and association rules (the conventional technique to

detect change coupling). After an study involving four open-source systems, they concluded that

their hybrid recommender provides a higher recall than the two techniques alone and a precision

in-between the two.

In summary, our approach for defect prediction differs from the presented studies with respect

to three aspects: (a) to the best of our knowledge, the existing defect prediction approaches do not

consider the idea of causality between software metrics and defects. Differently, our approach relies

on the Granger Test to infer cause-effect relationships between source code metrics and defects; (b)

typically, most studies evaluate their models in a single time frame. In contrast, we evaluated our

approach in several life stages of the considered systems; and (c) unlike common approaches for

defect prediction, the models we propose do not aim to predict the number of defects of a class in

a future time frame. Instead, our models trigger alarms that indicate changes to a class that have

more chances to generate defects.
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9 Conclusions

In this paper, we described and evaluated an approach for predicting defects using causality tests.

In contrast with other works on defect prediction, our approach does not aim to predict the number

or the existence of defects in a class in a future time frame. Alternatively, we proposed a model

that predicts defects as soon as they are introduced in the source code. More specifically, we rely on

input from the Granger Test to trigger alarms whenever a change performed to a class reproduces

similar variations in the class’ source code properties that in the past caused defects. Our approach

reached an average precision of 50% in several life stages of three out of the four systems we evaluate.

Furthermore, by comparing our approach with baselines that are not based on causality tests, it

achieved a better precision. Finally, as described in previous studies, we could not identify a small

set of metrics that are universally related to most of the defects.

As further work, we plan to design and implement a tool supporting the defect prediction model

proposed in this paper. We plan to implement this tool as a plug-in for version control platforms,

like SVN and Git. Basically, this tool should trigger alarms whenever risky changes are committed

to the version repository. Based on such alarms, the maintainer can for example perform software

quality assurance activities (e.g., testing or code inspections) before executing the commit. In

addition, we plan to extend the proposed defect prediction model to handle the cases where changes

in a class cause defects in other classes of the system. Finally, another future work includes a

qualitative analysis on why some defects can be predicted and others not, which certainly requires

a direct participation of expert developers on the target systems.

The dataset with the time series of source code metrics and defects used in this paper is publicly

available at: http://java.llp.dcc.ufmg.br/jss2013.
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