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Abstract

This paper presents a platform that supports the execution of scientific applications
covering different programming models (such as Master/Slave, Parallel/MPI, MapRe-
duce and Workflows) on Cloud infrastructures. The platform includes i) a high-level
declarative language to express the requirements of the applications featuring software
customization at runtime; ii) an approach based on virtual containers to encapsulate the
logic of the different programming models; iii) an infrastructure manager to interact with
different IaaS backends; iv) a configuration software to dynamically configure the provi-
sioned resources and v) a catalog and repository of virtual machine images. By using this
platform, an application developer can adapt, deploy and execute parallel applications
agnostic to the cloud backend.

Keywords: Cloud computing, Virtual Infrastructures, Elasticity, Contextualization

1. Introduction

Scientific computing has long been devoted to close the gap between scientists, who
require executing resource-starved models, and computer scientists, who can deliver the
power required to solve challenging computational problems. In the last decades, different
computing infrastructures have been used to provide computing power to the scientific
community. Moreover with the commoditization of hardware, clusters of PCs became a
suitable platform for scientists to execute their workloads. However, scientific problems
required computational resources far beyond the capacity of a single cluster of PCs. The
increase in network bandwidth made utility computing possible. Organizations started
sharing computational power and storage (among other resources) in the so-called Grids,
where scientific users could execute large experiments. Grid computing has proved to
be a valuable tool not only to foster collaboration among research but also to aggregate
enough computing power to tackle challenging problems that could not have been solved
before [1].
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However, the Grid also exposed some drawbacks for scientists, since they had to
adapt their applications to fit the requirements of the underlying computing platforms
(in terms of Operating System, software libraries, etc.). Although the Scientific Gateways
made progresses towards abstracting the usage of the Grid [2], the diversity of platforms
and software configurations made the approach a compile-once run-anywhere difficult.
This hindered the massive adoption of the Grid out of the academic environment, which
typically remained composed by Virtual Organizations with pre-configured environments
and tools.

With the advent of Cloud Computing, the idea of utility computing is reconsidered.
The use of virtualization and its ability to customize the underlying infrastructure to
the requirements of the applications (not the other way round, as in Grid computing)
opened new opportunities. Cloud computing enabled users to migrate clustered based
applications to cloud-computing resources without modifying the existing resources. The
usage of virtualized infrastructures on top of Cloud infrastructures enables to dynamically
deploy suitable computing platforms, such as a virtual cluster. In this way users are
provided with larger computing capabilities, but with the software and environment they
are familiar. Therefore scientists can run their unmodified codes on modern computer
resources without investing time in porting their applications to new computer designs.

For that, this paper describes an architecture and the implemented platform (called
CodeCloud) to perform the execution of scientific applications on Cloud computing in-
frastructures, supporting different programming models (currently Master/Slave, Par-
allel/MPI, Workflow and MapReduce). The scientists just need to provide a high-level
description of the jobs to be executed, the programming model required, and the comput-
ing and execution environment requirements. Then, the system performs the automatic
provision of the virtual infrastructure that satisfies the aforementioned requirements, ex-
ecutes and monitors the jobs, including data management. The platform features both
horizontal and vertical elasticity capabilities to dynamically allocate and deallocate re-
sources from both on-premise Clouds (such as OpenNebula and OpenStack) and public
Cloud providers (including Amazon Web Services). This paves the way for scientists to
easily access vast computing resources on-demand with minimal investment in applica-
tion porting.

After the introduction, the remainder of the paper is structured as follows. First,
section 2 describes the related work in this area. Next, section 3 provides a high-level
overview of the CodeCloud architecture and its components. Then, section 4 describes
the CJDL domain specific language that enables the user to define the jobs to be ex-
ecuted providing a common abstraction layer that insulates the user from knowing the
internal details of the Cloud deployment. Later, section 5 defines the architecture and
details the software components developed, it also shows the elasticity capabilities of
the platform. Section 6 describes a study case to demonstrate the functionality of the
developed platform. Finally section 7 summarises the paper and points to future work.

2. Related Works

The execution of scientific applications on the Cloud involves i) the provision of
Cloud computing resources, mainly computational nodes and storage; ii) the deployment
of the applications and their dependent services; and iii) the dynamic adaptation of the
resources provisioned to the variable requirements of the applications at runtime.
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Most of these aspects are shared by applications that successfully migrated to the
Cloud or those that were developed for the Cloud leaning their developments on some
PaaS (Platform as a Service, [3]). A PaaS solution creates an environment for devel-
opers to access Cloud resources from a high-level perspective, without dealing with the
infrastructure details. The developer is provided with an API (or SDK) to compose the
services offered by the platform but no direct interaction with the infrastructure (the
Virtual Machines) is performed. Therefore, an abstraction for the execution of services
and applications is provided.

2.1. Platform as a Service Solutions

There are some well-known commercial PaaS solutions such as Google App Engine
(GAE) [4], Microsoft Azure [5] and Amazon Web Services (AWS) [6]. They provide
support for their own commercial Cloud infrastructures and services allowing the devel-
opment of applications in several languages like .NET, Java or Python.

Another commercial solution is PaaS Manjrasoft Aneka [7], a software platform that
provides a runtime environment and a set of APIs that allow developers to build .NET
applications that leverage their computation on either public or private Clouds. Aneka
provides special support to coordinated tasks (using a similar interface to the one used
for programming threads) and Map/Reduce operations.

There also exist free PaaS platforms. For example, Heroku [8] can deploy applications
using a large set of languages and environments such as Ruby, Node.js, Clojure, Java,
Python, and Scala. It also provides a large set of third party services like databases,
caching, monitoring, performance management, etc. to enhance the applications. Cloud-
Foundry [9] supports the application development frameworks Spring, Ruby on Rails,
Ruby and Sinatra, Node.js and Grails. It also provides a set of services to the appli-
cation developers such as some relational database management systems (i.e., MySQL,
PostgreSQL), Redis for a key-value NoSQL database and RabbitMQ as a messaging ser-
vice. AppScale [10] is an open source implementation of the GAE PaaS Cloud technology.
As a new development over AppScale, Neptune [11] is a domain specific language over
Ruby that automates the configuration and deployment on multiple nodes of applications
based on MPI or Hadoop MapReduce. Besides its simple user interface, it is noteworthy
the support for launching on multiple IaaS at the same time and recycling unused nodes
in order to reduce the final per-hour cost. However, like the rest, it does not enable to
customize the VMs with user requirements.

ConPaaS [12] is a runtime environment to run applications in the Cloud supporting
OpenNebula and Amazon EC2 Cloud deployments. It currently includes a Web hosting
service supporting PHP and Servlets, a MySQL database service, a batch processing
service and a MapReduce service. In ConPaaS, an application is defined as a composition
of one or more services. The availability of a custom budget-constrained scheduler for
the batch processing service [13] is specially interesting. However, there are still details
that remain unsolved. Scientific users do not have to deal with the set-up of their local
environments. Clouds never require users to do so.

In Table 1 the comparative between the mentioned platforms is extended considering
aspects such as

1) the software license type;

2) the software interface of the product;
3



Table 1: Comparison among several platforms similar to CodeCloud. Abbreviations: CF, configuration
files; WUI, web user interface accessed through a web browser; Automat. VMI intrument., automatic
VMI instrumentation; Progr., programming.
† Will soon be available for download with GPL license.
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1) Open source No Yes Yes Yes†

2) Software interface SDK/GUI SDK WUI CF

3) Public IaaS support Yes Yes Yes Yes
4) Custom VMI Yes No Yes Yes

5) Automat. VMI instrument. No – Yes Yes
6) Basic Orchestration No No No Yes

7) Elasticity Yes Yes Yes Yes
8) Cost optimizer Yes Yes Yes No

9) QoS/SLA support Yes No Yes No

10) Command-line executions No Yes Yes Yes
11) Parameter Sweeping Yes Progr. Basic Yes

12) MPI Yes Yes No Yes
13) Master-Slave Yes No No Yes
14) MapReduce Custom Yes No Yes

15) Workflow Progr. No No Yes
16) Data Management Yes Partial No Yes

17) Licensing Management Yes No No No
18) Users Management Yes Yes Yes No
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3) the capability of provisioning from public IaaS;

4) whether a custom VMI can be used to deploy the VMs and

5) in that case if a configuration is required previously;

6) if an automatic management of applications is supported;

7) if rules can be defined to dynamically resize the provisioned resources, and

8) if it is done considering heuristics to minimize the final cost and

9) the fulfillment of Quality of Service (QoS) and Service Level Agreement (SLA) spec-
ifications;

10–15) the programming models supported;

16) if some abstraction is offered to identify and move files using different protocols; and

17) if there is some support to control the use of the resources by applications and

18) users.

2.2. Related Tools for Cloud Computing

In addition to the aforementioned approaches, which completely manage the lifecycle
of application execution in the Cloud, many tools have been developed only focused on
specific steps in this lifecycle.

For example, in Cloud resources provisioning there are tools like boto1 or AWS to
access the Amazon Web Services, and other IaaS agnostic like DeltaCloud2, Libcloud3

and fog4. In addition, Nimbus [14] is an open source IaaS system offering EC2, S3 and
WSRF interface. It also provides tools to automate the deployment and configuration of
a virtual cluster [15], and to manage the elasticity [16].

Other tools focus on automating the installation, configuration and contextualization
of applications, sometimes referred as orchestration. The installation and part of the
configuration are usually carried out by installing packages available on software reposi-
tories, such as those provided by each GNU/Linux distribution, or associated to specific
programming languages. In complex deployments, the orchestration tools can group the
different software configurations by roles, and provide means for the nodes with the same
role to exchange information together enabling the aggregation of information from other
roles. Ansible5, Puppet6 and Chef7 are examples of software with the aforementioned
capabilities.

After the development and configuration of the infrastructure and services for an ap-
plication, the next step is to perform the execution of the application. For this purpose,

1http://boto.readthedocs.org/en/latest
2http://deltacloud.apache.org/about.html
3http://libcloud.apache.org/about.html
4http://fog.io
5http://ansible.cc
6http://www.puppetlabs.com
7http://www.opscode.com/chef
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Figure 1: Conceptual map grouping the main specific tools and PaaS solutions in scientific cloud com-
puting by its functionality.

it is important to understand the parallel model of the applications. For example, High
Throughput Computing (HTC) applications are composed by a large number of tasks
with weak dependencies which involve intense computational resources or data process-
ing. This applications typically use a scheduler, such as PBS/Torque, HTCondor or
SGE, to distribute the workload among the available computing resources.

Compatibility among different schedulers is supported either by allowing the sched-
uler to relaunch to other batch systems (e.g., HTCondor can talk to other schedulers
like PBS/Torque), and also by the schedulers understanding other job APIs. For the
latter, there are two notable examples, Simple API for Grid Applications (SAGA) [17]
(being saga-python [18, 19] one of its major implementations) and Distributed Resource
Management Application API (DRMAA) [20] (implemented by most of the schedulers).

The MapReduce programming model has been intensively used in Cloud computing,
being Apache Hadoop the free source reference implementation. It receives important
criticism (the challenge of its deployment, its dependence on HDFS distributed filesystem
and its rigid model that makes difficult the execution of multiple operations) that has
motivated the development of several alternatives, such as Pig, Twister (both allowing
several MapReduce jobs), Sector/Sphere [21] (based on stream processing [22] instead
of file chunks) and SAGA based (focusing on decoupling the task management from the
data sources).

Another hot topic in computing science is workflow modeling. Workflows define
complex control and data dependences among the different tasks of an application. It is
difficult to find a single API specification or implementation as reference for workflows
[23]. Some of them need a scheduler as a backend, like Pegasus that uses HTCondor
through the DAGman interface.

Finally, as Fig. 1 depicts, the most specific tools (around the corners) cover the
declaration of tasks, and the provision (tagged as IaaS ) and configuration of resources
(Orchestration), while the dynamic adaptation to the application requirements (SLA &
Elasticity) is found integrated in many of the mentioned PaaS solutions for scientific

6



computing, as shown on Table 1.
Most of Cloud developments (IaaS, PaaS and others) rely on existing tools, instead

of developing new ones. The efficient management of scientific applications execution
lies at the intersection of the technologies that enable infrastructure provisioning and
automated application deployment together with SLA-based execution management and
the ability to leverage the elasticity of the Cloud platforms. These are precisely the core
functionalities available in the CodeCloud platform, described in the following section.

3. The CodeCloud Architecture

This section describes the CodeCloud architecture. It provides a high-level overview
of the platform, along with its main capabilities. The following sections will cover the
implementation aspects of the principal components of CodeCloud.

The proposed approach uses the concept of container, similar to the approach used by
Web Services containers such as Apache Tomcat, in which a (WAR) file is employed to
provide the description and functionality of the service. Once deployed, the Web Service
is ready to be accessed.

In CodeCloud, the container encapsulates not only the programming model logic but
also all the infrastructure needed to execute it in the cloud. Each application launched
has its own container that manages the whole life-cycle of the cloud execution (avoiding
some multi-tenancy problems such as security or accounting). In the proposed approach,
an Enhanced Virtual Container (EVC) consists of a Virtual Machine (VM), which en-
capsulates i) a virtual hardware configuration, in terms of CPU architecture, disk size,
RAM, ii) an Operating System (OS), and iii) a set of libraries and software where a
specific service, developed to process the applications of one of the programming models,
is deployed. The Enhanced Virtual Container (EVC) provides the following features:

• Infrastructure management: The EVC provisions the virtual infrastructure with
specific hardware features.

• Contextualization: It enables the infrastructure to be configured with the software
to support both the programming model and the user application at runtime.

• Monitoring: An agent collects monitoring information of the state of all the virtual
infrastructure created, including the EVC itself (CPU load, disk usage, etc.) and
the state of the running application.

• Elasticity: It manages both the horizontal (scale in / out) and vertical (scale up /
down) elasticity.

• Data management: The EVC will download into the infrastructure all the input
data needed to execute the application prior the its execution. It will also upload
the output data to the data storage endpoint provided by the user.

• Execution: The EVC enables the user application to be launched in the virtual
infrastructure specifically created and customized with the precise requirements of
the application.
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Figure 2: Architecture of the CodeCloud platform.

Figure 2 summarises the architecture of the proposed system. The user submits to
the CodeCloud Service (CCS) a description of the jobs to be executed on a Cloud in-
frastructure. For that, it has been defined the Cloud Job Definition Language (CJDL),
a high-level declarative language (described later on). This document includes the defi-
nition of the jobs, which can refer to external resources (input data files, executable files,
etc.) in a remote server. Before submitting a job, the client has to upload the input
local files (for instance, to a Cloud storage service that supports the CDMI interface
[24]) and refer the files by their corresponding URLs. The CJDL document includes a
section described using the Resource Application Description Language (RADL) [25].
The RADL is a is a declarative language for the end-users to describe the computational
infrastructure needed to run their applications, by declaring the features or requisites of
the VMs to be deployed. When the user submits an application execution request (step
1), the user receives an identifier that can be used to follow the execution progress of the
jobs.

Both the CCS and EVC need to provision the virtual infrastructure required to ex-
ecute the jobs. For that, it relies on the Infrastructure Manager (IM) [25], which takes
as input the RADL section of the CJDL document. The IM in turn queries a catalog
of VMIs called Virtual Machine image Repository and Catalog (VMRC) [26], which in-
dexes VMIs together with metadata concerning the features of each VMI (SO, installed
applications, etc.). This enables the IM to choose the most appropriate VMI to deploy
the virtual infrastructure.

Back to Figure 2, the CCS contacts the Infrastructure Manager (IM) to create a VM
where the programming model’s EVC chosen by the user will be deployed (step 3). The
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container will be in charge of deploying and managing the infrastructure requested by
the user and the subsequent submission and monitoring of the jobs. Once the EVC is up
and running, the CCS submits the CJDL document to the EVC so that job submissions
can be started (step 5).

From now on, the container takes control of the submission process. First of all, it
verifies the RADL document specified in the CJDL. Each programming model should
take the RADL given by the user to ensure that the created VMs will satisfy its re-
quirements, not only the ones imposed by the user but also the hardware and software
requirements necessary for the programming model to operate. For example in the case
of the MapReduce model a Hadoop cluster will be installed and configured and in the
case of Master/Slave, MPI and Workflow models a Torque/PBS cluster will be installed.
This way, the IM deploys the VMs with all the required features to properly function
(step 6). Once all the nodes are up and running, the programming model’s container
configures all the infrastructure nodes to make the programming model to work. For
that purpose, Puppet has been used to push the configuration and the software required
to setup the nodes according to the user’s requirements. Puppet has a widespread usage
and an active community. It can describe high-level recipes using a declarative domain-
specific language. An specialization for the EVC has been created for each programming
model, even though all of them have a common interface and share similar functionality.
Each programming model just customizes certain parts of the EVC.

Then, the infrastructure is ready to submit the application jobs for the specified
programming model. Therefore, the EVC contacts the main node of the infrastructure,
copies all the required files and submits the jobs (step 9). The execution step depends on
the programming model selected. For example, in the case of MapReduce, a correspond-
ing job will be submitted to the configured Hadoop cluster. In the other models, the
EVC will create a set of Torque tasks performing the necessary job submission operations
to the underlying LRMS (Local Resource Management System).

During the execution, the EVC monitors the state of the application to notify the
CodeCloud service about the execution process. But the EVC also monitors the in-
frastructure state (CPU, RAM, disk, etc.) using Ganglia [27], which is installed and
configured in all the nodes in the contextualization step.

When the execution finishes, the container must copy the output data files to the
specified destination in the CJDL. Finally, it stops and releases all the VMs deployed.

The last step consists on releasing the VM of the container. In this case, the CCS is
responsible for ensuring that all data have already been staged out in order to destroy
the EVC.

4. CJDL: Cloud Job Description Language

This section describes the Cloud Job Description Language (CJDL), a domain specific
language that aims at simplifying the task of migrating already existing applications to
Cloud environments. This declarative language provides a common abstraction layer that
frees the user from the need to understand the internal details of the Cloud deployment.
This language has been inspired by the Job Description Language (JDL) [28], widely used
to define Grid jobs and based on Condor classads. As opposed to JDL, CJDL is formated
in XML to gain in readability (by humans and machines) and ease its processing.
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Different programming models are supported by CJDL to ease the expression of
the functionality and requirements of user’s applications. The most popular parallel
programming models have been considered, to cover a wide range of applications used
by the scientific community:

• MapReduce [29]. MapReduce is a programming model typically used for process-
ing and generating large datasets. Users specify the main computation in terms
of a map and a reduce function, and the underlying runtime system automatically
parallelizes the computation across large-scale clusters of machines sharing a dis-
tributed file system. A static specification is made of the problem partitioning, the
unit of work, the scheduling and the merging of results.

• Master/Slave [30]. This programming model is used when the number of jobs is
higher than the number of resources, and a master process dispatches the jobs
to the slave (working) nodes. The partitioning in this case can be dynamic and
reconfigured either by the application or by the resource manager.

• Workflow [31]. This programming model is composed by a sequence of connected
steps (tasks to be performed). The execution order of the tasks is different if the
workflow is data-driven (in which the output data of a task represents the input
data of another task), or task-oriented workflow (in which a child task is only
executed when the parent task has finished). This model describes the different
processing units, the input and output data and the execution arguments. The
parallelism is defined by the data and the processes.

• Parallel/MPI [32]. This programming model performs parallel executions based on
the Message Passing Interface (MPI) on a cluster of PCs with distributed mem-
ory. The scientific community is using a large amount of legacy MPI applications
which efficiently solve, in terms of computational power and memory consumption,
different scientific problems.

A CJDL document comprises several parts that define the requirements in terms of
resources, software dependencies and programming models. Next subsections describe
these parts and the relation to the mentioned programming models.

4.1. Infrastructure Description

The tag Infrastructure contains the information concerning the Cloud infrastruc-
ture that needs to be deployed to execute the application. The section includes VM
descriptions in RADL language of the infrastructure requirements in terms of number
and type of machines, its features (CPU, RAM, disk, etc.), operating system and pre-
installed software, among other. Networking features can also be specified.

4.2. Programming Model Roles

Under the tag Configuration it is specified a mapping between the VMs defined
in the RADL (the type attribute) and the roles in the programming model (the name

attribute). In addition, the initial, minimum and maximum number of instances that
are submitted for every type of machine are indicated by the attributes count, min and
max respectively. All the programming models have a node that manages the execution
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of the tasks (named Main) and other that performs the execution of the tasks (named
Worker).

The next example corresponds to a MapReduce deployment in which the frontend
(the role Main) will run on a VM described as front in the RADL, and that can scale
out up to one more node; and the tasks will be run initially on four and up to 20 VMs
(the role Worker) described as wn in the RADL:

<Roles>

<Role name="Main" type="front" count="1" min="1" max="2"/>

<Role name="Worker" type="wn" count="4" min="1" max="20"/>

<Roles>

4.3. Execution Description

Under the tag ExecutionData the tasks that compound the cloud job are listed.
The task include descriptions of the details in the deployment (i.e., the needed files and
where are stored), the launching (i.e., the environment and the command line template)
and the dependencies to other tasks. This part is where the programming models show
their differences and where it is more challenging to express all the programming models
supported in an easy and consistent manner. Our approach is based on the workflow
engine WINGS [33].

At first glance, WINGS is a data-driven workflow: Jobs in WINGS are executed when
data defined as input is available in the data source and write the result in other data
source defined as output.

<execution name="partitioner" activity="partitioner">

<input name="param1" value="input_file.fasta"/>

<output destination="outpart"/>

</execution>

If the input tag contains files from a data source, the engine will copy the files to some
local place before launching the job, injecting the location of the file as a commandline
argument. In cases such as MapReduce (which use legacy applications), the executions
have specific names (partitioner, mapper and reducer) and the engine transfers the
input files to (and back at the end from) the Hadoop Distributed File System. A complete
example of MapReduce is presented in Figure 3.

The data sources are very abstract bags of data, ranging from read-only list of values,

<dataGroup name="dgNums" type="Integer">

<value value="1"/> <value value="2"/> <value value="3"/>

</dataGroup>

to a collection of files. The files can be available locally to the machine that is launching
the cloud job (indicated by the URI lfile) or be local to the machine that is running the
job (indicated by file) or can be stored remotely in a server that supports for instance
FTP, SFTP or CDMI:

<dataGroup name="dgCont" type="File">

<container uri="lfile:///tmp/data">

<authorisation> <userpass user="username" password="pass"/>

</authorisation>
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</container>

</dataGroup>

<dataGroup name="dg" type="File">

<fileset ref="dc" file="file1.txt"/>

<fileset ref="dc" file="file2.txt"/>

<fileset ref="dc" file="*.dat"/>

</dataGroup>

Under the activity tag the inputs of a job are defined as they will appear in the
commandline, including the deployment details. Most of the software and hardware
requirements are specified in the RADL section, so only the specification of the executable
and additional files to be downloaded in run-time (and if using MPI, the minimum and
maximum number of nodes that can be used) are described here.

<cloudApplication>

<executable ref="dgCont" file="pr1.sh" mpi="yes" minnodes="4"

maxnodes="10"/>

<file ref="dgCont" file="any.dat"/>

</cloudApplication>

If the mpi attribute is set to yes, the application will be launched in parallel with
“mpiexec”. Similarly in the MapReduce model a jar file and a class can be specified as
executable for native Hadoop applications instead of using the partitioner, mapper
and reducer executions.

The WINGS engine was extended to deal with dependency cycles of jobs and data
sources. This feature is used for instance in some Master/Slave applications whose master
dynamically launches new jobs after processing the result of previous ones (if it is not
the case, the application can be modelled as simple workflows). Moreover in generic (non
Hadoop) map-reduce applications, reduction jobs need to has the output data source also
as an input one.

Besides, WINGS was modified in order to support task-driven workflows like pure
Directed Acyclic Graph (DAG) workflows. Therefore a new section is included to indicate
the relations among the different tasks defined in the execution section:

<TaskRelations>

<TaskRelation parent="task1" child="task2" />

</TaskRelations>

4.4. Elasticity

The tag Configuration contains the initial, minimum and maximum number of
instances that are submitted for every type of machine (with the features specified in the
RADL document) to deploy the initial infrastructure. But if the application requirements
change, the platform must have the ability to adapt the resources to the application load
using a set of elasticity rules.

The elasticity section enables the user to specify the rules that define the elasticity
modes of the infrastructure during the execution of the application. An elasticity rule
has the following syntax:

if <rule> then <action> [for <filter>]
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• Rule: The rule specifies, considering the monitoring information of either the in-
frastructure or the application, the condition that will trigger the action to modify
the features of the infrastructure. The metric used in the rules are expressed
using a declarative language using similar concepts to those shown in RADL,
such as cpu.usage or memory.free. In addition, other general concepts concern-
ing the execution can be employed, such as app.pct finish or execution.time.
Also, other values concerning each programming model can also be used, such as
app.tasks queued, in the case of Master/Slave. Finally, the user can also uti-
lize application-dependent values by properly modifying the application to use the
container API to publish the state update of such values, as shown later.

It must be considered that the EVC stores historic values for each metric. So the
general concept metrics will refer an array of n elements (with n as the number
historic elements stored) and the VM related values will be a matrix with n · v
elements (with v as the number of VMs in the infrastructure). So it is required
for a set of functions to reduce these set of values to a single one to use them
in the comparative operations. First three operations are used to reduce the set
of values in one dimension: min, max and avg. As the VM values are matrices,
two operations will be needed to obtain a single value. Also an operator {<num>}
enables selecting the last num historic elements. If this operator is not included
all the stored values will be used. Finally, an operator [<type>] enables filtering
a set of values of an specified VM type.

• Action: The action that will be performed to modify the infrastructure. There are
four functions: two provides the horizontal elasticity and other two for the vertical
one:

– ScaleIn/ScaleOut: Remove/Add resources to the infrastructure. This func-
tion receives two parameters: the type and number of resources to add/re-
move. The type of resources is a string value that refers a system name defined
in the RADL code in the Infrastructure section of the CJDL document (e.g.
node in the CJDL example in Figure 3).

– ScaleUp/ScaleDown: Increase/Decrease the capacities of a set of VMs of the
infrastructure. This receives as parameters the type of resource to modify
(cpu or memory) and the amount of resources to modify.

• Filter: This last parameter is optional, it is used only in the case of vertical elasticity
operations, and it enables to select a subset of VMs to apply the corrective action.
The syntax used is the same used in the specification of the rules.

Here we show several examples of elasticity rules. In the first three examples the
ScaleIn/ScaleOut are used to provide horizontal elasticity. In the last two, the functions
ScaleUp/ScaleDown are used to provide vertical elasticity.

• A rule to enable deploying a new VM if the CPU usage of the virtual infrastructure
is high (over 90%). In particular, if the mean value (considering all the machines)
of the average value of the CPU usage of each of the machines vmtype1 during the
last 5 time periods is greater than 90%, the system should deploy 1 VM of type
vmtype1 and 2 machines of type vmtype2.
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if avg(avg(cpu.usage[vmtype1]{5})) gt 90% then ScaleIn([1,2],

[vmtype1, vmtype2])

• A rule to enable deploying 2 new VMs if the free memory of the virtual infrastruc-
ture is low (lower than 50MB). In particular, if the average value of the minimum
value of free memory of all the VMs during the last 2 periods of time is lower than
50 MB, It should deploy 2 machines of type vmtype1.

if avg(min(memory.free{2}) lt 50MB then ScaleOut(2, vmtype1)

• A rule to enable undeploying 2 VMs application is progressing adequately. In
particular if the application progress is over 80% and the execution time is lower
than 5 minutes, then undeploy 2 VMs of type vmtype1.

if execution.pct_finsh gt 80% and execution.time lt 5:00 then

ScaleIn(2, vmtype1)

• A rule to enable increasing the memory in the VMs if the free memory is low (lower
than 50MB). In particular, if the minimum value of the average value of the free
memory of all the VMs during the last 5 periods of time is lower than 50 MB,
then increase in 512 MB the memory of the VMs with the average value of the free
memory during the last 5 periods of time that has been lower than 50 MB.

if min(avg(memory.free{5})) lt 50MB then ScaleUp(512M, memory) for

avg(vm.memory.free{5}) lt 50MB

• A rule to enable increasing the number of CPUs to the VMs with high CPU usage
(over 90%). In particular, if the maximum value of the average value of the cpu
usage of all the VMs during the last 4 periods of time is over 90%, add 1 CPU to
the VMs with the average value of the CPU usage during the last 4 periods of time
that is over 90%.

if max(avg(cpu.usage{4})) gt 90% then ScaleUp(1, cpu) for

avg(vm.cpu.usage{4}) gt 90%

Vertical elasticity must also be supported by the underlying hypervisor. In particular,
in previous works we focused on dynamic memory management of VMs to fit the underly-
ing virtual infrastructure to the dynamic memory consumption of scientific applications,
using the KVM hypervisor [34].

4.5. Example use case of CJDL

A CJDL document corresponding to the MapReduce job of the BLAST application
[35] that will be presented as test case next in section 6 is given in this part8.

In MapReduce, the definition of a task that uses legacy applications is provided by
three parameters: i) the partitioning of the input data set, ii) the map function and iii)

8Some parts of the document has been omitted for the sake of clarity
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<Job type="MapReduce">
<Infrastructure>

system node (
cpu.count>=1 and cpu.arch=’x86_64’ and

memory.size>=1024 and
disk.0.os.flavour=’ubuntu’ and
disk.0.os.version=’12.04’)

</Infrastructure>
<Configuration>
<Roles>
<Role name="Main" type="node" count="1"/>
<Role name="Worker" type="node" count="5"/>

</Roles>
</Configuration>
<ExecutionData>
<data>
<dataGroup name="dc1" type="File">
<container uri="lfile:///data/blast"/>

</dataGroup>
<dataGroup name="datacont2" type="File">
<container uri="lfile:///data/output"/>

</dataGroup>
<dataGroup name="finalout" type="File">
<filter in="*.blast.*.global.txt"

results="*">
<replica dest="datacont2"/>

</filter>
</dataGroup>
<dataGroup name="outpart" type="File">
<filter in="seqfile*.sqf" results="*"/>

</dataGroup>
</data>
<definitions>
<activity name="partitioner">
<input name="param1" type="String"/>
<deployments>
<cloudApplication>
<executable ref="dc1" file="split.sh"/>
<file ref="dc1"

file="input_file.fasta"/>
</cloudApplication>

</deployments>
</activity>
<activity name="mapper">
<input name="param1" type="File"/>
<deployments>
<cloudApplication>
<executable ref="dc1"

file="execute.sh"/>
<file ref="dc1" file="blastall.tgz"/>
<file ref="dc1"

file="uniprot_invert.*"/>
</cloudApplication>

</deployments>
</activity>
<activity name="reducer">
...
</activity>

</definitions>
<executions>
<execution name="partitioner"

activity="partitioner">
<input name="param1"

value="input_file.fasta"/>
<output name="salida1"

destination="outpart"/>
</execution>
<execution name="mapper" activity="mapper">
...
</execution>
<execution name="reducer"

activity="reducer">
<input name="param1" source="outmap"/>
<output name="salida1"

destination="finalout"/>
</execution>

</executions>
</ExecutionData>
<Elasticity>
</Elasticity>

</Job>

Figure 3: The CJDL for the MapReduce application in CodeCloud.

the reduce function, to join the output data files into a single final result. Then the
execution of applications that follow this programming model requires: i) the execution
of the data partitioning, ii) generating as many map tasks as parts of the initial data set
and, once all the map tasks have finished, iii) performing the reduce task to join all the
processed results in order to generate the output data.

In the CJDL in Figure 3, the user defines the node type node with at least 1 GB of
RAM on an Ubuntu 12.04 Linux system. Initially, one VM with the “Main” role in the
MapReduce programming model and five nodes with the “Worker” role are requested.
In the dataGroup “dc1” the user specifies the application input data, the “/data/blast”
directory the machine that is launching the job is specified. Also the “/data/output”
local directory is specified to store the final output data. Then, the activities referring the
functionality of the partitioner, mapper and reducer operations are defined, operations
that are finally called in the executions section.
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5. Infrastructure Provision and Elasticity Management

5.1. Infrastructure Deployment

The infrastructure has been deployed using previous developments covered in [25].
For the sake of completeness, a brief summary of each development is included here:

• VMRC is a Virtual Machine Repository and Catalog system, which is used to find
a suitable VMI that accomplishes the requirements of the user and it is compatible
to the available cloud system. This component stores and indexes VMIs in order
to be reused in multiple contexts. It also implements a matchmaking algorithm to
obtain the VMIs that satisfy a set of requirements.

• Infrastructure Manager: It is a system that orchestrates the different components,
enabling the effective deployment of an initial computing infrastructure, and the
further operations to modify it on demand, adding or removing virtual nodes.
The IM exposes an API with a reduced and simple set of functions enabling the
creation of the infrastructure, getting the information about the VMs, and adding
or removing of VMs in the deployment.

Using these components, the necessary steps to create the virtual infrastructure are
summarized as follows. First, the requirements of the infrastructure (software and hard-
ware) are described using RADL. Second, the IM contacts the VMRC to find the most
appropriate VMI considering the requirements. Finally, the IM deploys an instance of
the VMI in a Cloud backend (currently supports OpenNebula, OpenStack and Amazon
EC2).

5.2. Elasticity

One of the functionality that containers provide is the ability to export a structured
NoSQL database based on key/value pairs to provide information about the application
execution and about the infrastructure.

Some of these data are the same for all the programming models, such as the infor-
mation concerning the infrastructure: CPU usage, disk usage, etc., in addition to other
general values regarding the execution (provided by the programming model container):
percentage of finish, execution time, etc. However, each model can also export specific
values to obtain more precise information. For example, in the case of Master/Slave, this
information includes the total number of tasks, the number of active and finished tasks,
etc. In the case of the Workflow programming model, the node in the workflow that is
currently being executed.

To gain extensibility, applications can also use an API to publish application-dependent
specific values, such as the value of a variable in a given point in time. This would allow
to better track the execution of an application and opens the way to enable computa-
tional steering in the Cloud, where an execution could possibly be cancelled if a given
variable reaches a certain value.

Figure 4 shows the inner work of the elasticity manager. The EVC relies on Ganglia
to monitor the infrastructure nodes. Therefore, when contextualizing (configuring) the
infrastructure, the Ganglia agent is installed in all the nodes and configured so that the
Main node stores the aggregate information from all the nodes of the deployment for
a given execution under a programming model. The EVC exposes all the information
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Figure 4: Elasticity manager.

taken as input for the elasticity rules in the shape of key/value pairs. We consider
both the information of the EVC itself (% of execution, execution time, etc.) and the
metrics obtained with Ganglia (currently considering CPU usage, memory usage and
disk usage). This information is exposed through the EVC’s API, which can also be
employed for modified applications to publish their own data for it to be also considered
for elasticity rules.

All this information is periodically submitted to the catalog using its REST interface.
The catalog stores the historical information. When the EVC starts, it must register
the elasticity rules in the Monitor. The monitor periodically evaluates the rules by
querying the historical information stored in the catalog taking the appropriate measures
(horizontal or vertical scaling) by delegating on the IM.

6. Case Studies

This section includes two case studies that exemplify the usage of the CodeCloud
platform for the execution of scientific applications under different programming models.

6.1. MapReduce

To demonstrate the functionality of the system the MapReduce example shown in the
4.5 section has been launched in the CodeCloud platform. The application launched is
the High-Throughput version of BLAST. The experiment aligns the dataset of sequences
of mammals from the UNIPROT protein database [36] (4MB) against sequences of in-
vertebrates form the same database (555MB). This experiment may conclude the degree
of transference of genes among the two zoological groups. BLAST is a tool that performs
such alignment. A MapReduce approach to solve the BLAST problem is shown in Figure
3. In the partition step it is executed a “split.sh” script that divides the input file in
FASTA format, into smaller pieces (the seqfile*.sqf files) that will be processed by the
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Table 2: MapReduce use case times

1 node 5 node 10 node 1 nodes 5 nodes 10 nodes
(ONE) (ONE) (ONE) (EC2) (EC2) (EC2)

Input Data Uploaded 0:14 0:13 0:15 10:07 10:00 9:02
Container VM Prepared 2:20 2:21 2:31 1:50 1:51 1:51
Infrastructure Launched 7:33 10:57 16:32 4:01 5:31 7:32

Infrastructure Configured 3:51 7:12 19:45 7:02 10:23 15:39
Total Deployment 13:58 20:43 39:03 23:00 27:45 34:04
Execution Time 15:00:33 3:10:55 2:31:04 36:25:10 8:03:10 6:12:10

Output Data Downloaded 0:01 0:01 0:01 0:08 0:07 0:07
Total Time 15:14:32 3:31:39 3:10:08 36:48:18 8:31:02 6:46:21

mapper functions. The mapper operations executes the blast command with each parti-
tion. Finally the reducer combined all the output data from the mappers into a single file
result. Both the input and output data are referenced using the special “lfile” scheme.
So the CodeCloud client must initially upload the input data from the user’s machine
and finally download the output data to it. The same case study has been executed on
an on-premise OpenNebula deployment and on Amazon EC2 with 1, 5 and 10 nodes. In
particular, the OpenNebula deployment used has been supported by four Dell Servers in
Blade format (M600 and M610 models). Each server has eight cores and 16 Gb of RAM
and are mounted on a M1000e chassis. In the Amazon EC2 case it has been used the
“m1.small” instances (as it fulfils the user requirements of the RADL document) in the
“us-east-1” region.

The time needed to deploy the infrastructure can be decomposed into the following
steps:

• Input data uploaded: Time needed to upload the data to the cloud storage (560MB).
The data are initially stored in the user’s machine and it must be uploaded to a
cloud storage to be available to the container. In the case of the OpenNebula de-
ployment the data and the cloud storage system are in the same local network and
the transfer time is reduced. In the EC2 case the data must be uploaded to a cloud
storage system located in the EC2 infrastructure so the time needed is considerably
larger.

• Container VM Prepared: Time spent to launch the container VM. In the Open-
Nebula case the time used in this step is mainly the transference of the VMI to
the physical node where it will be deployed. The container VMI is about 3.5GB
and the time needed is relatively small. In Amazon EC2 the container VMI uses
an EBS-backed AMI (Amazon Machine Image) and the time needed to launch this
kind of VMIs is very small.

• Infrastructure Deployed: Time needed to deploy the whole infrastructure needed
to execute the user application. It also includes the time needed to configure the
Puppet Master node to manage the infrastructure contextualization.

• Infrastructure Configured: Time spent by Puppet to configure all the nodes of the
infrastructure. It depends on the programming model requirements (in this case
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install and configure Hadoop) and on the user application requisites.

• Execution Time: Time spent in the execution of the application in the programming
model.

• Output data downloaded: Time needed to download the output data (13MB). As in
the case of the input data, the final data will be downloaded to the user’s machine.
The data are downloaded from the same cloud storage used to upload the input
data.

Analyzing the results of the tests performed (Table 2) it can be seen that the time
needed to have the cloud infrastructure fully deployed and configured is about 35 - 40
minutes in the case of a 10-nodes infrastructure. This relatively large time is one of
the drawbacks of this kind of cloud solutions as the infrastructure must be created and
configured at runtime. In the case of the EC2 infrastructure, as the “m1.small” instances
used are slower than the VMs used in OpenNebula, the overhead produced is about 10%
of the execution time, but in the case of the OpenNebula Cloud (as the execution time
is lower) it increases to 25%. Thus a user must be aware of this overheads when using
this kind of Cloud solutions to use it only when the execution time of the application is
relatively large. However it is important to state that a complete execution will cost no
more that 1 euro in a public cloud.

6.2. Master/Slave - Parallel/MPI

To show the functionality of the CodeCloud platform with the Master/Slave and Par-
allel/MPI programming models it has been selected the GENE application [37], which is
part of the Unified European Application Benchmark Suite (UEABS9). GENE computes
microinstabilities in fusion plasma solving the gyrokinetic equations, a set of nonlinear
partial integro-differential equations in five-dimensional phase space (plus time).We used
a test case based on the example parameters GENEGYG, available in the release 7.1. The
same two cloud providers of the previous case: OpenNebula and EC2 has been used. In
the EC2 case as the GENE test case used has greater memory requirements it has been
used “m1.medium” instance type.

The cloud job is described in Figure 5. It uploads into datacont1 a GENE exe-
cutable file called gene ubuntu gfortran, the template of the configuration file and a
bash script called generate parameters.sh. The latter script replaces the values of
the parameters kymin and nw0 in the template file parameters GENEGYG by the values
at the commandline. The task create launches the script once per combination of the
values in the datagroups kymin list and nw0 list, storing the generated parameters

files at datacont out create. Then the task gene launches the GENE application that
uses the generated parameters files (ensuring that the file will be stored with the file-
name parameters as it is required by the application) storing the results at datacont
final out.

The task gene launches an MPI job of 4/8 nodes per parameters file generated pre-
viously. As shown in the CJDL on the Figure 5 the MPI configuration of the application
is indicated in the definition of the executable element, setting the mpi attribute to yes

9PRACE Project, deliverable 7.4
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<Job type="MasterSlave">
...
<ExecutionData>
<data>
...

<dataGroup name="kymin_list" type="Float">
<values>
<value value="0.6"/>
<value value="0.7"/>

</values>
</dataGroup>

<dataGroup name="nw0_list" type="Integer">
<values>
<value value="16"/>
<value value="32"/>

</values>
</dataGroup>

...
</data>
<definitions>
<activity name="create">
<input name="nw0" type="Integer"/>
<input name="kymin" type="Float"/>
<deployments>
<cloudDeployment>
<executable ref="datacont1"

file="generate_parameters.sh"/>
<file ref="datacont1"

file="parameters"/>
</cloudDeployment>

</deployments>

</activity>
<activity name="gene">
<input name="parameters" type="File"

rename="parameters"/>
<deployments>
<cloudDeployment>
<executable ref="datacont1"

file="gene_ubuntu_gfortran"
mpi="yes" minnodes="4"
maxnodes="4"/>

</cloudDeployment>
</deployments>

</activity>
</definitions>
<executions>
<execution name="create" activity="create">
<input name="nw0" source="nw0_list"/>
<input name="kymin" source="kymin_list"/>
<output name="output"

destination="out_create"/>
</execution>
<execution name="gene" activity="gene">
<input name="parameters"

source="out_create"/>
<output name="output"

destination="final_out"/>
</execution>

</executions>

</ExecutionData>
...
</Job>

Figure 5: The CJDL for the Master/Slave application in CodeCloud.

Table 3: Master/Slave use case times

4 nodes 8 nodes 4 nodes 8 nodes
(ONE) (ONE) (EC2) (EC2)

Input data uploaded 0:01 0:01 0:17 0:15
Container VM Prepared 2:10 3:01 1:52 2:02
Infrastructure Launched 4:42 14:54 6:11 7:03

Infrastructure Configured 5:01 7:22 5:42 8:12
Total Deployment 11:54 25:18 16:12 17:32
Execution Time 1:52:27 2:30:44 3:57:10 5:10:34

Output Data Downloaded 0:01 0:01 0:08 0:09
Total Time 2:04:22 2:56:03 4:13:30 5:28:15

and specifying the minimum (and optionally the maximum) number of nodes to use in
parallel (in this case 4/8).

The results of the tests are summarized on Table 3. The upload and download
times are short, corresponding to the amount of data initially uploaded (approx. 5MB)
and downloaded (approx. 2MB). The configuration time is spent on configuring the
Torque/PBS cluster required for the Master/Slave programming model and the libraries
needed by the GENE application. Comparing with the previous case, the time spent on
deploying and configuring the cloud infrastructure and executing the jobs is relatively
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small. As a result, the overhead in OpenNebula is slightly smaller than before (lower than
17%) and in EC2 is slightly greater (approximately 7%). Also note that on both cloud
platforms the execution time does not decrease with more nodes, probably because GENE
is a communication-intensive application and its performance is being compromised by
the modest capacity of a regular network.

However, the benefits of the proposed platform are manifold. First of all, the ability
to use a high-level language (CJDL) to provide a description of the application and the
programming model to be employed. It enables scientists to focus on the development
of their applications and not in the Cloud deployment issues. The platform is respon-
sible for orchestrating the infrastructure provision and the execution of the application
on the ad-hoc customized virtual infrastructure. The ability to provision on-demand
customized execution environments is of paramount importance for legacy codes that,
otherwise, should have to be re-programmed to execute on modern architectures. Using
this approach it is easy to immediately test the parameters of new algorithms (e.g. the
number of nodes) without accessing a larger physical infrastructure. In this case the tests
have shown that with the infrastructures tested the GENE application is not scalable.
Secondly, the ability to create execution recipes in order to perform the same application
execution on different IaaS Cloud backends. This introduces determinism for application
execution and the ability to Cloud burst from an on-premise Cloud to a large-scale public
Cloud with the very same application recipe. Finally, supporting different programming
models within the same platform eases adoption for different application, thus paving
the way to introduce the benefits of Cloud technologies in multiple scientific areas.

7. Conclusions

This paper has presented the CodeCloud architecture and platform to support the ex-
ecution of scientific applications under different programming models. The implemented
platform features a declarative language of the requirements of applications and virtual
infrastructures with an emphasis on software deployment and customization at runtime.
It includes virtual containers which orchestrate the virtual infrastructure deployment and
configurations for the different programming models. The automated configuration of
the virtual infrastructures is achieved via the integration with Puppet.

The platform introduces high-level semantics to let the user focus on the requirements
for their application and rely on the developed platform to automatically deploy the
required virtual infrastructure and perform the execution of the jobs according to the
programming model specified. Both vertical and horizontal elasticity are supported by
the CodeCloud thus leveraging the inherent elasticity features of Cloud platforms. The
platform hides the inner complexity of deploying and configuring virtual infrastructures
on IaaS platforms to the user, who just define the features in a descriptive document. The
platform exploits the parallel capabilities of different programming model and efficiently
implements them as it can be observer in the experiments.

This represents a step forward in the usability of Cloud platforms for scientific com-
puting. The support for multiple programming models for the Cloud featuring automatic
deployment and configuration on multiple Clouds is unparalleled when compared to other
Cloud frameworks.
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