
ar
X

iv
:2

30
8.

07
64

0v
1

 [
cs

.S
E

]
 1

5
A

ug
 2

02
3

Assessing Requirements Engineering and Software Test Alignment - Five Case Studies

Michael Unterkalmsteinera,∗, Tony Gorscheka, Robert Feldta, Eriks Klotinsa

aDepartment of Software Engineering, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

Abstract

The development of large, software-intensive systems is a complex undertaking that we generally tackle by a divide and conquer

strategy. Companies thereby face the challenge of coordinating individual aspects of software development, in particular between

requirements engineering (RE) and software testing (ST). A lack of REST alignment can not only lead to wasted effort but also

to defective software. However, before a company can improve the mechanisms of coordination they need to be understood first.

With REST-bench we aim at providing an assessment tool that illustrates the coordination in software development projects and

identify concrete improvement opportunities. We have developed REST-bench on the sound fundamentals of a taxonomy on

REST alignment methods and validated the method in five case studies. Following the principles of technical action research, we

collaborated with five companies, applying REST-bench and iteratively improving the method based on the lessons we learned.

We applied REST-bench both in Agile and plan-driven environments, in projects lasting from weeks to years, and staffed as large

as 1000 employees. The improvement opportunities we identified and the feedback we received indicate that the assessment

was effective and efficient. Furthermore, participants confirmed that their understanding on the coordination between RE and ST

improved.

Keywords: Assessment, REST Alignment, Requirements Engineering, Software Testing, Coordination, Technical Action

Research

1. Introduction

Requirements Engineering (RE) is the discipline of elicit-

ing, analyzing, specifying, validating and managing needs and

constraints on a software product (Nuseibeh and Easterbrook,

2000; Bourque and Fairley, 2014). Software Testing (ST)

is the verification that a software product provides expected

behaviors, as expressed in requirements (Bertolino, 2007;

Bourque and Fairley, 2014). As such, RE and ST1 are in-

trinsically related and leveraging on this relationship would

be beneficial for both disciplines (Graham, 2002). Tassey

(2002) projected the cost of inadequate testing in the US

to 60 billion dollars per year. Furthermore, a survey by

Garousi and Varma (2010) found that defects introduced in the

requirements were among the most expensive to repair (be-

sides stress/performance problems). Bjarnason et al. (2014)

identified sixteen REST alignment challenges, spanning from

requirements and test quality to requirements abstraction lev-

els (Gorschek et al., 2006) and traceability.

First steps to a better understanding of the REST align-

ment phenomenon were undertaken by studying and classify-

ing alignment practices (Unterkalmsteiner et al., 2014). The

main contribution of this classification is the definition of an

epistemic base (Mokyr, 2005) that can be used to explain how

∗Corresponding author. Tel.: +46 455 385815

Email addresses: mun@bth.se (Michael Unterkalmsteiner), tgo@bth.se

(Tony Gorschek), rfd@bth.se (Robert Feldt), ekx@bth.se (Eriks Klotins)
1We abbreviate requirements engineering and software testing as “RE and

ST” or “REST” in the remainder of this paper.

and why REST alignment practices work. In this paper we

use this base in order to provide a practical method, REST-

bench, to assess REST alignment. A prerequisite for any im-

provement is the characterization of the current condition of

the phenomenon under study. Based on this agreed state and

the definition of goals, changes can be designed and imple-

mented. Postmortems (Birk et al., 2002) are one possibility to

elicit best practices but also issues in the execution of projects,

feeding the results into an organizational knowledge reposi-

tory (Ivarsson and Gorschek, 2012). Even though guidelines

for executing postmortems exist (Collier et al., 1996; Dingsøyr,

2005), postmortem reviews are seldom held, some suggest for

lack of time (Keegan and Turner, 2001; Glass, 2002), even

though their benefits are well reported (Verner and Evanco,

2005). REST-bench follows, like postmortems, the principle

of the Experience Factory (Basili and Caldiera, 1995), where

improvements are based on data collection and analysis of ex-

perience from past projects.

We designed REST-bench to be lightweight, in terms of

resource use (30-50 person-hours per application), by focus-

ing the assessment effort to the specific issue of require-

ments engineering and test coordination which is of major

interest to organizations developing software intensive sys-

tems (Bjarnason et al., 2014). REST-bench is interview- and

workshop-based, providing structured guidelines to collect and

analyze data originating from project participants. In essence,

REST-bench illustrates the impact of project artifacts on the co-

ordination between RE and ST, and provides a set of analytical

tools (the artifact map, seeding questions) that drive the analysis

Preprint submitted to Elsevier August 16, 2023

http://arxiv.org/abs/2308.07640v1

Figure 1: V-Model of software development

and elaboration of improvement suggestions.

In this paper, we present REST-bench in an example-driven

manner, describing data elicitation, data preparation and the

collaborative analysis. We illustrate the application of REST-

bench in five companies that exhibit diverse characteristics. In

all five cases we could identify relevant improvement opportu-

nities. The participants of the assessment judged REST-bench

as an efficient and effective mean to assess the coordination be-

tween RE and ST.

The remainder of this paper is structured as follows. We dis-

cuss background and related work in Section 2. Section 3 il-

lustrates the research method we followed to validate and im-

prove REST-bench. We introduce the assessment method in

Section 4, together with a running example that shows the ap-

plication of REST-bench and with the improvements we imple-

mented, the collected data, the analysis of the results and the

identified improvement potential. In Section 5 we show the re-

sults of the remaining four case studies. We answer our initially

stated research questions in Section 6 and conclude the paper in

Section 7.

2. Background and Related Work

2.1. REST alignment

The development of software-intensive systems2 is a col-

laborative effort of experts, each contributing a part to the

solution (Rus and Lindvall, 2002). Expertise and capabili-

ties are distributed on different roles, rendering the coor-

dination between people in software projects and develop-

ment phases essential for success (Kraut and Streeter, 1995).

From a process perspective, software development consists

2A software-intensive system is “any system where software contributes es-

sential influences to the design, construction, deployment, and evolution of the

system as a whole” (ISO/IEC, 2007).

of transitions from system concept, requirements specifica-

tion, analysis and design, implementation, and test and main-

tenance (Laplante, 2007). This abstraction holds for both plan-

driven process models (e.g. spiral (Boehm, 1988) and evolu-

tionary (Naumann and Jenkins, 1982), and the unified process

model (Kruchten, 2000), as well as Agile models, although to

a lesser extent as activities may be blended, eliminating transi-

tions altogether (e.g. in eXtreme Programming (Beck, 1999)).

Figure 1 illustrates the V-Model of software development,

which originates from system engineering (Forsberg and Mooz,

1991; Bröhl and Dröschel, 1995) and was adopted in software

engineering (Pfleeger and Atlee, 2009). This model illustrates

vertical transitions between software development activities

(left hand side) and the corresponding testing activities (right

hand side) that ought to ensure the quality of the resulting work

products. The importance of enabling these vertical transi-

tions and align the intentions and activities across is demon-

strated by an abundance of research (e.g. between require-

ments abstraction levels (Gorschek and Wohlin, 2006), require-

ments and software architecture/design (Kop and Mayr, 1998;

Amyot and Mussbacher, 2001; Hall et al., 2002), software ar-

chitecture/design and implementation (Murphy et al., 2001;

Elrad et al., 2002; Aldrich et al., 2002), and software archi-

tecture/design and testing (Muccini et al., 2004; Samuel et al.,

2007)).

While research has produced an ample amount of software

technologies, models and frameworks to coordinate people, to

ease the transition between software development phases and to

align the intentions and activities therein, literature is sparse on

methods that focus on improving the coordination between re-

quirements engineering and software testing (Bjarnason et al.,

2014). In earlier work (Unterkalmsteiner et al., 2014) we de-

fined REST alignment as the adjustment of RE and ST ef-

forts for coordinated functioning and optimized product de-

velopment. The key in this definition is the intuition that RE

and ST efforts need to be adjusted together in order to avoid

sub-optimization of either one of the two aspects. This ad-

justment can be achieved by various means, spanning from

process-centered activities that foster the collaboration be-

tween RE and ST roles (e.g. by forming cross-functional

teams (Marczak and Damian, 2011)), over techniques that use

requirements as a driver for testing activities (e.g. by for-

mulating testable contracts (Melnik et al., 2006) or model-

based testing (Utting et al., 2012)), to methods or processes

that establish and/or maintain requirements to test traceability

links (Ramesh and Jarke, 2001). Fundamental for any form of

coordination is the exchange of information (van de Ven et al.,

1976). Therefore, in order to characterize the means of REST

alignment, we use information as a central entity, as described

next.

2.2. The REST taxonomy

To characterize means aimed at achieving REST align-

ment, we developed a taxonomy that uses the informa-

tion dyad as building block to describe alignment meth-

ods (Unterkalmsteiner et al., 2014). Figure 2 (left) illustrates

2

Figure 2: Information dyad and dyad structure

Table 1: Dyad structure properties

P1 Number of nodes – links between nodes need to be maintained over

time. Hence, the total number of nodes allows one to reason on

complexity and effort to maintain REST alignment.

P2 Branches – a branch exists, if a node acts as a source or sink for

more than one node. Branches may reduce local complexity, require

however also means to synchronize and merge information.

P3 Intermediate nodes – characterized by information that belongs to

the design/analysis or implementation software development phases/

activities.

P4 RE and ST node proportion – assuming that a node is associated with

a certain cost (e.g. establishing/maintaining the information therein

and links in between), it is of interest to know the node distribution

among the RE and ST software development phases/activities.

P5 Links – the linking mechanism between software development

phases/activities determines how changes of information are prop-

agated.

P6 Scope – allows one to reason upon the interface between RE and ST

and other software development phases/activities.

the components of an information dyad: two nodes, character-

ized by the information they contain and their owner, are con-

nected trough a link. Creating the REST taxonomy, we identi-

fied different linking media and mechanisms. A medium can be

of several different types: structured artifacts (e.g. documents,

email, diagrams, database records); unstructured artifacts (e.g.

audio and video); tools that act as means to share, transfer or

transform information (e.g. modeling tools, language analy-

sis tools); processes (one or more activities, performed repeat-

edly); or the organization of work environment (co-location,

role/responsibility rotation). Furthermore, we identified four

types of linking mechanisms: implicit connection (informa-

tion is connected by volatile and implicit links that are not for-

malized); connection (information pertaining in each node is

connected, establishing a logical link between the two nodes);

bridge (information pertaining to each node is connected and

augmented in order to achieve fitness of purpose in both nodes);

and transformation (information, packaged for one node in the

alignment dyad, is re-packaged in order to satisfy the needs of

the other node).

Information dyads form a structure, Figure 2 (right), which

in turn may exhibit certain properties, listed in Table 1. We

have used these properties to compare REST alignment meth-

ods reported in literature (Unterkalmsteiner et al., 2014). In this

paper, one objective is to study to what extent these proper-

ties support the identification of improvement opportunities for

REST alignment. Concretely, we used the dyad structure prop-

erties to generate seedings questions that support the analysis of

the collected data in the REST-bench method. The steps in this

process and the used seeding questions are illustrated in Sec-

tion 4, while the question whether all dyad structure properties

were useful is answered in Section 6.

2.3. Related work

The challenges of coordinating development teams operating

at different sites have been described by Herbsleb and Grinter

(1999). They point out the boundaries of explicit coordination

mechanisms such as plans, interface specifications and process

descriptions, but also the lack of informal coordination oppor-

tunities in geographically distributed sites, leading to misunder-

standings and increase in cycle time for fixing issues. Following

this line of thought, Herbsleb and Mockus (2003) developed an

empirical theory of coordination (ETC) for software engineer-

ing, based on decision and constraint networks, and later ap-

plied to identify coordination requirements among software de-

velopers that can be used to improve the design of collabora-

tion tools (Cataldo et al., 2006). Along a similar line, Ko et al.

(2007) observed in a field study what information developers

seek in their day-to-day work, which sources they use and what

the reasons are for not being able to gather the needed infor-

mation, calling for innovation in tools, processes and notations.

REST-bench shares with these studies the insight that satisfying

information needs, timely and as exhaustive as possible, is key

to successful software development in teams.

In order to represent information flow in requirements engi-

neering activities, Schneider et al. (2008) developed a notation

that can be used to model both formal and informal communi-

cation. A benefit of the flow notation is that it can be used to

describe the officially required and the actually executed pro-

cess, showing differences and instances where improvements

can be implemented (Stapel et al., 2007). Furthermore, FLOW

mapping has been used to plan and manage communication in

distributed teams, requires however a considerable amount of

manual work to keep the maps up-to-date with continuously

changing communication patterns (Stapel et al., 2011). REST-

bench shares with FLOW the idea to represent information and

connections in a diagram that can be discussed in collabora-

tion with practitioners to identify improvement opportunities.

On the other hand, REST-bench provides a concrete assessment

process, differentiates between data collected from the different

roles, and provides heuristics that can be used to analyze the

collected data and to generate analysis points that may lead to

improvement suggestions.

Project postmortems have been successfully applied in the

past (Dingsøyr (2005) provides an overview and examples) to

identify improvements, following the Experience Factory prin-

ciple (Basili and Caldiera, 1995). However, Glass (2002) has

observed that they are seldom conducted due to the fast paced

nature of software projects where teams are split up and reas-

signed to new tasks. Therefore, collecting information timely

after the conclusion of a project seems more likely to identify

improvement potential. In order to increase the data accuracy,

Bjarnason et al. (2012) propose project timelines that are pre-

pared in advance. Depending on the particular analysis goals,

3

Table 2: Project characteristics of the participating companies

Company A B C D E

Project duration 12 months 2 months/release 36 months 48 months 7 months

Staff 150 20 9 1000 20

Software develop-

ment approach

Agile (in transition from

plan-driven)

Agile Agile (embedded in plan-

driven)

plan-driven plan-driven

Requirements # 350 5-20 300 2000 50

Test-case # 700 Not stated 300 500 24

Assessment date 2012/06 2013/03 2013/03 2013/04 2013/12

certain aspects of the collected data are visualized in a time-

line, allowing the postmortem participants to recall the illus-

trated events. However, since the method can be used for any

generic improvement goal, it does not provide prompting ques-

tions or aids that could facilitate the analysis of the collected

data. While REST-bench relies also on the collection of data

from a specific past project, eliciting practitioners’ experience

on how information is used and created, it provides also seed-

ing questions (Table 4) that support the analysis or the collected

data. The focus on a particular goal (coordination of RE and

ST), the structured data collection, and the analysis guided by

a set of predefined questions and an artifact map, sets REST-

bench apart from traditional project postmortems, as for exam-

ple described by Dingsøyr (2005).

3. Research Method

Our overall research approach is oriented towards design re-

search (Hevner et al., 2004) which provides a concrete frame-

work for implementing the dynamic validation phase in the

technology transfer model proposed by Gorschek et al. (2006).

Our research method is best described as technical action re-

search (Wieringa, 2014a, Ch. 19), i.e. we aim at improving and

validating the fitness of purpose of an artifact by applying it in

a real-world environment (Wieringa, 2014b). In particular, we

want to answer the following research questions:

RQ1: To what extent are the dyad structures from the REST

taxonomy useful to elicit improvement opportunities?

RQ2: To what extent is REST-bench useful in Agile and plan-

driven environments?

RQ3: To what extent is REST-bench usable?

In our previous work, we characterized REST

alignment methods by means of information

dyads (Unterkalmsteiner et al., 2014). Furthermore, we

piloted the idea of using dyad structures as a mean to drive

REST alignment assessment. With RQ1 we aim to validate this

idea by applying the REST-bench method in a series of case

studies. When we planned the validation, one of our concerns

was the methods’ reliance on documentation as a proxy to

determine REST alignment. Therefore, we questioned whether

we can apply REST-bench at all in an Agile environment. We

address this concern in RQ2, where a plan-driven environment

means that the development teams work in a traditional,

document driven manner (Petersen and Wohlin, 2010). In

order to be adopted by practitioners, a method should also

be usable. We analyze the usability of REST-bench from the

perspective of the analyst, i.e. the researcher who applied the

method, as well as through the practitioners’ feedback who

participated in the study.

3.1. Project characteristics

We applied REST-bench in five companies located in Swe-

den: Ericsson and Telenor in Karlskrona, ST Ericsson in Lund,

CompuGroup Medical and Volvo Cars in Gothenburg. All com-

panies were approached based on personal contacts, providing

them an executive summary of the goals, and expected cost and

benefits of REST-bench. We did not preclude any particular

company or project type in the selection. In the remainder of

this paper we anonymized project characteristics, collected data

and results by referring to Company A, B, C, D, and E. Table 2

illustrates the characteristics of the projects where we applied

REST-bench. Note that Company A was, at the time of the as-

sessment, in a transition from a plan-driven to an Agile software

development approach. The team in Company C was working

in an Agile manner while still being embedded in a plan-driven

process. We selected the particular projects based on the criteria

defined by REST-bench, described in Section 4.1.

3.2. Data collection and analysis

We collected data from two sources: (1) the process of apply-

ing REST-bench, e.g. effort spent and identified useful seeding

questions; (2) a dedicated questionnaire, distributed to the par-

ticipants after the assessment. Table 5 shows the 10 questions.

The first four questions are open ended, addressing the over-

all experience of using REST-bench. The remaining questions

required an answer on a 5 point Likert scale (strongly agree,

agree, neutral, disagree, strongly disagree), while explanatory

feedback was still possible. Out of the 13 participants in total,

10 returned the questionnaire.

In order to answer RQ1, we collected the seeding questions

(see Table 4) used in the five collaborative workshops and ana-

lyzed their association with the dyad structure properties shown

in Table 1. Furthermore, we use answers from the questionnaire

to provide evidence for or against the relevance and usefulness

of REST-bench.

Data to answer RQ2 stems from the project characteristics

of the participating companies (Table 2), allowing us to stratify

the results from the questionnaire into plan-driven/Agile sets.

4

Figure 3: The steps in the REST-bench method and budgeted effort in person-hours (p-h)

Furthermore, the assessment results from plan-driven and Ag-

ile environments provide indications on the usefulness of the

approach.

In order to answer RQ3, we use data from the questionnaire,

in particular questions regarding efficiency and effectiveness of

the approach, and collect data on effort spent for the different

steps in REST-bench.

3.3. Limitations

A major threat to validity in any technical action research is

the involvement of the researcher in the application of the to

be validated artifact (Wieringa and Moralı, 2012). The ques-

tion whether the validation results depend solely on the ability

of the researcher to use the artifact cannot be answered con-

clusively. In this paper, the first author performed all steps in

REST-bench. An alternative would have been to train practi-

tioners and to let them apply REST-bench on their own, ob-

serving the application and collecting data of spent effort, use-

fulness and usability. However, this would have led to a consid-

erably higher assessment cost per company. Nevertheless, the

validation did not solely depend on the researcher since practi-

tioners where involved in the REST-bench application process,

influencing thereby considerably the results.

We applied convenience sampling (Robson, 2002) to identify

the case companies, i.e. we approached engineers and man-

agers we had collaborated in the past. We prepared informa-

tion material on REST-bench (purpose, expected effort, out-

come and deliverables), providing the contact persons in the

companies a basis on which they can decide whether or not

to engage (all approached companies did). Note however that

the selection of projects and interviewees followed the require-

ments of Step 1 of the REST-bench method (see Section 4.1).

We have no indications that the contact persons at the compa-

nies influenced, other than by supporting the identification of

interviewees, the outcome of the assessment with REST-bench

or the questionnaire results.

We applied REST-bench in projects with a diverse set of

characteristics (see Table 2). There is no feature or constraint in

REST-bench that could conceivably exclude certain classes of

projects or companies, even though very small teams that work

co-located and do not require coordination with other teams

might not benefit from an assessment with REST-bench. Note

that REST-bench does not assess coordination through oral and

informal communication which are still central for the success-

ful execution of a software project (see answers to Q10 shown

in Table 5). The post-assessment questionnaire was returned

by 10 (out of 13) participants. While this is a high relative re-

sponse rate (77%), the evidence provided by the questionnaire,

in absolute terms, is still weak.

4. REST-bench

REST-bench follows the macro procedure of lightweight

software process assessment (Pettersson et al., 2008), however

it has a focused improvement goal (coordination between RE

and ST) and utilizes elicitation and analysis practices tailored

to this goal. This focus leads to a low investment cost, typi-

cally between 30 and 50 person-hours (p-h), depending on how

many people are involved in the assessment (typically 3 to 5).

We have a project view to make the assessment concrete, and

avoid people give us the best or worst cases picked together

from any part at any time in the company. This project focused

assessment has been used before with success (Svahnberg et al.,

2015).

The aim of REST-bench is to assess the state of REST

alignment (Unterkalmsteiner et al., 2014), eventually initiating

changes to improve that alignment. A critical enabler for any

kind of change in an organization is support by senior man-

agement (Dybå, 2005; Niazi et al., 2006; Wohlin et al., 2012).

Therefore, we regard a champion in the organization that can

provide resources and support the dissemination of the assess-

ment results an essential pre-requisite before embarking in a

REST-bench assessment.

We performed a REST-bench assessment at five case com-

panies, and used the experiences to refine REST-bench. The

first four cases (A-D) are illustrated in chronological order in

Section 5, where we show the results of the assessment and the

adaptions we made to the method. In this section we use the

fifth case (E) as a running example to illustrate the individual

steps of REST-bench. In all five case illustrations, the first au-

thor of this paper acted as moderator and analyst during the

assessment.

REST-bench is interview-driven and begins therefore with

the selection of interviewees (Step 1 in Figure 3). After data

elicitation (Step 2), the analyst creates an artifact map (Step

3). In Step 4, the analyst meets with the interviewees to col-

laboratively identify improvement opportunities, using the ar-

tifact map as input. The results of this assessment workshop

are collected in a report (Step 5). In subsections 4.1 - 4.5 we

exemplify the steps shown in Figure 3, providing effort estima-

tion and a compilation of best practices for the application of

REST-bench.

4.1. Step 1 – Selection

REST-bench has an interview-driven data elicitation process.

Therefore, the selection of the particular interviewees is pivotal

5

for the assessment, not unlike most process assessment methods

such as e.g. CMMI SCAMPI (SEI, 2006) or SPICE (Rout et al.,

2007). A local champion in the organization, supporting the ini-

tiative, can be a great accelerator in identifying interview can-

didates. In order to maintain REST-bench’s lightweight and

focused nature, the roles of the 2-4 interviewees should pertain

to the requirements domain, e.g. requirements engineers, busi-

ness analysts, product managers, and the testing domain, e.g.

test and quality assurance engineers. We recommend that the

selection process considers the following characteristics:

1. Work experience in the company and in the particular role.

A candidate that knows ”how things work“ and has pro-

gressed in the same company to a senior position is prefer-

able over a qualified, but new hire.

2. The candidate from the RE and ST domain must have col-

laborated on the same project, preferably in more than one

instance.

3. The project has recently been closed or is in a late stage.

These characteristics allow us to elicit data that reflect how

engineers actually work as opposed to how they ought to

work according to a process prescribed by a company pol-

icy. Choosing a project on which all interviewees collabo-

rated allows us to conduct episodic interviews which facili-

tates the collection of ”everyday knowledge about objects or

processes“ (Bauer and Gaskell, 2000, p. 85). In episodic inter-

views, we try use actual events that are connected to actions, ex-

periences and consequences, to elicit relevant information from

project participants. A project that is in its early stage can not

set the context as this everyday knowledge (episodes) has still

to be acquired. We detail data elicitation in Section 4.2.

In some organizations, the notion of a ”project“ is

not clear cut. For example, one case company applies

SCRUM (Schwaber, 1997) with three week sprints to imple-

ment customer requirements, releasing a new version of the

product every two sprints. In this situation we chose the last

sprint as ”project“ scope for the interviews. The relevant deci-

sion here is to agree on a specific context such that all intervie-

wees can relate to it.

When selecting the interviewees it is important to keep the

main goal of the assessment in mind: identify improvement op-

portunities for the coordination between requirements engineer-

ing and testing aspects of software development. Optimal can-

didates are employees in a senior position, being however in-

volved in the day-to-day practice in their respective area. This

leads usually to very fruitful analysis during the collaborative

issue identification (Section 4.4).

Effort and Best Practices

The budgeted effort for this step is 2-4 person-hours, where

the majority of the expense is on the organization, identifying

the interview candidates. The analyst can support this by pro-

viding detailed selection criteria for projects and interviewees,

described in this section. We recommend to schedule all meet-

ings in advance (interviews, workshop) such that the overall

assessment procedure is not extended to a long time period. In-

terviews should be held on one day, increasing the efficiency of

Table 3: Example artifacts

Powerpoint presentations, spreadsheets, text documents, specification / use

case / user story stored in requirements management tool, acceptance / in-

tegration, system, unit test case stored in test management tool, UML /

entity-relationship diagrams, emails, meeting notes, yellow sticky notes

data collection. The assessment workshop should be scheduled

between 4 and 10 business days after the interviews, allowing

time to analyze the collected data and preventing a loss of con-

text by waiting too long after data collection.

Example - Step 1

Company E outsources the implementation and verification

of parts of their product to an external supplier. In this sce-

nario, the coordination between RE (Company E) and ST (sup-

plier) is particularly challenging since company, country and

time-zone borders are crossed. The selection of interviewee

candidates was supported by the company’s responsible for pro-

cess improvement. We organized a seminar for employees of

Company E, presenting the goals and example applications of

REST-bench. This pro-activeness raised interest in the method

and helped us to identify the project and interviewees for the

assessment. We chose an Analyst Lead and a Business Process

Expert/Acceptance Tester for the RE perspective, both work-

ing for Company E. For the ST perspective, we chose an Ac-

ceptance Test Manager working at Company E and the System

Test Manager working for the supplier. The chosen project had

a duration of 7 months involving a total staff of 20 employees

(both Company E and supplier).

4.2. Step 2 – Data elicitation

We argued in our earlier work on requirements

engineering and software testing alignment meth-

ods (Unterkalmsteiner et al., 2014) that the means of con-

necting and using information is central to any software

development effort. In order to operationalize this concept in

a data collection procedure, we elicit which artifacts require-

ments and test engineers use and create in their daily work. We

chose artifacts as a tangible proxy for information which can

be retrieved during an interview. Furthermore, every software

organization produces some set of artifacts, independently how

agile or lean the organization is. An artifact can be any kind of

digital or analog document produced by an employee. In our

interview guide we exemplify what we mean by artifacts (see

Table 3 for a list of examples).

Agreeing on the concept of artifacts is key to the episodic in-

terview technique as it sets the scope of what data is elicited.

Therefore, Phase 13 requires the interviewee to list all artifacts

he/she has used or created in his/her daily work. The intervie-

wee should follow the timeline of the project under investiga-

tion, recalling his/her involvement during the different project

3In Phase 0, we ask a set of introductory questions to elicit context informa-

tion, such as name of the project, project duration, staff size, applied software

development method, number of system requirements and test cases.

6

phases that required use or creation of any artifact. In Phase

2 of the interview we elicit the following data on each of the

artifacts:

• Purpose: content of the artifact and reason for its creation

• Creator: role of the person who creates the artifact, in

which phase of the project

• User: role of the person using the artifact, in which phase

of the project

• Modifier: role of the person changing the artifact, in which

phase of the project

• Link or Mapping: a link is a uni-directional connection

from one artifact to another; a mapping is a bi-directional

connection between information contained in two artifacts.

• Use: a reference to any other artifact that is used as input

to create this artifact

We collect this data by compiling a simple template (see Fig-

ure 4). It is common that the list elicited in Phase 1 is incom-

plete and is extended while detailing the artifact information in

Phase 2 of the interview.

In order to reduce mutual influence during data collection, we

interview requirements and test engineers separately. We also

recommend to audio record the interviews (provided the inter-

viewees give consent). With the episodic interview technique,

we don’t elicit data on artifacts in a vacuum, but enrich the in-

formation by relating it to the studied project and what has been

experienced in the use and creation of artifacts. The analyst can

then, while constructing the artifact map (see Section 4.3), de-

velop a better understanding of the coordination between RE

and ST, and prepare targeted analysis points for the assessment

workshop.

Effort and Best Practices

The budgeted effort for this step is 6-12 person-hours. We

allocate 1.5 hours per interview, which translates into 6 person-

hours for 1 analyst and 2 interviewees as we interview RE and

ST separately. Adding two interviewees doubles the effort to 12

person-hours.

Interviewees should have access to the project documenta-

tion during the data elicitation. This allows them not only to

exemplify the artifacts they mention, but also to provide more

accurate information on how artifacts are linked and related to

each other.

Example - Step 2

The three interviews at Company E were performed on two

days. The ST representative from the supplier company was in-

terviewed by phone, however not audio recorded upon request

by the interviewee. Figure 4 shows an excerpt of the simple

elicitation form used to record data. We experienced that notes

are sufficient to record facts about artifacts, eliciting them in a

structured fashion. However, episodic information on their use

or misuse is complex and requires audio recordings that can

Figure 4: Artifact elicitation example

Figure 5: Artifact map - Illustration of components

be analyzed offline. When interviewees refer to events in the

project, the analyst should focus on understanding these occur-

rences, in order to pose follow-up questions, rather than spend-

ing his attention on recording them manually.

4.3. Step 3 – Map construction

An artifact map is an easy to understand, graphical represen-

tation of the data collected during the interviews. The visual-

ization serves mainly three purposes:

1. Illustrating commonalities and differences of the RE and

ST perspective on use and creation of artifacts.

2. Generating input for the collaborative issue identification.

3. Communicating and displaying the artifact topology to

employees not involved in the assessment.

Figure 5 illustrates the components of an artifact map. A

rectangular box represents an artifact, a sphere with an identi-

fier indicates a creator (on the top-left of the box) or an user (on

the top-right of the box) of an artifact. ”Linked-to“ relation-

ships are illustrated by solid lines with a single arrow, meaning

7

that one artifact is linked to another. ”Mapped-to“ relationships

are illustrated with double arrows, meaning that the informa-

tion in the artifacts is mapped bi-directionally. ”Used-to-create“

relationships are illustrated by dashed lines with a single ar-

row, meaning that information in one artifact is used to create

another artifact. The color coding indicates whether the data

stems from RE (orange), ST (blue) or from both roles (green).

The map in Figure 5 reads as follows: RE and ST agree that Ar-

tifact A is created by R1 and used by R2, even though ST adds

R4 as an user. RE states that Artifact C is created by R3 and

is linked to Artifact A. ST states that Artifact B is created by

R4, using Artifact A is input, and information in Artifact B is

mapped to information in Artifact A.

This example illustrates a rather common situation where ST

states that a role (R4) uses information from one artifact (A) to

create another artifact (B), whereas RE is not aware of this in-

formation need. This leads to an analysis point that needs to be

addressed in the collaborative assessment workshop. One out-

come could be that missing to mention Artifact B and R4 was

an oversight by RE. Then the map is simply updated. Another

potential outcome is that RE is indeed unaware of the informa-

tion need by R4. This misalignment could then be analyzed in

more depth during the assessment workshop, identifying poten-

tial causes but also consequences. For example, if Artifact A is

seldom updated, R4 might use outdated information to create

Artifact B. The solution could be to maintain Artifact A during

the project. Another likely solution: R4 should use Artifact C

which would otherwise have no use (no user was defined for it

during the elicitation).

Table 4 lists questions that the analyst can use to identify

analysis points for the assessment workshop. The questions in

set P0 focus on finding causes of disagreement between RE and

ST, which could be a misunderstanding in data elicitation, but

also a genuine divergence that potentially causes misalignment.

The questions in sets P1, P2, P5 and P6 are mapped to the

information dyad structure properties identified in our previous

work (Unterkalmsteiner et al., 2014). Note that these questions

are meant as an inspiration for the analyst and do not apply to

every artifact map. While applying the REST-bench method,

we improved the formulation and extended the set of questions.

An artifact map encodes only a subset of the information

elicited during the interviews. It is the task of the analyst to

use the remaining data together with the collected episodic in-

formation to create analysis points for the collaborative assess-

ment workshop. For example, the data elicitation may reveal

that an artifact is regularly updated during a project. However,

there is no mechanism to propagate changes to artifacts or roles

that use this modified information, leading potentially to mis-

alignment. Episodic information, such as an event where an ST

had to redesign a test suite due to outdated requirements spec-

ifications can be supporting evidence for a pattern observed in

the artifact map.

Effort and Best Practices

The budgeted effort for this step is 8-12 person-hours. Some

effort (40%) should be spent to represent the artifact map graph-

ically. Representing the artifact map in a clear, easy to under-

Table 4: Seeding questions to prepare the REST-bench assessment workshop

P0 - What is the source of disagreement between RE and ST on...

1. ... the existence of an artifact?

2. ... the creator/user of an artifact?

3. ... who changes when an artifact?

4. ... ”linked-to“/”mapped-to“ relationships between artifacts?

5. ... linking mechanism between artifacts?

6. ... ”used-to-create“ relationships between artifacts?

P1 - Number of artifacts

6. Is there an information need that was not fulfilled by the used artifacts?

7. If a new artifact is added, how would that impact other artifacts in terms

of maintaining information consistent?

8. Given that artifact A doesn’t have any user OR is only used by role R,

could the information in artifact A be merged into artifact B?

P2 - Artifact relationships

9. How is the information in artifact A kept consistent with the information

in artifact B, in the case C changes (C has two ”linked-to“ OR ”used-to-

create“ relationships to sibling artifacts A and B)?

10. If inconsistencies between artifacts A and B arise, how does that impact

the users of those artifacts and their work?

11. What is the purpose of artifacts that are not related to any other artifact?

12. Do the creators of artifact A deliver timely, i.e. can the information

actually be accessed in ST when needed?

P5 - Artifact and role changes

13. Does inconsistency of information among artifacts affect the work in:

RE, ST, the interface between both?

14. In case requirements change, by whom/how/when are these changes

propagated to linked artifacts?

15. How does staff turnover affect the quality of requirements and derivative

artifacts?

P6 - Artifact and role scope

16. Would involvement of RE/ST in creating artifact A improve the align-

ment?

17. How is consistency between input from non-RE/ST artifacts and RE/ST

artifacts maintained over time?

stand graph is crucial for the assessment workshop since the

participants do not have much time to familiarize with com-

plicated notation. In the cases studies, we used an all-purpose

diagramming tool (yWorks, 2014), however have since then de-

veloped a dedicated tool4 that supports the analyst in creating

the artifact map. The remainder of the effort should be spent

on preparing a list of questions for the assessment workshop,

using the prepared artifact map and the audio recordings of the

interviews. Note that the audio recordings are not meant to be

transcribed, but serve as source for details that were not cap-

tured yet in the map and to verify the created map. The list of

questions should be separated into a clarifying part, addressing

potential misunderstandings from the interviews, and an analy-

sis part, seeded by the questions from Table 4.

Example - Step 3

Figure 6 shows the artifact map elicited at Company E. Note

that for reasons of presentation clarity, we omit details of the

complete artifact map and show only the elements important

for the analysis, discussed during the assessment workshop, in

panels A and B (further discussed in Section 4.4). The color

coding (orange for RE, blue for ST and green for artifacts men-

tioned by both perspectives) illustrates the degree of agreement

4A prototype is available at http://lmsteiner.com/restbench

8

http://lmsteiner.com/restbench

on the creation and use of artifacts. The commonly identified

artifacts represent thereby the interface between RE and ST. In-

consistencies emerged from the data collection (and partially

visible in the map) were picked up as entry points for analysis

during the assessment workshop, for example:

• Even though both RE and ST agree on Solution Defi-

nition and Development Requirements Specification (see

Figure 6 and panel A therein), RE states that there is an

explicit mapping between individual requirements and so-

lution descriptions while ST claims there is no linking at

all.

• The Test Strategy artifact was mentioned by the ST at

Company E, but not by the ST at the supplier.

• A disagreement between RE of Company E and ST of the

supplier emerged on the change frequency and time of the

Development Requirements Specification.

These divergences between the RE and ST perspective on the

artifact map are a result of the seeding questions P0 in Table 4

and are complemented with further questions originating from

this seeding set, as shown in the next step.

4.4. Step 4 – Assessment workshop

The REST-bench assessment workshop is led by the analyst,

introducing to all interviewees the process of the collaborative

issue identification:

1. Presentation and explanation of the artifact map

2. Error identification by interviewees

3. Clarification questions by analyst

4. Collaborative map analysis

5. Summary and wrap up

The analyst brings two printouts of the artifact map to the

workshop, one for himself to note any corrections and one for

the participants, explaining the notation and content of the arti-

fact map. He should also point out immediately that the infor-

mation in the map stems from the interviews, setting the context

to the particular project that was selected for the data elicitation.

The interviewees should spend 5-10 minutes with the map and

try to identify any unclear artifacts, roles or incorrect relation-

ships between artifacts. The analyst clarifies any uncertainties

that emerged in the map construction5. The main task on which

most of the allocated time should be spend on is to answer the

questions prepared by the analyst, based on Table 4.

As for the initial data elicitation, we recommend to audio

record the assessment workshop, while the analyst should take

notes of the major identified issues. An issue might be related

to the process (or not followed process), structure, content or

distribution of artifacts, coordination between roles using arti-

facts, documentation infrastructure or lack thereof. It is impor-

tant that all participants agree on an issue and the implications

of it. The analyst should elicit evidence of these implications,

e.g. in form of events during the project under discussion, from

the workshop participants.

5This is why map construction and collaborative issue identification in Fig-

ure 3 are shown as iterative steps.

Figure 6: Artifact map of Case E

Effort and Best Practices

The budgeted effort for this step is 6-10 person-hours. A

realistic time-frame for the REST-bench assessment workshop

execution is 2 hours.

Even though the analyst initiates and drives the assessment

workshop with prepared analysis points and questions, im-

provement opportunities are most likely to be acted upon when

they emerge from the company employees. Therefore, the main

goal of the analyst is to provoke an exchange between RE and

ST, supported by the artifact map as a mean of communication,

avoiding however conflicts and steer the discussion into a con-

structive direction. During the assessment workshop it is also

important to maintain the context of the studied project, even

though extrapolation to other projects is possible in order to un-

derstand the impact of an identified improvement opportunity.

Example - Step 4

Looking at Panel A in Figure 6, the analyst observed that the

Development Requirements Specification (i.e. the requirements

therein) is mapped to the central artifacts in acceptance testing,

system and integration testing, and development (Implementa-

tion Specification and Solution Definition). This mapping al-

lows the company to assess the coverage of requirements both

in terms of testing and implementation, enabling the monitoring

of both development and testing progress. The analyst argued

that a mapping between individual business requirements, e.g.

from the Business Requirements List or the Idea Document, and

the Development Requirements Specification would be impor-

9

tant in order to know which business requirement corresponds

to a particular development requirement. Indeed, RE confirmed

during the workshop that it is not always clear to them which

business requirements are already in production.

RE pointed out that such a mapping is difficult to achieve,

since the Business Requirements List is not a standardized doc-

ument and does also contain information not relevant for the

requirements analysis. RE stated that the naming of use cases

(part of the Development Requirements Specification) should

describe the corresponding business requirement, creating an

implicit mapping. According to RE, this is however not trivial

and requires a lot of thought, as the use cases must illustrate

the business process such that the use cases can be used “as-is”

documentation for other projects. The analyst concluded that

different roles have different requirements on the use cases and

their names, making them not necessarily ideal for determin-

ing coverage of business requirements. Therefore, it might be

better to pursue an explicit mapping, requiring however a for-

malization of the business requirements.

RE stated that it is sometimes difficult to get the Develop-

ment Requirements Specification reviewed by the customer (in-

ternally, this is a Business Manager who requests a set of fea-

tures). It is the customers’ responsibility to look into the Devel-

opment Requirements Specification and understand what they

have agreed upon and verify the coverage of the business re-

quirements. RE stated that even though it worked well in this

project, it is still challenging in general to get customers to read

the Development Requirements Specification and confirm that

the business requirements are covered. The analyst concluded

that an explicit mapping between business and development re-

quirements would render the coverage analysis more effective.

Looking at Panel A in Figure 6, the analyst observed a sec-

ond issue: on the acceptance level, test cases are created by

using information from the Product Specification, Product De-

tails/Configuration, Development Requirements Specification

and the Solution Definition. Business requirements, repre-

sented in the Business Requirements List and the Idea Docu-

ment are not used at all. Given the lack of mapping between

business requirements and solution requirements, resulting in

a potentially unknown business requirements coverage, the an-

alyst concluded that using business requirements as input for

creating acceptance test cases would be a good idea.

This issue was controversially discussed during the assess-

ment workshop. On one hand, ST stated that it should not

be required to use the business requirements directly as input,

since all business requirements selected for the project should

be represented in the Development Requirements Specification

and the use cases therein. On the other hand, RE and the an-

alyst argued that the Development Requirements Specification

and the Solution Definition in particular are documents of the

solution space, tending to describe the designed solution rather

than the problem. The purpose of acceptance tests is to verify

that the problem has been addressed by the solution whereas the

purpose of system/integration tests is to verify that the solution

implements the requirements correctly (Bourque and Fairley,

2014). The analyst concluded that a potential consequence of

broadening the purpose of acceptance tests is that verification

is duplicated, e.g. covering aspects that have been already cov-

ered in system tests. Indeed, RE confirmed that this can happen

whereas ST stated that this is not the case in general.

Less controversial was the observation made by the analyst

on Panel B in Figure 6 that there is no RE role involved in

defining the Test Strategy or the Test Plan. Both RE and ST

agreed that input from the RE perspective would be beneficial.

A review of these artifacts by RE would validate that the tested

functionality is the actually required functionality.

4.5. Step 5 – Report recommendations

The purpose of this step is to summarize the findings from the

workshop and to communicate them to a wider audience. For

that reason, the report should be concise while still providing

enough context in order to be useful for employees that did not

participate in the assessment or in the studied project.

Effort and Best Practices

The budgeted effort for this step is 8-12 person-hours. We

recommend to provide a short introduction of the assessments

purpose and scope. Then, the artifact map, based on the data

collected in the interviews, should be presented, highlighting

inconsistencies and analysis points relevant for the assessment

workshop. The workshop summary should answer these analy-

sis points, summarize the identified improvement opportunities,

pointing to evidence in the updated artifact map, and eventually

conclude with a set of recommendations. The report should

be send to the study participants for review before it is com-

municated to a wider audience, allowing for corrections by the

participants.

Example - Step 5

In summary, based on the observations made during the col-

laborative workshop (see the example in Step 4), three areas for

improvement were identified:

• Business requirements gap: one of the Business Man-

agers tasks is the review of the Development Requirements

Specification in order to verify coverage of business re-

quirements. The effectiveness of this review depends on

the skill/capability of the customer in understanding the

Development Requirements Specification. One improve-

ment would be to strengthen these skills by training. On

the other hand, creating an explicit mapping from Devel-

opment Requirements Specification to business require-

ments would remove the need for review. However, such

a solution would require a formalization of the Business

Requirements List.

• Acceptance and System/Integration Test alignment: there

are indications that these test-levels have at least a cer-

tain overlap in what they actually verify. As long as this

overlap is intentionally created, the additional effort can be

controlled, otherwise this is an area where test efficiency

can be improved.

• Involvement of the RE perspective, e.g. involving RE in

Test Strategy and Test Plan reviews would help in validat-

ing that the development requirements are tested correctly.

10

Figure 7: Artifact map of Case A

5. Case studies

In this section we present the four remaining cases where we

applied REST-bench, chronologically such that improvements

in the method follow logically from the described cases. Each

subsection introduces first the case company, summarizes the

assessment results and discusses the impact the lessons learned

had on REST-bench.

5.1. Company A

We selected a system manager with 12 years experience in

his current role as RE representative. For the ST representative

we chose a verification engineer with 14 years experience. The

project in which the two engineers collaborated completed in

autumn 2011, while we performed the assessment in June 2012.

The project staff consisted of 150 engineers, split up into seven

teams. The system requirements consisted of approximately

350 user stories, whereas the system test cases amounted to 700,

of which 550 were automated.

5.1.1. Assessment results

Figure 7 shows the artifact map used during the REST-bench

assessment workshop. For clarity, we highlight only those de-

tails of the map (Panel A and B) relevant for the identified im-

provement opportunities.

Panel A in Figure 7 illustrates that the Software Verification

Team (SVT) uses four artifacts as input to create the Test Cases.

The Requirements Documentation is the main source, comple-

mented by the other artifacts. During the assessment workshop

the analyst questioned whether inconsistencies in these docu-

ments, caused for instance by requirements changes during the

design or implementation, affect ST. According to RE, changes

in user stories (part of the Requirements Documentation) are

propagated to the SVT, which is invited to the presentations

where changes are discussed. In the context of this particular

project, RE stated that parts of the solution where redesigned

late in the project, when the development already had started.

This was confirmed by ST, asserting that there were inconsis-

tencies between Test Cases and Requirements Documentation

due to a too early test analysis.

The Requirements Documentation artifact was elicited from

both interviewees and represents therefore an important inter-

face between RE and ST. According to ST, there is however no

linking between Requirements Documentation and Test Cases

at the Integration Test level. This is due do the difficulty to

keep these links up-to-date; early attempts with spreadsheets

failed and importing the required information into the test man-

agement tool is labor intensive. According to RE, this lack of

linking may lead to lower test coverage of the requirements. ST

stated that the lack of traceability is to some extent compen-

sated by the Technical Manager for Test (TMT) whose respon-

sibility it is to define the test scope. The analyst concluded that

the TMT acts thereby as a link between RE and ST. However,

testers need to pull information from TMT, rendering the spread

of knowledge on requirements changes a matter of individual

initiative, that is, person dependent.

Panel B in Figure 7 shows that Feature Entity Descriptions,

describing the system functionality on a compound level, are

used by the SVT to interpret the Test Results and Execution.

However, RE stated that Feature Entity Descriptions are writ-

ten late in the project, by external consultants, describing how

the system is actually implemented. RE stated that this is a local

sub-optimization that saves effort in the RE department, affects

however the work of ST. The analyst concluded that, to render

Feature Entity Descriptions useful to ST, they should be created

and maintained during the project as the implementation stabi-

lizes. To summarize, the following improvement opportunities

were identified:

• Test Cases are created by using different sources of infor-

mation which are potentially inconsistent.

• Requirements changes, tracked by a dedicated manage-

ment role (TMT), should be propagated to the responsible

test engineers.

• Feature Entity Descriptions should be written earlier such

that they are of more use to ST.

5.1.2. Impact on REST-bench

We intended to collect and analyze both artifacts (tangible

information) and events when information is exchanged infor-

mally, e.g. in ad-hoc meetings, email and on-line conversations,

or phone calls. However, eliciting each individual instance of

informal communication seemed unrealistic for the targeted ef-

fort budget (6-12 person-hours) for data elicitation. The pos-

itive results of this first assessment, i.e. the identification of

issues, supported our intuition that we already collect enough

data that can be efficiently analyzed in the assessment work-

shop and lead to concrete improvement suggestions.

11

Regarding the relationships between artifacts, we aimed at

producing rich analysis points, identifying what information

is used by whom to create which artifact. Therefore we fo-

cused to elicit information regarding “used-to-create” relation-

ships. However, using an artifact to create another does not

necessarily mean that the two artifacts are linked, rendering

the REST taxonomy heuristics (Unterkalmsteiner et al., 2014)

more difficult to apply. The workshop in Company A revealed

that links between artifacts, or lack thereof (in that case, Re-

quirements Documentation and Test Cases at the Integration

Test level), would also be useful to analyze. Therefore we de-

cided to also elicit “linked-to” relationships between artifacts

and present them as solid lines in the map. Note that in the

following two assessments, at Company B and C, we focused

on eliciting only “linked-to” relationships (partially to maintain

the elicitation time budget, partially to keep the artifact map

easy to interpret). However, we realized that “used-to-create”

relationships between artifacts are useful for the analysis (see

Section 5.3.2), and introduced them again in the assessments of

Company D and E.

Finally, we relied exclusively on note taking during the in-

terviews. Even though this sped up the artifact map creation

process, much time during the assessment workshop was spent

on correcting the map. Hence we decided to audio record future

interviews and workshops, given that participants gave consent.

5.2. Company B

In Company B we could not identify a single project, since

Scrum teams (one business analysis and two development/test

teams) work continuously on a product, releasing a new version

every two months. We chose therefore the last release-cycle as

time-frame for the assessment and selected a requirements en-

gineer and a test lead as interviewees. The total staff consisted

of 20 engineers while the assessment took place in March 2013.

5.2.1. Assessment results

RE stated that regulatory requirements enforce that the de-

velopment process provides traceability, illustrating that safety

risks are considered in the requirements, and that the developed

services or products comply to these requirements (verifica-

tion). However, according to RE, maintaining traceability over

time is complicated by storing information in different formats.

While all artifacts are stored in a content management system

providing revision control, creating and maintaining links be-

tween artifacts is not supported by the system. ST stated that

this complicates impact analysis (even though traces between

artifacts exist, they need to be found manually as the content

management system does not handle traces), e.g. when a re-

quirement changes and the corresponding Test Items and Test

Templates need to be updated or rerun. The analyst concluded

that this “infrastructure gap” may lead to an increased effort in

impact analysis and to potential inconsistencies in test artifacts.

Another related issue is the redundancy of manual traceability

links. For example, looking at Panel A in Figure 8, both Product

Backlog Item and Use Case refer to a particular risk. RE stated

that these links are maintained manually, causing additional ef-

fort to check consistency. ST stated that inconsistencies in these

Figure 8: Artifact map of Case B

manual links may be caught (early) during the review of the use

case or (late) when the sprint is approved. RE and ST agreed

that it would be sufficient to link the Risk Document to Product

Backlog Items.

While traceability is generally established with unique ref-

erences, ST stated that Customer Validation Tests are linked

implicitly to Use Cases by naming conventions (Panel B in Fig-

ure 8). These naming conventions, created by the Test Lead, are

however not enforced or documented. The analyst concluded

that staff turnover may therefore easily break this link. Further-

more, as soon as the complexity of the validation tests rises, a

more sophisticated tracing mechanism may be required in order

to keep track whether and how the Use Case is covered by the

executed scenarios in the Customer Validation Tests.

Looking at Panel B in Figure 8, the analyst observed that ST

roles are involved in reviewing documents created by RE. There

is however no such involvement of RE roles in reviewing docu-

ments created by ST (Panel C). RE stated that they occasionally,

when a complex function needs to be verified, provide feedback

to ST on particular test cases. Such ad-hoc reviews do however

not verify the test scope. The analyst concluded that this could

be achieved by having a review of the Test Template and the

test-cases therein (early, before the tests are actually executed),

or of the Test Protocol (late, when the test results are available).

To summarize, the following improvement opportunities were

identified:

• Manual maintenance of traceability links leads to in-

creased effort in impact analysis. Redundant, manually

maintained, traceability links may lead to inconsistencies

requiring rework.

• Customer Validation Tests are not explicitly mapped to

12

Figure 9: Artifact map of Case C

Use Cases.

• RE is little involved in reviewing document created by ST.

5.3. Company C

We selected a requirements engineer/software architect with

3 years experience in his current role as RE representative. For

the ST representative we chose a test lead with 1.5 years ex-

perience. The assessment took place in March 2013, approxi-

mately at halftime of the expected three year project duration.

The selected project had a staffing of 9 engineers, operating in a

Scrum team. The overall development process in Company C is

plan-driven, posing challenges to the project that iterates in two

week sprints. The project was responsible for approximately

300 system requirements.

5.3.1. Assessment results

An aspect that is not visible in the artifact map is the project

life-cycle and how it influences the artifacts that are created

and used. This project was estimated to last three years in to-

tal. This investigation took place approximately 1.5 years into

the project, at a time when the high-level requirements (Sys-

tem requirements and Functional Area Descriptions, see Panel

A in Figure 9) were stabilized and soon to be frozen. Due to

the volatility of the requirements in the initiation phase of the

project, the development team focused on establishing the fea-

sibility of the product, adapting continuously on changing re-

quirements. This led to postponing the formalization of docu-

mentation and links, since this process was time consuming and

there was a resistance to start it before there was an indication

that the system was actually working. Therefore, even if Panel

A in Figure 9 suggests that traceability from high-level require-

ments down to unit-tests is given, this was only a goal that has

not yet been achieved at this stage of the project. In particular,

the links from the Software Requirements to System Require-

ments and Functional Area Descriptions were in the process of

being re-engineered and implemented in the requirements spec-

ification tool (SpecTool).

Looking at Panel B in Figure 9, the analyst observed that

there is a gap between the integration tests (Software Test De-

scription artifact) and the requirements they are intended to ver-

ify (System Requirements and Functional Area Description).

Software Requirements had, according to RE, a 1-to-1 map-

ping to unit-tests. On the other hand, System Test Descriptions,

which specify how and what was tested in integration, were

not linked to any requirements documentation. Both RE and

ST agreed that linking the System Test Descriptions to System

Requirements and Functional Area Descriptions would provide

benefits:

• ability to perform requirements coverage analysis

• change impact analysis, leading to reduced test-time

• allow reviews in which both RE and ST participate and

validate the effectiveness of integration tests

In this project, according to RE, the software team started to

integrate System Requirements and Functional Area Descrip-

tions in SpecTool, allowing them to link their information to

Software Requirements. Although this was an improvement

(as manual linking to word documents was not necessary any-

more), linking the requirements to the integration tests was still

a challenge, since test artifacts were stored in a separated infras-

tructure, requiring a manual linking and maintenance process.

According to RE, the link implementation in SpecTool by itself

may turn out to be problematic. Even minor changes in parent

documents, such as correction of spelling mistakes or improv-

ing descriptions, would trigger a change event, leading to child

documents to be flagged as outdated. There was no possibility

in SpecTool to qualify the level of a change. That may be a risk,

leading to a lower quality of documentation. To summarize, the

following improvement opportunities were identified:

• Time consuming re-engineering of Software Require-

ments and linking to other artifacts.

• Lack of traceability between integration tests and require-

ments they are intended to verify.

5.3.2. Impact on REST-bench

As we assessed Company B and C in parallel, we summarize

here the lessons learned from both REST-bench applications.

As a major change, we reintroduced the elicitation of “used-

to-create” relationships between artifacts, adding how informa-

tion from one artifact is used to create another artifact. This

differs from the “linked-to” semantics and is useful as it pro-

vides a dynamic aspect to artifact relationships that is lost when

considering only links between artifacts. For example, consis-

tency between artifacts is much more difficult to achieve and

13

Figure 10: Artifact map of Case D

maintain when there exist “used-to-create” but no “linked-to”

relationships between artifacts.

Nevertheless, the assessment in Company C illustrated also

one of the weaknesses of a static artifact map. At different

points in time, the particular use of an artifact may change in a

project. This dynamism is not visible in an artifact map, but can

be captured during data collection and then considered while

discussing the map at the assessment workshop.

5.4. Company D

We selected a requirements engineer and a system designer,

with 10 and 5 years experience respectively, as RE represen-

tatives. We chose a test lead with 5 years experience as rep-

resentative for the ST perspective. The selected project had a

four year duration, involving in peak times about 1000 hard-

and software engineers. During the assessment on April 2013,

the project was in the closing phase. The project handled ap-

proximately 2000 system requirements and 500 functional test

cases.

5.4.1. Assessment results

RE stated that Implementation Proposals (Fricker et al.,

2010) were typically written as “change this existing function-

ality like that”, in collaboration by RE and ST roles, and were

used by system designers to architect the software and by ST to

develop the test plan (see Panel A in Figure 10). Function De-

scriptions, on the other hand, were written when the software

has been implemented, providing a complete description of a

function, and were used by ST to write test specifications. ST

reported that the information in the Implementation Proposals

and the respective Function Descriptions may be inconsistent,

leading to situations where they attempted to test functional-

ity that is not supported by the delivered software. Inconsis-

tencies stemmed from the fact that Function Descriptions were

created late in the project forcing ST to use the Implementation

Proposal to write test-specifications, and that no role has been

assigned the responsibility to check and maintain consistency

between Implementation Proposals and Function Descriptions.

Due to the amount of Implementation Proposals and Func-

tional Descriptions per project, maintaining consistency among

them is a challenge and may not even be possible with rea-

sonable effort. One possible improvement, mentioned by RE,

would be to implement a mechanism that alerts the reader of

potential inconsistencies. Furthermore, the responsibility (who,

why) and the procedure (what, when) of updating/creating

Function Descriptions should be defined. The Implementation

Proposal was written by both RE and ST, whereby ST was re-

sponsible for the test specific parts. RE stated that the distance

in time in which different parts in the Implementation Propos-

als were written has been very long (up to one year): while

RE was working on an Implementation Proposal, ST might be

heavily involved in testing, leading to the situation that ST was

actually not collaborating with RE in the specification. Then,

when ST was ready to specify the testing part, the document

may have been out-of-date as it was not updated by RE during

the project. RE proposed an improvement to the process, that

is, to ensure the commitment of both RE and ST to collaborate

at the same time on the Implementation Proposal specification.

ST explained that in their work process, they mapped the re-

quirements (from the Software Design Requirements Specifi-

cation) to the test cases they execute. In the Test Report they

documented test results and listed which requirements were

covered by the executed test cases (see Panel A in Figure 10).

There was however, according to RE, no feedback loop from ST

to RE, leading to the inability to improve low quality require-

ments when they were marked as untestable in the Test Report.

Furthermore, test-coverage could not be efficiently measured.

Both RE and ST agreed that a requirement to test-case mapping

would have the following benefits:

• Regression tests could be efficiently defined (assuming

that Software Design Requirements Specification is traced

to requirements at higher abstraction levels).

• Change requests involving the addition or removal of re-

quirements would be visible on the ST side, i.e. it would

be transparent whether new test cases are needed, or old

ones can be removed.

• Statements of verification could be generated without

manual effort.

Looking at the artifact map in Figure 10, the analyst observed

that ST was, except in the definition of Implementation Propos-

als where the benefit is immediate, not involved in RE activi-

ties. RE stated that previous efforts to include ST had failed,

14

mostly due to scheduling issues. With the initiative to improve

the quality of the Software Design Requirements Specification,

new opportunities for ST involvement could arise. For example,

ST could provide useful input on the requirements quality by

looking at their Test Reports. Not testable requirements iden-

tified in these reports can either be improved or even removed

from the database. A second opportunity for ST involvement

arises as soon as the requirements to test case mapping is im-

plemented. New requirements need to be reviewed and mapped

to either existing test cases or the decision needs to be taken to

create new test cases. ST could be assigned this responsibil-

ity. Then, with the requirements to test case mapping in place,

ST can provide feedback, during and after the testing phase, to

RE on the quality of requirements, preventing the decay of re-

quirements quality. To summarize, the following improvement

opportunities were identified:

• Maintaining consistency between Improvement Proposals

and Function Descriptions in order to support ST in testing

the correct functionality.

• Schedule collaboration between RE and ST such that work

on common artifacts leads to coordination rather than mis-

understandings.

• Map test cases to requirements such that faults in require-

ments identified by ST can be fed back to RE.

5.4.2. Impact on REST-bench

In Company D, we analyzed the lack of mapping between

individual requirements and test cases. Even though require-

ments are linked in the Test Report to individual test cases,

RE could not benefit from that information as no bi-directional

links existed. This observation, together with the analysis of

Company C (see Section 5.3.1), where we did not differentiate

between uni-directional and bi-directional relationships, led us

to the introduction of the “mapped-to” relationship. The seman-

tics of the “mapped-to” relationship allows us to describe links

between artifacts that can be followed from either side (corre-

sponding to backward and forward traceability).

6. Discussion

Looking at the assessments performed with REST-bench,

one commonality encountered in all five cases is the identifi-

cation of improvement possibilities in the linking mechanisms

between nodes of information. This means either to establish a

link in the first place, or improve an existing link such that it is

more resilient, accurate or reliable over time. In some cases, a

solution would be to introduce explicit traces between artifacts,

either by adopting a viable trace model (Ramesh and Jarke,

2001) or by automatically recovering trace links (see Borg et al.

(2014) for an overview of techniques). In other cases, the in-

volvement of test engineers in requirements engineering tasks

would be beneficial, as observed by Damian and Chisan (2006),

Uusitalo et al. (2008) and Kukkanen et al. (2009). Generally,

the assessed companies were well aware that information ei-

ther from RE or ST is not used to its full potential for decision

support. Consequentially, the study participants valued REST-

bench’s ability to identify gaps in the coordination between RE

and ST. Similar observations, focused on gaps between RE and

downstream development affecting test coverage and scoping

were made by Bjarnason et al. (2011) in the context of large-

scale software development. However, since the assessments

did not include solution development, monitoring and evalua-

tion of the implemented changes, we do not have resilient re-

sults that would allow us to provide general recommendations

on how to improve REST alignment. In the remainder of this

section we answer the research questions stated in Section 3.

6.1. RQ1: To what extent are the dyad structures from the

REST taxonomy useful to elicit improvement opportuni-

ties?

Table 4 illustrates the mapping between the seeding ques-

tions we used to prepare the assessment workshops and the

dyad structure properties, summarized in Table 1, we identi-

fied in our earlier work (Unterkalmsteiner et al., 2014). We es-

tablished the mapping in Table 4 in order to understand which

dyad structure properties are actually useful in generating an-

alytical questions regarding the elicited artifact maps. While

properties P1, P2, P5 and P6 were useful, we could not yet de-

rive questions by using properties P3 and P4 (see Table 4 for

a description of these properties). However, this does not pre-

clude the possibility that in future assessments those properties

might generate useful seeding questions.

Looking at the overall focus of REST-bench, it seems

straightforward why no questions regarding P3, intermediate

nodes, were generated: the data elicitation is geared towards ar-

tifacts that are used and created by requirements engineers and

software testers (see Section 4.2). Q4 in our post assessment

questionnaire addressed this specific aspect, i.e. whether other

roles (e.g. software architects, developers) should be included

in the assessment. Nine out of ten participants suggested in-

cluding other roles (six argued for software developers, one for

a configuration manager, two for no specific role). While we

decided not to include more roles, in order to keep the overall

assessment effort low, one could argue that a developer partic-

ipating in the assessment workshop alone would be beneficial

as a user of requirements and creator of the system under test,

thereby contributing to the identification of improvement po-

tential.

The second dyad structure property for which we could not

generate analytical questions is P4 - RE and ST node propor-

tion. This property expresses the relative effort spent in creating

and maintained RE and ST artifacts respectively. However, we

did not find any evidence that this proportion could indicate an

issue in REST alignment or serve as an analytical lever to iden-

tify improvement opportunities.

To gauge the overall relevance and usefulness of REST-

bench, we asked questions Q1-Q3 (see Table 5) to participants.

Regarding the relevance of REST alignment (Q3), eight out of

ten participants reported that they had in the past discussions on

how to better coordinate requirements engineering and testing

activities. As one participant put it, “we have had some discus-

sions in my team how to get the correct information when we

15

Table 5: Post assessment questionnaire

Open ended questions

Q1 Did the elicitation (interview session), the artifact map or the collaborative workshop reveal something new, you did not know before, w.r.t. activities,

responsibilities or artifacts in: requirements engineering, software testing, the interplay between both?

Q2 Given the resources you have invested, would you consider to use this method as a complement to project post-mortems to improve the coordination

between RE and ST? Please motivate, why yes/no/maybe.

Q3 Did you discuss the coordination between RE and ST in your organization already before this assessment? If yes, which specific issue(s) have been

discussed and why?

Q4 In general, to elicit more relevant and precise information, would you suggest to include another role (e.g. Software Architect, Developer) in the

assessment? Please motivate, why yes/no/maybe.

5 point Likert scale with possibility to provide explanatory feedback Results3

Q5 The assessment (including elicitation and workshop) is an efficient1 mean to identify issues in relation to the coordination

between Requirement Engineering and Software Test.

Q6 The assessment (including elicitation and workshop) is an effective2 mean to identify issues in relation to the coordination

between Requirement Engineering and Software Test.

Q7 The artifact map and the discussion in the workshop increased my understanding of the coordination between RE and ST

in the studied project.

Q8 The artifact map and the discussion in the workshop increased my awareness for potential waste (e.g. unused documenta-

tion).

Q9 The artifact map and the discussion in the workshop increased my awareness for potential gaps in the coordination between

RE and ST.

Q10 Interactions (scheduled meetings, but also casual encounters over coffee, in the corridor or at the office door) are equal or

even more important as written documentation for the successful execution of the project.

1 Efficiency in general describes the extent to which time or effort is well used for the intended task or purpose.
2 Effectiveness is the capability of producing a desired result. When something is deemed effective, it means it has an intended or expected outcome.
3 The bars represent the 10 responses from the study participants on a Likert scale (strongly agree, agree, neutral, disagree, strongly disagree)

need it from RE. But we have not discussed that with the RE or-

ganization yet.” All ten participants stated that they would use

REST-bench as a complement to project postmortems (Q2), as

“it gives a complete picture of the artifacts, the relations be-

tween them and a good material for use in discussions about

potential process improvements”, and “is a very good and easy

way to ensure that all involved use and acknowledge each oth-

ers documents and their purpose.” This is further corroborated

by the results on Q5 and Q6, where we asked the participants

whether REST-bench is efficient and effective (see Table 5).

One participant stated that “the method gives more truth on

what is actually used. We already have processes for a lot of

things but these are somewhat theoretical and not adapted per

project.” On the other hand, another participant stated that “it

is not really guaranteed that we take action just because we

have identified the issues.” With respect to Q1, whether partic-

ipants learned something new from the artifact map or the as-

sessment workshop, 8 out of 10 participants indicated that they

identified aspects in the way of working they were not aware

of. This is further supported by the results to Q7 in Table 5,

even though a participant stated that “I believe I already had a

pretty good overview of the situation. Probably because we are

a relatively small team where everybody works with a broad

range of tasks”, and some other stated that “it confirmed my

thoughts.” Another aspect we investigated is whether REST-

bench increases the awareness of potential waste (Q8) or gaps

(Q9) in the coordination between RE and ST. The results (see

Table 5) suggest that the potential is more geared towards iden-

tifying gaps than waste. REST-bench can be used to identify

waste candidates (Khurum et al., 2014). However, to actually

remove waste all project stakeholders are necessary. This cor-

roborates the result from Q4 discussed earlier, including devel-

opers could improve the potential of REST-bench to eliminate

waste.

6.2. RQ2: To what extent is REST-bench in Agile and plan-

driven environments useful?

One of our concerns when we planned the validation of

REST-bench was the methods’ focus on using documentation

as a proxy to determine REST alignment. Indeed, in Case

A described in Section 5.1, we planned to complement the

data collection with recording instances of informal commu-

nication, however rejected the idea due to the involved effort

and inaccuracy to do that manually. Therefore, we questioned

whether we can apply REST-bench in Agile environments at

all, and collect relevant data and produce useful results. Agile

approaches are notorious for promoting as little documentation

as possible (Fowler and Highsmith, 2001; Chau et al., 2003;

Cohen et al., 2004; Nerur et al., 2005).

In order to understand whether there is a difference in use-

fulness of REST-bench, we analyzed the post assessment ques-

tionnaire by stratifying the answers into plan-driven and Agile

groups, using the project characteristics illustrated in Table 2.

There were five participants in each group. The largest diver-

gence can be observed in Q8 (REST-bench increases the aware-

ness for potential waste). The Agile group tends to disagree (

), while the plan-driven group tends to agree (

). On the other hand, both the Agile () as well the plan-

driven () group agree that REST-bench increases the

awareness of gaps in the coordination between RE and ST (Q9).

Since REST-bench assesses coordination through the creation/

use of documentation, this result from the Agile respondents

might seem surprising. However, this conforms to the obser-

vations made in a survey among Agile practitioners where the

16

Table 6: Usability assessment of REST-bench

Step Cost Effort (p/h) Support within REST-bench

Selection 5% 2-4 heuristics on participant pro-

file

Data elicitation 15% 6-12 defined procedure / templates

Map construction 40% 8-12 seeding questions / mapping

tool prototype

Collaborative is-

sue identification

30% 6-10 defined procedure

Report recom-

mendations

10% 8-12 report structure

majority reported that documentation is important or very im-

portant (Stettina and Heijstek, 2011). Both groups show similar

tendencies to the remaining questions:

• Q5 - efficiency of REST-bench: Agile () and plan-

driven ()

• Q6 - effectiveness of REST-bench: Agile () and

plan-driven ()

• Q7 - increased understanding: Agile () and plan-

driven ()

• Q10 - importance of informal interactions: Agile (

) and plan-driven ()

These results suggest that REST-bench is useful both in Agile

and plan-driven environments. This is further corroborated by

the actual case assessment results, where for both Agile and

plan-driven projects relevant improvement opportunities were

identified.

6.3. To what extent is REST-bench usable?

We answer this question from the perspective of the re-

searcher who applied the method. REST-bench has not been

transferred to an industry partner so that ease of use from the

perspective of a practitioner can not be validated yet. However,

the results from the questionnaire indicate that REST-bench is,

from a participants’ perspective, efficient and effective (see Q5

and Q6 in Table 5).

We look at three aspects of usability, breaking it down to each

step in REST-bench: required up-front investment, the effort to

perform, and the support REST-bench provides in each step.

With up-front investment we mean the one-time cost for the

analyst to learn a particular step. In Table 6, we provide the

relative cost of each step. In total, we estimate the up-front cost

to learn the REST-bench method to 8-12 hours.

The required estimated effort is shown in the third column

in Table 6, and further motivated in the respective sections

where each step is explained (Section 4.1 - 4.5). We regard

these estimates as upper limits (with the suggested number of

participants), if the assessment is performed in regular inter-

vals. A common detractor for conducting postmortems is lack

of time (Keegan and Turner, 2001; Glass, 2002). Therefore,

we designed REST-bench to be efficient, while still providing

value to the organization conducting the assessment. This effi-

ciency is achieved by providing guidelines and heuristics within

REST-bench (see fourth column in Table 6). Furthermore, each

of the steps is supported by a series of examples presented in

this paper.

7. Conclusions

The paper presents a method to identify improvement op-

portunities in the coordination between requirements engi-

neering (RE) and software testing (ST). The method, REST-

bench, is based on the premise that information, the way it

is created, used and linked, is key for understanding how re-

quirements and test engineers coordinate and how their col-

laboration can be improved. We used the information dyad

and the emerged dyad structure properties from our earlier

work (Unterkalmsteiner et al., 2014) to drive an assessment

process that is designed to be lightweight in terms of resource

use (30-50 person-hours per assessment).

We validated REST-bench by applying it in five companies.

In all assessments we could identify issues that were taken up

by the involved companies to trigger improvements. With re-

spect to RQ1, whether the dyad structure properties from the

REST taxonomy were useful, we found that all but two prop-

erties generated seeding questions that can be used to identify

issues and elicit improvement opportunities. Furthermore, the

feedback gathered from the assessment participants supports

our conclusion that REST-bench is an effective method to iden-

tify gaps, and to a lesser degree waste, in the artifacts that sup-

port RE and ST coordination. With respect to RQ2, applying

REST-bench in Agile and plan-driven contexts, we conclude

that the proposed method is useful in both while it is more likely

to identify waste in plan-driven contexts. Furthermore, projects

with very small teams requiring little coordination will likely

not benefit from a REST-bench assessment. Answering RQ3,

we found that REST-bench is usable from the perspective of

the analyst who conducted the assessments.

To corroborate these results we plan to further validate the

usefulness and usability of REST-bench by training practition-

ers in the autonomous use of the method, supported by efficient

tools for data collection and artifact mapping. .

Acknowledgments

We would like to thank the participating companies for their

collaboration. The research was funded by EASE Industrial

Excellence Center for Embedded Applications Software Engi-

neering (http://ease.cs.lth.se).

References

References

Aldrich, J., Chambers, C., Notkin, D., 2002. ArchJava: connecting software ar-

chitecture to implementation, in: Proceedings 24th International Conference

on Software Engineering (ICSE), IEEE, Orlando, USA. pp. 187–197.

Amyot, D., Mussbacher, G., 2001. Bridging the requirements/design gap in dy-

namic systems with use case maps (UCMs), in: Proceedings 23rd Interna-

tional Conference on Software Engineering (ICSE), IEEE, Toronto, Canada.

pp. 743–744.

17

http://ease.cs.lth.se

Basili, V.R., Caldiera, G., 1995. Improve software quality by reusing knowl-

edge and experience. Sloan Management Review 37, 55–64.

Bauer, M.W., Gaskell, G., 2000. Qualitative Researching with Text, Image and

Sound: A Practical Handbook for Social Research. SAGE.

Beck, K., 1999. Embracing change with extreme programming. Computer 32,

70–77.

Bertolino, A., 2007. Software Testing Research: Achievements, Challenges,

Dreams, in: Proceedings Workshop on the Future of Software Engineering

(FOSE), IEEE, Minneapolis, USA. pp. 85–103.

Birk, A., Dingsøyr, T., Stålhane, T., 2002. Postmortem: Never Leave a Project

without It. IEEE Software 19, 43–45.

Bjarnason, E., Runeson, P., Borg, M., Unterkalmsteiner, M., Engström, E., Reg-

nell, B., Sabaliauskaite, G., Loconsole, A., Gorschek, T., Feldt, R., 2014.

Challenges and Practices in Aligning Requirements with Verification and

Validation: A Case Study of Six Companies. Empirical Software Engineer-

ing 19, 1809–1855.

Bjarnason, E., Svensson, R.B., Regnell, B., 2012. Evidence-based timelines

for project retrospectives - A method for assessing requirements engineer-

ing in context, in: Proceedings 2nd International Workshop on Empirical

Requirements Engineering (EmpiRE), IEEE, Chicago, USA. pp. 17–24.

Bjarnason, E., Wnuk, K., Regnell, B., 2011. Requirements are slipping through

the gaps - A case study on causes & effects of communication gaps in large-

scale software development, in: Proceedings 19th Requirements Engineer-

ing Conference (RE), IEEE, Trento, Italy. pp. 37–46.

Boehm, B.W., 1988. A spiral model of software development and enhancement.

Computer 21, 61–72.

Borg, M., Runeson, P., Ardö, A., 2014. Recovering from a decade: a systematic

mapping of information retrieval approaches to software traceability. Em-

pirical Software Engineering 19, 1565–1616.

Bourque, P., Fairley, R.E. (Eds.), 2014. Guide to the Software Engineering

Body of Knowledge. 3rd ed., IEEE.

Bröhl, A.P., Dröschel, W., 1995. Das V- Modell. Der Standard in der Softwa-

reentwicklung mit Praxisleitfaden. Oldenbourg Verlag.

Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., Carley, K.M., 2006. Identifica-

tion of Coordination Requirements: Implications for the Design of Collab-

oration and Awareness Tools, in: Proceedings 20th Anniversary Conference

on Computer Supported Cooperative Work (CSCW), ACM, Banff, Canada.

pp. 353–362.

Chau, T., Maurer, F., Melnik, G., 2003. Knowledge Sharing: Agile Methods

vs. Tayloristic Methods, in: Proceedings 12th International Workshop on

Enabling Technologies: Infrastructure for Collaborative Enterprises, IEEE,

Linz, Austria. pp. 302–307.

Cohen, D., Lindvall, M., Costa, P., 2004. An Introduction to Agile Methods,

in: Advances in Computers. Elsevier. volume 62, pp. 1–66.

Collier, B., DeMarco, T., Fearey, P., 1996. A defined process for project post

mortem review. IEEE Software 13, 65–72.

Damian, D., Chisan, J., 2006. An Empirical Study of the Complex Relation-

ships between Requirements Engineering Processes and Other Processes

that Lead to Payoffs in Productivity, Quality, and Risk Management. Trans-

actions on Software Engineering 32, 433–453.

Dingsøyr, T., 2005. Postmortem reviews: purpose and approaches in software

engineering. Information and Software Technology 47, 293–303.

Dybå, T., 2005. An empirical investigation of the key factors for success in

software process improvement. Transactions on Software Engineering 31,

410–424.

Elrad, T., Aldawud, O., Bader, A., 2002. Aspect-Oriented Modeling: Bridg-

ing the Gap between Implementation and Design, in: Proceedings 1st Con-

ference on Generative Programming and Component Engineering (GPCE),

Springer, Pittsburgh, USA. pp. 189–201.

Forsberg, K., Mooz, H., 1991. The Relationship of System Engineering to the

Project Cycle, in: Proceedings of the National Council for System Engineer-

ing (NCOSE) Conference, Center for Systems Management, Chattanooga,

USA. pp. 57–65.

Fowler, M., Highsmith, J., 2001. The agile manifesto. Software Development

9, 28–35.

Fricker, S., Gorschek, T., Byman, C., Schmidle, A., 2010. Handshaking with

Implementation Proposals: Negotiating Requirements Understanding. IEEE

Software 27, 72–80.

Garousi, V., Varma, T., 2010. A replicated survey of software testing practices

in the Canadian province of Alberta: What has changed from 2004 to 2009?

Journal of Systems and Software 83, 2251–2262.

Glass, R.L., 2002. Project retrospectives, and why they never happen. IEEE

Software 19, 112–111.

Gorschek, T., Wohlin, C., 2006. Requirements abstraction model. Require-

ments Engineering 11, 79–101.

Gorschek, T., Wohlin, C., Carre, P., Larsson, S., 2006. A Model for Technology

Transfer in Practice. IEEE Software 23, 88–95.

Graham, D., 2002. Requirements and testing: seven missing-link myths. IEEE

Software 19, 15–17.

Hall, J.G., Jackson, M., Laney, R.C., Nuseibeh, B., Rapanotti, L., 2002. Relat-

ing software requirements and architectures using problem frames, in: Pro-

ceedings 10th International Conference on Requirements Engineering (RE),

IEEE, Essen, Germany. pp. 137– 144.

Herbsleb, J.D., Grinter, R.E., 1999. Splitting the Organization and Integrat-

ing the Code: Conway’s Law Revisited, in: Proceedings 21st International

Conference on Software Engineering (ICSE), ACM, Los Angeles, USA. pp.

85–95.

Herbsleb, J.D., Mockus, A., 2003. Formulation and Preliminary Test of an Em-

pirical Theory of Coordination in Software Engineering, in: Proceedings 9th

European Software Engineering Conference Held Jointly with 11th Interna-

tional Symposium on Foundations of Software Engineering (ESEC/FSE),

ACM, Helsinki, Finland. pp. 138–137.

Hevner, A.R., March, S.T., Park, J., Ram, S., 2004. Design Science in Informa-

tion Systems Research. MIS Quarterly 28, 75–105.

ISO/IEC, 2007. ISO/IEC Standard for Systems and Software Engineering -

Recommended Practice for Architectural Description of Software-Intensive

Systems.

Ivarsson, M., Gorschek, T., 2012. Tool support for disseminating and improving

development practices. Software Quality Journal 20, 173–199.

Keegan, A., Turner, J.R., 2001. Quantity versus Quality in Project-Based

Learning Practices. Management Learning 32, 77–98.

Khurum, M., Petersen, K., Gorschek, T., 2014. Extending value stream map-

ping through waste definition beyond customer perspective. Journal of Soft-

ware: Evolution and Process 26, 1074–1105.

Ko, A.J., DeLine, R., Venolia, G., 2007. Information Needs in Collocated Soft-

ware Development Teams, in: Proceedings 29th International Conference

on Software Engineering (ICSE), IEEE, Minneapolis, USA. pp. 344–353.

Kop, C., Mayr, H.C., 1998. Conceptual predesign bridging the gap between

requirements and conceptual design, in: Proceedings 3rd International Con-

ference on Requirements Engineering (RE), IEEE, Colorado Springs, USA.

pp. 90–98.

Kraut, R.E., Streeter, L.A., 1995. Coordination in Software Development.

Communications of the ACM 38, 69–81.

Kruchten, P., 2000. The Rational Unified Process: An Introduction. 2nd ed.,

Addison-Wesley Longman Publishing, Boston, USA.

Kukkanen, J., Väkeväinen, K., Kauppinen, M., Uusitalo, E., 2009. Applying a

Systematic Approach to Link Requirements and Testing: A Case Study, in:

Proceedings 6th Asia-Pacific Software Engineering Conference (APSEC),

IEEE, Penang, Malaysia. pp. 482–488.

Laplante, P.A., 2007. What Every Engineer Should Know about Software En-

gineering. 1st ed., CRC Press.

Marczak, S., Damian, D., 2011. How interaction between roles shapes the com-

munication structure in requirements-driven collaboration, in: Proceedings

19th International Conference on Requirements Engineering (RE), IEEE,

Trento, Italy. pp. 47–56.

Melnik, G., Maurer, F., Chiasson, M., 2006. Executable acceptance tests for

communicating business requirements: customer perspective, in: Proceed-

ings Agile 2006 Conference, IEEE, Minneapolis, USA. pp. 12–46.

Mokyr, J., 2005. Chapter 17 - Long-Term Economic Growth and the History

of Technology, in: Handbook of Economic Growth. Elsevier. volume 1, Part

B, pp. 1113–1180.

Muccini, H., Bertolino, A., Inverardi, P., 2004. Using software architecture for

code testing. Transactions on Software Engineering 30, 160– 171.

Murphy, G.C., Notkin, D., Sullivan, K.J., 2001. Software reflexion models:

bridging the gap between design and implementation. Transactions on Soft-

ware Engineering 27, 364–380.

Naumann, J.D., Jenkins, A.M., 1982. Prototyping: The New Paradigm for

Systems Development. MIS Quarterly 6, 29–44.

Nerur, S., Mahapatra, R., Mangalaraj, G., 2005. Challenges of Migrating to

Agile Methodologies. Communications of the ACM 48, 72–78.

Niazi, M., Wilson, D., Zowghi, D., 2006. Critical success factors for software

process improvement implementation: an empirical study. Software Pro-

18

cess: Improvement and Practice 11, 193–211.

Nuseibeh, B., Easterbrook, S., 2000. Requirements Engineering: A Roadmap,

in: Proceedings 22nd International Conference on on Software Engineering,

Future of Software Engineering Track (ICSE), ACM, Limerick, Ireland. pp.

35–46.

Petersen, K., Wohlin, C., 2010. The effect of moving from a plan-driven to an

incremental software development approach with agile practices: An indus-

trial case study. Empirical Software Engineering 15, 654–693.

Pettersson, F., Ivarsson, M., Gorschek, T., Öhman, P., 2008. A practitioner’s

guide to light weight software process assessment and improvement plan-

ning. Journal of Systems and Software 81, 972–995.

Pfleeger, S.L., Atlee, J.M., 2009. Software Engineering: Theory and Practice.

4 ed., Prentice Hall.

Ramesh, B., Jarke, M., 2001. Toward reference models for requirements trace-

ability. Transactions on Software Engineering 27, 58–93.

Robson, C., 2002. Real World Research: A Resource for Social Scientists and

Practitioner-researchers. 2nd ed., John Wiley & Sons.

Rout, T.P., El Emam, K., Fusani, M., Goldenson, D., Jung, H.W., 2007. SPICE

in retrospect: Developing a standard for process assessment. Journal of

Systems and Software 80, 1483–1493.

Rus, I., Lindvall, M., 2002. Knowledge Management in Software Engineering.

IEEE Software 19, 26–38.

Samuel, P., Mall, R., Kanth, P., 2007. Automatic test case generation from

UML communication diagrams. Information and Software Technology 49,

158–171.

Schneider, K., Stapel, K., Knauss, E., 2008. Beyond Documents: Visualizing

Informal Communication, in: Proceedings 3rd Internation Workshop on Re-

quirements Engineering Visualization, IEEE, Barcelona, Spain. pp. 31–40.

Schwaber, K., 1997. SCRUM Development Process, in: Business Object De-

sign and Implementation. Springer London, pp. 117–134.

SEI, 2006. Appraisal Requirements for CMMI, Version 1.2 (ARC,

V1.2). Technical Report CMU/SEI-2006-TR-011. Software En-

gineering Institute, Carnegie Mellon. Pittsburgh, USA. URL:

http://www.sei.cmu.edu/library/abstracts/reports/06tr011.cfm .

Stapel, K., Knauss, E., Schneider, K., Zazworka, N., 2011. FLOW Mapping:

Planning and Managing Communication in Distributed Teams, in: Proceed-

ings 6th International Conference on Global Software Engineering (ICGSE),

IEEE, Helsinki, Finland. pp. 190–199.

Stapel, K., Schneider, K., Lübke, D., Flohr, T., 2007. Improving an Industrial

Reference Process by Information Flow Analysis: A Case Study, in: Pro-

ceedings 8th International Conference on Product-Focused Software Process

Improvement (PROFES), Springer, Riga, Latvia. pp. 147–159.

Stettina, C.J., Heijstek, W., 2011. Necessary and Neglected?: An Empirical

Study of Internal Documentation in Agile Software Development Teams,

in: Proceedings 29th International Conference on Design of Communication

(SIGDOC), ACM, Pisa, Italy. pp. 159–166.

Svahnberg, M., Gorschek, T., Nguyen, T.T.L., Nguyen, M., 2015. Uni-REPM: a

framework for requirements engineering process assessment. Requirements

Engineering 20, 91–118.

Tassey, G., 2002. The economic impacts of inadequate infrastructure for soft-

ware testing. Technical Report 7007.011. National Institute of Standards

and Technology. Gaithersburg, USA.

Unterkalmsteiner, M., Feldt, R., Gorschek, T., 2014. A Taxonomy for Require-

ments Engineering and Software Test Alignment. Transactions on Software

Engineering and Methodology 23.

Utting, M., Pretschner, A., Legeard, B., 2012. A taxonomy of model-based

testing approaches. Software Testing, Verification and Reliability 22, 297–

312.

Uusitalo, E.J., Komssi, M., Kauppinen, M., Davis, A.M., 2008. Linking Re-

quirements and Testing in Practice, in: Proceedings 16th International Con-

ference on Requirements Engineering (RE), IEEE, Catalunya, Spain. pp.

265–270.

van de Ven, A.H., Delbecq, A.L., Koenig, Jr., R., 1976. Determinants of Co-

ordination Modes within Organizations. American Sociological Review 41,

322–338.

Verner, J.M., Evanco, W.M., 2005. In-house software development: what

project management practices lead to success? IEEE Software 22, 86–93.

Wieringa, R., 2014a. Design Science Methodology for Information Systems

and Software Engineering. 1st ed., Springer, Berlin, Germany.

Wieringa, R., 2014b. Empirical research methods for technology validation:

Scaling up to practice. Journal of Systems and Software 95, 19–31.

Wieringa, R., Moralı, A., 2012. Technical Action Research As a Validation

Method in Information Systems Design Science, in: Proceedings 7th Inter-

national Conference on Design Science Research in Information Systems

and Technology (DESRIST), Springer, Las Vegas, USA. pp. 220–238.

Wohlin, C., Aurum, A., Angelis, L., Phillips, L., Dittrich, Y., Gorschek,

T., Grahn, H., Henningsson, K., Kagstrom, S., Low, G., Rovegard, P.,

Tomaszewski, P., van Toorn, C., Winter, J., 2012. The Success Factors Pow-

ering Industry-Academia Collaboration. IEEE Software 29, 67–73.

yWorks, 2014. yEd - Graph Editor. URL:

http://www.yworks.com/en/products_yed_about.html .

19

http://www.sei.cmu.edu/library/abstracts/reports/06tr011.cfm
http://www.yworks.com/en/products_yed_about.html

	Introduction
	Background and Related Work
	REST alignment
	The REST taxonomy
	Related work

	Research Method
	Project characteristics
	Data collection and analysis
	Limitations

	REST-bench
	Step 1 – Selection
	Step 2 – Data elicitation
	Step 3 – Map construction
	Step 4 – Assessment workshop
	Step 5 – Report recommendations

	Case studies
	Company A
	Assessment results
	Impact on REST-bench

	Company B
	Assessment results

	Company C
	Assessment results
	Impact on REST-bench

	Company D
	Assessment results
	Impact on REST-bench

	Discussion
	RQ1: To what extent are the dyad structures from the REST taxonomy useful to elicit improvement opportunities?
	RQ2: To what extent is REST-bench in Agile and plan-driven environments useful?
	To what extent is REST-bench usable?

	Conclusions

