
A Model-Driven approach for functional test case generation

 J.J. Gutiérrez, M.J. Escalona, M. Mejías
 Department of Computer Languages and Systems, ETS Ingeniería Informática, IWT2 Research Group, University of Seville, Av. Reina Mercedes S/N, Seville, Spain

Keywords:

Software quality assurance

 Model-Driven testing

 Early testing

 a b s t r a c t

Test phase is one of the most critical phases in software engineering life cycle to assure the final system

quality. In this context, functional system test cases verify that the system under test fulfills its functional

specification. Thus, these test cases are frequently designed from the different scenarios and alternatives

depicted in functional requirements. The objective of this paper is to introduce a systematic process based on

the Model-Driven paradigm to automate the generation of functional test cases from functional requirements.

For this aim, a set of metamodels and transformations and also a specific language domain to use them is

presented. The paper finishes stating learned lessons from the trenches as well as relevant future work and

conclusions that draw new research lines in the test cases generation context.

,

,

,

a

t

r

p

f

f

s

t

w

f

m

i

i

d

p

M

f

f

t

o

f

t

p

c

 1. Introduction

Software quality assurance is one of the most critical steps in

software development. Validation and verification techniques were

proposed in the software research context to ensure quality and

most of them are mainly organized into test phase. Test phase

frequently allows us to group each activity oriented toward

validating each aspect of our software results, from a small piece of

code (with unit tests) to a total piece of the final system (with

acceptance user tests)(Binder, 2000).

However, despite its relevance, test phase is frequently planned

with very few resources, without an expert group of tests and a re-

duced group of techniques or tools that help support it (Shah et al.

2014; Huda et al., 2015). Besides, test phase is frequently a good can-

didate to keep up a delay, with resources or time reductions, when a
software project is delayed (Li et al., 2010; Felderer and Ramler

2014). Consequently, both the software test research community and

the en-terprise environment are working in developing techniques

mecha-nisms and tools that enable reducing test phase cost ensuring

final quality results (Nazir and Khan, 2012).

Model-Driven Engineering (MDE) could be a solution to get this

goal. This new software paradigm is based on the design and use of

models to obtain software artifacts. Its application in test context is

known as Model-Driven Testing (MDT), which is being successfully
utilized in different Software Testing contexts (Völter et al.,
2013). This paper presents an approach that, applied to the
enterprise con-text, endorses this sentence.

w

o

k

t

This work also introduces a MDT approach that mainly focuses on

very concrete type of test: functional testing. This kind of testing

ends to guarantee that initial requirements defined by users are cor-

ectly supported by the final system (Bertolino et al., 2005). This ap-

roach takes advantage of MDT power to define a set of models, trans-

ormations and processes that allows defining, in a systematic way,

unctional tests from functional requirements, reducing time and as-

uring the right traceability between initial requirements and final

ests. The approach is authorized by the current real validation that

e are getting in the enterprise environment.

This MDT approach comprises five metamodels and four trans-

ormations. Two metamodels are used to model the required infor-

ation from functional requirements. The first transformation allows

mproving the requirement metamodel with a simple graph describ-

ng the functionality expressed in the requirement. Such graph is re-

undant as it does not describe any new information, but it helps sim-

lifying other transformations. Path analysis and Category-Partition

ethods are two of the main techniques used to derive test cases

rom functional requirements. Therefore, two metamodels and trans-

ormations have been designed to perform these techniques. Finally

his MDT approach adds a fifth metamodel and a transformation to

ffer a consolidate view of the paths and categories.

From the authors’ point of view, one of the main challenges for

unctional test case generation is the lack of formalism in functional

est cases. With regard to advantages, functional requirements

rovide flexibility in the techniques, for example, by means of use

ases or user stories. However, this flexibility is a gap to be filled in

hen trying to automate operations from use cases. The formalism

f functional requirements constitutes a hard task in terms of time,

nowledge and money. However, as this paper illustrates in the prac-

ical cases, once achieved, it provides a valuable return of investment.

http://dx.doi.org/10.1016/j.jss.2015.08.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.08.001&domain=pdf
mailto:javierj@us.es
mailto:mjescalona@us.es
mailto:mjescalona@iwt2.org
mailto:risoto@us.es
http://dx.doi.org/10.1016/j.jss.2015.08.001

g

r

b

t

i

t

t

t

t

c

S

w

2

i

w

m

c

c

m

g

s

m

i

t

e

m

t

p

m

i

g

W

p

u

s

E

(

h

G

Q

l

s

O

l

e

m

q

c

t

fi

m

e

e

g

l

c

f

m

r

3

p

m

f

m

3

(

i

f

v

a

l

a

a

i

p

t

n

r

a

o

s

p

i

a

o

w

c

l

f

g

p

a

p

E

D

i

q

t

n

C

w

t

P

w

r

This study is organized as follows: Section 2 presents the back-

round that lists the terminology used in order to introduce the

eader to the concrete context of the paper. Next, Section 3 offers a

rief summary regarding related work on functional test cases and

he most used testing techniques. Section 4 explains the approach by

ntroducing the process of functional test cases generation from func-

ional requirements under a MDT perspective in the first subsection;

he second one analyzes in detail the set of used metamodels; and

he third one defines transformations. Then, Section 5 details how

he approach is implemented and provides the reader with a con-

rete example and practical references of the approach. To conclude,

ections 6 and 7 state the original contribution of this work together

ith the relevant conclusions and ongoing work.

. Model-Driven engineering

As mentioned before, this paper focuses on the application of MDE

n functional test cases generation. This section provides the reader

ith the lexicon and tools used along the text.

Two important elements must be stuck out in MDE environment:

etamodels and transformations.

Metamodels normalize the information used for generating test

ases. A metamodel defines the constructor and the relations with

onstraints allowing models design with a valid semantics. Meta-

odels enable combining different concrete syntaxes (as textual and

raphical syntaxes exposed in the motivational example) using the

ame lexicon and manipulating the same semantic artifacts.

A transformation is a relation between elements in a source

etamodel and elements in a target metamodel. Therefore, execut-

ng transformation helps build a group of elements in target models

o conform to their metamodels, using the information from a set of

lements in source models, which must also agree with their meta-

odels. In this case, the agreed point guarantees that the transforma-

ion can be performed. Transformation elements define a systematic

rocess regardless of any tool or programming language.

In this paper, UML (Unified Model Languages) (Object Manage-

ent Group, 2011) class diagrams define the metamodel presented

n the next sections, while QVT (Query-View Transformation lan-

uage) (Object Management Group, 2010) identifies transformations.

e select both solutions, as they are well-known standards. UML is

roposed by OMG (Object Management Group) and it is frequently

sed in MDE for defining metamodels. OMG also suggests that QVT

hould be the standard for specifying transformations among models.

ven though other possibilities are available to run our work, like ATL

ATL Transformation Language, 2015), we prefer using QVT since it

as provided us with successful results in preceding projects (García-

arcía et al., 2013).

QVT defines two main syntaxes for defining transformations:

VT-Relational and QVT-Operational. The former is a declarative

anguage similar to SQL. The latter defines operators and control

tructures from classic imperative languages. We have selected QVT-

perational for this paper because some of the transformations out-

ined in the subsequent section use a pathfinder algorithm.

A transformation in QVT is decomposed into a set of mapping op-

rations. A mapping is a relation between one or more source ele-

ents and one or more target elements.

Other elements used for defining transformations in QVT are

ueries and helper. Both elements are operations that perform a

omputation and provide a result. A helper may have side effects on

he given parameters, whereas a query has no side effects.

This paper also introduces the concept of direct mapping. It de-

nes a relation between one source element and one target ele-

ent and a relation 1:1 between the attributes of the source el-

ment and the target element. Attributes from source and target

lements have the same names and types. From this perspective,

enerating test cases from functional requirements becomes a prob-
em when defining metamodels for functional requirements and test

ases, and creating a set of transformations to get concrete test cases

rom particular functional requirements. Metamodels and transfor-

ations needed for producing functional test cases from functional

equirements are presented in the next sections.

. Related work

As the contextualization of our problem concerns, this section

resents related work and it is divided in two parts. Section 3.1 sum-

arizes the bibliography related to functional test cases generation

rom functional requirements. Then, Section 3.2 describes the two

ain techniques found in the literature previously studied.

.1. State-of-the-art

At the time of writing this paper, there are two main surveys,

Escalona et al., 2011) and (Denger and Mora, 2003), studying exist-

ng approaches dealing with generating functional test cases from

unctional requirements. This section summarizes their most rele-

ant conclusions.

These two considered surveys are specific for functional test cases,

lthough other relevant comparative studies in this sense were pub-

ished, such as Anand et al. (2013), where prominent techniques for

utomatic generation of software test cases are compared.

Conclusions from Denger and Medina’s survey point out that the

uthors of the approaches do not follow any standards when defin-

ng templates (for functional requirements). On the contrary, each ap-

roach uses its own templates and formats. Another conclusion from

hat report is that none of the approaches uses path analysis tech-

iques and, as a previous step, the approaches build a more formal

epresentation of functional requirements.

Escalona’s survey, developed by the same authors who write this

rticle, concludes like the previous one. They mainly agree that many

f the existing approaches have to formalize requirements as a first

tep to generate functional test cases, because of the use of text tem-

lates and colloquial language to define functional requirements. This

s a mandatory step in approaches that offer a high degree of system-

tization and demand supporting tools. However, it can be pointed

ut that some approaches offer a systematic way, or even automatic

ays to generate more formal models to automate the process. In this

ase, this is possible because requirements are described in natural

anguage, therefore, they are metamodels and some transformations

rom this description enable translating requirements in natural lan-

uage into activity diagrams.

Escalona’s survey, published at the end of 2011, cites 24 ap-

roaches; the oldest dates back to 1988 (Category-Partition Method)

nd the newest to 2009. Denger’s, published in 2003, cites 12 ap-

roaches; the oldest from 1988 (it is the same approach used in

scalona’s survey) and the newest from 2002.

Below, there are some examples of the approaches included in

enger’s and Escalona’s surveys and new approaches not included

n any surveys in order to update the current situation.

Hartmann et al. (2004) start their approach with functional re-

uirements written in natural language. The result is a set of func-

ional test cases obtained from a coverage criterion based on combi-

ations that support Boolean propositions.

Binder’s book (Binder, 2000) describes the application of the

ategory-Partition Method to use cases. Categories are any point in

hich the behavior of the use case may be different in two realiza-

ions of the use case. This application is named Extended Use Case

attern.

In addition, Ibrahim et al. (2007) offer a tool, called GenTCase,

hich generates test cases automatically from a use case diagram en-

iched with every use case tabular text description.

Fig. 1. Example of Extended Use Case test pattern.

a

c

r

H

t

p

t

a

i

s

n

o

s

F

b

i

t

m

4

p

Fröhlich and Link (2000) propose an approach describing how to

translate a functional requirement from natural language into a state-

chart diagram in a systematic way, as well as how to generate a set of

functional test cases from that diagram.

Ahlowalia (2002) presents an approach dealing with translating

a functional requirement from natural language into a flow diagram

and performing a path coverage technique to generate test cases.

Mogyorodi’s (2003) approach describes functional requirements

as cause–effect graphs that produce test cases from diagrams. Boddu

et al. (2004) present an approach divided into two blocks: the first

one presents a natural language analyzer generating a state machine

from functional requirements, and the second one shows how to cre-

ate test cases from such state machine.

Swain et al. (2010) introduce a similar approach to the one in

Briand and Labiche (2002). First, a UML activity diagram is built

with execution dependencies among use cases. This diagram indi-

cates which use cases must be firstly executed. UML sequence dia-

grams define use cases and a coverage criterion is applied to extract

execution scenarios from these diagrams. Test aces are the Cartesian

combination of the path from the activity diagram and the scenarios

from the sequence diagrams.

Sharma and Singh (2013) present an ongoing work based on an al-

gorithm for deriving test cases from use case template, class diagram

and data dictionary. No information about this algorithm is provided

in this paper.

A recent paper (Nogueira et al., 2014) offers a strategy for the auto-

matic generation of test cases of parameterized use cases templates.

This approach considers a natural language representation that mixes

control and state representation, which can be used to select particu-

lar scenarios during test generation. Unfortunately, it only covers se-

quential features, although it is conceived to cope with alternative

features as future work.

The state-of-the-art introduced in this section indicates that no

definitive approach closes the problem of generating functional text

cases automatically in a satisfactory way. Thus, there are some as-

pects that may be improved such as the use of standards for inputs

and outputs, the application of standards and more formal methods

to describe the process itself, the need for empirical results, the mea-

surement of possible automation and the need for a profitable sup-

porting tool, among others. Some of these points are faced with MDT

approach, as mentioned in this paper. All the cited approaches run

with a concrete representation of functional requirements (as text

templates, graphical diagrams or a mix of them) instead of defining

the relevant information on functional requirements. As we present

in Section 4.2.1, our approach considers these relevant elements.

Therefore, they allow users to select the most adequate representa-

tion for their requirements.

3.2. Techniques for generating test cases

Our study in the previous section concludes that all approaches

use one of the two (or both at the same time) testing techniques:

Round-Strip Strategy and/or Extended Use Cases (terminology iden-

tified by Binder (2000)). Below, these techniques are described in

depth (Fig. 1).

The Extended Use Case pattern consists in applying the Category-

Partition Method (Ostrand and Balcer, 1988) to use cases. The

Category-Partition Method is a technique based on identifying cate-

gories and partitions from the functional requirements under test and

then, generating combinations among such partitions. These tech-

niques guarantee a complete coverage of our functional requirements

(Ali et al., 2014; Chimisliu and Wotawa, 2012). In this context, a cat-

egory is any point for which the functional requirement defines an

alternative behavior. Besides, a partition is defined as a domain sub-

set of the condition evaluated in the category that decides whether

a concrete piece of behavior is or not executed. Once all categories
nd partitions are identified, they merge and each combination be-

omes a potential test case. The previous section presented several

eferences about this topic in the specific context of use cases, like

artmann et al. (2004) or Binder (2000). Fig. 2 shows an example of

he Category-Partition Method (as described in Binder (2000)).

The Round-Strip Strategy deals with the application of a classic

athfinder algorithm to a state machine. Despite its concrete syntax,

he behavior described in a functional requirement may be managed

s a graph or state machine. Hence, a path searching allows identify-

ng all the different paths through the behavior. Each path will be a

cenario designed together with the system. Subsequently, each sce-

ario is a potential test case for evaluating the right implementation

f such scenario in the system under test. Generating test cases from

tate-machines is a widely referred topic in the research literature.

ig. 2 shows an example of the Round-Strip Strategy using a use case

ehavior defined as an activity diagram and the same behavior used

n Fig. 2. Fig. 2 only represents three paths to illustrate this technique.

Next, Section 4 analyzes how our approach implements these two

echniques for generating functional system test cases using meta-

odels and transformations.

. A MDT approach for functional test generation

This section completely presents the approach. As it is a MDE ap-

roach, we introduce the two elements cited in Section 2: metamod-

els and transformations. However, as they can be very abstract con-

cepts, if not visualized in a concrete context, this section firstly in-

troduces a global view of the approach. Then, Section 4.1 describes

the MDT process, Section 4.2 analyzes metamodels and Section 4.3

defines transformations.

4.1. The MDT process

This part offers a global view of test cases generation process from

functional requirements, by means of metamodels and transforma-

tions, from a MDE point of view.

Fig. 2. Example of Round-Trip test pattern.

Fig. 3. Tracing relationships among metamodels.

i

c

e

(

m

a

E

m

t

u

t

i

c

e

m

e

e

w

i

c

t

n

t

f

d

t

i

c

b

a

n

o

a

p

w

w

b

f

t

m

a

t

f

p

4

a

a

4

r

u

t

g

r

b

m

h

f

n

s

t

i

T

p

S

s

t

t

m

w

a

i

Four metamodels have been analyzed (presented in the follow-

ng section) for this approach. The first metamodel defines the con-

ept of functional requirements. The second one enumerates the el-

ments to model test scenarios according to the Round-Trip Strategy

see the previous section). The third metamodel lists the elements to

odel operational variables and the combination of operational vari-

ble values as established in the Category-Partition Method and the

xtended Use Case pattern (see previous section). Finally, the fourth

etamodel includes the elements to merge test scenarios, opera-

ional variables and combinations of values.

Fig. 3 shows the tracing relation among these four metamodels

sing a UML package model. Tracing enables knowing which test ar-

ifacts have been generated for each functional requirement.

An independency of the concrete syntax, notation or event tool

n which the requirements are defined is allowed whenever the pro-

ess focuses on metamodels. For instance, requirements may be mod-

led as text templates, state-machines, UML activity diagrams or by

eans of a proprietary tool. If functional requirements included the

lements defined in the functional requirements metamodel, (further

xplained in the next section) the process described in this paper

ould be applied.
The same consideration may be given to the results. This work

dentifies the metamodel for testing artifacts, but it does not find any

oncrete notation. This means that textual templates or graphical no-

ations may represent the generated artifacts and therefore, they are

ot attached to any specific tool.

The second part of the process concerns transformations. Four

ransformations have been found to generate functional test cases

rom functional requirements. They are depicted in Fig. 4 and briefly

escribed in the next paragraphs.

During preliminary versions of these transformations, it was no-

iced that they worked with the scenarios of the requirement behav-

or or, using the metaphor again, all paths in FSM (Finite State Ma-

hine). Thus, all scenarios are created from a functional requirement

y an individual and independent transformation T0 from Fig. 4, to

void repeating codes and to reduce test cases complexity. These sce-

arios are entered as information related to functional requirements.

As our approach is based on the previous accepted techniques and

ur metamodels support elements of these techniques, we can guar-

ntee that our generated tests are covered. In any case, when we im-

lemented the solution in the tool, which is explained in Section 5,

e tested these metamodels and transformations in order to check

hether they produced the same result than the process carried out

y hand.

Transformation T1 specifies how to obtain a test scenario model

rom a functional requirement model, if both models comply with

he metamodels introduced in the prior section. Similarly, transfor-

ation T2 details how to obtain a set of categories and partitions from

functional requirement.

As it was analyzed before, the Test Case metamodel associates a

est scenario with the related categories and partitions. Thus, trans-

ormation T3 uses both, test scenarios and test values models as in-

ut, and points out how to obtain test cases.

.2. Metamodels

As Fig. 4 represents, four metamodels have been designed in our

pproach to define the information managed by the test cases gener-

tion process. These metamodels are described as follows.

.2.1. Functional requirements metamodel

This metamodel does not aim to include all concepts of functional

equirements, but only those relevant for generating test cases from

se cases. We trust two different inspiration sources in order to de-

ect which are these relevant elements. One of them is NDT (Navi-

ational Development Techniques), which defines an own functional

equirements metamodel based on the UML metamodel (concretely,

ehavior package) as it is presented in NDT (Navigational Develop-

ent Techniques) (2015). The main advantage of this source is that it

as been successfully applied in a large number of real projects. This

act guarantees its capacity to support functional requirements defi-

ition. A full explanation of NDT is out of the scope of this paper but

everal real examples and experiences of this methodology can be ob-

ained in Escalona et al. (2007) and some details about the conceptual

deas of the approach are presented in Escalona and Aragón (2008).

he other inspiration source concerns learned lessons from our com-

arative study, presented in Escalona et al. (2011) and presented in

ection 3.1 of this paper. Fig. 5 proposes the metamodel with both

ources and it is described along the next paragraphs.

The Subsystem element represents a package or container for func-

ional requirements and other related elements (for example, Sys-

emActor).

The FunctionalRequirement element is the key concept in this

etamodel. The behavior of a functional requirement is modeled

ith two elements: Step and ExecutionOrder. The Step element models

concrete chunk of functional requirement behavior, such as request-

ng information or calculating a result. The ExecutionOrder element

Fig. 4. Transformations and relations among metamodels.

Fig. 5. Functional requirements metamodel.

t

t

m

m

c

4

a

i

a

f

s

w

p

t

r

w

t

b

o

c

i

defines the order to follow when executing the steps. The functional

requirement may be seen as a FSM. The steps will be stated and the

execution order will be transferred to a finite-state machine.

The SystemActor element models an external entity that interacts

with the system, collaborating during steps performance.

Finally, the introduction of additional functional requirements as

part of the functional requirement behavior has been taking into ac-

count by using the relation reference-referencedFR (from Step to Func-
ionalRequirement). This mechanism allows determining the seman-

ics expressed by inclusion and extension relations, as UML Use Case

etamodel (Object Management Group, 2011) defines.

The Constraint is a generic element that indicates Boolean state-

ents. These statements are used to designate preconditions, post-

onditions and the extension condition of functional requirements.

.2.2. Test scenario metamodel

The goal of this metamodel is to define the information obtained

fter applying the Round-Trip technique (Binder, 2000) (or other sim-

lar algorithm for path analysis in a state-machine). A test scenario is

possible functional test case for testing a concrete scenario from a

unctional requirement. The elements of this metamodel are repre-

ented in Fig. 6 and described below.

The TestScenarioPackage allows classifying test cases in the same

ay as the element package in UML or the element Subsystem in the

revious metamodel do.

The key concept of this metamodel is the TestScenario element. A

est scenario represents a concrete behavior of the tested functional

equirement. Going back to the preceding metaphor, a test scenario

ill be a concrete path across FSM. The steps performed during the

est scenario execution are classified in terms of the concepts defined

elow.

A VerificationFromTestScenario element models an action carried

ut by the system that may be verified in order to evaluate the test

orrection. Examples of possible verifications may be: amendments

n the system data or other systems’ or users’ outputs.

An ActionFromTestScenario element is an action performed by an

external element of the system under test. Examples of possible ac-

tions may be: a user’s input or a server’s response.

A StepFromTestScenario element is an abstract supertype for the

actions in a test case. Instances of StepFromTestScenario element must

be either a VerificationFromTestScenario or an ActionFromTestScenario

A TestActor element models any element participating in the test

scenario and external to the tested system.

A Constraint element has been already introduced in the previous

section.

Fig. 6. Test scenario metamodel.

q

i

r

s

t

f

4

t

q

b

m

c

t

a

v

s

b

i

v

t

t

r

i

a

u

a

m

i

s

Fig. 7. Test value metamodel.

c

c

c

s

t

r

s

n

s

t

r

4

b

f

a

t

m

(

o

a

T

l

s

a

m

m

a

n

t

Darkness metaclasses (Fig. 6) are concepts from the functional re-

uirement metamodel (in the preceding section) indicating traceabil-

ty relations for the concepts in the test scenario metamodel. These

elations allow recognizing the source functional requirement of test

cenarios. Thus, at any time, it is possible to known the source func-

ional requirement of a test scenario and the test scenarios testing a

unctional requirement.

.2.3. Test value metamodel

The goal of this metamodel is to formalize the information ob-

ained after applying the Category-Partition Method to functional re-

uirements. Fig. 7 describes this model, which is further explained

elow.

The key concept of this metamodel is the OperationalVariable

etaclass. This concept is the same as the concept of category, ac-

ording to the Category-Partition Method.

The DataPartition element models each subdomain of the opera-

ional variable domain. During a test execution, an operational vari-

ble may take a value from one of its sets of partitions. However, some

ariables may take several values from different partitions during the

ame functional requirement, for example, if there is a loop in the

ehavior of this functional requirement.

For this reason, the elements Instance and Quantum are introduced

n the metamodel. Instance models the participation of an operational

ariable in the functional requirement behavior and Quantum models

he assignment between instance and partition from which instance

akes the value in a concrete moment. For example, in a functional

equirement that describes how the user may introduce a chunk of

nformation and the system asks the information again, if it is wrong,

n operational variable may be the information introduced by the

ser, and a test case may have two instances of that operational vari-

ble. Firstly, instance takes a value from the partition of invalid infor-

ation and, secondly partition takes a value from partition of valid

nformation.

The InstanceCombinationPackage element models a package to

tore instance combinations.

The Constraint element is introduced in Section 1.
In the classic Category-Partition Method, test cases are generated

alculating the combinations between categories and partitions that

onfer a value to these categories. It is possible to model test cases as

ombinations of instances and quanta with previous elements.

The element InstanceCombination models a combination of in-

tances. Nevertheless, if all combinations are calculated, some of

hem may be impossible to be executed in the tested system. For this

eason, the element CombinationConstraint allows modeling a con-

traint in an “IF…THEN” format, in order to limit the produced combi-

ations. The element CombinationConstraint enables introducing con-

traints to avoid specific combinations.

Again, darkness metaclasses in Fig. 7 are concepts from the func-

ional requirement metamodel (in Section 1) indicating traceability

elations for the concepts in the test scenario metamodel.

.2.4. Test case metamodel

The last metamodel is the test case metamodel. It aims to com-

ine the information and artifacts from test scenarios with the in-

ormation and artifacts from test values. Thus, it is possible to man-

ge test scenarios and test values in the same model. For this reason,

his metamodel extends the elements from the test scenario meta-

odel to add relations with the elements of the test value metamodel

Fig. 8). Thus, using a test case is possible to know which combination

f operation values is exercised and, how it takes a concrete value of

n instance during the execution of one test step.

The key concepts in this metamodel are TestCase and TestStep.

he TestCase element models a test scenario attached to the re-

ated combination of instances that the test case executes. In the

ame way, a TestStep is a test scenario attached to the quantum

nd the instance assigned. The elements defined in these meta-

odels have similar semantics to the elements of the test scenario

etamodel.

A TestStep element can be either a TestAction, if it defines an inter-

ction with an external actor, or a TestVerification, if the step desig-

ates a task performed by the tested system. That task could be used

o validate the expected test case result.

A TestCaseCollection element is a test cases container.

Fig. 8. Test case metamodel.

T

h

p

t

m

Fig. 9. Extension of functional requirements with scenarios.

Fig. 10. Structure of T0 transformation.

o

s

t

o

e

e

n

b

t

f

a

o

t

G

t

t

a

f

N

4

c

o

p

t

Darkness metaclasses in Fig. 8 are concepts from the functional re-

quirement metamodel (in Section 1) indicating traceability relations

of the concepts in the test scenario metamodel.

4.3. Transformations

The metamodels previously presented have depicted the infor-

mation of functional requirements and functional test artifacts. The

goal of this section is to define a process to obtain instances of the

test metamodel from instances of the functional requirement meta-

model. As it was mentioned at the beginning of this article, this pro-

cess is modeled by means of transformations, which are relations

oriented from a source toward a target metamodel, codified in QVT-

Operational scripts. Fig. 4 represents a global view of transformations.

All transformations are specified in QVT and implemented in a

supporting tool through Java language. This supporting tool is intro-

duced in the next section and includes specific metrics to assure the

quality of these transformations (Kapová et al., 2010). QVT specifi-

cation has many low-level details, thus a high-level representation

of the transformation process structure is explained in the follow-

ing sections. The complete QVT code may be freely downloaded from

IWT2 website (NDT (Navigational Development Techniques), 2015).

This code is distributed under a BSD license (Open Source Initiative,

2014).

4.3.1. Transformation from functional requirements to (enrich)

functional requirements

Before defining transformations, two new elements are added to

the functional requirements metamodel in order to model test sce-

narios or paths from a functional requirement. These elements are

Path and Node. A Node is a concrete step in a functional requirement.

he main difference between a step and a node is that the former may

ave different inputs and outputs, whereas the latter has only one in-

ut (with the exception of the beginning node) and one output (with

he exception of the ending node). Fig. 9 outlines the extension of the

etamodel.

Both metamodels (functional requirements in Fig. 5 and the ex-

tended functional requirements models in Fig. 9) are elementary

equivalent in that no additional information should be provided to

create an instance of both metamodels and all transformations pre-

sented in this and next sections may be carried out with an instance
f the two metamodels. The only difference is that we must execute

ome parts of the code several times, if we apply the transforma-

ion to a functional requirement metamodel instance (without Path

r Node elements).

A transformation to generate these new elements is needed, after

xtending the functional requirements metamodel with two new el-

ments. Therefore, such transformation aims to find all possible sce-

arios from a functional requirement behavior. As a result, it may

e looked at as an implementation of a classic pathfinder or graph

raversal algorithm using the QVT-Operational language. This trans-

ormation is considered as the implementation of a classic pathfinder

lgorithm by means of QVT Operational language. Fig. 10 offers an

verview of this transformation.

Transformation in Fig. 10 invokes the mapping for every func-

ional requirement, which in turn invokes the first call of the helper

eneratePaths. This helper is a recursive operation that traverses all

he steps of a functional requirement, creating a set of paths with all

he scenarios of the functional requirement. At the end of the gener-

tion process, all paths are added to the functional requirement.

From this point, transformations T1, T2 and T3 use the enriched

unctional model including all the scenarios as instances of Path and

ode elements.

.3.2. Transformation from functional requirements to test scenarios

The goal of this transformation (T1 from Fig. 4) is to obtain a model

onformed to the test scenario metamodel presented in the previ-

us section. Starting with the functional requirements enriched with

aths generated by the transformation T0 (in the previous section),

his transformation produces a test scenario for each path element.

Fig. 11. Structure of T1 transformation.

Fig. 12. QVT code of transformation FunctionalRequirement2TestScenario.

Fig. 13. Mapping SystemActor2TestActor (example of direct mapping).

m

F

P

T

a

o

r

t

v

f

t

m

v

h

c

Fig. 14. Structure of transformation T2.

m

t

a

m

T

a

s

4

t

f

t

n

f

g

o

o

f

a

t

s

i

F

a

t

p

h

o

F

A

a

i

v

f

c

m

g

C

The transformation process firstly introduces the entry point. The

ain task of this entry point is to invoke three mappings depicted in

ig. 11. Fig. 12 shows the related QVT-Operational code.

The first direct mapping in Fig. 11 (Subsystem2TestScenario

ackages) generates test scenario packages from subsystems directly.

he second mapping (Fig. 11) also generates test actors from system

ctors directly. Fig. 13 shows the code for this mapping as an example

f a direct mapping.

Finally, the third mapping generates test scenarios from functional

equirements. This mapping is more complex than the previous ones,

hus, it needs to call other additional mapping to create actions and

erifications from functional requirement steps.

Mapping Step 2TestScenarioStep produces a test scenario from each

unctional requirement. This test scenario has no behavior yet. Then,

he full set of test scenario steps appeared from all functional require-

ent steps. This mapping also classifies steps, specifying whether a

erification action in the source step (of the functional requirement)

as or not a relation with a system actor. Finally, in the third step, the

reated test scenario is cloned as many times as functional require-
ent scenarios are identified. A different scenario is selected for each

est scenario cloned. The test steps for that scenario are identified and

dded to the test scenario.

The helper GenerateTestScenarioBehavior clones test scenarios as

any times as paths are generated from the functional requirement.

he prior generated TestScenarioStep is located for each step and

dded to the final test scenario.

Finally, a test scenario is created for each functional requirement

cenario, once the transformation has finished.

.3.3. Transformation from functional requirements to test values

The goal of this transformation is to elaborate a model according

o the test scenario metamodel presented in the previous section.

The transformation entry point just aims to call the

our mappings in Fig. 14. Then, the direct mapping Subsys-

em2InstancecombinatonPackage generates packages for the combi-

ations of instances replicating the same package structure of the

unctional requirements.

The second mapping, FunctionalRequirement2OperationalVariable,

enerates operational variables from a functional requirement. An

perational variable is created for every point that offers more than

ne alternative to a functional requirement behavior. For example, if a

unctional requirement behavior defines a step that verifies whether

value is correct or not and, in the second case, the system asks for

he value again, an operational variable is generated because in this

tep, the functional requirement may differ depending on the value.

Once the operational variable has been produced, this mapping

nvokes a second mapping (mapping ExecutionOrder2Partition from

ig. 14) to create partitions for the operational variable just gener-

ted. Each partition stems from each of the possible alternatives to

he execution flow of the functional requirement behavior. For exam-

le, the operational variable produced in the previous paragraph will

ave two partitions; one will cope with all the correct values and the

ther one will cover all the wrong values.

The following mapping (FunctionalRequirement2Instance from

ig. 11) originates the instances of each operational variable created.

s Section 4.3 explained (in the test value metamodel) an instance is

concrete evaluation or assignment of an operational variable that

ncludes a value from one of its partitions. The same operational

ariable may be evaluated several times during a test, taking values

or different partitions. This mapping traverses the set of paths and

ounts the maximum number of times that each operational variable

ay be evaluated. The result of that count is the number of instances

enerated for each operational variable.

Finally, the last mapping, FunctionalRequirement2Instance

ombination, reveals the combinations of the instances created

Fig. 15. Structure of T3 transformation.

Table 1

Metrics for QVT-Operational code.

T0 T1 T2 T3 Total

Total lines 124 118 290 170 702

Lines of codes 104 97 238 124 563

No. of mappings 1 4 5 3 13

No. of helpers 1 2 3 1 7

No. of queries 3 2 1 3 9

No. of input models 1 1 1 3 6

No. of output models 1 1 1 1 4

m

f

m

v

e

t

q

d

s

w

q

i

s

t

a

q

r

t

m

t

i

t

a

c

a

o

o

m

t

m

1 We followed metrics suggested by (Ali et al., 2014).
in the previous mapping. The calculation of all combinations among

instances and partitions may develop several combinations impossi-

ble to execute in the tested system. For example, if one instance takes

a value from a partition that ends the functional requirement, then

to keep on delivering combinations will be a waste of time. For this

reason, only generated paths are used to identify valid combinations.

4.3.4. Transformation from test scenarios and test values to test cases

The goal of this transformation is to obtain a model that merges

the elements of the two prior metamodels relating test scenarios

to instance combinations (Fig. 15). Hence, this transformation takes

both metamodels, a test scenario metamodel and a test value meta-

model as inputs, and generates a test case model as output by merg-

ing the information of the input models.

The first mapping (Subsystem2TestCaseCollection) creates a folder

structure to contain the test cases of the functional requirement

model subsystem. Therefore, three test models (test scenario model,

test value model and test case model) have the same folding struc-

ture, which improves the management tasks of test artifact and trac-

ing relations.

Then, the TestScenario2TestCase mapping generates test cases for

each test scenario directly. It invokes the mapping for generating test

steps for the test scenario step of the test scenario, keeping the clas-

sification between verification and action steps. Then, it makes the

helper search and recover the instance combination for that concrete

scenario. Then, the mapping associates the combination of the test

case and each step with the quantum, if any.

5. Implementation

Last section presents the theoretical basis of our approach. Now,

this section offers the practical view. For this purpose, it is divided

in four subsections. The first one justifies some implementation deci-

sions. It not only aims to implement QVT or select a concrete syntax

for metamodels, but it analyzes the use of Java to implement trans-

formations and UML Profiles as concrete syntax for our approach. The

second subsection offers an overview of a methodological Model-

Driven approach and its tools, where our MDT approach was in-

cluded. The third subsection explains how the MDT approach was

included in the methodology and it is illustrated with a simple exam-

ple, which is fully available on the web. This part finishes with some

references to real published examples dealing with the experience in

the enterprise context, which helps validate our approach.

5.1. Implementation decisions

As referred, the transformations introduced in the preceding sec-

tions have been formalized in the QVT-Operational code and they can

be freely downloaded on the website. Table 1 compiles the QVT code
etrics in order to widely present the tool dimension. 1 The result

of comparing Java and QVT-Operational tools was considered a posi-

tive experience, although this comparison is out of the scope of this

work. However, after analyzing some suitable tools, like SmartQVT

(Telecom, 2007) and Moment (Boronat, 2007), we decide to use Java

because these tools do not support full QVT. Implementing meta-

models and transformations in Java code was an easy task thanks to

testing, logging and debugging tools, together with a good IDE (In-

tegrated Development Environment). On the one hand, the hardest

part was to implement the ad-hoc code to generate functional re-

quirements models from concrete syntaxes and, on the other hand,

to generate concrete syntaxes from testing models.

5.2. A global view of NDT

We designed a tool that enabled putting this MDT process in prac-

tice, in order to test the suitability of our approach. After that, we

ramed it in a MDE framework, named NDT (Navigational Develop-

ent Techniques) (Escalona and Aragón, 2008).

This paper will not present NDT in detail, as further information,

ideos and examples are available on IWT2 website to consult. Nev-

rtheless, this section presents an overview so as to understand how

his approach was included in the methodology environment.

Initially, NDT was defined as a MDE methodology focused on re-

uirements and analysis processing. At the beginning, it dealt with

efining a set of formal metamodels for the Requirements and Analy-

is phases. In addition, NDT identified a set of derivation rules, stated

ith the standard QVT, which generated analysis models from re-

uirements models. The main goal of the NDT Requirements phase

s to build the catalog of requirements containing the needs of the

ystem to be developed. It is divided into a series of activities: cap-

ure, definition and validation of requirements. Requirements can

lso be classified according to their nature: information storage re-

uirements, functional requirements, actor requirements, interaction

equirements and non-functional requirements. NDT defines deriva-

ion rules to generate the analysis phase models, once the require-

ents specification phase has been completed and the catalog of sys-

em requirements has been drafted and validated. Fig. 16 shows this

dea through the stereotype “QVTTransformation”. The transition be-

ween the requirements and the analysis model is standardized and

utomated. It is based on QVT transformations, which translate the

oncepts of requirement metamodels into the first versions of the

nalysis models. These models are known in NDT as basic models

f analysis. For example, the basic conceptual model of analysis is

btained from the storage requirements defined during the require-

ents phase.

Thereafter, the team of analysts can transform these basic models

o implement and complete the final model of analysis.

The expertise of an analyst is required as this process is not auto-

atic. Transformations are represented in Fig.16 through the stereo-

type “NDTSupport”. NDT controls these transformations by means of

a set of defined rules and heuristics to ensure consistency between

Fig. 16. Transformations from requirements to analysis.

r

i

y

s

a

T

b

d

w

t

a

p

N

t

m

t

5

f

c

p

m

u

p

t

s

I

p

t

f

t

a

d

r

t

w

a

b

m

A

p

s

l

a

r

a

d

f

d

v

t

o

5

r

e

t

t

equirements and analysis models. This idea, which is only applied

n the Requirements and Analysis phases, was extended in the last

ears. Today, this context supports the complete life cycle (viability

tudy, requirements, analysis, design, implementation, maintenance

nd testing), which is based on the approach presented in this paper.

hey run under different life cycles, such as classical, agile or the one

ased on prototypes.2 To sum up, NDT offers an environment con-

ucive to Web systems development, completely covering the soft-

are development life cycle.

However, the application of MDE and, particularly, the applica-

ion of transformations among models, may become monotonous

nd very expensive, if there are no software tools that automate the

rocess. Therefore, NDT has defined a set of supporting tools called

DT-Suite (García-García et al., 2012) to meet this need. Currently,

he suite of NDT comprises the following main free Java tools:

(a) NDT-Profile is a specific profile for NDT, developed using En-

terprise Architect. NDT-Profile offers the chance of having all

the artifacts that define NDT easily and quickly, since they are

integrated into a tool called Enterprise Architect (Enterprise

Architect, 2015).

(b) NDT-Quality is a tool that automates most of the methodolog-

ical review of a project developed with NDT-Profile. It checks

both, the quality of using NDT methodology in each phase of

software life cycle and the quality of traceability of MDE rules

of NDT.

(c) NDT-Driver allows transformation can be automatically ap-

plied to every phase of the life cycle.

(d) NDT-Prototype is a tool designed to automatically generate

a set of XHTML prototypes from the navigation models, de-

scribed in the analysis phase, of a project developed with NDT-
Profile.

2 You can get more information about NDT full life cycle in www.iwt2.org.

w

a

(e) NDT-Merge uses the comparison among metamodels to iden-

tify syntactic and semantic inconsistencies among different

versions of the same requirements catalog. In addition, NDT-

Suite has more tools: NDT-Report, NDT-Glossary, NDT-Checker

or NDT-Counter. The purpose of these tools can be verified on

IWT2 website.

Nevertheless, the possibility of integrating our approach in a real

ethodological context with true practical experiences allows us to

est the approach with authentic information.

.3. NDT as MBT

Following the same ideas as NDT, we developed one UML profile

or each metamodel described in Section 3.2. These profiles were in-

luded in NDT-Profile and transformations written in JAVA were im-

lemented in NDT-Driver, the specific tool of NDT-Suite for transfor-

ations executions.

Fig. 17 shows an example of the behavior of a use case modeled

sing NDT-Profile, as well as the automatic result obtained after ap-

lying transformations to NDT-Driver. This example is based on a full

heoretical example: the Hotel Ambassador.3 In Fig. 17a, let us ob-

erve the description of use cases by means of an activity diagram.

t describes how the user can make an online modification of his/her

revious reservation at the Hotel Ambassador. The guest or the recep-

ionist can start the use case looking for the room (executing another

unctional requirement in the system named FR-18 Subject Search). If

here is a previous reservation, the system shows the results and en-

bles the modification. After that, the guest or receptionist confirms

ata and the system checks availability through another functional

equirement named FR-05 Check availability. If there is availability,

he system updates the reservation data, if not, the process finishes

ithout any change. The system also confirms previous reservations

nd then, the process finishes.

Fig. 17b shows the interface for NDT-Driver. As it was presented

efore, this tool supports QVT transformations, the original transfor-

ations of NDT (Feasibility Study to Requirements, Requirements to

nalysis and Analysis to Design, which are out of the scope of this

aper) and the implementation presented in Section 4.3. Thus, we

elect the project that defines the example in Fig. 17a in order to il-

ustrate our case. Later, we can check Requirements-Testing checkbox

nd click “Transform” button.

In consequence, NDT-Driver executes the four transformations

epresented in Fig. 4.

Additionally, Fig. 17c represents a concrete functional test case as

n activity diagram that is automatically obtained from the activity

iagram Fig. 17a outlines. This test case is obtained through trans-

ormations and only represents one possible path from the activity

iagram. It stands for the situation where there is a previous reser-

ation, but any availability to go ahead with the modification. In fact,

his example will generate a larger number of functional test cases,

ne for each possible path.

.4. Real experiences

Space limitations do not allow introducing a full example. For this

eason, the Hotel Ambassador includes video samples and a global

xample of our approach with more than 20 functional requirements

hat can be consulted by the reader.

In contrast, as we commented, this approach was fully applied on

he enterprise context. In this section, we would like to mention three
3 The example of NDT-Ambassador is fully available on www.iwt2.org. In fact, this

ebsite includes YouTube link to verify how this example runs. The full example with

large number of use cases can be freely downloaded.

http://www.iwt2.org
http://www.iwt2.org

Fig. 17. An example of execution.

t

I

w

w

m

f

a

m

e

s

w

A

t

a

a

i

d

l

r

i

of them. We have selected three examples as the most representa-

tive, although NDT enriched with MDT approach was fully applied

in last years. The first one, AQUA-WS, was the first project where it

was used. It is worth highlighting that it inspired our approach. It

was very interesting because it was developed by a combined devel-

opment team (two different companies working together) with com-

plex constraints of organization and very few resources for functional

testing. It was developed with a classical life cycle.

The second one, CALIPSOneo, is a recent project that was devel-

oped with an iterative life cycle. It was a very illustrative experience

for our team because it involved a very concrete, new and complex

functional area. The last one concerned an e-government project de-

veloped in a public organization and it enabled us to value our ap-

proach in an agile context with a constant interaction with the final

user.

Table 2 summarizes some of their objective characteristics, in or-

der to illustrate the magnitude of these projects.

• AQUA-WS Project

The AQUA-WS Project was the first project where our approach

was applied. The experience is fully described in Cutilla et al. (2012).

Emasesa (2014) is a public company which deals with the general

management of the urban water cycle, providing and ensuring wa-
er supply to all citizens in Seville, a city located in the south of Spain.

n 2008, Emasesa decided to move its original systems to manage the

ater life cycle to a new exclusive and integrated Web system, which

as named AQUA-WS.

The goal of this transfer was to develop an integrated manage-

ent platform from scratch (but using a legacy database). The plat-

orm controls an integral business system for customer management

nd interventions in water distribution, cleaning and net manage-

ent tasks. The software system is composed of three subsystems,

ach one representing a legacy system and additional generic sub-

ystems to include all common elements (like database access), as

ell as allows exchanging information among the three subsystems.

QUA-RED is the subsystem responsible for managing the infrastruc-

ure of the pipe net; AQUA-SIC is the subsystem dealing with man-

ging customers; and AQUA-SIGO is the subsystem in charge of man-

ging the engineering projects, like construction or maintenance of

nfrastructures.

The new management system has 1808 functional requirements

ocumented, all of them including several scenarios and alternatives.

Fig. 18 depicts the transfer process performed. First, the ana-

yst team worked in the definition of the new system functional

equirements. They were created by means of documenting the exist-

ng functionality unit of the legacy systems and validating them with

Table 2

Practical cases.

Project Number of use cases Number of test cases executed Lifecycle Total duration of the project

Aqua-WS 1873 1831 Classical 24

CALIPSOneo 77 139 Prototype 12

Thot 147 102 Agile 18

Fig. 18. Development process on AQUA-WS.

t

p

w

d

i

l

f

t

s

i

w

i

c

o

o

p

d

i

f

i

t

f

3

i

e

r

n

t

i

p

u

d

t

a

p

t

v

t

A

v

p

i

s

3

t

a

o

(

a

f

q

b

P

d

m

e

a

p

u

a

A

e

a

m

r

t

f

v

l

p

t

t

e

i

A

g

a

e

he expert users group. Then, the functional requirements were im-

lemented from the scratch in the new system. The legacy database

as developed to the new system.

Functional requirements were defined in NDT-Profile through two

ifferent syntaxes: UML Activity Diagrams and text templates. Activ-

ty diagrams were modeling according to UML specifications. Simi-

arly, Text templates were modeling in terms of the previous work on

unctional requirements developed by the IWT2 group.

The aim of system testing was to verify every scenario from func-

ional requirements. The estimated time to generate the package

tructure and the test case for every scenario, design those test cases

n NDT-Profile and trace them with the tested functional requirement

as measureless. Estimating a time of 5 min to create a test scenario

n the modeling tool, the amount of time needed to generate a test

ase for each scenario was 583 h (73 days working 8 h per week,

nly for generating test cases). It was too much time spent to carry

ut a task that is repeatable and systematic, thus a tool support was

roposed.

During the development of AQUA-WS project, the working teams

ecided to test our MDT approach using a prototype for elaborat-

ng the test plan. This plan contained over 7000 test cases produced

rom the different scenarios of the use case in a few minutes, replicat-

ng the package structure of the functional requirements and adding

racing relations with the tested functional requirements.

The application of test case generation does not demand high per-

ormance hardware. Test cases for AQUA-WS project are generated in

or 4 s using a common desktop.

Use cases from AQUA-WS project do not describe complex behav-

or. Each use case includes no more than 12 main steps and 4 or 5

xception scenarios. This process is repeated once for each functional

equirement and each use case is processed individually, so there is

o need to store information from a use case to another.

Although the number of requirements is vast for human percep-

ion (thousands of use cases), it seems indeed an irrelevant number

n computational terms. Thus, a loop with thousands of cycles that

erforms an almost-constant work with an almost-constant memory

se implies a very little amount of work and may be executed on any

esktop or laptop just in a few seconds.
Information input/output from external sources is a classic bot-

leneck in algorithm. In this case, the software solution works with

database and a solid and stable driver. Hence, information in-

ut/output is performed in a fast and optimized way.

The suitable feedback obtained after the application of the pro-

otype software tool to generate test scenarios from test cases moti-

ated us to create a generic and formal approach and integrate it in

he existing lines of work of the group.

• CALIPSOneo project

After AQUA-WS our MDT approach was fully implemented in NDT.

very recent project where it was applied was CALIPSOneo (ad-

anCed Aeronautical soLutIons using Plm proceSses & tOols). It is a

roject leaded by EADS Casa (AIRBUS, 2015) whose main goal is to

dentify a working methodology that may allow engineers to define,

imulate, optimize and validate aeronautical assembly processes on a

D environment, before being executed in a real assembly line. This

akes place through an integral process of requirements recollection,

nd the customization and use of the existing PLM software available.

Some years ago, several analyses were conducted on PLM method-

logy, concluding that there are many advantages for Airbus Military

Mas et al., 2013; AIRBUS, 2015). The knowledge obtained from such

nalyses help CALIPSOneo team compile the different requirements

or the project, the management plans for the requirements and re-

uirements’ track matrix to meet the needs achieved for the PLM

usiness. Therefore, CALIPSOneo covers both, the design of a new

LM methodology, adjusted to a collaborative PLM solution, and the

evelopment of prototypes that satisfy this concept.

CALIPSOneo is divided into three sub-projects with the aim of

anaging effectively the necessary work to finish the project. This

nables the project scope to be managed in a more efficient way,

s the different crews are working on the needed tasks to run the

roject. The three sub-projects are: MARS (autoMAted shop-flooR doc-

mentation updating System), PROTEUS (PROcess sTructure gEneration

nd USe) and ELARA (gEneraLization to assembly oriented authoring

ugmented ReAlity). Detailed information about each of them and the

xperience of using NDT and MDT approach in this project is avail-

ble on (Salido et al., 2014). This paper demonstrates the improve-

ent of the use of this approach in this context, where the number of

esources for testing is less than 10% in the full life cycle. This limita-

ion was established by the clients’ team, but we offer 40% coverage

or testing.

CALIPSOneo offered the possibility to check our approach in a

ery different context: aeronautics. One of the most important aimed

essons of this experience was to analyze the suitability of this ap-

roach to test software in different contexts. If we use abstract syn-

axes suitable to use metamodels described in Section 3, transforma-

ions help us to obtain tests.

• THOT Project

The last experience we expect to address is the THOT project. This

xperience is fully described in Ponce et al. (2014). It was executed

n collaboration with AOPJA (Agencia de Obra Pública de la Junta de

ndalucía, 2015). Thus, THOT project can be defined as an e-

overnment project to implement an ECM (Enterprise Content Man-

gement) system in the Public Administration of the Regional Gov-

rnment of Andalusia (Spain). This project aims to make a qualitative

Table 3

Characterization.

Dimension Value

Subject SUT

Model redundancy level Shared test and dev model

Model characteristics Deterministic, untimed and discrete

Model paradigm Transition-based notation (FSM)

Test selection criteria Structural model coverage and data-coverage criteria

Technology Graph search algorithm

On/offline Offline test case generation

o

a

L

n

c

s

o

m

c

p

s

t

t

r

a

s

t

o

v

m

g

t

i

fi

m

o

p

p

S

o

r

w

t

c

a

d

t

m

n

u

p

t

t

t

leap covering different disciplines of research and innovation, such

as document management policies, e-government policies, dissem-

ination and integration policies in Web environments (aspects that

are treated and profusely investigated by different groups and re-

search fora, both national and international). This fact enables organi-

zations to provide a common framework for document management

and cover the need to have a comprehensive management to com-

plement business processes from beginning to end. The project offers,

with innovation and research jobs, a solution that not only permits or-

ganizations to manage documents intelligently, but also to distribute,

maintain and custody them.

NDT was used for the development of THOT. An essential activity

for this project was the validation with the user. The specific con-

text of the project required the continue collaboration with the user.

In fact, the life cycle of this project was based on Scrum (2015). This

experience helped us validate our approach in agile context environ-

ments with a very active interaction with the final user.

NDT solution was not only applied in these experiences. In fact,

we aimed to present the aforementioned approaches, because there

are detailed published papers that can be referenced for analyzing

the advantages of our MDT approach in empirical contexts (Escalona

et al., 2007). However, it is difficult to assess how our approach in-

creased the results of these projects since we only measured success-

ful results, but not testing without these techniques. We are working

in this line of experiments in companies, according to Panach et al.

(2015), in order to demonstrate the strong points. Currently, we have

defined some experiments with companies’ expert in testing so as

to evaluate the real improvement that applying or not the approach

involves.

6. Discussion and future work

As a final discussion, we would like to stick out that every auto-

matic approach to generate test cases from a use case needs some

assumptions and imposes some constraints on functional require-

ments, their format and context. This section studies these assump-

tions and constraints in the particular approach analyzed in this

paper.

One of the drawbacks is that requirements should be conceived

as a set of interactions between the system under test and a group of

external actors. All software systems are not suitable enough to incor-

porate this kind of requirements. For example, compilers, embedded

systems, videogames or basic CRUD (Create, Read, Update and Delete)

systems cannot define such requirements since they hardly ever in-

teract with users.

However, one advantage is that they may be well defined using

specific test templates, UML state diagrams or UML Activity diagrams.

There is a vast research and experience using these formats to define

functional requirements. This previous work makes the reuse of ex-

isting approaches a relevant point. Thus, the functional requirement

metamodel has been designed to be as easily adaptable as any other

requirements approach exemplified in the requirements explained in

the last section.

Another weakness is the level of abstraction of the generated

test. As the test is produced from functional requirements, test cases

are described using functional requirements concepts. Consequently,

there is an additional and non-trivial work to execute it (manually or

automatically) and the quality of the test cases obtained is propor-

tional to the quality of the functional requirements input.

The practice also depends on the requirements phase and tools.

Organizations with mature requirement phases and good automa-

tion tools may implement this process more easily than organizations

lacking them.

As mentioned before, only one criterion to generate test cases has

been implemented in transformations. However, there is no limita-

tion to improve or use other graph-traverse criteria. The convenience
f following those criteria is out of the scope of this work, as it is

subject widely described in the existing literature, for instance in

i et al. (2012).

With regard to concrete syntax, there is neither a generic mecha-

ism nor a transformation to create a functional model from a con-

rete representation. On the contrary, each specific syntax needs a

pecific process (and its later implementation in the software tool) to

btain the relevant information and generate models from that infor-

ation. It is out of the scope of this work to develop a tool that can

over any syntax or possible tool, but this tool can be adapted to the

rojects in which it is involved. For this reason, today such a tool only

upports functional requirements as UML Activity diagrams. Never-

heless, it is possible to extend it to manage other syntaxes from other

ools.

These reflections let us conclude that this work has opened new

esearch lines. One of them deals with test cases prioritization mech-

nisms, consisting in giving relevance to functional requirements and

tudying the automatic detection of redundant test cases. The prac-

ice experience confirms that it continues producing a large number

f redundant test cases that test teams have to identify manually.

Another relevant aspect regards the generation of operational

ariables. If it is deemed necessary to execute test cases, the auto-

atic generation of data must also improve. The operational variable

eneration is not included in this first fusion. In fact, the test team has

o produce data manually, what implies a hard task in this respect.

Utting et al. (2012) introduce a taxonomy for model-based test-

ng approaches based on seven dimensions. Next paragraphs de-

ne a characterization of the approach introduced in this paper that

atches the taxonomy of that work. Table 3 represents an overview

f this characterization, although it is out of the scope of this work to

resent a deep description of the taxonomy.

Subject is the name given to the first dimension. In this MDT ap-

roach, the subject is SUT itself instead of the possible behavior of the

UT environment.

The model redundancy level indicates several uses for models. In

ur approach, this level is test cases and code, as this approach de-

ives test cases from functional requirements and those requirements

ill be implemented in the system through source code.

The model characteristics dimension relates to nondeterministic,

he incorporation of timing issues and the continuous or event dis-

rete nature of the model. A use case model is a deterministic model

nd, in our approach, it does not include time issues. The iteration

escribed in use cases is discrete.

The fourth dimension is model paradigm. It refers to the nota-

ion used to describe the model. Use cases behavior is finite state-

achines (FSM) regarding formal notation, thus transaction-based

otation is the proper value for this dimension.

The test selection criteria dimension defines the facilities that are

sed to control test cases generation. The approach introduced in this

aper uses two different criteria. The structural model coverage cri-

eria are in use when test cases are derived from use cases states and

ransitions of use cases behavior. Data coverage criterion works when

est cases are derived from use cases variation points.

o

s

l

o

t

l

t

b

m

d

t

t

(

i

7

i

t

S

T

m

7

e

r

o

p

c

t

p

M

t

t

g

a

s

c

w

i

p

e

t

o

c

w

v

t

s

e

fl

p

v

c

a

o

o

a

p

p

w

c

7

p

l

I

p

q

c

t

t

e

d

a

t

s

a

s

t

f

e

t

o

e

g

T

c

i

p

u

o

t

w

i

i

c

s

l

b

A

C

The test generation technology dimension describes the technol-

gy used during test generation. However, our technique uses graph-

earch algorithm mainly.

The last dimension is the on-line or off-line test generation. On-

ine test generation may test generation reaction to actual outputs

f the SUT and off-line test case generation derives test cases before

hey are running. In light of this, our approach is considered an off-

ine test case generation, since it may produce test cases even before

he system is built.

Another future line of research consists in assessing the relation

etween this approach and the UML Testing Profile (Object Manage-

ent Group, 2013). This profile contains a package of stereotypes for

efining the system behavior and another package for describing the

est data based on categories and data partitions concepts. We will

ry to map the concepts from these approaches with similar concepts

if any) in the UML Testing profile.

Finally, as Section 5 stated, we are working in experiments to val-

date the effective improvement of our approach.

. Conclusions

This paper has introduced a Model-Driven process for generat-

ng test cases from functional requirements. Section 7.1 introduces

he conclusions and the original contributions of this paper and

ection 7.2 exposes the lessons learned from the three projects in

able 2 and uses them to define a set of key points for introducing

odel-based testing in organizations.

.1. Conclusions and original contributions

The surveys from Section 3 claim that existing approaches for gen-

rating test cases from use cases are attached to a concrete functional

equirement notation. It also confirms that the processes have a lack

f systematization. Some papers describe too generic processes to be

erformed automatically and other approaches offer concrete tools to

arry out test cases generation. Nevertheless, those tools are attached

o concrete notations or environments with specific inputs and out-

uts. The approach presented in this paper solves both detected lacks.

etamodels formally define the information needed without con-

aining any concrete representation of the information. Instances of

he elements may be represented with textual templates, UML dia-

rams or any other specific syntax. In addition, defining the gener-

tion process by means of transformations and QVT allows under-

tanding the process in a systematic way and, again, regardless of the

oncrete implementation. This implementation may be performed

ith the supporting tools in Section 5, a handmade process or even

n a QVT execution environment.

In conclusion, our approach provides some key and original

oints. Firstly, it introduces a set of metamodels for defining the rel-

vant information to manage in the process. No previous work (from

he surveys cited) has presented a metamodel. These metamodels

pen the door to adapt any existing approach to the generation pro-

ess described in this paper.

Secondly, another relevant contribution not included in previous

orks is the notation independence. Metamodels describe the rele-

ant information, but they do not demand a concrete specific nota-

ion. Moreover, the process does not require a particular syntax, con-

equently, it allows flexibility to adapt the most adequate syntax. Our

xperience reveals that the use of activity diagrams properly balances

exibility to define requirements and formality to apply an automatic

rocess.

These metamodels are also the key to introduce another rele-

ant contribution in the form of QVT transformations to generate test

ases. We have introduced a tool to perform this process in a fully

utomatic way, as a side effect of this adding.
Finally, one of our strong points consists in applying the real area

f our approach, as it was included in the context of NDT methodol-

gy and its tools. In this respect, it is worth noticing that it is actually

well-applied MDE methodology in the business environment. The

aper shows three examples but, in the last years, a large number of

rojects in different contexts, with different functional environments,

ith different development and user teams and with different life cy-

le have utilized our approach successfully.

.2. Lessons learned and key points

This section exposes the lessons learned after executing the

resent approach in the three projects represented in Table 2. These

essons are summarized as key points at the end of this section. The

WT2 group did not collaborate in those projects only for testing pur-

ose. In fact, the real work of the group along the projects dealt with

uality assurance. It mainly included requirements quality and the

ommitment of standards like a proper use of UML.

Quality assurance allowed the introduction of a homogeneous no-

ation for requirements, which were defined in a tool using this nota-

ion for quality purposes. It was possible to introduce test cases gen-

ration as an added value, once the hard work was done. This strategy

rove to the acceptance of the testing approach. Test case generation

nd other benefits from the NDT approach that are not interesting for

his work, were perceived as the reward for the hard work regarding

pecifying good requirements.

A second lesson that led us to the successfully application of the

pproach was our costumers support; both public organizations that

upported the financial cost of the projects as well as organizations

hat used the generated systems. These organizations were different

rom the development teams due to these teams came from hired

ntities.

The final customers committed with the quality of the documen-

ation and models. This support appeared, for example, when devel-

pers did not aim to fix UML errors and omissions in the system mod-

ls, arguing that they did not have enough time.

This compromise and support allowed a true formal and homo-

eneous requirement and a successfully generation of test cases.

hey allowed us to maintain quality even when the developer team

laimed that they were not able to fix requirements because of time

ssues.

That support made the quality of requirements and, therefore, the

ossibility of generating test cases from them in an automatic way

sing this approach, real and true.

The third and final learned lesson was the role the authors and

ther members of the research group played as real testers of the sys-

ems. We were neither expert nor real users, but we had to interact

ith the system as users, trying to detect mistakes and flaws in the

mplementation. We needed some kind of test script for guiding us to

nteract with the system. In this case, we were clients from the test

ases generated, for we used them to interact with the system.

Finally, as the main conclusion for this section, we would like to

tate that there are key points that may be considered as useful guide-

ines in future projects involving model-based techniques. They can

e summarized as follows:

• Focus your efforts in quality and treat all model-based artifacts as

reward for maintaining the quality of the products.
• Gain support and commitment to organizations, stakeholders and

management teams.
• Get involved as a customer and user of the generated artifacts.

cknowledgment

This research has been supported by the MeGUS (TIN2013-46928-

3-3-R) of the Spanish Ministry of Economy and Competitiveness.

N

N

N

O

O

O

O

O

P

P

S

S
S

S

S

T

U

V

References

Agencia de Obra Pública de la Junta de Andalucía. Consejería de Fomento y Vivienda.

www.aopandalucia.es/. Last visit 05/ 2015.

Ahlowalia, N., 2002. Testing from use cases using path analysis technique. In: Interna-
tional Conference on Software Testing Analysis & Review.

AIRBUS. http://www.airbus.com/. Last visit 05/2015.
Ali, M.A., Shaik, K., Kumar, S., 2014. Test case generation using UML state diagram and

OCL expression. Int. J. Comput. Appl. 95 (12), 7–11.
Anand, S., Burke, E.K., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp, W., Haman, M.,

Harrold, M.J., McMinn, P., 2013. An orchestrated survey of methodologies for au-

tomated software test case generation. J. Syst. Software 86 (8), 1978–2001.
ATL Transformation Language. www.eclipse.org/atl/. Last visit 05/2015.

Bertolino, A., Marchetti, E., Muccini, H., 2005. Introducing a reasonably complete and
coherent approach for model-based testing. Electron. Notes Theor. Comput. Sci.

116, 85–97.
Binder, R.V., 2000. Testing Object-Oriented Systems: Models, Patterns, and Tools.

Addison-Wesley Professional.
Boddu, R., Guo, L., Mukhopadhyay, S., Cukic, B., September 2004. RETNA: from require-

ments to testing in a natural way. In: Proceedings of the 12th IEEE International

Requirements Engineering Conference, 2004. IEEE, pp. 262–271.
Boronat, A., 2007. MOMENT: A Formal Framework for MOdel ManageMENT (Ph.D.

thesis). Universitat Politenica de Valencia (UPV), Spain.
Briand, L., Labiche, Y., 2002. A UML-based approach to system testing. Software Syst.

Model. 1 (1), 10–42.
Chimisliu, V., Wotawa, F., 2012. Category partition method and satisfiability modulo

theories for test case generation. In: 2012 7th International Workshop on Automa-

tion of Software Test (AST). IEEE, pp. 64–70.
Cutilla, C.R., García-García, J.A., Gutiérrez, J.J., Domínguez-Mayo, P., Cuaresma, M.J.E.,

Rodríguez-Catalán, L., Mayo, F.J.D., 2012. Model-driven test engineering – a practi-
cal analysis in the AQUA-WS project. In: ICSOFT, pp. 111–119.

Denger, C.M.M., & Mora, M.M. (2003). Test case derived from requirement specifica-
tions. Fraunhofer IESE Report, Germany.

Emasesa. Empresa Metropolitana de Abastecimiento y Saneamiento de Aguas de

Sevilla. http://www.emasesa.com/. Last visit 08/ 2014.
Enterprise Architect. www.sparxsystems.com/products/ea/. Las visit 05/ 2015.

Escalona, M.J, Aragón, G., 2008. NDT. A model-driven approach for web requirements.
IEEE Trans. Software Eng. 34 (3), 377–390.

Escalona, M.J., Gutierrez, J.J., Mejías, M., Aragón, G., Ramos, I., Torres, J., Domínguez, F.J.,
2011. An overview on test generation from functional requirements. J. Syst. Soft-

ware 84 (8), 1379–1393.

Escalona, M.J., Gutierrez, J.J., Villadiego, D., León, A., Torres, J., 2007. Practical ex-
periences in web engineering. Advances in Information Systems Development.

Springer, USA, pp. 421–433.
Felderer, M., Ramler, R., 2014. Integrating risk-based testing in industrial test processes.

Software Qual. J. 22 (3), 543–575.
Fröhlich, P., Link, J., 2000. Automated test case generation from dynamic mod-

els. In: ECOOP 2000—Object-Oriented Programming. Springer, Berlin, Heidelberg,

pp. 472–491.
García-García, J.A., Cutilla, C.R., Escalona, M.J., Alba, M., Torres, J., 2013. NDT-Driver: a

Java tool to support QVT transformations for NDT. Information Systems Develop-
ment. Springer, New York, pp. 89–101.

García-García, J.A., Ortega, M.A., García-Borgoñon, L., Escalona, M.J., 2012. NDT-Suite:
a model-based suite for the application of NDT. Web Engineering. Springer, Berlin,

Heidelberg, pp. 469–472.

Hartmann, J., Vieira, M., Foster, H., Ruder, A., 2004. UML-based test generation and ex-
ecution. In: Präsentation auf der TAV21 in Berlin.

Huda, M., Arya, Y.D.S., Khan, M.H., 2015. Testability quantification framework of object
oriented software: a new perspective. Int. J. Adv. Res. Comput. Commun. Eng. 4 (1),

298–302.
Ibrahim, R., Saringat, M.Z., Ibrahim, N., Ismail, N., October 2007. An automatic tool

for generating test cases from the system’s requirements. In: 7th IEEE Interna-
tional Conference on Computer and Information Technology, 2007, CIT 2007. IEEE,

pp. 861–866.

Kapová, L., Goldschmidt, T., Becker, S., Henss, J., 2010. Evaluating maintainability with
code metrics for model-to-model transformations. Research into Practice–Reality

and Gaps. Springer, Berlin, Heidelberg, pp. 151–166.
Li, N., Li, F., Offutt, J., 2012. Better algorithms to minimize the cost of test paths. In: Fifth

International Conference on Software Testing, Verification and Validation. Mon-
treal. Montreal.

Li, Q., Yang, Y., Li, M., Wang, Q., Boehm, B., Hu, C., 2010. Improving software testing

process: feature prioritization to make winners of success-critical stakeholders. J.
Software: Evol. Process 24, 783–801.

Mas, F., Rios, J., Menendez, J.L., Gomez, A., 2013. A process-oriented approach to mod-
eling the conceptual design of aircraft assembly lines. Int. J. Adv. Manuf. Technol.

67 (1–4), 771–784.
Mogyorodi, G.E., 2003. What is requirements-based testing? Crosstalk. J. Defense Soft-

ware Eng. 16.
azir, M., Khan, R.A., Testability Estimation Model (TEMOOD), January 2012. In:
N., Meghanathan, N., Chaki, D., Nagamalai (Eds.), Lecture Notes of the Institute for

Computer Sciences, Social Informatics and Telecommunications Engineering, vol.
85. Springer-Verlag, pp. 178–187 Part 3.

DT (Navigational Development Techniques) site. http://www.iwt2.org/web/opencms/
IWT2/ndt/?locale=es. Last visit 05/ 2015.

ogueira, S., Sampaio, A., Mota, A., 2014. Test generation from state based use case
models. Formal Aspects Comput. 26 (3), 441–490.

bject Management Group. (2010) Query View Transformation Specification 1.0.

http://www.omg.org. Last visit 05/2015.
bject Management Group. (2011). Unified Modeling Language 2.4. www.omg.org. Last

visit 05/2015.
bject Management Group. (2013). UML Testing Profile 1.3. Last visit 05/2015.

pen Source Initiative. The BSD License. www.opensource.org/licenses/bsd-
license.php. Last visit 08/ 2014.

strand, T.J., Balcer, M.J., 1988. The category-partition method for specifying and gen-

erating functional tests. Commun. ACM 31 (6), 676–686.
anach, J.I., España, S., Dieste, Ó., Pastor, Ó., Juristo, N., 2015. In search of evidence for

model-driven development claims: an experiment on quality, effort, productivity
and satisfaction. Inf. Software Technol. 62, 164–186.

once, J., Dominguez-Mayo, F.J., Gutierrez, J.J., Escalona, M.J., 2014. Pruebas de
aceptación orientadas al usuario: contexto ágil para un proyecto de gestión doc-

umental. Ibersid 8, 13–22.

alido, A., García, J.A.G., Ponce, J., Gutierrez, J.J., 2014. Tests management in CALIPSO-
neo: a MDE solution. J. Software Eng. Appl. 7 (06), 506.

crum. https://www.scrum.org/. Last visit 05/ 2015.
hah, H., Harrold, M.J., Sinha, S., 2014. Global software testing under deadline pressure:

vendor-side experiences. Inf. Software Technol. 56 (1), 6–19.
harma, A., Singh, M., April 2013. Generation of automated test cases using UML mod-

eling. Int. J. Eng. Res. Technol. 2 (4).

wain, S.K., Mohapatra, D.P., Mall, R., 2010. Test case generation based on use case and
sequence diagram. Int. J. Software Eng. 3 (2), 21–52.

elecom, F. (2007). SmartQVT: an open source model transformation tool implement-
ing the MOF 2.0. QVT-Operational language.

tting, A., Prestschner, A., Legeard, B., August 2012. A taxonomy of model based testing.
Software Test. Verification Reliab., 22, pp. 297–312.

ölter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S., 2013. Model-Driven Software Devel-

opment: Technology, Engineering, Management. John Wiley & Sons.

http://www.aopandalucia.es/
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0001
http://www.airbus.com/
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0003
http://www.eclipse.org/atl/
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0010
http://www.emasesa.com/
http://www.sparxsystems.com/products/ea/
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0035
http://www.iwt2.org/web/opencms/IWT2/ndt/?locale=es
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0026
http://www.omg.org
http://www.omg.org
http://www.opensource.org/licenses/bsd-license.php
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0030
https://www.scrum.org/
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00170-3/sbref0037

	A Model-Driven approach for functional test case generation
	1 Introduction
	2 Model-Driven engineering
	3 Related work
	3.1 State-of-the-art
	3.2 Techniques for generating test cases

	4 A MDT approach for functional test generation
	4.1 The MDT process
	4.2 Metamodels
	4.2.1 Functional requirements metamodel
	4.2.2 Test scenario metamodel
	4.2.3 Test value metamodel
	4.2.4 Test case metamodel

	4.3 Transformations
	4.3.1 Transformation from functional requirements to (enrich) functional requirements
	4.3.2 Transformation from functional requirements to test scenarios
	4.3.3 Transformation from functional requirements to test values
	4.3.4 Transformation from test scenarios and test values to test cases

	5 Implementation
	5.1 Implementation decisions
	5.2 A global view of NDT
	5.3 NDT as MBT
	5.4 Real experiences

	6 Discussion and future work
	7 Conclusions
	7.1 Conclusions and original contributions
	7.2 Lessons learned and key points

	 Acknowledgment
	 References

