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A B S T R A C T 

Waste Management (WM) represents an important part of Smart Cities (SCs) with significant impact on modern 
societies. WM involves a set of processes ranging from waste collection to the recycling of the collected materials. The 
proliferation of sensors and actuators enable the new era of Internet of Things (IoT) that can be adopted in SCs and 
help in WM. Novel approaches that involve dynamic routing models combined with the IoT capabilities could provide 
solutions that outperform existing models. In this paper, we focus on a SC where a number of collection bins are 
located in different areas with sensors attached to them. We study a dynamic waste collection architecture, which is 
based on data retrieved by sensors. We pay special attention to the possibility of immediate WM service in high 
priority areas, e.g., schools or hospitals where, possibly, the presence of dangerous waste or the negative effects on 
human quality of living impose the need for immediate collection. This is very crucial when we focus on sensitive 
groups of citizens like pupils, elderly or people living close to areas where dangerous waste is rejected. We propose 
novel algorithms aiming at providing efficient and scalable solutions to the dynamic waste collection problem through 
the management of the trade-off between the immediate collection and its cost. We describe how the proposed 
system effectively responds to the demand as realized by sensor observations and alerts originated in high priority 
areas. Our aim is to minimize the time required for serving high priority areas while keeping the average expected 
performance at high level. Comprehensive simulations on top of the data retrieved by a SC validate the proposed 
algorithms on both quantitative and qualitative criteria which are adopted to analyze their strengths and weaknesses. 
We claim that, local authorities could choose the model that best matches their needs and resources of each city. 
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1. Introduction 

In modern societies, the increased population 

accompanied by the industrial development leads to a 

boost of economies. Booming economies, rapid 

urbanization and the rise in community living 

standards have greatly accelerated the waste 

generation rate in developing countries (Minghua et al., 

2009). Through this perspective, Waste Management 

(WM) is a critical issue for every modern society/city. 

The reason is that waste should be efficiently managed 

in order to minimize its negative effects in the 

environment and, thus, to increase the quality of life for 

citizens. Local authorities or private companies can 

undertake the responsibility to provide a high quality 

mechanism for WM. In the past, important 

improvements have been observed in WM. Related 

research has identified the relevant stakeholders and 

organizations that may have an interest in adequate 

WM. For instance, some of the reported stakeholders 

are: national or local governments, municipal 

authorities, city corporations, non-governmental 

organizations, households, private contractors, 

Ministries of Health, Environment, Economy and 

Finance, recycling and waste processing companies. 

The WM process involves a number of issues 

ranging from the collection of waste to the recycling. 

Waste Management Systems (WMSs) are devoted to 

provide functionalities that effectively handle the 

lifecycle of various types of waste. Information and 

Communication Technologies (ICT) can offer many 

advantages when incorporated in WMSs. Sensors and 

actuators enable the new era of Internet of Things (IoT) 

that can be adopted in Smart Cities (SCs) and help in 

WM. The provision of intelligent applications that 

control the entire line of WM based on sensor 

observations facilitates the necessary processes and 

maximizes the performance. A SC could deploy a 

number of sensors attached to waste bins in order to 

gather/collect data related to waste (e.g., weight, 

odour). A central system could have a view on the 



waste information realized ‘in-the-field’ and, thus, it 

could be able to take the appropriate decisions related 

to the demand for waste generation/collection. In 

addition, such system could be responsive when alerts 

are triggered in real time. For instance, the system 

could re-arrange the routes of collection trucks, when 

necessary, leading to a dynamic WM scheme.   

Prior research focuses on the collection, transfer and 

transport practices and has proposed the appropriate 

strategies for collection schemes, route planning, 

collection schedule and the appropriate infrastructure 

or the number of the required resources for waste 

collection. However, some important issues are still 

open. For instance, there is the need of adopting 

effective methodologies for the management of: (a) 

dynamic changes in the production of waste and (b) how 

cities affect WM. Actually, these two issues are related 

to how and when waste is produced and what are the 

appropriate solutions for its efficient management in 

real time. Societies need an intelligent framework that 

dynamically responds to changes in the production of 

waste especially when waste is produced in critical 

(high priority) areas. As a critical (high priority) area 

in a city, we could define areas that are mostly affected 

by waste, especially, when the collection process is not 

frequently performed. There are specific types of waste 

that should be immediately collected and recycled due 

to the negative effects that they have in humans’ lives. A 

representative example involves an area where specific 

amenities are located like schools, hospitals, university 

campuses, etc. In such areas, waste bins close to the 

discussed amenities should be immediately depleted. In 

addition, high priority areas could be also characterized 

areas where ‘sensitive’ groups of people are living (e.g., 

people living close to hospitals or fuel stations). Waste 

bins located in such areas could be characterized as 

high priority bins. High priority bins are related to: (i) 

waste dangerous for human lives (e.g., chemicals) or (ii) 

sensitive areas that are heavily affected by waste 

disposals (e.g., schools, gas stations); such areas are 

characterized either by the type of the amenities located 

in them or by the type of people living at them. In both 

cases, such bins should be depleted as soon as possible 

in order to minimize the effect of waste into the 

environment and the human lives. For instance, 

hospitals’ waste should be immediately collected to 

minimize the risk of exposing humans to chemicals or 

other medical-related materials. Bins close to gas 

stations should also be immediately collected to 

minimize the risk of fire. The immediate collection of 

waste in high priority areas becomes imperative when 

no special process is applied for recycling dangerous 

materials. 

In this paper, we present a WM framework to be 

adopted by a SC.  

Definition (Bakici et al., 2013). A SC is a high-tech 

intensive and advanced city that connects people, 

information and city elements using new technologies in 

order to create a sustainable, greener city, competitive 

and innovative commerce, and an increased life quality.  

Aiming to the increased quality of life, the proposed 

framework is responsible for deriving dynamic 

decisions for the efficient collection of waste especially 

for the management of high priority bins. The proposed 

system provides routing functionalities for a number of 

trucks and offers routes adaptation when waste 

collection needs are identified in high priority areas. 

The priority of each area is defined according to the 

type of the area, however, the system could be easily 

extended and rely on top of different constraints. An 

intelligent mechanism undertakes the responsibility of 

dynamically adapting the route for each collection truck 

when waste bins, in high priority areas, are full. Hence, 

the system gives priority to sensitive areas, thus, 

maximizing the quality of life for citizens together with 

the maximization of the performance for waste 

collection. We propose a set of collection strategies 

realized into four (4) models for facing the 

aforementioned scenario. Each strategy has specific 

characteristics concerning the method that the system 

adopts to manage high priority bins. The aim is to 

provide a set of solutions for the efficient collection of 

the high priority waste bins in a SC. We perform a large 

number of simulations in order to reveal the 

advantages of each model and present comprehensive 

evaluation results. Our aim is to provide a comparison 

between the proposed models and, accordingly, 

stakeholders can easily select one of them according to 

the special needs of each area. The following list reports 

on the contributions of our work: 

 we adopt of the notion of high priority areas and 

high priority bins, respectively, in WM; 

 we propose four (4) WM models for serving the 

immediate collection of high priority bins; 

 we provide routing functionalities and routing 

adaptation for serving areas that are characterized 

as critical (high priority); 

 the proposed models manage the trade-off between 

the immediate collection and the cost for waste 

depletion; 



 the proposed framework dynamically responds to 

changes in the production of waste in high priority 

areas; 

 we provide a comprehensive experimental 

evaluation of the proposed models that reveal their 

strengths and weaknesses over a large set of 

simulation scenarios. 

We focus on areas that are mainly affected by waste 

disposal. Some examples of areas and amenities that 

could be characterized as high priority are: (i) hospitals 

(e.g., people can be exposed to medical-related 

materials), (ii) schools (e.g., pupils or students can be 

considered as ‘sensitive’ target group as far as the 

waste disposal consequences concerns), (iii) areas close 

to fuel stations (e.g., there is an increased risk of fire, 

especially in areas where high temperatures are 

observed), (iv) areas close to factories that utilize 

materials not supported by special plans for immediate 

treatment (e.g., in the case where no specific individual 

collection and recycling processes are present); (v) 

areas that, for specific reasons, the local authorities 

want to be managed as high priority (e.g., squares, 

places where people are gathered, playgrounds); In 

these cases, the seasonal aspects could be also applied 

(a location could be of high priority only for a specific 

time interval, e.g., various events, touristic areas). 

The paper is organized as follows. Section 2 presents 

related research efforts while in Section 3, we discuss 

the proposed framework. We analytically describe the 

system and give its main characteristics. In Section 4, 

we describe the proposed models for managing high 

priority waste bins and in Section 5, we describe the 

application perspectives of our framework. In Section 6, 

we report on the performance of each model. We 

compare the proposed models for important 

performance metrics for waste management. Finally, in 

Section 7, we conclude our paper by giving future 

research directions.  

2. Prior Work 

A number of dynamic models for waste collection 

have been proposed by the research community. There 

is a significant interest for dynamic models since static 

approaches cannot handle the dynamic nature of IoT 

potentiality. The dynamic scheduling and routing model 

discussed in (Johansson, 2006) adopts capacity sensors 

and wireless communication infrastructure, thus, it is 

able to be aware of each bin’s state. The mechanism 

incorporates analytical modeling and discrete-event 

simulation in order to achieve real-time dynamic 

routing and scheduling. The authors in (Wy et al., 2013) 

introduce a rollon–rolloff routing, serving multiple 

disposal facilities, with huge amounts of waste at 

construction sites and shopping districts. The model 

adopts large neighborhood search with iterative 

heuristic algorithms. In (Nuortio et al., 2006), an 

improved dynamic route planning is discussed. The 

authors enhance a guided variable neighborhood 

threshold meta-heuristic adapted to the problem of 

waste collection. The authors in (Reed et al., 2014) 

propose a model which incorporates the Ant Colony 

System (ACS) in order to achieve dynamic routing. The 

authors treat the location of bins as a spatial network 

and apply the k-means algorithm in order to cluster the 

bins into a set of partial clusters.  

In (Zsigraiova et al., 2013), the authors combine 

routing and scheduling optimization. Historical data 

applied to individual bins establish the daily circuits of 

collection points to be visited. Planning is applied to 

scheduling for better system management. The authors 

in (Li et al., 2008) consider dynamic scheduling over a 

set of previously defined collection paths. The main 

objective of the approach is to minimize the total 

operational and fixed costs for collection trucks. In 

(Nadizadeh & Nasab, 2014), the authors introduce a 

dynamic routing model based on fuzzy demands by 

assuming the demands of the customers as fuzzy 

variables. The presented model incorporates a heuristic 

approach based on fuzzy credibility theory. A 

mathematical formulation methodology is proposed in 

(Ramos et al., 2014) for the development of a plan of 

service areas, defining routing and scheduling. The 

model takes into consideration possible new alternative 

solutions as it manages the system as a whole. In 

(Buhrkal et al., 2012), the authors propose routing with 

time windows which analyze the logistics activity 

within a city. The proposed mechanism finds the cost of 

optimal routes in order to guide the trucks to bins with 

an adaptive large neighborhood search algorithm. In 

(Stellingwerff, 2011), the authors evaluate dynamic 

planning methods applied for waste collection of 

underground bins. The proposed model reduces the 

amounts of carbon dioxide released in the environment 

by making the dynamic routing more effective. Discrete 

event simulation is the technique adopted in (Mes, 

2012). The authors present a model that applies 

dynamic planning to exploit information transmitted 

through motion sensors embedded in underground 

bins. The authors in (Milić & Jovanović, 2011) develop a 

routing algorithm with a mobile measuring system on 

the trucks. They perform stochastic dynamic routing 

which makes corrections during or after the execution 

of the existing routes.  



The authors in (Minh et al., 2013) introduce a 

memetic algorithm to perform routing enforced with 

time windows and conflicts context. The model 

incorporates a combination of flow and set partitioning 

formulation to achieve multi-objective optimization. 

Another heuristic solution is proposed in 

(Hemmelmayr et al., 2013). The authors state the waste 

collection as a periodic truck routing problem with 

intermediate waste depots. The model incorporates 

variable neighborhood search and dynamic 

programming in order to achieve the optimal solution. 

In (Von Poser & Awad, 2006), the authors propose a 

genetic algorithm to solve the dynamic routing 

problem. Specifically, the model assumes that the waste 

collection problem could be treated as a Traveling 

Salesman Problem (TSP). Then, the genetic algorithm 

optimally solves the TSP. The authors in (Mes et al., 

2013) propose a heuristic method for the dynamic 

routing considering several tunable parameters. 

Sensors enable reverse inventory routing in dense 

waste networks. As a waste network, they consider a 

network of waste bins located inside a specific city. 

Heuristics deal with uncertainty of daily and seasonal 

effects. The model discussed in (Bing, 2014) deals with 

the collection of plastic waste which is differentiated 

from other solid waste. Collection routes are redesigned 

by adopting an eco-efficiency metric with balancing the 

trade-off between the costs and environmental issues. 

In (Anagnostopoulos and Zaslavsky, 2014), the authors 

propose a novel IoT-enabled dynamic routing model for 

waste collection in a SC. The proposed model is robust 

in case of an emergency (i.e., a road under construction, 

unexpected traffic congestion). Finally, the authors in 

(Anagnostopoulos et al., 2015a) extend the system 

presented in (Anagnostopoulos & Zaslavsky, 2014) and 

propose a dynamic routing model to face the case of 

truck inefficiency due to overloading or damage. The 

paper incorporates IoT technology applied for waste 

collection in a SC. In (Anagnostopoulos & Zaslavsky, 

2014; Anagnostopoulos et al., 2015a), the waste 

collection is addressed as a problem which can be 

solved with IoT infrastructure incorporated in SCs. 

Significance of Our Research 

As described, relevant research in WM mainly involves 

solutions related to collection strategies. These 

strategies involve routing and/or scheduling algorithms 

that deliver the optimal paths/schedules for waste 

collection. The ultimate goal is the minimization of the 

operational cost. The related work efforts deal with the 

problem through the economic perspective of the WM 

problem. Hence, many efforts provide solutions for the 

dynamic scheduling and routing when deviations from 

the initial plan are present. In this paper, we go a step 

further. We study the problem not only through the 

economic perspective; however, we consider the 

problem as a major problem that affects human lives. 

We consider high priority areas and high priority 

waste bins, respectively. Our aim is to provide high 

quality solutions for the management of high priority 

bins when there is a need for the immediate collection. 

Our approach differs with previous models in the 

following aspect. In (Anagnostopoulos & Zaslavky, 

2014), the authors focus on the design of a dynamic 

routing algorithm capable of handling collection truck 

routing due to road abnormalities (e.g., under 

construction) or unexpected traffic congestion. In 

(Anagnostopoulos et al., 2015a), the authors extend the 

algorithm proposed in (Anagnostopoulos & Zaslavsky, 

2014) by incorporating the management of the truck 

inefficiency due to overloading or damages during the 

collection process. In this paper, the proposed models 

are based on a dynamic routing algorithm which is an 

extension of the previous work in (Anagnostopoulos & 

Zaslavsky, 2014). The main difference of the current 

paper is our view to extend the dynamic routing 

process in immediately collecting high priority bins 

paying attention of keeping the humans’ quality of life 

at high levels. Conceptually, this means that the main 

dynamic routing concerns have been addressed by 

previous approaches and, now, we focus on the models 

applied in a more advanced concept on WM, i.e., by 

increasing the quality of life for citizens within the SC. 

3. System Overview 

Waste collection is a major counterpart to the 

environmental pollution (Nam & Pardo, 2012). In the 

respective literature, waste collection is treated 

uniformly regarding city areas. However, real situations 

imply the discrimination of city areas according to 

certain social criteria, such as: (i) sensitivity to pollution 

due to medical waste (i.e., in hospitals), (ii) quality of 

service to a specific population (i.e., in tourist areas), (iii) 

prestigious places and buildings within the city (i.e., in 

the municipality town hall), etc. These areas require 

time critical waste collection. In this paper, we 

introduce a novel approach of discriminating city areas 

by incorporating high priority bins to them. 

We consider that a SC is divided to a number of 

sectors si, i = 1, 2, …, n. Sectors cover the entire area of 

the city. In each si, a number of ‘regular’ bins bj, j = 1, 2, 

…, m and a certain number of high priority bins hz, z = 

1, 2, …, p are located (Centre of Regional Science, 2015; 

Priano & Guerra, 2014). In addition, each sector is 

served by a number of trucks tl, l = 1, 2, …, q. It holds 



that the number of high priority bins in a sector is less 

than the number of regular bins since high priority 

areas are, usually, less than regular areas within a 

sector.  

Each bin, regardless its type, has certain features, 

such as:  

 a static GPS location; 

 RFIDs for bin tagging and identification; 

 capacity sensors for measuring the volume of 

waste; 

 actuators for locking the lid of the bin when 

becomes full; 

 a volume capacity of c kilograms to serve waste. 

Each collection truck has certain features as follows:  

 a dynamic GPS location which changes on the 

move; 

 a volume capacity of C kilograms to collect waste 

from the bins.  

It holds that the capacity of each truck is much more 

than the capacity of a bin, thus, C ≫ c. 

Waste collection is the process of collecting waste 

from the bins and empties it to the dump outside the SC. 

We propose four (4) waste collection models, which 

deliver a realization of a waste collection strategy. Such 

strategy serves regular or high priority bins, in a daily 

basis, susceptible to the restriction that collection is 

discriminated according to the bin type. Consequently, 

high priority bins are served immediately when they 

get full (e.g., their capacity status is over a pre-defined 

threshold to avoid frequent, possibly costly depletions) 

interpolating the truck routing trip between regular 

bins. The proposed models are dynamic in the sense 

that they react when changes in the demand for waste 

collection are present. For instance, when bins become 

full, specific events are triggered in the backend system 

and, accordingly, changes in the trucks routes are 

imposed in order to immediately serve the raised alerts. 

The immediate collection, especially for high 

priority bins, is imperative, even though, bins have lids 

to be locked when they are full. The reason is that by 

locking the bins the problem is not solved since future 

waste disposals (that could be realized in short time 

after locking) will, probably, contaminate the area near 

the locked bins. Let us discuss a specific scenario where 

the significance of the proposed models becomes clear. 

Imagine a hospital where the corresponding bins are 

locked. In this case, future (possibly dangerous) waste 

disposals (e.g., medical – related material) could heavily 

affect human lives. Obviously, when bins are collected 

once a day, this could possibly cause many problems to 

patients, employees or visitors. The proposed models 

minimize the time required for collecting high priority 

bins in order to minimize possible negative effects in 

humans.  

System Architecture 

The architecture of the system is applied to the concept 

of IoT-enabled SCs (Vermesan & Friess, 2013; Jin et al., 

2014). It is composed of three layers:  

(i) The physical infrastructure,  

(ii) The middleware available in the Cloud, and 

(iii)  The Decision Support System (DSS).  

The physical infrastructure contains the devices 

embedded to bins and trucks. Data produced by the IoT 

components of bins are fused to a Wireless Sensor 

Network (WSN) in order to be transferred to the central 

system for further processing. Trucks, apart from the 

GPS location tracking device, are equipped by smart 

phones used by drivers for getting routing directions. 

The Cloud middleware is built on top of the OpenIoT1. 

Specifically, WSN data are aggregated from the Global 

Sensor Networks (GSN)2 which is originated in the lower 

level of the OpenIoT. Consequently, data are cleaned 

and missing values are imputed. Data are stored in a 

Cloud Data Base (Cloud DB). The DB also stores GPS 

location data retrieved by trucks. A dynamic scheduling 

model is responsible to initiate a route when waste in a 

bin reaches a certain capacity threshold. Accordingly, a 

dynamic routing model is triggered to produce the 

appropriate route for collecting waste, as described in 

Section 4. The DSS is built on top of the architecture and 

is responsible for: (i) sending routing directions to 

drivers through an Android GUI, and (ii) producing 

reports and statistics for the municipality stakeholders; 

thus, enabling online monitoring of the waste collection 

process. The proposed architecture is presented in Fig. 

1. 

The main difference, between the static models 

proposed in the literature and the dynamic models 

proposed in this paper, is the treatment of waste 

collection according to the filling rates of the bins. In 

(Anagnostopoulos et al., 2015b) a dynamic scheduling 

model for is presented for the efficient waste collection 

based on top-k queries. Specifically, the authors 

experiment on dynamic vs. static scheduling; with 

regards to waste collection time, for different number 

of k bins. The dynamic model is running continuously 

                                                           
1 https://github.com/OpenIotOrg/openiot 
2 http://lsir.epfl.ch/research/current/gsn/ 



while the static model is executed every 24 hours. It can 

be observed that scheduling time varies w.r.t. the value 

of top-k bins, thus, the higher the k value, the more time 

(i.e., logarithmically) required to initiate a schedule. 

Note that the highest scheduling time is reached for the 

static scheduling; since in this case, there is no 

information about the capacity of the collected bins (i.e., 

full or half full), thus, leading to a low system 

performance. As reported, through simulations, in 

(Anagnostopoulos et al., 2015b), a significant number of 

bins become full in 1-12 hours. It should be noted that 

in (Anagnostopoulos et al., 2015b) no high priority bins 

are considered and the lower the k is, the greater the 

filling rate becomes. In this paper, the proposed models 

incorporate a dynamic scheduling approach and 

continually run during the collection process. It should 

be noted that, at first, the initial routing plans are 

created when the system is started and accordingly the 

proposed models are fired to ‘monitor’ and respond to 

changes in the demand for collection.  

 

 

 

 

Fig. 1. The system architecture. 

 

4. High Priority Waste Collection Models  

High priority waste collection involves the 

immediate response to alerts related to waste bins 

located in high priority areas. Such alerts are 

triggered when a high priority bin becomes full or its 

filling rate is over to a pre-defined threshold. In this 

paper, we propose a set of models for the immediate 

management of high priority bins. The proposed 

models are applied after the generation of the routes 

that collection trucks should follow to perform the 

waste collection for regular bins. This means that our 

models are responsible to provide reactions in high 

priority bins alerts during the collection process. 

Hence, in the beginning, the system produces the 

routes for each collection truck and, accordingly, it 

initiates (one of) the proposed algorithms (models) 

to respond with the optimal reaction during the 

collection process. 

It is worth noting that the proposed models could 

be easily extended to be applied in generic waste 

collection schemes. For instance, routing plans could 

be re-adjusted during the collection process in order 

to better respond to new needs for waste collection. 

When an area is not participating in the initial 

collection plan and the need for collection is 

generated during the execution of the initial plan, the 

system, based on the proposed models, could re-

adjust the routing plan in order to serve the new 

areas. However, in such cases, the system should be 

capable of meeting specific constraints related to 

trucks load, etc. The initial plans are created by 

incorporating constraints related to e.g., the trucks 



load. Deviations could make the trucks become full 

before the end of the trip and, thus, more changes in 

the plans of the fleet are required. 

The simplest (baseline) model includes specific 

collection trucks devoted to exclusively serve high 

priority bins. Hence, when an alert is present, one of 

the devoted trucks undertakes the responsibility of 

serving the specific bin. The remaining models deal 

with dynamic routing and scheduling solutions 

during the collection time. With the proposed models, 

we aim to handle cases where high priority bins 

become full during the day and, more specifically, 

during the collection time. We aim to handle cases 

where we are not sure in advance when and how 

high priority waste bins will become full e.g., cases 

met in commercial blocks, schools, hospitals, 

crowded touristic areas, etc. In other words, we try to 

cover unexpected scenarios as far as waste 

production concerns. In this section, we analytically 

present the proposed models and give their details. 

We provide a set of solutions and present their 

advantages and disadvantages. Hence, developers or 

local authorities, according to the characteristics of 

each model, can adopt the model that best matches to 

a set of pre-defined constraints. In short, the 

proposed models are: 

 the Dedicated Trucks Model (DTM) 

 the Detour Model (DM) 

 the Minimum Distance Model (MDM) 

 the Reassignment Model (RM) 

 

A. The Dedicated Trucks Model (DTM) 

The DTM is the simplest model for high priority 

waste bins management. In this model, we devote 

specific trucks for serving high priority bins. The 

trucks are not assigned to any other collection action. 

When alarms for full high priority bins are triggered, 

one of the available trucks undertakes the 

responsibility of serving them according to its 

capabilities. In the case of a large number of high 

priority bins alerts, multiple trucks could be used. It 

should be noted that the optimal number of trucks 

should be adopted in order to cover the highest 

possible number of high priority bins. The DTM will 

be adopted when local authorities desire immediate 

responses to high priority bins alerts without 

disturbing the remaining collection trucks from their 

initial assignments. The DTM could be the ideal 

solution when local authorities face a high rate of 

alerts initiated by high priority bins. However, when 

no such alerts are present, the performance of the 

model is low. For instance, if just one high priority 

bin becomes full during a day, the algorithm will 

devote a specific truck for this bin. Even worse, 

multiple routes could be generated when high 

priority bins (having similar locations) produce alerts 

with low rate during the day.  

The DTM algorithm is depicted in Fig. 2 and 

results the route r (i.e., the ordered set of waste bins 

to get emptied) of a specific dedicated truck. The 

input of the algorithm is the set of high priority bins 

hz in a specific area and the available trucks tl (i.e., the 

trucks devoted to serve high priority bins – here tl 

represents the number of trucks devoted to high 

priority bins and not the number of trucks devoted to 

a specific sector). The output is the route r for a truck 

devoted to the collection of the discussed bins. A 

route r is a sequence of waste bins that a truck should 

visit. The algorithm, through the adoption of the 

routing function (i.e., routing()), utilizes the Dijsktra 

shortest path to generate the initial route for visiting 

the high priority bins. The visited() function is 

adopted to generate the bins that are visited 

according to the route r (this is depicted by the set υ). 

Finally, when a new bin becomes full (its capacity 

zhc is over a threshold θ) during the collection 

process, the algorithm excludes the visited bins and 

performs a re-routing process starting over, however, 

for the remaining bins (depicted by the set difference 

r -  υ).  

1 Input: hz, tl //high priority bins, trucks 

2 Output: r //route which composed of the ordered  

                    //set of waste bins to get emptied 

3 r   routing(hz) //Get the route of the truck  

4 υ   visited(r) //Store emptied high priority bins 

5 
If (

zhc > θ) Then //Scheduling: In case that a  

                             //capacity threshold θ occurs  

                             //for the hz bin; then it becomes full 

6 r   routing(hz, r - υ) //Routing: Dedicated  

                        //truck collects waste from  

                        //the r – υ bins including the hz bin  

7 End If 

8 Return r 

Fig. 2. The DTM algorithm. 

The time complexity of the DTM is the complexity 

of the routing() function, which is O(hz
2), plus the 

complexity of the visited() function which is O(hz). 

Hence, the overall complexity is O(hz
2). 



B. The Detour Model (DM) 

As the DTM does not exhibit good performance 

when high priority bins alert are relatively rare, we 

propose the DM. This model forces trucks to deviate 

from their original path in order to first serve the 

high priority bins that have already triggered an 

alert. The routing function of DM incorporates an 

initialization function which indicates that the 

routing will start from the location of a specified high 

priority bin. Each collection truck is responsible to 

change its root to serve the wider area where high 

priority bins are located. For instance, let us consider 

that the original allocation for two trucks T1, T2, is 

two sub-areas, A1, A2 for each truck respectively Fig. 

3. If an alarm is triggered by a high priority bin 

located in A1, the first truck, T1, will interrupt its 

route, it will serve the bin and, accordingly it will 

continue with the remaining bins. The DM aims to 

have the trucks devoted to specific sub-areas. Every 

bin inside each area will be served by the 

corresponding truck. However, the model exhibits 

low performance when the truck, which is 

responsible for high priority bin, is located in a 

distant place related to the location of the bin. In such 

cases, there is the risk of producing continuous 

spatial deviations from the original path which could 

lead to increased route distances and fuel 

consumption.  

The proposed DM algorithm is depicted in Fig. 4 

and results the route of a specific truck. The input of 

the algorithm is the set of high priority bins hz in a 

specific sub-area, the set of ‘regular’ bins bj and the 

available trucks tl. The output is related to the route r 

for a truck serving the specific area. The algorithm, 

through the adoption of the routing function (i.e., 

routing()), utilizes the Dijsktra shortest path to 

generate the initial route for visiting the ‘regular’ 

bins. The visited() function is adopted to generate the 

bins that are visited according to the path r (this is 

depicted by the set υ). When a high priority bin 

becomes full (its capacity 
zhc is over a threshold θ) 

during the collection process, the algorithm excludes 

the visited bins and performs a re-routing process. 

However, the route, with the help of the init() 

function, starts from the full high priority bin 

generating the alert and the remaining bins (depicted 

by the set r - υ) follow.  

 

Fig. 3. An allocation example for two trucks. 

1 Input: bj, hz tl //regular bins, high priority bins,  

                           //trucks 

2 Output: r //route which composed of the ordered  

                    //set of waste bins to get emptied 

3 r   routing(bj) //Get the route of the truck 

4 υ   visited(r) //Store emptied regular bins 

5 
If (

zhc > θ) Then //Scheduling: In case that a  

                        //certain capacity threshold θ  occurs  

                        //for the h bin; then it becomes full 

6 r   routing(init(hz), r - υ) //Routing: 

                //Truck collects waste from the r - υ 

                //bins including hz bin. Initial routing  

                //bin is the hz bin 

7 End If 

8 Return r 

Fig. 4. The DM algorithm. 

The time complexity of the DM is the complexity 

of the routing() function, which is O(bj
2), plus the 

complexity of the visited() function, which is O(bj), 

and the complexity of the init() function which is 

O(hz). Hence, the overall complexity is O(bj
2) since bj 

> hz. 

C. The Minimum Distance Model (MDM) 

The above described models, DTM and DM, have 

specific disadvantages related to the reduced truck 

load and the possibility of multiple deviations from 

the initial route, respectively. We propose an 

additional model, the MDM, which tries to reduce the 

risk of deviations violating the initial assignments as 

produced by the system. In the MDM, when an alert is 

triggered by a high priority bin, the truck having the 

minimum distance with the bin is assigned to serve it. 

Specifically, the MDM incorporates a nearest 

function, which indicates that routing process and 

selects the truck with the nearest location to the 

location of the specified high priority bin. An 

initialization function is also incorporated in the 

routing function of the MDM. With this model, we try 



to minimize the effort for each truck accompanied by 

an on-time service for high priority bins. Actually, we 

try to immediately serve high priority bins mainly 

located in the borders of the initial allocated sub-

areas. The model minimizes the risk of deviation 

from the original routes, however, it is affected by the 

distribution of the produced alerts.  

The MDM algorithm is presented in Fig. 5. The 

inputs of the algorithm are the sets of regular, high 

priority bins and the available trucks. The output is 

the route for each truck. Initially, the algorithm 

generates the route of each truck based on the 

function routing() and defines the visited bins with 

the help of the function visited() (set υl). When a high 

priority bin becomes full (its capacity 
zhc is over a 

threshold θ) during the collection process, the 

algorithm, through the adoption of the function 

nearest(), finds the nearest truck f to the specific bin 

and performs a re-routing process for the specific 

truck. In the re-routing process, the algorithm 

excludes the already visited bins (let rf - υf  be the set 

of the visited bins) and gives priority (starts the 

route) from the high priority bin through the use of 

the function init().  

1 Input: bj, hz, tl //regular bins, high priority bins,  

                           //trucks 

2 Output: r //route which composed of the ordered  

                    //set of waste bins to get emptied 

3 Foreach tl do 

4 

lt
r   routing(bj)  //Get the route of the truck 

5 
υl   visited(

lt
r ) //Store emptied regular  

                                 //bins for each truck 

6 End For 

7 
If  (

zhc > θ) Then //Scheduling: In case that a  

                            //certain capacity threshold θ  

                            //occurs for the h bin; then it  

                            //becomes full 

9 f  nearest(hz, tl) //Find the truck f 

                     //which is nearest to the hz bin  

10 r   routing(init(hz), rf - υf) //Routing: 

           //Truck f collects waste from the  

           // rf - υf bins including hz bin. Initial 

           //routing bin is the hz bin 

12 End If 

13 Return r 

Fig. 5.The MDM algorithm. 

The time complexity of the MDM is the complexity 

of the routing() function, which is O(bj
2), plus the 

complexity of the visited() function, which is O(bj), the 

complexity of the init() function which is O(hz), and 

the complexity of the nearest() function which is 

O(hz). Hence, the overall complexity is O(bj
2) since bj 

>  hz. 

D. The Reassignment Model (RM) 

The last model, the RM, tries to cover the 

disadvantages of the remaining models and is related 

to the re-allocation of the sub-areas when an alert 

arrives to the system. The system takes into 

consideration the current location of trucks and pays 

attention on the high priority bins. Specifically, the 

RM incorporates a reassignment function which 

reassigns the bins of sub-areas to the trucks’ current 

locations. Accordingly, a nearest location function 

denotes that routing will select the truck with the 

nearest location to the location of the specified high 

priority bin. An initialization function is also 

incorporated in the routing function of the RM. With 

this model, we aim to have an up-to-date allocation of 

the entire area in order to maximize the performance. 

It should be noted that the re-allocation could result 

totally different sub-areas compared to the initial 

produced; however, these results will be fully aligned 

with the current needs (i.e., alerts defined by high 

priority bins) and the current location of the trucks. 

In the re-allocation process, high priority bins are 

considered in a first served method. Hence, the new 

routes start with the high priority bins and the rest of 

the bins follow.  

In Fig. 6, we present the proposed RM algorithm. 

The inputs of the algorithm are the sets of regular, 

high priority bins and the available trucks. The 

output is the route for each truck. Initially, the 

algorithm generates the route of each truck based on 

the function routing() and defines the visited bins 

with the help of the function visited() (set υl). When a 

high priority bin becomes full (its capacity 
zhc is over 

a threshold θ), during the collection process, the 

algorithm, through the adoption of the 

reassignment() function creates the new sets of bins 

(i.e., {αl}) devoted to each truck. In these sets, the 

already visited bins are excluded (i.e., the set rl - υl). 

Accordingly, the algorithm finds the nearest truck to 

the high priority bin produced an alert, through the 

adoption of the nearest() function and the nearest 

truck f starts its route from the bin hz (i.e., the high 

priority bin produced an alert). In the re-routing 



process for truck f, the algorithm excludes the 

already visited bins (let rf - υf be the set of the 

unvisited bins). 

In the RM model, the algorithm which performs 

dynamic re-routing is based on the reassignment 

algorithm described in (Lim et al., 2005) and the 

dynamic routing discussed in (Anagnostopoulos et 

al., 2015a). The algorithm presented in (Lim et al., 

2005) is an efficient graph partitioning algorithm 

based on an implementation of k-Means clustering. 

Specifically, the algorithm is fed up with the set of the 

remaining bins to be emptied and the available 

trucks. The locations of the remaining bins are 

considered to be the clustering data while the trucks’ 

locations are the number of cluster centers. The 

output of the algorithm is the reassignment of the 

cluster data (i.e., bins) to certain cluster centers (i.e., 

trucks). Both, cluster data and cluster centers form 

certain clusters which are used by the routing() 

function. 

1 Input: bj, hz, tl //regular bins, high priority bins,  

                            //trucks 

2 Output: r //route which composed of the ordered  

                    //set of waste bins to get emptied 

3 Foreach tl do 

4 

lt
r   routing(bj) //Get the route of the truck 

5 
υl   visited(

lt
r ) //Store emptied regular  

  //bins for each truck 

6 End For 

7 
If (

zhc > θ) Then //Scheduling: In case that a  

                        //certain capacity threshold θ occurs  

                        //for the hz bin; then it becomes full 

8 {αl}  {reassignment(tl, rl - υl)}  

        //Reassigns all the remaining bins to 

       //the trucks; according to the trucks’  

         //relative positions as in (Lim et al., 2005). 

       // αl is the set of the reassigned  

       //bins to the truck tl 

9 f   nearest(hz, tl) //Find the truck f 

                              //which is nearest to the hz bin  

10 r   routing(init(hz), αf)  //Routing: Truck f 

                        //collects waste from the αf bins  

                       //including the hz bin. Initial routing  

                      //bin is the hz bin 

11 End If 

12 Return r 

Fig. 6. The RM algorithm. 

The time complexity of the RM is the complexity 

of the routing() function which is O(bj
2) plus the 

complexity of the visited() function which is O(bj), the 

complexity of the init() function which is O(hz), the 

complexity of the nearest() function which is O(hz) 

and that of the reassignment() function which is 

O(bj
2). Hence, the overall complexity is O(bj

2) since bj 

>  hz. 

5. Application Perspectives 

 

A WMS typically refers to a specific technique, 

strategy, or software adopted to manage waste 

materials. This may include the design of the 

collection, transportation, recycling, disposal, 

processing of waste as well as the implementation of 

such activities. An important part of a WMS is the DSS 

that mainly concerns scheduling activities. The DSS is 

responsible to provide schedules for the collection of 

waste based on a number of criteria. It provides an 

interface for fleet management and it takes into 

consideration spatio-temporal characteristics as well 

as the contextual information of the area under 

consideration. The DSS realizes the strategy of the 

local authorities and relevant stakeholders.  

The proposed models could be part of a DSS in the 

following aspects: 

 A DSS could be based on a set (pool) of 

algorithms that perform dynamic adaptation 

over specific criteria. In the case of high priority 

areas, the local authorities could define the 

criteria e.g., cost, distance, response time and the 

DSS could automatically adopt one of the 

available models. Our models could be part of the 

discussed pool. Hence, an intelligent mechanism 

for selecting the appropriate model for waste 

collection could be built on top of the discussed 

algorithms.  

 According to the adopted strategy, local 

authorities could characterize specific areas as 

high priority and ‘force’ the system to serve them 

immediately. This could be done no matter the 

type of waste (e.g., dangerous materials). For 

instance, local authorities could select a specific 

type of waste to be immediately collected to 

maximize the revenue from recycling. The areas 

where the specific waste type is mainly disposed 

(this could be derived by relevant studies) could 

be defined as high priority areas.  

 The proposed models could be adopted by a DSS 

to manage the trade-off between the immediate 

collection of high priority bins and the collection 

costs which are the time spent, the fuel 



consumed and the distance covered by trucks. 

The DSS could automatically select the model 

that perfectly matches to pre-defined criteria 

that are subject to frequent changes. Hence, the 

WMS could be fully aligned to spatio-temporal 

criteria. Imagine touristic areas where a large 

amount of waste is observed only for specific 

periods (seasonality aspect). Such areas could be 

characterized as high priority only for the 

periods where they are crowded.  

 The proposed models could be combined with a 

classification module that processes the available 

information and will derive classifications for 

multiple waste types. Hence, the local authorities 

will be capable of characterizing multiple high 

priority areas according to the type of waste. The 

DSS could apply different algorithms for different 

waste type and, thus, to be fully aligned with the 

underlying ‘waste dynamics’ of the SC.  

 

6. Experimental Evaluation  

We elaborate on the performance of the proposed 

models i.e., DTM, DM, MDM, RM. Through a set of 

simulations, we evaluate the performance of each 

model concerning important metrics that affect the 

performance of WMSs. We evaluate the proposed 

models for metrics not only related to the required 

computational time but also for metrics related to the 

economic viability of a WMS. The economic viability 

of a WMS depends on issues like the distance covered 

by the trucks as well as the required fuels and the 

time spent in travelling. A number of experimental 

scenarios are adopted to reveal the advantages and 

disadvantages of each model. Our simulations are 

performed for a dataset retrieved for the city of Saint 

Petersburg, Russia.  

The proposed system could be the basis for 

maximizing the Return of Investment (RoI) from 

parties involved in the WM chain. There are specific 

axes through which the RoI could be maximized 

when we apply the proposed system in a SC. The first 

is the cost reduction in the waste collection scheme. 

The proposed models aim to the appropriate 

management of resources required to the WM and, 

thus, local authorities taste fuel cost reduction 

through the optimization of routes (unnecessary 

transports are minimized). In addition, the efficient 

management of the collected waste is capable of 

increasing the material recovery and recycling. When 

combined with recycling systems will increase the 

amount of recycled waste with obvious positive 

impacts in the economic growth of the SC. The 

percentage of the recycled waste will be maximized 

accompanied by the economic prosperity of the local 

societies and the corresponding companies. The 

above discussed issues are some of the positive 

impacts that our models have. However, a detailed 

analysis on the RoI of a waste management system is 

beyond the scope of this paper. 

A. Performance Metrics and Simulation Setup 

We adopt a set of metrics capable of revealing the 

performance of each model by evaluating 

quantitative and qualitative characteristics. 

Quantitative characteristics are related to the 

quantity of the collected waste, the distance traveled 

from bins to dumps and the required fuel for 

delivering the collected waste to dumps. Qualitative 

characteristics are related to the CPU time required 

to derive the final routes and the routing time. The 

list of the adopted metrics is as follows: 

 CPU Elapsed Time (CET). The CET metric 

represents the required time (in seconds) for 

deriving the final collection result for each model. 

CET exhibits the time devoted to the definition of 

the final routes for each truck before the proposed 

framework’s result is applied into the waste 

collection. The lower the CET is, the better the 

performance becomes. The reason is that when 

CET is low, the proposed system does not devote 

much time to result the final collection route. 

 Collected Load (CL). The CL metric depicts the 

collected volume of waste (in kilograms) that is 

transported to dumps. The aim is to have high 

values for the CL metric in order to exploit the 

entire volume that trucks can transport. In our 

results, we consider the average CL per truck. 

 Distance (D). The D metric measures the 

trajectory covered (in kilometers) by trucks for 

delivering waste into the dumps. The aim is to 

minimize the D metric in order to have a system 

that results routes involving the shortest paths. In 

our results, we consider the average D per truck. 

 Routing Time (RT). The RT metric represents the 

time required (in minutes) that trucks need to 

visit waste bins, perform the collection plan and 

deliver waste in to the dumps. The RT is not only 

affected by the D metric but also by qualitative 

characteristics such as the time required for the 

actual collection in each bin and the traffic on 

road network in rush hours. 

 Response Time (R). The R metric represents the 

average time that a truck needs to serve high 



priority bins. The R metric should be low because 

we aim at delivering a system that immediately 

serves high priority bins in order to minimize 

waste consequences in human lives. 

 Fuel Quantity (FQ). The FQ metric measures the 

quantity of fuel (in litters) consumed during the 

specified routing trips. The FQ depicts the actual 

economic consequences of each model that finally 

affects the viability of the proposed waste 

management system. The aim is to have low 

values for FQ since this implies economic scaling. 

 

Fig. 7. Distribution of bins (high priority bins are with 

black) within the municipality of Saint Petersburg, Russia. 

Table 1. Simulation parameters and their values. 

Parameter Description Value 

n The number of sectors 10 

m The number of regular bins 250 

p The number of high priority bins 50 

q The number of trucks in each sector 6 

c The volume capacity of each bin 100 Kg 

C The volume capacity of each truck 4000 Kg 

The proposed models were evaluated with real 

and synthetic data retrieved by the municipality of 

Saint Petersburg, Russia3. In Fig. 7, we present a real 

allocation distribution of bins within the 

municipality. More specifically, the municipality is 

divided into certain sectors. In Saint Petersburg, for 

each sector a certain number of regular and high 

priority bins are assigned as well as a certain number 

of trucks. This separation is a decision of the Saint 

Petersburg local authorities for better handling the 

available waste bins and the fleet of trucks. It should 

be noted that multiple collection trucks could be 

devoted to each sector. Each bin as well as each truck 

has a specific fixed capacity. Table 1 gives more 

                                                           
3
Real allocation distribution of bins within the city of Saint 

Petersburg. http://wikimapia.org/, [Accessed on: March 9, 2015]. 

details on the adopted setting for the performance 

evaluation of the proposed models. In our 

experiments, we also consider variable n in order to 

show the performance of our models when sectors 

number increase. It should be noted that the number 

of trucks, in total, remains the same which means 

that for high n leads to low number of trucks per 

sector. 

We evaluate the proposed models for a period of 

30 days (simulation time). Dynamic scheduling is 

based on the (Anagnostopoulos et al., 2015a) while 

dynamic routing is achieved with DTM, DM, MDM, 

and RM models. Specifically, the models are running 

continuously within that period. A dynamic routing is 

initialized when a certain threshold of bins is reached 

based on the dynamic scheduling. The models served, 

on average, a range of 1 – 7 alerts per sector for 

dynamic routing and per 24 hours. This is natural 

since some areas are of high priority, thus, require 

immediate waste collection than the regular areas. 

B. Performance Assessment 

Our results for the CET metric are presented in 

Fig.  8. We observe that the DTM achieves high 

performance while the RM is the less effective. This is 

explained since the complexity of the DTM is less 

than the complexity of the RM. The DTM in contrast 

to the RM does not contain: (i) a reassignment 

function, and (ii) a nearest function. The DTM 

exhibits higher performance than the MDM, as it does 

not involve a nearest function. Finally, the DTM is 

more efficient compared to the DM, because in 

contrast to the DM the routing function does not 

contain an initialization stage. 

 

Fig. 8. Results for the CET metric (seconds). 



The CL results for the proposed models are 

presented in Fig. 9. We can observe that the DTM is 

less efficient than the remaining models. This is 

natural since the DTM allocates certain trucks for 

collecting waste only from the high priority bins. 

However, the DM, the MDM and The RM allocate the 

available trucks to collect waste from both regular 

and high priority bins, thus, exploiting the entire 

volume capacity of trucks. 

 

 

Fig. 9. Results for the CL metric (kilograms). 

Our results for the D metric are presented in 

Table 2. We can observe that the RM is the most 

efficient model compared to the remaining models. 

Since the RM incorporates the reassignment function 

which reallocates routing paths to trucks, the model 

assigns the unserved bins to the nearest trucks. In the 

RM, the trajectory covered by trucks for delivering 

waste into the dumps, after the reassignment 

function, is minimal, compared to the remaining 

models. The DM is less efficient since it performs a 

detour process which leads to maximum trajectories. 

The MDM exhibits lower performance compared to 

the rest models and especially to the RM. The MDM 

calculates the minimum distance between trucks and 

high priority bins, however, it does not perform any 

reassignment. Recall that in the MDM, each high 

priority bin is assigned to the closest collection truck. 

The DTM performs worse than the MDM, since no 

calculation of the minimum distance is performed 

between trucks and high priority bins. It should be 

noted that our results for the D metric concern the 

average distance covered by trucks. The D results 

cannot be judged as low as we consider that each 

sector covers an area of 25 square kilometers. 

Specifically each of the trucks travels 15.8 km on 

average which is a sufficient distance for the specified 

sectors. The bins collected per truck route are in the 

range of 1 to 50 regular bins and 1 to 10 high priority 

bins. The range of dynamic routes per day is 1 to 7 

adopting the dynamic scheduling. 

Table 2. Results for the D metric (kilometers). 

Sectors DTM DM MDM RM 

1 18.7601 20.4335 18.1074 15.8042 

2 18.4904 20.2502 17.5486 15.9508 

3 18.0401 19.1575 18.0812 16.5253 

4 17.8976 19.4881 17.6272 16.6491 

5 18.2744 19.8057 17.3739 16.1378 

6 18.5684 19.6440 17.6719 15.2865 

7 18.5825 20.7696 18.3960 16.3541 

8 17.7156 20.2548 17.5711 15.7203 

9 17.9232 20.8422 18.0638 16.1230 

10 18.3599 20.0643 18.1279 17.0431 

Our models are also evaluated concerning the RT 

metric. The RT results are depicted in Fig. 10. The RM 

performs better than the remaining models. The 

reason is that the RM derives the lowest D value. In 

constrast, low D bounds the RT to low values. The DM 

also exhibits low performance since it has the highest 

D results. It should be noted that high D leads the RT 

to high values as well. The DTM and the MDM have 

similar performance concerning the RT metric, 

although, they exhibit slightly different D values. The 

RT metric is not only affected by D but also by 

qualitative characteristics which have high impact in 

the RT results. Such qualitative characteristics could 

be the time required for the actual waste collection 

and the traffic on road network in rush hours. 

 

Fig. 10. Results for the RT metric (minutes). 

Our results concerning the FQ metric are 

presented in Fig. 11. The RM achieves high 

perfrormance since the FQ is highly correlated with D 

and RT metrics. In the RM results, we observe low 



values for D and RT which, in turn, implies low FQ. 

The DM has the worst performance compared to the 

remaining models. The reason is that the DM results 

high D and RT results and, thus, the trucks travel in 

long distances before they are capable of delivering 

the collected waste into the dumps. The DTM and the 

MDM exhibit similar FQ results. However, the MDM is 

slightly better than the DTM due to the low D results. 

We report on the performance of the proposed 

models for various scenarios concerning the number 

of high priority bins. Let us denote with P the 

percentage of high priority bins over the entire set of 

the available bins. Recall that the number of the 

available bins in the city of Saint Petersburg is equal 

to 3000. Hence, when p = 50% means that half of the 

available bins are considered as high priority. With 

this simulation setup, we try to reveal the 

performance of the models when the system faces 

variable high priority bins number. Additionally, we 

experiment with θ = 0.8. Recall that θ represents the 

threshold over which a bin is considered as full. In 

Fig. 12, we present our results concerning the D 

metric and p = 25%. As n increases, the distance 

covered by the trucks decreases. This stands for the 

entire set of the proposed models. The reason is that 

as n increases, the area that each sector covers 

decreases and, thus, a low distance is required for the 

collection trucks. The RM exhibits the best 

performance amongst the proposed models followed 

by the MDM and the DTM. These results are related 

to the scenario where θ = 0.8. In Fig. 13, we see our 

results for the RT metric (p = 25%). In this 

experimental setting, the RM exhibits the best 

performance. The increased n leads to a decreased RT 

as collection trucks have to cover lower distance 

compared to scenarios involving low n. In Fig. 14, we 

present our results for the R metric and for the same 

experimental scenario (p = 25%). In this case, the DM 

has slightly better performance than the RM. The DM 

leads to 4% (approximately) less time than the RM in 

order to serve high priority bins. The worst 

performance is observed by the MDM. 

 

Fig. 11. Results for the FQ metric (litters). 

 

Fig. 12. Performance of the proposed models for P = 25% 

(D metric). 

 

Fig. 13. Performance of the proposed models for P = 25% 

(RT metric). 



 

Fig. 14. Performance of the proposed models for p = 25% 

(R metric). 

We also perform a set of experiments for p = 50%. 

In this experimental scenario, we assume that half of 

the available bins are considered as high priority. In 

Fig. 15, we see that the lowest distance is covered by 

the RM and the DTM. When n → 30, the DTM exhibits 

better performance than the remaining models. The 

DTM seems to be the appropriate model when the 

area under consideration includes a high percentage 

of high priority bins. In such cases, it is the best for 

local authorities to devote specific collection trucks 

for covering high priority bins. The worst 

performance is exhibited by the MDM as the model 

results an increased number of changes in the route 

of each collection truck. In Fig. 16, we confirm that 

the RM requires less routing time compared to the 

remaining models while the MDM exhibits the worst 

performance. As far as the R metric concerns, our 

results depicted in Fig. 17 show that the DTM is the 

best model if local authorities want to achieve limited 

time for serving high priority bins. Recall that we 

assume an area with a high number of high priority 

bins. In such cases, the RM results the lowest routing 

time, however, the model is not appropriate to 

immediately serve high priority bins. Finally, the R 

decreases as n increases. The reason is that a high 

number of sectors lead to small areas that should be 

served by the collection trucks. However, in such 

cases, the trucks should cover a low number of bins.  

 

Fig. 15. Performance of the proposed models for p = 50% 

(D metric). 

 

Fig. 16. Performance of the proposed models for p = 50% 

(RT metric). 

 

Fig. 17. Performance of the proposed models for p = 50% 

(R metric). 

We perform additional experiments for different 

values of q and C. The aim is to reveal the 

performance of the proposed models when the 



number of trucks in each sector and their capacity 

change. In experiments, we get q ∈ {4, 6, 10, 20}, C ∈ 

{2000, 3000, 4000, 5000} (Kg) and p ∈ {5%, 50%} 

while keeping n = 10. We report on the D, RT and R 

results. 

In Figs 18, 19 and 20, we see our results for p = 

5% and different q. In general, the proposed models 

result similar D values (Fig. 18). As the number of 

trucks increases, the distance that they cover, 

naturally, decreases. We observe similar decrease in 

the routing (RT) and the response time (R) (Figs 19, 

20). Multiple trucks could easily serve not only high 

priority bins but also regular bins. In such cases, the 

trucks devote low time for routing. The RM exhibits 

the best and the DM exhibits the worst performance 

for both, the RT and the R metrics.  

 

Fig. 18. Performance of the proposed models for p = 5% 

and different q (D metric). 

 

Fig. 19. Performance of the proposed models for p = 5% 

and different q (RT metric). 

 

Fig. 20. Performance of the proposed models for p = 5% 

and different q (R metric). 

In Figs 21, 22 and 23, we see our results for p = 

50% and different q. In this scenario, the proposed 

models cover high distances (Fig. 21) when q → 4 

compared to the experimental scenario where p = 

5%. This is reasonable, as in the scenario where p = 

50%, the available trucks are limited and, thus, they 

should cover high distances to serve the high number 

of high priority bins. These results mainly stand for 

the DM and the MDM. Concerning the RT metric (Fig. 

22), we get similar results as in the scenario where p 

= 5%. However, now, the worst performance is 

exhibited by the MDM instead of the DM. The RM 

remains the model with the best performance. 

Moreover, we observe additional differences in the 

performance of the proposed models related to the R 

metric with the previously discussed experimental 

scenario (p = 5%). When p = 50%, the DTM exhibits 

the best performance concerning the R metric (Fig.   

23) and the RM the worst. Now, we have a high 

number of high priority bins that should be 

immediately served. The DTM devoting specific 

trucks to the high priority bins is the model that 

should selected in such cases as it is the model 

exhibiting the lowest response time. 



 

Fig. 21. Performance of the proposed models for p = 50% 

and different q (D metric). 

 

Fig. 22. Performance of the proposed models for p = 50% 

and different q (RT metric). 

 

Fig. 23. Performance of the proposed models for p = 50% 

and different q (R metric). 

In Figs 24, 25 and 26, we depict our results for 

different C (C ∈ {2000, 3000, 4000, 5000}) and p = 

5%. We aim to present the performance of the 

proposed models when the capacity of the available 

trucks changes. Concerning the D metric, the 

proposed models exhibit similar performance, 

however, the distance increases as the capacity 

increases. The reason is that each truck when it has 

an increased capacity can collect more waste before it 

is ready to be guided in the disposal area. The routing 

time (RT metric) also increases as C → 5000. This is 

reasonable as the distance increases and each truck 

spends more time for the collection process. The best 

performance is observed for the RM while the worst 

performance is observed for the DM. Similar results 

can be seen for the R metric.  

 

Fig. 24. Performance of the proposed models for p = 5% 

and different C (D metric). 

 

Fig. 25. Performance of the proposed models for p = 5% 

and different C (RT metric). 



 

Fig. 26. Performance of the proposed models for p = 5% 

and different C (R metric). 

In addition, we get p = 50% to simulate a high 

number of high priority bins. In Figs 24, 25 and 26, 

we depict our results for different C. The RM and the 

DM exhibit the lowest and the highest distance, 

respectively (Fig. 24). In Fig. 25, we observe that the 

RM remains the model with the best performance 

and the MDM is the model with the worst. These 

results stand for the RT metric. Moreover, concerning 

the metric R, we confirm the results depicted in Fig. 

23. As we see in Fig. 26, the DTM exhibits the lowest 

response time while the RM the highest. These 

results indicate that when the number of high 

priority bins is large, the public authorities should 

devote specific trucks to serve high priority areas / 

bins.  

 

Fig. 27. Performance of the proposed models for p = 50% 

and different C (D metric). 

 

Fig. 28. Performance of the proposed models for p = 50% 

and different C (RT metric). 

 

Fig. 29. Performance of the proposed models for p = 50% 

and different C (R metric). 

Finally, in Table 3 and Table 4, we summarize the 

cases where each model performs well. The tables 

are provided in order to help developers and 

stakeholders to choose between the proposed 

models. It should be noted that in Table 3, we get the 

average case retrieved by the entire set of our 

experiments and classify the performance in the set 

{Low, Medium, High}. 

Table 3. Models Performance. 

Model 

Metric 

CET CL D RT R FQ 

DTM Low Low Medium Medium Low Medium 

DM High High High Medium Medium High 

MDM High High Medium Medium Medium High 

RM High High Low Low Medium Low 

 

Table 4. Performance Domains. 



Model 
Dedicated 
Trucks per 
bins Type 

Dedicated 
trucks per 

Sector 

Same 
Sector 

Support 

Cross 
Sector 

Support 

Re-
Assignment 

Support 

DTM      

DM      

MDM      

RM      

 

7. Conclusions and Future Work 

The immediate collection of waste from high 

priority bins is a challenging problem in modern 

societies. The reason is that, nowadays, due to the 

increased population accompanied by the industrial 

development, the probability of exposing dangerous 

waste to citizens is increased as well. Especially, in 

the cases where waste is dangerous for human lives 

or for specific parts of the population, the need for 

the immediate collection is imperative. We propose a 

set of models for alleviating the discussed problem. 

The proposed models deal with specific strategies for 

serving high priority bins. All of them aim to cover 

specific aspects of the problem. Local authorities or 

stakeholders could adopt a model to be applied in 

real scenarios. A high number of simulations reveal 

the advantages and disadvantages of the proposed 

models. We report on the performance of each model 

for a wide set of metrics. These metrics deal with 

quantitative as well as qualitative characteristics of a 

waste management system.  

In the first places of our future research agenda is 

the definition of an intelligent mechanism for the 

management of historical data related to the load of 

high priority bins. Hence, our system will be capable 

of providing pro-active responses in the demand for 

collecting waste from high priority bins. Pro-active 

responses will increase the efficiency of the system as 

they will be the basis of building novel routing 

algorithms that incorporate such knowledge in their 

results. For instance, spatio-temporal data combined 

with bins load historical data will give us the 

opportunity to derive routes that, in specific hours of 

the day and for specific sectors of the city, will give 

priority to the discussed bins. Finally, a dynamic re-

allocation of routes according to the load of each 

truck will be another extension of our work. Through 

this approach, borders between sectors will be 

eliminated and, if necessary, trucks will undertake 

the responsibility of collecting waste in their 

‘neighbors’.  
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