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Abstract 

There are repetitive patterns in strategies of manipulating source code. For example, modifying 
source code before acquiring knowledge of how a code works is a depth-first style whereas reading 
and understanding before modifying source code is a breadth-first style.   To the extent we know, 
there is no study on the influence of personality on them. The objective of this study is to 
understand the influence of personality on programming styles.  We did a correlational study with 
65 programmers at the University of Stuttgart. Academic achievement, programming experience, 
attitude towards programming, and five personality factors were measured via self-assessed 
survey. The programming styles were asked for in the survey or mined from the software 
repositories. Performance in programming was composed of bug-proneness of programmers 
which was mined from software repositories, the grades they got in a software project course and 
their estimate of their own programming ability. In a statistical analysis we found that Openness 
to Experience has a positive association with breadth-first style and Conscientiousness has a 
positive association with depth-first style. We also found that, in addition to having more 
programming experience and better academic achievement, the styles of working depth-first and 
saving coarse-grained revisions improve performance in programming.  

Keywords: Programming Styles, Personality, Five-Factor Model, Programming Performance, 
Statistical Analysis 

 

1. Introduction 

Software development is a human task and individual differences are known to be present in it and 
have been identified in previous research. For example, developers differ in their performance 
(Sackman et al. 1968), in the way they make their judgments and take their decisions (Feldt et al. 
2010). Programmers also differ in their working habits, in the way they generate and comprehend 
source code (Cox and Fisher 2009). In other words, each programmer might use a different strategy 
in modifying source code.  
 
Cox and Fisher (2009) used the term programming styles to describe recurring strategies in 
manipulating source code. For example, programming can be done top-down and or bottom-up. In 
top-down programming, more tasks might be done in model space and in bottom-up programming, 
more tasks might be done in code space.                                                                                    
   
Programming styles have been studied for several decades. The researchers believed that these 
styles are the result of programming experience. Therefore, finding them would help train novices. 
For example, Vessey (1985) studied think-aloud data of 4 novices and 4 experts while they were 



debugging a piece of Cobol code. He found that experts’ style is systematic (breadth-first) but 
novices’ style is opportunistic (depth-first). Ko and Uttl (2003) also observed 75 students at 
debugging. They confirmed that students who work breadth-first were more experienced. 
Mayrhauser and Vans (1997) studied think-aloud data of 4 professionals and found that 
programmers frequently switched between solution space (bottom-up) and problem space (top-
down); however, language expertise encouraged bottom-up and domain knowledge encouraged 
top-down styles.  
 
Cox and Fisher (2009) reviewed programming styles and hypothesized that, in addition to 
experience, other individual factors may explain these differences. They themselves studied the 
influence of gender on top-down and bottom-up styles (Fisher et al. 2006) and reported that males 
tend to use top-down styles while females tend to use bottom-up styles. Cox and Fisher (2009) also 
claimed that personality influences programming styles.		
	
Personality refers to individual differences among people in behaviour, cognition and emotion 
patterns (Michel et al. 2004). There are studies on the influence of personality on individual 
performance or team work in programming (Cruz et al. 2011 and 2015) but to the extent we know, 
there are no empirical studies on the influence of personality on programming styles. We should 
mention that Cox and Fisher (2009) themselves did a pilot study on the influence of personality 
on programming styles but did not report the results.  
 
In the present study, we make a first attempt to fill this gap and investigate the influence of 
personality on programming styles. One first objective is to find out which personalities use which 
programming styles. Moreover, we are interested in consequences of relations between personality 
and programming styles. Therefore, we also investigate relations between personality and 
programming styles on one hand and performance on the other.  
 
There are various models for describing personality in psychology. In this study we focus on the 
Five-Factor Model. This is a comprehensive and well-established model in psychology (Digmann 
1990) and has recently been used frequently in software psychology research (Cruz et al. 2011 and 
2015). Moreover, Cox and Fisher (2009) recommended the Five-Factor Model in the area of 
programming styles. 
 
We conducted an empirical study and surveyed personality factors of 65 volunteer student 
programmers in software engineering at the University of Stuttgart. We used indicators in the 
literature and devised our own questionnaire to survey programming styles discussed in Cox and 
Fisher (2009) study. Moreover, we used a mining algorithm to extract one of those programming 
styles from repositories of software projects under study. In addition to personality factors and 
programming styles, we also collected data on age, gender, academic achievement (overall grade 
of all university exams), prior programming experience and programming performance. On the 
collected data, we did correlational analyses to see which personality and/or other factors affect 
programming styles and which programming styles and/or other human factors affect 
programming performance.  
 
In this paper, we report our results on the links between investigated human factors, programming 
styles and performance. After explaining the background and related work in section 2, we describe 



the design of the empirical study in section 3.  Then we present the statistical findings in section 4 
and discuss them in section 5. Limitations and future work are presented in sections 6 and 7, and 
we conclude the paper in section 8.  
 
2. Background and Related Work 
2.1. Personality Psychology 
 
Psychology is a collection of scientific methods and theories for understanding human nature, and 
personality is a part of psychology that considers characterizing individuals. Psychologists usually 
describe personality by several personality traits. For each individual, each personality trait has a 
numeric score indicating how much of the trait an individual possesses.  
 
Yet they are not sure how many and which narrow traits should be considered in a comprehensive 
personality model; generally, psychologists have a good consensus about the comprehensiveness 
of the Five-Factor Model (Digmann 1990). In this model, five broad and distinct traits describe 
personality: Openness to Experience, Conscientiousness, Extraversion, Agreeableness and 
Emotional Stability.  
 
Openness to Experience shows to which extent we are creative, interested in art, willing to try new 
things and aware of our feelings.  Conscientiousness shows how much we prefer planned 
behaviour, self-discipline, acting dutifully and aiming for achievement.  Extraversion shows how 
much we engage with the external world, interact with people and assert ourselves. Agreeableness 
shows how humble we are, how much we value getting along with others, how considerate, 
friendly, generous, helpful we are and to which extent we are willing to share our feelings with 
others. Neuroticism shows how much we experience negative emotions such as anger, anxiety and 
depression.  
 
Personality tests, which usually are an inventory of multiple-choice questions, operationalize 
personality traits. This means that these questions identify observable evidence of traits in an 
assessable way.  As an example, Costa and McCrae (1992) developed the NEO-PI-R inventory 
which allows a comprehensive assessment of the five personality factors to be done.  Since the 
NEO-PI-R inventory is commercial and, therefore, researchers cannot freely use it, Gow et al. 
(2005) provided the assessment items for the Five-Factor Model in the public domain of 
personality scales and items (IPIP, Goldberg, 1999). The items in IPIP are validated by 
psychologists and translated into many languages.  Therefore, this pool provides us with what we 
need: a free, valid, reliable and comprehensive personality test. 
 
In summary, although personality descriptions and tests are developed in the context of psychology 
research, their research results provide software engineering research with required background 
and tools, theories and assessments. In this study, we focus on the Five -Factor Model for 
describing personalities of programmers and the IPIP for assessing personalities. 
 

2.2. Programming Styles 
 



Cox and Fisher (2009) explained 4 basic programming styles: top-down, bottom-up, depth-first 
and breadth-first. In the top-down style, programmers investigate the model space to solve the 
problem, whereas in the bottom-up style, programmers investigate the code space to solve the 
problem. In the depth-first style, programmers proceed with the first alternative to solve the 
problem and, therefore, they are opportunistic. In the breadth-first style, programmers examine all 
alternatives before proceeding, and they are systematic. Although these styles are a personal 
preference, it does not mean some people use top-down and do not use bottom-up or vice-versa 
(Mayrhauser and Vans 1997) or some people use depth-first and do not use breadth-first or vice-
versa (Cross 2005). In the following section we illustrate these basic styles by an example. 
 
Programmers also differ in the amount of work they do in each session. Cox and Fisher (2009) 
believe that those who write a large amount of code before bug removal are coarse-grained 
programmers and others are fine-grained programmers. But since in the modern IDEs all 
programmers see their syntax bugs immediately, we believe deferring bug removal sessions and 
in other words saving large amount of work before the next bug-removal session means that these 
programmers avoid bug removal and keep working on buggy code.  
 
We measured the amount of work in each revision, instead, to assess coarse-grained programmers.  
Therefore, in addition to 4 basic programming styles, we included 2 other programming styles: 
bug-removal-avoidance and large-revisions.    
 
 
2.2.1. Example  

 
                                    (a) model            (b) code 

Fig. 1. A sample model (and equivalent code) of quick sort with an infinite loop bug 
 
Suppose a programmer is assigned to modify a quick-sort code which has an infinite loop bug. 
Figure 1 shows the model and code of this buggy quick sort. The programmer might make two 
hypotheses. The first hypothesis is: “a sequence of length 1 does not need sorting”. The second 
and correct hypothesis is “the partition method returns a wrong value.” The programmer might use 
different flows in making hypotheses and evaluating them. Figure 2 shows possible flow diagrams.  
 
The two top diagrams (a and b) in figure 2 show top-down work and the two bottom diagrams (c 
and d) show bottom-up work.  The two diagrams on the left (a and c) show depth-first and the two 
diagrams on the right show (b and d) breadth-first work. As the horizontal swimlanes in figure 2 
show, there are three layers: “model”, “code” and “run” and there are four basic actions in this 
debugging: “find hypothesis”, “modify model”, “modify code” and “test code”.   



 

	 

		

Fig. 2. Sample flows of programming styles in debugging  
 

In working top-down (figure 2 a and b), a programmer traces conditions, calls and return parts of 
the model to find a hypothesis. He first modifies the model and then the code. However, in working 
bottom-up (figure 2 c and d ), a programmer traces code and finds conditions, calls and return parts 
to make a hypothesis. He first modifies the code and then the model. As figure 2 shows, in top-
down work more actions are done in the model layer, whereas in bottom-up work more actions are 
done in the code layer.  

Working depth-first (figure 2 a and c), a programmer tests the first hypothesis he finds and, if it 
does not solve the problem, creates another hypothesis. However, working breadth-first (figure 2 
b and d), a programmer does not commit to the first hypothesis and keeps investigating hypotheses 
before modifying and testing. As figure 2 shows, in depth-first work more actions are done in the 
depth whereas in breadth-first work more actions are done in the breadth.  

 
2.2.2. Theory  
Cox and Fisher (2009) presented a conceptual framework (see figure 3) and explained that, as a 
consequence of different situations, tasks and individual factors, programmers prefer to use certain 
programming styles.  Situation is a set of factors that represent the characteristics of the 
surrounding, where, how, when and with whom the task is performed. Time available, 
organizational culture and teams are examples of situational factors. Technical and programming-
relevant characteristics are task factors such as difficulty and functionality. Individual factors 
represent all personal factors, whether they are unchangeable such as personality (see internal 
component in figure 3) or changeable such as experience (see external component in figure 3). In 
this paper, we focused on individual factors to study programming styles. 
 



 
Fig 3. Programming Context influences on Programming Styles, derived from Cox and Fisher (2009) 

 
 
2.2.3. Literature Review 
 
Table 1. Summary of the literature on individual differences and programming styles 

paper individual factors performance results 
Vessey (1985) experience debugging 

score 
experts use breadth-first 
novices use depth-first 
experts use debugging score 
 

Webb et al. 
(1986) 

biography 
aptitude 
cognitive styles 

test score top-down increases test score in generating 
new code 
bottom-up increases test score in modifying 
existing code 
Students mainly use bottom-up 

Mayrhauser and 
Vans (1997) 

domain knowledge 
language expertise 

 domain knowledge encourages top-down  
language expertise encourages bottom-up 

Ko and Uttl 
(2003) 

age, gender, major 
domain knowledge 
language expertise 
attitude 

debugging 
score 

Computer science major encourages breadth-
first 
experience encourages breadth-first 
attitude encourages breadth-first 
breadth-first increases debugging score 

Fisher et al. 
(2006) 

gender 
Spatial cognitive 
ability 

test score males use top-down  
females use bottom-up 
bottom-up increases test score 

 
In this section, we review the empirical literature on the individual differences in programming 
styles (see Table 1). Vessey (1985) conducted a protocol analysis on the think-aloud data of 4 
novice and 4 expert programmers in debugging the same Cobol code. He extracted problem 
solving strategies and found that expert programmers tended to use breadth-first; they kept reading 
code and comments to understand it. They did not commit to their first hypothesis and were not 
blind to new information. However, novices were more probable to use depth-first; they executed 
the code sooner and persisted with their first hypothesis.  
 
Webb et al. (1986) studied 30 novice students (11–14 years old) who were writing a simple BASIC 
program.  They used taped records and prints of computer verbatim and then coded the 
programming behaviour. They measured the frequency of coded variables to recognize their 

Programming Styles 

…....like experience 
…... like personality 

Programming Context’s Factors 

Influence 



tendency to use top-down or bottom-up.  In their study, an abstract plan such as a design plan 
before writing code indicates top-down and a concrete plan such as an operation plan indicates 
bottom-up.  For individual differences, they surveyed biography variables, aptitude and the 
cognitive style of students.  They performed a correlational analysis on all variables and could not 
find consistent significant relations between individual differences and programming styles and 
did not report them. But they reported that students mainly used bottom-up style. Moreover, they 
found that the degree of top-down style affected the learning outcome of students in generating 
new code and the degree of their bottom-up style affected their learning outcome in modifying 
existing code. 
 
Mayrhauser and Vans (1997) did a field observation and recorded think-aloud data of 4 
professionals during corrective maintenance of a large-scale software. In protocol analysis, they 
coded and enumerated hypotheses of programmers to see whether programmers tend to produce 
domain-level hypotheses (top-down), program-level hypotheses (bottom-up) or situation-level 
hypotheses (switch between top-down and bottom-up). They found that programmers frequently 
switched between top-down and bottom-up; however, programmers with domain knowledge 
tended to use top-down and programmers with language expertise tended to use bottom-up styles.  
 
Ko and Uttl (2003) observed 75 undergraduate computer science, psychology and statistics 
students who were debugging a simple program in an unfamiliar system (programmable statistical 
package). In addition to think-aloud data, they analyzed and coded video and screen recordings to 
find comprehension behaviours. They used cluster analysis and classified behaviours into 3 distinct 
clusters: depth-first, inactive and breadth-first. They investigated the mean differences of age, 
gender, domain knowledge, programming experience, attitude and major in these clusters. They 
found that students who tended to use breadth-first were generally more experienced, had a 
positive attitude towards experiments and were computer science students. Moreover, students 
who tended to be inactive were psychology students and had less programming experience.  
 
Fisher et al. (2006) studied 30 graduate and undergraduate students performing a set of 
maintenance tasks on Java. Participants did some post-maintenance tasks on how well they 
remembered the size, location and name of methods. Moreover, the participants filled out spatial 
cognition tests, location memory, object memory and mental rotations tests. Fisher et al. (2006) 
correlated all the measures, the scores of spatial cognition tests, post-maintenance tasks and 
maintenance tasks for males and females separately. They found that males tended to use mental 
rotation ability (highly abstract) and remembered the size and functionality of methods. But 
females tended to use location memory (highly concrete) and remembered the name and location 
of methods. Fisher et al. (2006) concluded that males may use top-down and females bottom-up 
styles. Moreover, they found that programmers who used bottom-up achieved better test scores. 
  
As we summarized in Table 1, there are empirical studies on the influence of experience, gender, 
attitude and mental ability on programming styles but as far as we know, there is no empirical 
study on the influence of personality on programming styles. In this study, we fill this gap. To do 
so, we rely on Cox and Fisher's theory and investigate the influence of personality factors on 
programming styles. 
 
3. Study Design 



3.1. Research Questions 

 
Fig. 4 The structure of research questions 

 

We showed the structure of research questions in figure 4. First, we investigate the influential 
factors on programming styles to see how strongly personality affects programming styles. Then 
we study the effect of all factors on performance to empirically figure out the potential benefits of 
programming styles. In summary, we answer two research questions: 

RQ1. Which human factors affect certain programming styles? 

RQ2. Which factors, human factors and programming styles affect performance? 

As figure 4 shows, in addition to personality factors we study age, gender, academic achievement, 
programming experience, and attitude towards programming. To measure programming 
performance, we use indicators of programmer quality, project quality and code quality.  

3.2. Target population 

The target group for the study are German software engineering students mostly at the University 
of Stuttgart in the first and advanced software project courses (in 2012 and 2013). In their first 
software project course (“Sopra”), second-year students work for one semester in 3-member teams 
to develop the same real software project.  In this course, three expert software engineers (one in 
the role of the customer and two as supervisors) evaluate the students’ work (system design and 
system implementation) and each gives a score to the whole team.  The average score determines 
the state of fail or pass in the course.  In advanced software project courses (“Studienprojekt” or 
"Stupro") students work for 12 months in teams of 6 to 12 programmers and develop a real software 



project. In addition to the quality of the whole project, supervisors examine the contributed code 
of each student (and other factors such as their motivation) and give individual scores to each team 
member. 
 
The initial idea for finding volunteers was presenting the study and giving information about our 
research.  It became apparent that interested students needed more privacy and time to think and 
react. Therefore, we developed a brochure for introducing the study and attracting the volunteers. 
 
We first talked with the course tutors (and the instructor of the course) and gave the brochure to 
them. After getting the initial agreement, we distributed the brochure among students directly or 
indirectly. Volunteers could signal their interest on the website of the course or send e-mails. They 
were supposed to fill in an on-line questionnaire and give us read-only access to the repositories 
of their source code. Moreover, they were supposed to write appropriate descriptions for their 
commits in the repository.  
 
In December 2012, in the middle of the SOPRA-2012 course, we had three volunteering teams 
two of which ultimately did not participate in the study. One of the teams did not finish the course 
and one of them cancelled their participation. In February 2013 and at the end of the course, we 
attracted another volunteering team.  
 
In June 2013 we had one 7-member volunteering team in an MSc. course out of which 6 students 
participated in the study. We also attracted 4 volunteering teams who had just finished advanced 
software project courses out of which 19 developers participated in the study. Moreover, we had 
one volunteering team external to the University of Stuttgart out of which 3 people participated in 
the study.  
 
In November 2013, in the middle of the SOPRA-2013 course, we had 13 three-member 
volunteering teams two of which ultimately did not participate in the study. One team gave up the 
course and another one failed to pass it. One of the teams also participated with only one member.   
  
In summary, 8 different software projects, 19 teams and 65 volunteers participated in the study. 
We had 18 repositories: 8 git (http://git-scm.com/), 1 mercurial (http://mercurial.selenic.com/) and 
9 SVN (Collins-Sussman et al. 2011). We excluded one of the software repositories because it 
only had one commit. All volunteers were developing real software projects in Java (57) and/or 
C# (8). 13 teams and 37 volunteers with 2 different software projects were in the second year of 
their studies.  4 teams and 19 volunteers were in the third or fourth year of their studies. 1 team 
and 6 volunteers were Master of Science students. 1 team and 3 volunteers were graduates who 
were maintaining their software project.  
   
3.3. Data collection procedure 
We used a self-assessed survey and repository mining to collect data except for the grades students 
achieved in the software project courses. We collected some of the grades from the volunteers 
themselves (by e-mails, 5 grades were missing) but we got the other grades from the supervisors 
since some students were not aware of their grades and only get fail or pass votes.  In the following, 
we will explain the design, pre-testing and administration of the questionnaire items as well as the 
repository mining procedure.  



 
3.3.1 Design and pre-testing of questionnaire 
The questionnaire consisted of 4 main parts: (1) personality items, (2) programming style 
indicators, (3) experience, ability and background items and (4) attitude items (see items in the 
appendix).  
 
(1) Personality items: Since the data collection site was Germany, we used the German translation 
of IPIP-50 (validated by Gow et al. 2005 and translated by Streib in the Research Center for 
Biographical Studies in Contemporary Religion at the Universität Bielefeld) to measure the Five 
Factors. In this questionnaire each personality factor is assessed by 10 short descriptions by which 
the respondent should decide how strongly he/she agrees with the item.  To do so, the respondent 
selects one value in the range of 1 to 5 (1–5 Likert scale). Some of the items indicate high values 
in personality factors and some indicate low values. For example, strong agreement with “Spend 
time reflecting on things” indicates high Openness to Experience and agreement with “Am not 
interested in abstract ideas” indicates low Openness to Experience. The items in the questionnaire, 
number of positive or negative items, wording and even the order of the items were psychologically 
validated. Therefore, the questionnaire is psychologically standardized in a way that decreases the 
level of misunderstanding and misleading items to a minimum. However, we used the mother-
tongue for the personality questionnaire and also checked the selected questionnaire and 
administration procedure with the psychology advisor of the research, Jan-Paul Leuteritz. We also 
rechecked the on-line questionnaire with the help of a language expert to be sure it did not have 
any copy-paste problems. 
 
(2) Programming style indicators: We used Cox and Fisher (2009) as the theoretical framework of 
our work and, therefore, included the programming styles they introduced in the empirically study. 
In the following we explain them: 
 

• Top-down and bottom-up styles: We used Fisher et al. (2006) indicators in code-
comprehension to assess these styles: top-down programmers usually investigate the length 
and functionality of a method and bottom-up programmers look into names and locations 
inside the code. 

 
• Breadth-first and depth-first styles: We used Vessey (1985) indicators in debugging to 

assess these styles: breadth-first programmers examine all possible ways before modifying 
the code, while depth-first programmers apply the first hypothesis they found. 

 
• Bug-removal-avoidance style: We used the Cox and Fisher (2009) indicator in syntax-bug-

removal to measure bug-removal-avoidance style.  A large amount of work before the next 
bug-removal session indicates bug-removal-avoidance.  

 
(3) Experience, ability and background items:	To measure experience, we asked the participants 
about the years/months of prior programming experience including school and university work, 
the programming languages they worked with and their largest code contribution. Moreover, we 
asked about years/months of professional programming.  Experience items were an adaptation of 



the previously used survey for newly enrolled students of the software quality course at the 
University of Stuttgart.   
 
To measure ability, we asked for an estimate of their own ability in programming and their own 
ability in comparison with their friends in the team (like Newsted 1975). We also added some 
background questions about age, gender, GPA and the language of participants.  
 
(4) Attitude items: We adapted 10 items of the Computer Science Attitude Survey (Wiebe et al. 
2003) which was derived from Fennema-Sherman mathematics attitudes scales (Fennema and  
Sherman 1976).  We had 3 items for confidence-in-learning-programming, 2 items for attitude-
towards-success-in-programming, 2 items for computer-science-as-a-male-domain, 1 item for 
usefulness-of-programming and 2 items for effective-motivation-in-programming.  Like 
personality items, attitude items were also in 1-5 Likert scale. We added attitude items in the 
middle of the study and we don’t have attitude values for all participants.   
 
To make sure that our questionnaire was clear and appropriate for the participants, we piloted it 
two times among six expert software engineers who knew the student respondents and worked at 
the Institute of Software Technology at the University of Stuttgart. They were at least PhD students 
in the field of empirical software engineering and had a good sense of the research objectives and 
approach.  We also had the questionnaire checked by a language expert.  
 
The personality part of the questionnaire was in German, while other parts were in English. This 
was because the first author does not speak German.  We published our survey in the e-learning 
platform of the University of Stuttgart: https://ilias3.uni-
stuttgart.de/goto.php?target=svy_497145&client_id=Uni_Stuttgart 
 
3.3.2. Administration of the questionnaires 
We communicated with the volunteers by e-mails and arranged a meeting for filling out the survey. 
We met them in groups of 1 to 5 students and gave the survey link to them. Some of the participants 
filled the survey out on their own laptops.  Several participants were not available at the time of 
data collection and filled it out remotely.  
 
Before survey administration, we emphasized that their answers would be kept confidential and 
every personal style has its own beauty.  We wanted them to describe themselves as they are now, 
not as they wish to be in the future, and asked them to see themselves honestly, in relation to other 
people they know of the same sex, and roughly their age.  Finally, we informed them that there 
was no time limit.  They took 20 minutes on average. 
 
Respondents could get support for the meaning of items if it was not clear to them but almost all 
the respondents filled out the questionnaire without help. Several students asked how to judge 
themselves; for example, one of them asked whether scripting counted as programming 
experience.  Only one of the participants had problems with understanding the German words of 
the personality items. We provided him with a hard copy of the English equivalent.  
 



After filling out the survey, the participants signed an agreement which allowed us to save, analyze 
and publish their personal data anonymously and received a small compensation (10 Euros).  We 
distributed the survey in June/July 2013 (34 respondents) and December 2013 (37 respondents).  
 
3.3.3. Repository mining 
 

                                
Fig. 5 Data extraction procedure from software repositories 
 
We wrote a Java program to extract churns from software repositories (see Fig. 5). Each churn 
shows the programming work-unit on one revision and one file. As figure 5 shows, churns is a 
dataset with these columns: revision-id, commit-date, programmer, message, source-file, change-
type, nlines, is-test-time and is-bugfix. Programmer column indicates the login name of the 
programmer who committed the code. Change-type is the type of change on the file: created, 
deleted, modified, and so on. nlines is the total number of lines of code changed in the unified 
format1. The unified format is the format software repositories use for comparing file revisions.  In 
this format, lines added are preceded by “+”, lines deleted are preceded by “-“and modifications 
are modeled by several lines added and deleted.  The column is-test-time indicates whether the 
revision was saved during test time or development time. The last column, is-bugfix, indicates 
whether a bug fix in the revision or something else has been done.  
 
We wrote R scripts (Statistical Computing with R) to extract these metrics from the churns dataset: 
file-count-in-revision, line-count-in-revision and bug-ratio. Although volunteers were supposed to 
use the repository, one 3-member team failed to use it appropriately; also, we could not map one 
of the participants to the repository logs.  Therefore, we missed 4 participants in repository styles 
(n = 61).  
 

input: programmer code (p) 
output: mean file count in revisions of programmer p 

  file-count-in-revision = select mean 
(select Count(source-file) 
from churn 
where programmer = p 
and change-type = “modified” 
group by revision.id) 

(a) file-count-in-revision 

 

input: programmer code (p) 
output: mean line count in revisions of programmer p 
line-count-in-revision = select mean  

(select sum(nLoC)  
from churn 
where programmer = p 

  and change-type = “modified” 
group by revision.id) 

(b) line-count-in-revision 
 

input: programmer code, p 
output: modified files by p in develop time  
modified.files = select unique(source-file) 
                           from churn                       
                           where programmer = p  
                           and change-type = “modified”                             
                           and is-test-time = NO 

(c) modified-files 

input: - 
output: modified files in bug-fix revisions of test time 
buggy.files = select unique(source-file) 
                       from churn                       
                       where is-test-time = YES 
                       and is-bug-fix = YES 

 
(d) buggy-files 

																																																													
1 http://en.wikipedia.org/wiki/Diff_utility#Unified_format	



  
 

Fig. 5 Pseudo scripts for getting repository metrics	
 
large-revisions: We computed the mean Lines of Code and mean Number of Files in revisions for 
each programmer to assess tendency to large-revisions.  For simplicity, we focused only on 
modifications and discarded other change types. Figure 5a and 5b shows the pseudo scripts. As 
figures 5a and 5b show, we first counted lines (files) in each revision and then computed mean of 
counts.  
 
bug-ratio: We measured bug-ratio to estimate the code quality of each developer. Bell et al. (2013) 
introduced this metric to study bug-proneness of programmers in software repositories. The bug-
ratio indicates in which percentage of source files a programmer worked on during development, 
bugs are found during test. A large bug-ratio shows that a programmer is bug-prone. Bell et al. 
(2013) show that bug-ratio is relatively constant in different releases and, therefore, can be used 
as a performance criterion.  
 
We considered the first 80% of the work as the development phase and the remaining 20% as the 
testing phase. Moreover, we considered all files changed during testing with bug-fix commits as 
buggy files (like Bell et al. 2013). To fill in the is-bugfix column we used a Java program and 
searched all key words, bug, bugfix, fix, bug fix and etc. We then manually checked the churn 
dataset and modified it. Although students were supposed to write a meaningful description for 
each commit, one 3-member team failed to add any descriptions and we missed 3 more participants 
in this metric (n = 58). As figures 5c and 5d show, we first computed “modified-files” and “buggy-
files” and then computed bug-ratio using formula 1. 
 

Formula 1- bug.ratio formula 
𝑏𝑢𝑔. 𝑟𝑎𝑡𝑖𝑜 =

𝑐𝑜𝑢𝑛𝑡 (𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑. 𝑓𝑖𝑙𝑒𝑠	, 𝑏𝑢𝑔𝑔𝑦. 𝑓𝑖𝑙𝑒𝑠)
𝑐𝑜𝑢𝑛𝑡(𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑. 𝑓𝑖𝑙𝑒𝑠	)

 

 
 
3.4. Variables 
 
Table 2. Summary of variables in the study 

Personality factors Openness to Experience (5-50), Conscientiousness (5-50), Extraversion (5-50), 
Agreeableness (5-50), Emotional Stability (5-50) 

programming 
experience 
 

years of programming experience (5-point scale), years of professional experience (4-
point scale), number of programming languages , largest code contribution (5-point scale) 

attitude towards 
programming 

confidence-in-learning-programming (3-15), attitude-towards-success-in-programming 
(2-10), effective-motivation-in-programming (2-10), attitude-towards-usefulness-of-
programming (1-5), computer-science-as-a-male-domain(2-10) 

programming styles top-down.1 (0, 1), top-down.2 (0, 1), bottom-up.1 (0, 1), bottom-up.2 (0, 1), breadth-
first.1 (1-5), breadth-first.2 (1-5), depth-first.1 (1-5), depth-first.2 (1-5), bug-removal-
avoidance (0, 1), large-revisions-file-count, large-revisions-line-count 

background age, gender (1-2), GPA (3-point scale), years-at-university (1-3) 
performance performance (factor score) 

 
  



We used the collected data to prepare the following variables for data analysis (see Table 2 for 
summary of variables). 
	

• Personality factors: As we already mentioned, there are 10 responses in the Likert 1-5 scale 
for each personality factor. Some responses influence the score positively and some 
negatively. Following computation rules in the personality questionnaire, we reverted the 
negative ones (6- response value) and summed the responses to compute a personality 
score, 5-50, for each factor. Each participant has 5 personality scores and each score is 
between 5 and 50. 

 
• Experience: We used the questionnaire items directly as experience indicators. For 

example, regarding professional programming experience, there is a 4-point scale: less than 
6 months, between 6 months and 1 year, between 1 and 3 years and more than 3 years. 

• GPA: We collected GPA in a 3-point scale in the questionnaire.  
• Attitude towards programming: As we explained before, we collected 5 attitude scales.  We 

used the same procedure in personality factors to compute scores of attitude scales.  
• Programming styles: In some styles, there is more than one indicator. For example, in 

bottom-up style, there are two indicators, name-orientation and location-orientation. In 
summary, each person has 11 scores for 6 programming styles. 

• Performance: There are 3 performance variables:  (1) Grade: In academic grading in 
Germany, they use a 1-5 grading scale to evaluate performance of students. (2) Programmer 
ability: We collected it from the questionnaire (3) bug-ratio: We computed it in repository 
mining. We did Principle Component factor analysis to analyse (??) factors among our 
variables. Factor analysis is a statistical method which identifies a potentially lower number 
of unobserved variables called factors from observed, correlated variables. We found that 
all three variables reflect only one factor. To find each participant’s placement on this 
factor, we used the Regression Scores technique and computed factor scores (DiStefano et 
al. 2009). 
 

3.5. Analysis Procedure 

To answer the research questions, we used correlation analysis using Pearson's correlation 
coefficient and entered all significant variables into linear regression. We repeated the regression 
analysis for all subsets of variables and selected the best one with lowest error and significant 
coefficients. We used R (Statistical Computing with R) to do the regression and correlational 
analyses. The significance level in all analysis is 0.05. 

We should mention that since we added attitude items in the middle of the study, we missed attitude 
scores for 34 participants. Therefore, we did not enter attitude scores into regression analysis. We 
only report and discuss significant correlational results in a separate section.  

4. Results 

Of the 65 participants, 7 were female and 58 were male.  16 participants were 19 – 20 years old, 
28 participants were 21 – 23 years old and 21 participants were 24 years old and above. Nearly 



57% (37) of the participants were in the second year of their studies. Almost all participants (except 
2) used German as their first language in which they do most of their thinking, creating and writing.   

Almost all participants (except 2) had at least 1 year of programming experience including school 
and university work and 67 % of participants (44) had more than 3 years of programming 
experience. Moreover, 15 participants had at least 6 months of professional programming 
experience. None of the participants had more than 3 years of professional programming 
experience. None of the participants was a beginner in Java and nearly 77 % (50) of the participants 
had made code contributions in at least 3 programming languages. The largest code contribution 
for more than 80 % of participants (55) was at least 1 KLOC. The largest code contribution for 34 
participants was at least 5 KLOC.  

More than half of all participants (35) liked to earn money with programming as a full-time work 
and other participants (except 5) liked it but prefer other software engineering tasks like analysing, 
designing or testing. Therefore, this sample represented intermediate German student 
programmers and prospective professional software developers. 

4.1. RQ1. Which human factors affect programming styles?  

Table 3a –Significant correlations between human factors and programming styles 
factor  style n r 

Conscientiousness depth.first.1 65 0.252* 
attitude towards usefulness of programming depth.first.2 31 0.426* 
Openness to Experience breadth.first.1 65 0.247* 
Openness to Experience breadth.first.2 65 0.322* 
attitude towards success in programming breadth.first.1 31 0.406* 
years at university bottom.up.1 65 -0.271* 
years of programming experience bottom.up.2 65 0.297* 
attitude towards usefulness of programming bottom.up.2 31 0.368* 
age bug avoidance 65 0.255* 
gender bug avoidance 65 -0.284 
age number of files 61 0.298* 
years at university lines of code 61 0.310* 
years at university number of files 61 0.415* 
years of professional experience lines of code 61 0.257* 

                 *: p<0.05, **: p<0.01	

Table 3b –Regression equations between programming styles and human factors 
style regression equation R square degree of 

freedom 
depth first 1 0.049* Conscientiousness +1.446 0.063 63 
breadth first 1 0.035* Openness to Experience +2.655 0.061 63 
breadth first 2 0.060* Openness to Experience +0.645 0.104 63 
bottom up 1 -0.175*years at university+0.598 0.073 63 
bottom up2 0.094*years of programming experience+0.438 0.088 63 
bug removal avoidance -0.448*gender+0.896 0.080 63 
large revisions. line 
count in revision 

76.84*years at university+18.32 0.096 59 

large revisions. file 
count in revision 

0.839*years at university+1.453 0.171 59 

          



Table 3 shows the answer to RQ1. Table 3a shows significant correlations between human factors 
and programming styles we studied. Table 3b shows the results of regression analysis. In summary, 
table 3 indicates that: 

• Males avoided bug-removal more than females did. 
• Programmers with more programming experience used bottom-up style. 
• Programmers with higher years at university tended to save larger revisions and did not 

tend to use bottom-up style  
• Conscientiousness and Openness to Experience were the evident personality factors in the 

programming styles we studied.  

o High Openness to Experience programmers used breadth-first style more often than 
low Openness to Experience programmers. 

o High Conscientiousness programmers used depth-first style more often than low 
Conscientiousness programmers. 

• Programmers with a positive attitude towards programming used depth-first, breadth-first 
and bottom-up styles.  

4.2. RQ2. Which factors, personality factors and programming styles affect performance?  

Table 4 Significant correlations and regression equation between programming performance and other variables  

 variable n r 

pr
og

ra
m

m
in

g 
pe

rf
or

m
an

ce
  

age 54 0.327* 
GPA 54 0.364** 
years at university 54 0.535** 
years of programming experience 54 0.439** 
number of programming languages 54 0.545** 
largest code contribution 54 0.386** 
attitude towards computer science as a male domain 25 0.400* 
depth first 1 54 0.361* 
large revisions line count 54 0.276* 
programming performance = 
0.249*number.of.programming.languages + 0.307*depth.first.1 + 
0.490*GPA + 0.001* largerevisions.line.count  + 0.130*age - 3.895 

df 
=48 

Rseq = 
0.588 
 

 

Table 4 shows that: 

• Programmers with more programming experience have better performance than those with 
less programming experience. 

• Programmers with higher academic achievement perform better than programmers with 
lower academic achievement. 

• Older programmers are better programmers than younger ones. 
• The following programming styles affect performance.  

o 	Programmers who tended to use depth-first more often were better programmers 
than ones who did not tend to use depth first less.  



o Programmers who saved larger revisions were better programmers than those who 
did save smaller revisions. 

• Programming styles entered into regression analysis. 
• Seeing computer science as a male domain improved performance in programming 

5. Discussion 

In this section we summarize our main findings.  

1- Influence of gender on programming styles: Our study confirms that males and females differ 
in bug-removal-avoidance style. It might be that, since females are more humble or less confident, 
they acknowledge their bugs more frequently. However, we could not find any relations between 
gender and bottom-up style as claimed by Cox and Fisher (2006). It might be that, since there are 
few females (7 females vs. 58 males) in our sample, we could not study gender appropriately.   

2- Influence of experience on programming styles: Our study confirms the findings of the previous 
literature in the sense that our styles change with experience (Mayrhauser 1997). In particular, we 
found that months/years of programming experience affect the bottom-up style positively and 
years at university affect it negatively. Mayrhauser (1997) explains that knowledge of 
programming languages encourages bottom-up. We mainly measured programming experience in 
coding; therefore, it seems logical that more years of programming experience encourage 
programmers’ use of the bottom-up style.  Higher years at university means that they have done 
advanced courses and have more experience with models. Therefore, it seems reasonable that 
higher-year students do not only rely on the bottom-up style. However, we could not find any 
relations of the top-down style. It might be that those higher-year programmers use top-down 
where appropriate, and since our indicators are independent of problem and situation, we could 
not measure it.  

Although the existing research (Vessey 1985, Ko and Uttl 2003) indicates that experience affects 
breadth-first and depth-first styles, more experienced programmers use the breadth-first style and 
less experienced ones use the depth-first style. We did not find any relations between experience 
and breadth-first or depth-first styles. It might be that this relation appears in very different 
experiences, for example, experts and novices (Vessey 1985) and computer-science and other 
majors (Ko and Uttl 2003). Another possible explanation is that task difficulty mediates theses 
relations, because they have been found in the previous studies (Vessey 1985, Ko and Uttl 2003) 
on difficult tasks.  

3-Influence of attitude on programming styles: We found that attitude towards programming has 
a positive effect on depth-first, breadth-first and bottom-up styles. It might be that a positive 
attitude encourages almost all styles. Another explanation is that individuals with a positive 
attitude tend to choose positive options in personality items.  

4- Influence of personality on programming styles: We found that Openness to Experience affects 
breadth-first style. It might be that, since high Openness to Experience programmers have broader 
views and see more alternatives, they tend to use breadth-first style. Moreover, we found that 
Conscientiousness affects depth-first style. It might be that, since high Conscientiousness 
programmers are goal-oriented, they are good at finding fast solutions and, therefore, they tend to 
use depth-first style. As Cox and Fisher (2009) claimed, personality traits might explain the 



differences in programming styles. This finding not only helps programmers to know themselves 
better but it also helps supervisors to understand the differences between programmers.  

5-Influence of human factors on the combination of programming styles: Programmers switch 
between different styles and one programmer might use different styles. Although we did not focus 
on the combination of styles, our findings indicate that programmers with a positive attitude 
towards programming used both breadth-first and depth-first style. It might be that their positive 
attitude helps them to switch to the better style according to situation. Moreover, it makes sense 
that experienced programmers switch among styles when needed. However, we could not find this 
effect in the current study. It might be that, since we focused on personality and used indicators in 
measuring default programming styles, we could not find the influence of experience.    

5- Influence of human factors on programming performance. Obviously, prior experience in 
programming and academic achievements are the most important factors for programming 
performance (Karimi and Wagner 2014). We also found that older programmers show a better 
performance. It might be that age indicates general experience and, therefore, older programmers 
have more experience and do the job better. Additionally we found that programmers who see 
computer science as a male domain show better performance than programmers who do not share 
this view. It might be that seeing computer science as a male domain motivates programmers to 
write better code since they feel that they compete against stronger rivals.  

6- Influence of Programming styles on programming performance. We found that despite 
influential human factors like experience, some programming styles are preferred. This finding 
helps to improve programmers and programming. In particular, the findings of this research 
showed that using the depth-first style improves performance. Our findings are in contrast to the 
previous studies (Vessey 1985 and Ko and Uttl 2003) which found that breadth-first style has a 
positive effect on performance and depth-first has a negative effect. It might be that task difficulty 
mediates relations between programming styles and performance. It means that breadth-first is not 
always a good habit and depth-first is not also always a bad habit. Depth-first programmers are 
more productive in iterative programming and, therefore, it might be that they have a better self-
perception or are more successful in refining their code.  

Additionally, we could not find the influence of bottom-up on performance in this study although 
the previous studies (Fisher et al. 2006) did. It might be that bottom-up is not always useful and 
for example depends on task factors like generating or modifying source code. Another 
explanation is that our indicators for measuring bottom-up are not comprehensive.    
Moreover, our findings showed that saving large revisions increases programming performance. 
Larger revisions show perfective actions (Hindle et al. 2008) and it might be that programmers 
who tended to work with larger revisions have less test-time bugs. Another explanation is that 
smaller revisions missed co-changes and decreased software quality.  

6- Indirect influence of human factors on programming performance via programming styles. 
Human factors affect programming styles and programming styles affect performance. This 
indirect effect indicates possible causes for the influence of personality and other human factors 
on programming performance. Using regression analysis to explain possible casual relationships 
is out of scope of this study. However, we show the casual model of our findings to illustrate the 
potential impacts of this study (see figure 6).  



 
Figure 6: Relationships among programming styles, human factors and programming performance 

Figure 6 indicates that the effect of Conscientiousness on programming performance is indirect 
via depth-first style. In other words, since Conscientious programmers use depth-first style, their 
performance is better. Moreover, figure 6 indicates that the effect of years at university on 
programming performance is indirect via large-revision, since programmers with higher years at 
university do not save small revisions have better programming performance.   

7-Programming styles help to give personal recommendations to programmers. We can use our 
findings to analyze strengths and weaknesses in programmers and give personal recommendations 
to them. For example, we recommend:  

• To programmers with low Openness to Experience: Invest more time in finding alternatives 
to practice breadth-first style.  

• To programmers with low Conscientiousness: Focus on the goal and find simple solutions 
to practice depth-first style.  

• To programmers in low years at university: Be careful about the revisions you save. Avoid 
small and incomplete revisions.  

8- Influence of programming styles on team performance. In this study we focused on individual 
performance in programming. However, the participants worked in teams and there are studies 
about the influence of individual differences on team success. For example, Goral and Lam (2004) 
found that teams with extraverted programmers show better performance and Acuna et al. (2009) 
also found that Extraversion positively correlated with team success. It is because extraverted 
individuals are more social and enjoy team work.  Salleh et al. (2009, 2010a, 2010b, 2011, 2013) 
conducted a family of experiments and found that paired students at higher levels of Openness to 
Experience got better academic achievements. This is because programmers with higher levels of 
Openness to Experience not only make more suggestions but also build on the ideas of other 
members which result in higher levels of knowledge sharing and better academic achievement.  

We further analyzed the data to investigate which personality factors and programming styles 
affect team success. To do so, we used the average grade among team members as team success. 
We computed min, max and average of all independent variables including personality factors and 
programming styles and used number-of-females to study the effect of gender in teams.  



Doing correlations analysis on 142 teams we found that mean-Agreeableness and max-
Agreeableness affect team performance positively. Agreeableness is important in team work 
(Howard and Howard 2009) and it seems logical that it increases team performance. We could not 
find the effect of Extraversion in this study, maybe because in this study grade reflects individual 
performance. We also could not find the effect of Openness to Experience in this study. It might 
be that, since in our study grade does not reflect the learning outcome but the quality of the project, 
the influence of Openness to Experience was not apparent.  

Moreover, we found that min-depth-first.1 and max-depth-first.1 affect team success. It means 
using depth-first with all team members is useful for team success. This seems logical since depth-
first programmers do not waste time on reflecting and systematic work and, hence, they share work 
as soon as possible.  

9- Influence of human factors on work schedule. Work schedules depend on task and situational 
factors like deadlines. However, it was interesting to monitor commit times and study the influence 
of personality on it.  We extracted work percentage at night and weekends and correlated them 
with human factors.  

We found that Conscientiousness and Emotional Stability positively correlated with working at 
weekends and age and years at university negatively correlated with working at weekends. 
Moreover, Emotional Stability, age and Conscientiousness entered into regression analysis. It 
seems reasonable that Emotionally Stable programmers postpone their tasks to weekends. Since 
younger programmers here took a one-semester basic software project course, it might be that they 
are under more pressure to meet deadlines and, therefore, work on weekends. Moreover, since 
Higher Conscientious programmers are goal-oriented, they are more motivated to work on 
weekends.  

Additionally, we found that attitude towards usefulness of programming affects working at night 
positively. It seems logical that programmers who work at midnight enjoy programming.  

6. Limitation 

First, we used a self-developed questionnaire to operationalize some of the programming styles.  
There is the threat that questions do not reflect programming styles. We mitigated this threat by 
relying on the previous literature for formulating the indicators and piloting and revising the 
questionnaire several times. Moreover, the correlation among indicators shows they are not 
cohesive. Sometimes the correlations between indicators of different styles are stronger than 
correlations between indicators of the same style. Therefore, we considered and correlated each 
indicator separately.   

																																																													
2 We	included	teams	with	at	least	3	team	members	in	this	part	of	analysis	



Second, we used a self-assessed survey to measure some of the programming styles. There is the 
threat that some respondents provide inaccurate or untrue answers. We mitigated this threat by 
relying on volunteers who were interested in the research results and in getting personal feedback. 
Furthermore, the research results were confidential and did not affect their grades. Moreover, we 
collected several objective programming styles and working schedules from software repositories 
and the conclusions are therefore quite well supported.  

Third, although the personality questionnaire is standard, we found several significant correlations 
between personality factors. Since significant correlations between the Five Factors have been 
observed frequently in the Five Factor Manuals (McCrae and Costa 1992 for example), this does 
not invalidate our findings.   

Fourth, more than half of the participants (37 out of 65) are in the second year of their studies.  
There is the threat that such students are likely to be still at the formative stage of developing their 
programming style. But generally, the experience of German students in Computer Science is not 
limited to university and, for example, 22 out of these 37 second-year students in our sample had 
at least 3 years of programming experience and also 7 students out of 15 less experienced second-
year students knew at least 3 programming languages.  Therefore, we believe that the programming 
experience in our sample is not limited. Besides that, we did not ask for the programming styles 
directly but used basic indicators instead and reviewed and piloted the questions with the help of 
participants’ supervisors who confirmed that the questions made sense for the participants. 	

Fifth, the participants of this study were student programmers and our results might not be true for 
the professional population. This result as just conjectures about the styles of professional 
programmers was interesting for us. Moreover, this result is also interesting for computer science 
students and their supervisors. We wanted to give them a clue about how their habits are different 
and how these differences may influence their performance. Therefore, we are able to assist 
prospective professional programmers by identifying their potential weak points and talents early 
on. 

Sixth, our participants were not in the same year of their education, had different programming 
experience levels and worked on different projects. Since we have different experience levels and 
different projects in industry as well, this sample can still represent prospective software engineers. 

Seventh, like many studies of this kind, this study suffers from volunteer bias; people who are 
willing to volunteer their opinion may differ from those who decline to take part.  

Finally, we did a correlational study and although personality exists prior to behaviour, the 
correlation of personality (and other behaviour) still does not reflect cause and effect (Cloninger 
2004). Maybe there are some other variables which affect behaviour and correlate with personality 
(for example motivation). 

7. Future Work 



In this study, we extracted one programming style from software repositories and devised a 
questionnaire to assess five other programming styles. Neither our mining nor our questionnaire 
is comprehensive, further research is needed to classify existing programming styles and determine 
new ones.  This can be done by reviewing literature, observing programmers and more mining of 
software repositories.  How to assess programming styles and whether or not assessments are valid 
are also open challenges.   

We did investigate single programming styles. Programmers might switch between styles and each 
programmer can use multiple styles. Future research is needed to investigate combinations of 
programming styles and study the influence of human factors like experience on them.    

In this study we investigated effects and relations using correlational analysis with Pearson's 
correlation coefficient and linear regression. Other techniques like association rule mining might 
discover other interesting relations. Moreover, future studies need to evaluate prediction to help in 
programmer selection. Moreover, in this study we focused on individual styles and individual 
performance. Future studies need to investigate different styles in team settings. Additionally, in 
this study we mainly investigated experience and personality. Future studies should consider other 
important factors like cognitive styles (Witkin et al. 1967).  

There are studies on the implications of programming styles.  For example, Wang and Arisholm 
(2008) found that fault probability in hard-first and easy-first task orders is different and the design 
approach affects it. It means regarding the design approach, we can prevent a bad programming 
style. However, the implication of programming styles is not clear yet. Future research needs to 
find out in which situations and for which tasks a certain programming style is appropriate.  

In this study we investigated the programming behaviour of 65 student programmers at the 
University of Stuttgart in Germany. Future studies should be conducted on larger sample sizes, 
with professionals and in different locations to strengthen the results. 

8. Conclusion  

The research problem addressed in this paper is to analyze some programming styles, which Fisher 
and Cox (2009) believe are influenced by personality factors. Looking to validate their claim, we 
analyzed the relationships between personality factors and programming styles. Moreover, we 
studied the influence of personality factors and programming styles on programming performance 
to understand potential benefits of analyzing programming styles. 

For that, this paper presents two correlational analyses. In the first study, we analyzed the relations 
between age, gender, GPA, experience, personality and attitude on one hand and programming 
styles on the other.  In the second analysis, we investigated the relations between all factors, human 
factors and programming styles, and programming performance. Specifically, we measured 
programming performance using the quality of code, project and programmer. 

We considered all five personality factors, Openness to Experience, Conscientiousness, 
Extraversion, Agreeableness, and Emotional Stability and studied the following programming 



styles: top-down, bottom-up, breadth-first, depth-first, bug-removal-avoidance and large-
revisions.  

We analyzed the findings and reached the following results. First, we confirm the relationship 
between personality factors and programming styles. Programmers with high Conscientiousness 
tended to use depth-first style. Conscientiousness encourages a clear view of the goal and eases 
opportunistic strategies in programming. Additionally, we can say that programmers with high 
Openness to Experience tended to use a breadth-first style. Openness to Experience supports 
seeing alternatives and motivates a systematic style in programming.  

Second, we reconfirm that programming styles influence performance in programming. 
Specifically, we found that depth-first and large-revisions are good styles. Depth-first 
programmers might be more productive in iterative programming. Additionally, it might be that 
programmers who tend to do small-revisions do not invest enough time in perfective actions and 
may miss co-changes.  

Finally, we conclude that studying programming styles has the following advantages. (1) 
Programming styles help understand the influence of personality in programming. For example, 
despite organizational psychology’s results on the influence of Conscientiousness (Barrick and 
Mount 1991), we did not see the direct influence of Conscientiousness on performance in 
programming. However, we can say that Conscientiousness encourages depth-first style which is 
beneficial in programming. (2) Using programming styles we are able to provide personal 
recommendations to programmers. For example, based on this research’s results, we recommend 
low-Conscientious programmers to examine opportunistic strategies to speed up reaching their 
goal.  

All this knowledge helps us to select better and fitter programmers and train the existing 
programmers in order to improve the quality of source code, software projects and programmers. 
We invite future research to consider programming styles in the investigation of personality in 
computer programming to clarify the influence of personality in programming. 
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Appendix A: Questionnaire Items, Answer Alternatives and Descriptive Statistics 

Table A1. General Questions and Descriptive Statistics 

biographical 
variable item answer alternatives and frequencies 

age 1-What is your age? 18,(0) 19(5), 20(11), 21(13), 22(8), 23(7), 24(6), 
25 and above(15) 

gender 2-What is your gender?  Male (58), Female(7) 

language 
3- Is German your first language, the one in which you do most of 
your thinking, conversing, creating, writing, and mathematical 
calculations? 

No (2), Yes (63) 

	

Table A2. Questions on Programming Experience, academic achievement and Descriptive Statistics	

experience 
variable item answer alternatives and frequencies 
years-of-
professional 
experience 

1-How many months/years of professional programming 
experience do you have, working full-time excluding school and 
university work? 

Less than 6 months(50), 6 months...1 year(6), 
1…3 years(9) 

years-of-
programming 
experience 

2-How many years have you been programming including school 
and university work? 

Less than 1 year(2),1 year ... 3 years(19),3 years 
... 5 years(22),More than 5 years(22) 

number-of-
programming-
languages 

3-In which programming languages have you ever contributed 
code larger than 100 LOC? Pascal, Delphi, Basic, Visual Basic, C, 
C++, C#, Java, Ada, JavaScript, Python, Others 

1(7), 2(8), 3(16), 4(15), 5(10), 6(6), 7(1), 8(2) 

largest code 
contribution 

4-How large is the largest code contribution you have ever made 
individually or as a team member? 

Less than 100 LOC(3), 100 LOC ... 1000 
LOC(7), 1001 LOC ... 5000 LOC(21), 5001 
LOC ... 10000 LOC(14), More than 10001 
LOC(20) 

academic 
achievement 

3-How do you roughly estimate your overall (average) grade of all 
university exams when you are looking at courses you have 
successfully passed? 

Worse than 3 (weak 5), 2 ... 3(average 41), Better 
than 2(good 19) 

 

Table A3. Questions on Programmer ability and Descriptive Statistics 

biographical 
variable item answer alternatives and frequencies 

programmer ability 
Which of these options do you usually use to describe yourself in 
relation to programming? (Please check all applicable answers.) 
I am an experienced programmer. 

No (19), Yes (46) 

programmer ability 
in comparison 

Which of these options do you usually use to describe yourself in 
relation to programming? (Please check all applicable answers.) 
I am more experienced than my friends in the team. 

No (48), Yes (17) 

 

Table A4. Questions on Attitude towards Programming and Descriptive Statistics	

attitude scale items descriptive statistics 



effective-
motivation-in-
programming 

1-I enjoy programming. 
2-I don't understand how some people can spend so much time on 
writing programs and still seem to enjoy it. 

n = 31, min = 5, max = 10, mean = 8.94, Std 
Deviation = 1.29 

confidence-in-
learning-
programming 

3-I have a lot of self-confidence when it comes to programming. 
4-For some reason, even though I work hard at it, programming 
seems unusually difficult to me. 
5-I am sure I can do advanced work in programming. 

n = 31, min = 4, max = 15, mean = 11.12, Std 
Deviation = 2.64 

computer-science-
as-a-male-domain 

6-It makes sense that there are more men than women in computer 
science. 
7-Females are as good as males at computer science. 

n = 31, min = 3, max = 10, mean = 7.51, Std 
Deviation = 3.90 

attitude-towards-
success-in-
programming 

8-Being first in a programming competition would make me proud. 
9-People would think I was some kind of nerd if I am among the 
outstanding students in developing software projects. 

n = 31, min = 2, max = 10, mean = 7.45, Std 
Deviation = 1.82 

usefulness-of-
programming 10-Programming is a worthwhile and useful skill to have. n = 31, min = 3, max = 5, mean = 4.64, Std 

Deviation = .55 
 

Table A5. Personality factors and Descriptive Statistics on Personality Factors	

personality factor descriptive statistics 
Openness to experience n = 65, min = 25, max = 49, mean = 38.41, Std Deviation = 5.00 
Conscientiousness n = 65, min = 25, max = 46, mean = 36.69, Std Deviation = 4.85 
Extraversion n = 65, min = 16, max = 47, mean = 35.41, Std Deviation = 6.79 
Agreeableness n = 65, min = 25, max = 47, mean = 38.2, Std Deviation = 4.77 
Emotional Stability n = 65, min = 21, max = 50, mean = 34.61, Std Deviation = 6.73 

	

Table A6. Questions on Programming Styles Indicators and Descriptive Statistics	

programming style  item frequencies and mean 
bug-removal-avoidance  3-I usually compile my program only after writing a large amount of 

code. No(39), Yes(26) mean = .4 

depth-first-1 
5-Imagine you are fixing a bug in your friend's program. How often do 
you use this strategy for finding a clue about the actual problem? I take a 
chance and navigate different parts of code to find a clue. 

No(36), Yes(29) mean = .44 

depth-first-2 
6-Imagine you reach the first clue. How often do you use this strategy in 
relation to the first clues about the actual problem?  
I evaluate the clue: fix the bug and then test the program. 

No(19), Yes(46) mean = .71 

breadth-first-1 
7-Imagine you are fixing a bug in your friend's program. How often do 
you use this strategy for finding a clue about the actual problem? I read 
and understand the code to find a clue. 

No(12), Yes(53) mean = .82 

breadth-first -2 

8-Imagine you reach the first clue. How often do you use this strategy in 
relation to the first clues about the actual problem?  
I do not trust the first clues immediately. I keep reading and 
understanding the code to make sure. 

No(44), Yes(21) mean = .32 

bottom-up-1 
9-Imagine you did some maintenance tasks on your friend’s program. 
What comes to your mind two hours later when you remember the code?  
I remember the exact name of methods. 

No(44), Yes(21) mean = .32 

bottom-up-2 10-I remember the approximate location of methods. No(14), Yes(51) mean = .78 
top-down-1 11-I roughly remember the functionality of methods. No(14), Yes(51) mean = .78 
top-down -2 12-I exactly remember how large methods were. No(49), Yes(16) mean = .25 

 


