
Links between the Personalities, Styles and Performance in Computer Programming

Zahra Karimi, Ahmad Baraani-Dastjerdi, Nasser Ghasem-Aghaee, Stefan Wagner

Abstract

There are repetitive patterns in strategies of manipulating source code. For example, modifying
source code before acquiring knowledge of how a code works is a depth-first style whereas reading
and understanding before modifying source code is a breadth-first style. To the extent we know,
there is no study on the influence of personality on them. The objective of this study is to
understand the influence of personality on programming styles. We did a correlational study with
65 programmers at the University of Stuttgart. Academic achievement, programming experience,
attitude towards programming, and five personality factors were measured via self-assessed
survey. The programming styles were asked for in the survey or mined from the software
repositories. Performance in programming was composed of bug-proneness of programmers
which was mined from software repositories, the grades they got in a software project course and
their estimate of their own programming ability. In a statistical analysis we found that Openness
to Experience has a positive association with breadth-first style and Conscientiousness has a
positive association with depth-first style. We also found that, in addition to having more
programming experience and better academic achievement, the styles of working depth-first and
saving coarse-grained revisions improve performance in programming.

Keywords: Programming Styles, Personality, Five-Factor Model, Programming Performance,
Statistical Analysis

1. Introduction

Software development is a human task and individual differences are known to be present in it and
have been identified in previous research. For example, developers differ in their performance
(Sackman et al. 1968), in the way they make their judgments and take their decisions (Feldt et al.
2010). Programmers also differ in their working habits, in the way they generate and comprehend
source code (Cox and Fisher 2009). In other words, each programmer might use a different strategy
in modifying source code.

Cox and Fisher (2009) used the term programming styles to describe recurring strategies in
manipulating source code. For example, programming can be done top-down and or bottom-up. In
top-down programming, more tasks might be done in model space and in bottom-up programming,
more tasks might be done in code space.

Programming styles have been studied for several decades. The researchers believed that these
styles are the result of programming experience. Therefore, finding them would help train novices.
For example, Vessey (1985) studied think-aloud data of 4 novices and 4 experts while they were

debugging a piece of Cobol code. He found that experts’ style is systematic (breadth-first) but
novices’ style is opportunistic (depth-first). Ko and Uttl (2003) also observed 75 students at
debugging. They confirmed that students who work breadth-first were more experienced.
Mayrhauser and Vans (1997) studied think-aloud data of 4 professionals and found that
programmers frequently switched between solution space (bottom-up) and problem space (top-
down); however, language expertise encouraged bottom-up and domain knowledge encouraged
top-down styles.

Cox and Fisher (2009) reviewed programming styles and hypothesized that, in addition to
experience, other individual factors may explain these differences. They themselves studied the
influence of gender on top-down and bottom-up styles (Fisher et al. 2006) and reported that males
tend to use top-down styles while females tend to use bottom-up styles. Cox and Fisher (2009) also
claimed that personality influences programming styles.		
	
Personality refers to individual differences among people in behaviour, cognition and emotion
patterns (Michel et al. 2004). There are studies on the influence of personality on individual
performance or team work in programming (Cruz et al. 2011 and 2015) but to the extent we know,
there are no empirical studies on the influence of personality on programming styles. We should
mention that Cox and Fisher (2009) themselves did a pilot study on the influence of personality
on programming styles but did not report the results.

In the present study, we make a first attempt to fill this gap and investigate the influence of
personality on programming styles. One first objective is to find out which personalities use which
programming styles. Moreover, we are interested in consequences of relations between personality
and programming styles. Therefore, we also investigate relations between personality and
programming styles on one hand and performance on the other.

There are various models for describing personality in psychology. In this study we focus on the
Five-Factor Model. This is a comprehensive and well-established model in psychology (Digmann
1990) and has recently been used frequently in software psychology research (Cruz et al. 2011 and
2015). Moreover, Cox and Fisher (2009) recommended the Five-Factor Model in the area of
programming styles.

We conducted an empirical study and surveyed personality factors of 65 volunteer student
programmers in software engineering at the University of Stuttgart. We used indicators in the
literature and devised our own questionnaire to survey programming styles discussed in Cox and
Fisher (2009) study. Moreover, we used a mining algorithm to extract one of those programming
styles from repositories of software projects under study. In addition to personality factors and
programming styles, we also collected data on age, gender, academic achievement (overall grade
of all university exams), prior programming experience and programming performance. On the
collected data, we did correlational analyses to see which personality and/or other factors affect
programming styles and which programming styles and/or other human factors affect
programming performance.

In this paper, we report our results on the links between investigated human factors, programming
styles and performance. After explaining the background and related work in section 2, we describe

the design of the empirical study in section 3. Then we present the statistical findings in section 4
and discuss them in section 5. Limitations and future work are presented in sections 6 and 7, and
we conclude the paper in section 8.

2. Background and Related Work
2.1. Personality Psychology

Psychology is a collection of scientific methods and theories for understanding human nature, and
personality is a part of psychology that considers characterizing individuals. Psychologists usually
describe personality by several personality traits. For each individual, each personality trait has a
numeric score indicating how much of the trait an individual possesses.

Yet they are not sure how many and which narrow traits should be considered in a comprehensive
personality model; generally, psychologists have a good consensus about the comprehensiveness
of the Five-Factor Model (Digmann 1990). In this model, five broad and distinct traits describe
personality: Openness to Experience, Conscientiousness, Extraversion, Agreeableness and
Emotional Stability.

Openness to Experience shows to which extent we are creative, interested in art, willing to try new
things and aware of our feelings. Conscientiousness shows how much we prefer planned
behaviour, self-discipline, acting dutifully and aiming for achievement. Extraversion shows how
much we engage with the external world, interact with people and assert ourselves. Agreeableness
shows how humble we are, how much we value getting along with others, how considerate,
friendly, generous, helpful we are and to which extent we are willing to share our feelings with
others. Neuroticism shows how much we experience negative emotions such as anger, anxiety and
depression.

Personality tests, which usually are an inventory of multiple-choice questions, operationalize
personality traits. This means that these questions identify observable evidence of traits in an
assessable way. As an example, Costa and McCrae (1992) developed the NEO-PI-R inventory
which allows a comprehensive assessment of the five personality factors to be done. Since the
NEO-PI-R inventory is commercial and, therefore, researchers cannot freely use it, Gow et al.
(2005) provided the assessment items for the Five-Factor Model in the public domain of
personality scales and items (IPIP, Goldberg, 1999). The items in IPIP are validated by
psychologists and translated into many languages. Therefore, this pool provides us with what we
need: a free, valid, reliable and comprehensive personality test.

In summary, although personality descriptions and tests are developed in the context of psychology
research, their research results provide software engineering research with required background
and tools, theories and assessments. In this study, we focus on the Five -Factor Model for
describing personalities of programmers and the IPIP for assessing personalities.

2.2. Programming Styles

Cox and Fisher (2009) explained 4 basic programming styles: top-down, bottom-up, depth-first
and breadth-first. In the top-down style, programmers investigate the model space to solve the
problem, whereas in the bottom-up style, programmers investigate the code space to solve the
problem. In the depth-first style, programmers proceed with the first alternative to solve the
problem and, therefore, they are opportunistic. In the breadth-first style, programmers examine all
alternatives before proceeding, and they are systematic. Although these styles are a personal
preference, it does not mean some people use top-down and do not use bottom-up or vice-versa
(Mayrhauser and Vans 1997) or some people use depth-first and do not use breadth-first or vice-
versa (Cross 2005). In the following section we illustrate these basic styles by an example.

Programmers also differ in the amount of work they do in each session. Cox and Fisher (2009)
believe that those who write a large amount of code before bug removal are coarse-grained
programmers and others are fine-grained programmers. But since in the modern IDEs all
programmers see their syntax bugs immediately, we believe deferring bug removal sessions and
in other words saving large amount of work before the next bug-removal session means that these
programmers avoid bug removal and keep working on buggy code.

We measured the amount of work in each revision, instead, to assess coarse-grained programmers.
Therefore, in addition to 4 basic programming styles, we included 2 other programming styles:
bug-removal-avoidance and large-revisions.

2.2.1. Example

 (a) model (b) code

Fig. 1. A sample model (and equivalent code) of quick sort with an infinite loop bug

Suppose a programmer is assigned to modify a quick-sort code which has an infinite loop bug.
Figure 1 shows the model and code of this buggy quick sort. The programmer might make two
hypotheses. The first hypothesis is: “a sequence of length 1 does not need sorting”. The second
and correct hypothesis is “the partition method returns a wrong value.” The programmer might use
different flows in making hypotheses and evaluating them. Figure 2 shows possible flow diagrams.

The two top diagrams (a and b) in figure 2 show top-down work and the two bottom diagrams (c
and d) show bottom-up work. The two diagrams on the left (a and c) show depth-first and the two
diagrams on the right show (b and d) breadth-first work. As the horizontal swimlanes in figure 2
show, there are three layers: “model”, “code” and “run” and there are four basic actions in this
debugging: “find hypothesis”, “modify model”, “modify code” and “test code”.

	

		

Fig. 2. Sample flows of programming styles in debugging

In working top-down (figure 2 a and b), a programmer traces conditions, calls and return parts of
the model to find a hypothesis. He first modifies the model and then the code. However, in working
bottom-up (figure 2 c and d), a programmer traces code and finds conditions, calls and return parts
to make a hypothesis. He first modifies the code and then the model. As figure 2 shows, in top-
down work more actions are done in the model layer, whereas in bottom-up work more actions are
done in the code layer.

Working depth-first (figure 2 a and c), a programmer tests the first hypothesis he finds and, if it
does not solve the problem, creates another hypothesis. However, working breadth-first (figure 2
b and d), a programmer does not commit to the first hypothesis and keeps investigating hypotheses
before modifying and testing. As figure 2 shows, in depth-first work more actions are done in the
depth whereas in breadth-first work more actions are done in the breadth.

2.2.2. Theory
Cox and Fisher (2009) presented a conceptual framework (see figure 3) and explained that, as a
consequence of different situations, tasks and individual factors, programmers prefer to use certain
programming styles. Situation is a set of factors that represent the characteristics of the
surrounding, where, how, when and with whom the task is performed. Time available,
organizational culture and teams are examples of situational factors. Technical and programming-
relevant characteristics are task factors such as difficulty and functionality. Individual factors
represent all personal factors, whether they are unchangeable such as personality (see internal
component in figure 3) or changeable such as experience (see external component in figure 3). In
this paper, we focused on individual factors to study programming styles.

Fig 3. Programming Context influences on Programming Styles, derived from Cox and Fisher (2009)

2.2.3. Literature Review

Table 1. Summary of the literature on individual differences and programming styles

paper individual factors performance results
Vessey (1985) experience debugging

score
experts use breadth-first
novices use depth-first
experts use debugging score

Webb et al.
(1986)

biography
aptitude
cognitive styles

test score top-down increases test score in generating
new code
bottom-up increases test score in modifying
existing code
Students mainly use bottom-up

Mayrhauser and
Vans (1997)

domain knowledge
language expertise

 domain knowledge encourages top-down
language expertise encourages bottom-up

Ko and Uttl
(2003)

age, gender, major
domain knowledge
language expertise
attitude

debugging
score

Computer science major encourages breadth-
first
experience encourages breadth-first
attitude encourages breadth-first
breadth-first increases debugging score

Fisher et al.
(2006)

gender
Spatial cognitive
ability

test score males use top-down
females use bottom-up
bottom-up increases test score

In this section, we review the empirical literature on the individual differences in programming
styles (see Table 1). Vessey (1985) conducted a protocol analysis on the think-aloud data of 4
novice and 4 expert programmers in debugging the same Cobol code. He extracted problem
solving strategies and found that expert programmers tended to use breadth-first; they kept reading
code and comments to understand it. They did not commit to their first hypothesis and were not
blind to new information. However, novices were more probable to use depth-first; they executed
the code sooner and persisted with their first hypothesis.

Webb et al. (1986) studied 30 novice students (11–14 years old) who were writing a simple BASIC
program. They used taped records and prints of computer verbatim and then coded the
programming behaviour. They measured the frequency of coded variables to recognize their

Programming Styles

…....like experience
…... like personality

Programming Context’s Factors

Influence

tendency to use top-down or bottom-up. In their study, an abstract plan such as a design plan
before writing code indicates top-down and a concrete plan such as an operation plan indicates
bottom-up. For individual differences, they surveyed biography variables, aptitude and the
cognitive style of students. They performed a correlational analysis on all variables and could not
find consistent significant relations between individual differences and programming styles and
did not report them. But they reported that students mainly used bottom-up style. Moreover, they
found that the degree of top-down style affected the learning outcome of students in generating
new code and the degree of their bottom-up style affected their learning outcome in modifying
existing code.

Mayrhauser and Vans (1997) did a field observation and recorded think-aloud data of 4
professionals during corrective maintenance of a large-scale software. In protocol analysis, they
coded and enumerated hypotheses of programmers to see whether programmers tend to produce
domain-level hypotheses (top-down), program-level hypotheses (bottom-up) or situation-level
hypotheses (switch between top-down and bottom-up). They found that programmers frequently
switched between top-down and bottom-up; however, programmers with domain knowledge
tended to use top-down and programmers with language expertise tended to use bottom-up styles.

Ko and Uttl (2003) observed 75 undergraduate computer science, psychology and statistics
students who were debugging a simple program in an unfamiliar system (programmable statistical
package). In addition to think-aloud data, they analyzed and coded video and screen recordings to
find comprehension behaviours. They used cluster analysis and classified behaviours into 3 distinct
clusters: depth-first, inactive and breadth-first. They investigated the mean differences of age,
gender, domain knowledge, programming experience, attitude and major in these clusters. They
found that students who tended to use breadth-first were generally more experienced, had a
positive attitude towards experiments and were computer science students. Moreover, students
who tended to be inactive were psychology students and had less programming experience.

Fisher et al. (2006) studied 30 graduate and undergraduate students performing a set of
maintenance tasks on Java. Participants did some post-maintenance tasks on how well they
remembered the size, location and name of methods. Moreover, the participants filled out spatial
cognition tests, location memory, object memory and mental rotations tests. Fisher et al. (2006)
correlated all the measures, the scores of spatial cognition tests, post-maintenance tasks and
maintenance tasks for males and females separately. They found that males tended to use mental
rotation ability (highly abstract) and remembered the size and functionality of methods. But
females tended to use location memory (highly concrete) and remembered the name and location
of methods. Fisher et al. (2006) concluded that males may use top-down and females bottom-up
styles. Moreover, they found that programmers who used bottom-up achieved better test scores.

As we summarized in Table 1, there are empirical studies on the influence of experience, gender,
attitude and mental ability on programming styles but as far as we know, there is no empirical
study on the influence of personality on programming styles. In this study, we fill this gap. To do
so, we rely on Cox and Fisher's theory and investigate the influence of personality factors on
programming styles.

3. Study Design

3.1. Research Questions

Fig. 4 The structure of research questions

We showed the structure of research questions in figure 4. First, we investigate the influential
factors on programming styles to see how strongly personality affects programming styles. Then
we study the effect of all factors on performance to empirically figure out the potential benefits of
programming styles. In summary, we answer two research questions:

RQ1. Which human factors affect certain programming styles?

RQ2. Which factors, human factors and programming styles affect performance?

As figure 4 shows, in addition to personality factors we study age, gender, academic achievement,
programming experience, and attitude towards programming. To measure programming
performance, we use indicators of programmer quality, project quality and code quality.

3.2. Target population

The target group for the study are German software engineering students mostly at the University
of Stuttgart in the first and advanced software project courses (in 2012 and 2013). In their first
software project course (“Sopra”), second-year students work for one semester in 3-member teams
to develop the same real software project. In this course, three expert software engineers (one in
the role of the customer and two as supervisors) evaluate the students’ work (system design and
system implementation) and each gives a score to the whole team. The average score determines
the state of fail or pass in the course. In advanced software project courses (“Studienprojekt” or
"Stupro") students work for 12 months in teams of 6 to 12 programmers and develop a real software

project. In addition to the quality of the whole project, supervisors examine the contributed code
of each student (and other factors such as their motivation) and give individual scores to each team
member.

The initial idea for finding volunteers was presenting the study and giving information about our
research. It became apparent that interested students needed more privacy and time to think and
react. Therefore, we developed a brochure for introducing the study and attracting the volunteers.

We first talked with the course tutors (and the instructor of the course) and gave the brochure to
them. After getting the initial agreement, we distributed the brochure among students directly or
indirectly. Volunteers could signal their interest on the website of the course or send e-mails. They
were supposed to fill in an on-line questionnaire and give us read-only access to the repositories
of their source code. Moreover, they were supposed to write appropriate descriptions for their
commits in the repository.

In December 2012, in the middle of the SOPRA-2012 course, we had three volunteering teams
two of which ultimately did not participate in the study. One of the teams did not finish the course
and one of them cancelled their participation. In February 2013 and at the end of the course, we
attracted another volunteering team.

In June 2013 we had one 7-member volunteering team in an MSc. course out of which 6 students
participated in the study. We also attracted 4 volunteering teams who had just finished advanced
software project courses out of which 19 developers participated in the study. Moreover, we had
one volunteering team external to the University of Stuttgart out of which 3 people participated in
the study.

In November 2013, in the middle of the SOPRA-2013 course, we had 13 three-member
volunteering teams two of which ultimately did not participate in the study. One team gave up the
course and another one failed to pass it. One of the teams also participated with only one member.

In summary, 8 different software projects, 19 teams and 65 volunteers participated in the study.
We had 18 repositories: 8 git (http://git-scm.com/), 1 mercurial (http://mercurial.selenic.com/) and
9 SVN (Collins-Sussman et al. 2011). We excluded one of the software repositories because it
only had one commit. All volunteers were developing real software projects in Java (57) and/or
C# (8). 13 teams and 37 volunteers with 2 different software projects were in the second year of
their studies. 4 teams and 19 volunteers were in the third or fourth year of their studies. 1 team
and 6 volunteers were Master of Science students. 1 team and 3 volunteers were graduates who
were maintaining their software project.

3.3. Data collection procedure
We used a self-assessed survey and repository mining to collect data except for the grades students
achieved in the software project courses. We collected some of the grades from the volunteers
themselves (by e-mails, 5 grades were missing) but we got the other grades from the supervisors
since some students were not aware of their grades and only get fail or pass votes. In the following,
we will explain the design, pre-testing and administration of the questionnaire items as well as the
repository mining procedure.

3.3.1 Design and pre-testing of questionnaire
The questionnaire consisted of 4 main parts: (1) personality items, (2) programming style
indicators, (3) experience, ability and background items and (4) attitude items (see items in the
appendix).

(1) Personality items: Since the data collection site was Germany, we used the German translation
of IPIP-50 (validated by Gow et al. 2005 and translated by Streib in the Research Center for
Biographical Studies in Contemporary Religion at the Universität Bielefeld) to measure the Five
Factors. In this questionnaire each personality factor is assessed by 10 short descriptions by which
the respondent should decide how strongly he/she agrees with the item. To do so, the respondent
selects one value in the range of 1 to 5 (1–5 Likert scale). Some of the items indicate high values
in personality factors and some indicate low values. For example, strong agreement with “Spend
time reflecting on things” indicates high Openness to Experience and agreement with “Am not
interested in abstract ideas” indicates low Openness to Experience. The items in the questionnaire,
number of positive or negative items, wording and even the order of the items were psychologically
validated. Therefore, the questionnaire is psychologically standardized in a way that decreases the
level of misunderstanding and misleading items to a minimum. However, we used the mother-
tongue for the personality questionnaire and also checked the selected questionnaire and
administration procedure with the psychology advisor of the research, Jan-Paul Leuteritz. We also
rechecked the on-line questionnaire with the help of a language expert to be sure it did not have
any copy-paste problems.

(2) Programming style indicators: We used Cox and Fisher (2009) as the theoretical framework of
our work and, therefore, included the programming styles they introduced in the empirically study.
In the following we explain them:

• Top-down and bottom-up styles: We used Fisher et al. (2006) indicators in code-
comprehension to assess these styles: top-down programmers usually investigate the length
and functionality of a method and bottom-up programmers look into names and locations
inside the code.

• Breadth-first and depth-first styles: We used Vessey (1985) indicators in debugging to

assess these styles: breadth-first programmers examine all possible ways before modifying
the code, while depth-first programmers apply the first hypothesis they found.

• Bug-removal-avoidance style: We used the Cox and Fisher (2009) indicator in syntax-bug-

removal to measure bug-removal-avoidance style. A large amount of work before the next
bug-removal session indicates bug-removal-avoidance.

(3) Experience, ability and background items:	To measure experience, we asked the participants
about the years/months of prior programming experience including school and university work,
the programming languages they worked with and their largest code contribution. Moreover, we
asked about years/months of professional programming. Experience items were an adaptation of

the previously used survey for newly enrolled students of the software quality course at the
University of Stuttgart.

To measure ability, we asked for an estimate of their own ability in programming and their own
ability in comparison with their friends in the team (like Newsted 1975). We also added some
background questions about age, gender, GPA and the language of participants.

(4) Attitude items: We adapted 10 items of the Computer Science Attitude Survey (Wiebe et al.
2003) which was derived from Fennema-Sherman mathematics attitudes scales (Fennema and
Sherman 1976). We had 3 items for confidence-in-learning-programming, 2 items for attitude-
towards-success-in-programming, 2 items for computer-science-as-a-male-domain, 1 item for
usefulness-of-programming and 2 items for effective-motivation-in-programming. Like
personality items, attitude items were also in 1-5 Likert scale. We added attitude items in the
middle of the study and we don’t have attitude values for all participants.

To make sure that our questionnaire was clear and appropriate for the participants, we piloted it
two times among six expert software engineers who knew the student respondents and worked at
the Institute of Software Technology at the University of Stuttgart. They were at least PhD students
in the field of empirical software engineering and had a good sense of the research objectives and
approach. We also had the questionnaire checked by a language expert.

The personality part of the questionnaire was in German, while other parts were in English. This
was because the first author does not speak German. We published our survey in the e-learning
platform of the University of Stuttgart: https://ilias3.uni-
stuttgart.de/goto.php?target=svy_497145&client_id=Uni_Stuttgart

3.3.2. Administration of the questionnaires
We communicated with the volunteers by e-mails and arranged a meeting for filling out the survey.
We met them in groups of 1 to 5 students and gave the survey link to them. Some of the participants
filled the survey out on their own laptops. Several participants were not available at the time of
data collection and filled it out remotely.

Before survey administration, we emphasized that their answers would be kept confidential and
every personal style has its own beauty. We wanted them to describe themselves as they are now,
not as they wish to be in the future, and asked them to see themselves honestly, in relation to other
people they know of the same sex, and roughly their age. Finally, we informed them that there
was no time limit. They took 20 minutes on average.

Respondents could get support for the meaning of items if it was not clear to them but almost all
the respondents filled out the questionnaire without help. Several students asked how to judge
themselves; for example, one of them asked whether scripting counted as programming
experience. Only one of the participants had problems with understanding the German words of
the personality items. We provided him with a hard copy of the English equivalent.

After filling out the survey, the participants signed an agreement which allowed us to save, analyze
and publish their personal data anonymously and received a small compensation (10 Euros). We
distributed the survey in June/July 2013 (34 respondents) and December 2013 (37 respondents).

3.3.3. Repository mining

Fig. 5 Data extraction procedure from software repositories

We wrote a Java program to extract churns from software repositories (see Fig. 5). Each churn
shows the programming work-unit on one revision and one file. As figure 5 shows, churns is a
dataset with these columns: revision-id, commit-date, programmer, message, source-file, change-
type, nlines, is-test-time and is-bugfix. Programmer column indicates the login name of the
programmer who committed the code. Change-type is the type of change on the file: created,
deleted, modified, and so on. nlines is the total number of lines of code changed in the unified
format1. The unified format is the format software repositories use for comparing file revisions. In
this format, lines added are preceded by “+”, lines deleted are preceded by “-“and modifications
are modeled by several lines added and deleted. The column is-test-time indicates whether the
revision was saved during test time or development time. The last column, is-bugfix, indicates
whether a bug fix in the revision or something else has been done.

We wrote R scripts (Statistical Computing with R) to extract these metrics from the churns dataset:
file-count-in-revision, line-count-in-revision and bug-ratio. Although volunteers were supposed to
use the repository, one 3-member team failed to use it appropriately; also, we could not map one
of the participants to the repository logs. Therefore, we missed 4 participants in repository styles
(n = 61).

input: programmer code (p)
output: mean file count in revisions of programmer p

 file-count-in-revision = select mean
(select Count(source-file)
from churn
where programmer = p
and change-type = “modified”
group by revision.id)

(a) file-count-in-revision

input: programmer code (p)
output: mean line count in revisions of programmer p
line-count-in-revision = select mean

(select sum(nLoC)
from churn
where programmer = p

 and change-type = “modified”
group by revision.id)

(b) line-count-in-revision

input: programmer code, p
output: modified files by p in develop time
modified.files = select unique(source-file)
 from churn
 where programmer = p
 and change-type = “modified”
 and is-test-time = NO

(c) modified-files

input: -
output: modified files in bug-fix revisions of test time
buggy.files = select unique(source-file)
 from churn
 where is-test-time = YES
 and is-bug-fix = YES

(d) buggy-files

																																																													
1 http://en.wikipedia.org/wiki/Diff_utility#Unified_format	

Fig. 5 Pseudo scripts for getting repository metrics	

large-revisions: We computed the mean Lines of Code and mean Number of Files in revisions for
each programmer to assess tendency to large-revisions. For simplicity, we focused only on
modifications and discarded other change types. Figure 5a and 5b shows the pseudo scripts. As
figures 5a and 5b show, we first counted lines (files) in each revision and then computed mean of
counts.

bug-ratio: We measured bug-ratio to estimate the code quality of each developer. Bell et al. (2013)
introduced this metric to study bug-proneness of programmers in software repositories. The bug-
ratio indicates in which percentage of source files a programmer worked on during development,
bugs are found during test. A large bug-ratio shows that a programmer is bug-prone. Bell et al.
(2013) show that bug-ratio is relatively constant in different releases and, therefore, can be used
as a performance criterion.

We considered the first 80% of the work as the development phase and the remaining 20% as the
testing phase. Moreover, we considered all files changed during testing with bug-fix commits as
buggy files (like Bell et al. 2013). To fill in the is-bugfix column we used a Java program and
searched all key words, bug, bugfix, fix, bug fix and etc. We then manually checked the churn
dataset and modified it. Although students were supposed to write a meaningful description for
each commit, one 3-member team failed to add any descriptions and we missed 3 more participants
in this metric (n = 58). As figures 5c and 5d show, we first computed “modified-files” and “buggy-
files” and then computed bug-ratio using formula 1.

Formula 1- bug.ratio formula
𝑏𝑢𝑔. 𝑟𝑎𝑡𝑖𝑜 =

𝑐𝑜𝑢𝑛𝑡 (𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑. 𝑓𝑖𝑙𝑒𝑠	, 𝑏𝑢𝑔𝑔𝑦. 𝑓𝑖𝑙𝑒𝑠)
𝑐𝑜𝑢𝑛𝑡(𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑. 𝑓𝑖𝑙𝑒𝑠)

3.4. Variables

Table 2. Summary of variables in the study

Personality factors Openness to Experience (5-50), Conscientiousness (5-50), Extraversion (5-50),
Agreeableness (5-50), Emotional Stability (5-50)

programming
experience

years of programming experience (5-point scale), years of professional experience (4-
point scale), number of programming languages , largest code contribution (5-point scale)

attitude towards
programming

confidence-in-learning-programming (3-15), attitude-towards-success-in-programming
(2-10), effective-motivation-in-programming (2-10), attitude-towards-usefulness-of-
programming (1-5), computer-science-as-a-male-domain(2-10)

programming styles top-down.1 (0, 1), top-down.2 (0, 1), bottom-up.1 (0, 1), bottom-up.2 (0, 1), breadth-
first.1 (1-5), breadth-first.2 (1-5), depth-first.1 (1-5), depth-first.2 (1-5), bug-removal-
avoidance (0, 1), large-revisions-file-count, large-revisions-line-count

background age, gender (1-2), GPA (3-point scale), years-at-university (1-3)
performance performance (factor score)

We used the collected data to prepare the following variables for data analysis (see Table 2 for
summary of variables).
	

• Personality factors: As we already mentioned, there are 10 responses in the Likert 1-5 scale
for each personality factor. Some responses influence the score positively and some
negatively. Following computation rules in the personality questionnaire, we reverted the
negative ones (6- response value) and summed the responses to compute a personality
score, 5-50, for each factor. Each participant has 5 personality scores and each score is
between 5 and 50.

• Experience: We used the questionnaire items directly as experience indicators. For

example, regarding professional programming experience, there is a 4-point scale: less than
6 months, between 6 months and 1 year, between 1 and 3 years and more than 3 years.

• GPA: We collected GPA in a 3-point scale in the questionnaire.
• Attitude towards programming: As we explained before, we collected 5 attitude scales. We

used the same procedure in personality factors to compute scores of attitude scales.
• Programming styles: In some styles, there is more than one indicator. For example, in

bottom-up style, there are two indicators, name-orientation and location-orientation. In
summary, each person has 11 scores for 6 programming styles.

• Performance: There are 3 performance variables: (1) Grade: In academic grading in
Germany, they use a 1-5 grading scale to evaluate performance of students. (2) Programmer
ability: We collected it from the questionnaire (3) bug-ratio: We computed it in repository
mining. We did Principle Component factor analysis to analyse (??) factors among our
variables. Factor analysis is a statistical method which identifies a potentially lower number
of unobserved variables called factors from observed, correlated variables. We found that
all three variables reflect only one factor. To find each participant’s placement on this
factor, we used the Regression Scores technique and computed factor scores (DiStefano et
al. 2009).

3.5. Analysis Procedure

To answer the research questions, we used correlation analysis using Pearson's correlation
coefficient and entered all significant variables into linear regression. We repeated the regression
analysis for all subsets of variables and selected the best one with lowest error and significant
coefficients. We used R (Statistical Computing with R) to do the regression and correlational
analyses. The significance level in all analysis is 0.05.

We should mention that since we added attitude items in the middle of the study, we missed attitude
scores for 34 participants. Therefore, we did not enter attitude scores into regression analysis. We
only report and discuss significant correlational results in a separate section.

4. Results

Of the 65 participants, 7 were female and 58 were male. 16 participants were 19 – 20 years old,
28 participants were 21 – 23 years old and 21 participants were 24 years old and above. Nearly

57% (37) of the participants were in the second year of their studies. Almost all participants (except
2) used German as their first language in which they do most of their thinking, creating and writing.

Almost all participants (except 2) had at least 1 year of programming experience including school
and university work and 67 % of participants (44) had more than 3 years of programming
experience. Moreover, 15 participants had at least 6 months of professional programming
experience. None of the participants had more than 3 years of professional programming
experience. None of the participants was a beginner in Java and nearly 77 % (50) of the participants
had made code contributions in at least 3 programming languages. The largest code contribution
for more than 80 % of participants (55) was at least 1 KLOC. The largest code contribution for 34
participants was at least 5 KLOC.

More than half of all participants (35) liked to earn money with programming as a full-time work
and other participants (except 5) liked it but prefer other software engineering tasks like analysing,
designing or testing. Therefore, this sample represented intermediate German student
programmers and prospective professional software developers.

4.1. RQ1. Which human factors affect programming styles?

Table 3a –Significant correlations between human factors and programming styles
factor style n r

Conscientiousness depth.first.1 65 0.252*
attitude towards usefulness of programming depth.first.2 31 0.426*
Openness to Experience breadth.first.1 65 0.247*
Openness to Experience breadth.first.2 65 0.322*
attitude towards success in programming breadth.first.1 31 0.406*
years at university bottom.up.1 65 -0.271*
years of programming experience bottom.up.2 65 0.297*
attitude towards usefulness of programming bottom.up.2 31 0.368*
age bug avoidance 65 0.255*
gender bug avoidance 65 -0.284
age number of files 61 0.298*
years at university lines of code 61 0.310*
years at university number of files 61 0.415*
years of professional experience lines of code 61 0.257*

 *: p<0.05, **: p<0.01	

Table 3b –Regression equations between programming styles and human factors
style regression equation R square degree of

freedom
depth first 1 0.049* Conscientiousness +1.446 0.063 63
breadth first 1 0.035* Openness to Experience +2.655 0.061 63
breadth first 2 0.060* Openness to Experience +0.645 0.104 63
bottom up 1 -0.175*years at university+0.598 0.073 63
bottom up2 0.094*years of programming experience+0.438 0.088 63
bug removal avoidance -0.448*gender+0.896 0.080 63
large revisions. line
count in revision

76.84*years at university+18.32 0.096 59

large revisions. file
count in revision

0.839*years at university+1.453 0.171 59

Table 3 shows the answer to RQ1. Table 3a shows significant correlations between human factors
and programming styles we studied. Table 3b shows the results of regression analysis. In summary,
table 3 indicates that:

• Males avoided bug-removal more than females did.
• Programmers with more programming experience used bottom-up style.
• Programmers with higher years at university tended to save larger revisions and did not

tend to use bottom-up style
• Conscientiousness and Openness to Experience were the evident personality factors in the

programming styles we studied.

o High Openness to Experience programmers used breadth-first style more often than
low Openness to Experience programmers.

o High Conscientiousness programmers used depth-first style more often than low
Conscientiousness programmers.

• Programmers with a positive attitude towards programming used depth-first, breadth-first
and bottom-up styles.

4.2. RQ2. Which factors, personality factors and programming styles affect performance?

Table 4 Significant correlations and regression equation between programming performance and other variables

 variable n r

pr
og

ra
m

m
in

g
pe

rf
or

m
an

ce

age 54 0.327*
GPA 54 0.364**
years at university 54 0.535**
years of programming experience 54 0.439**
number of programming languages 54 0.545**
largest code contribution 54 0.386**
attitude towards computer science as a male domain 25 0.400*
depth first 1 54 0.361*
large revisions line count 54 0.276*
programming performance =
0.249*number.of.programming.languages + 0.307*depth.first.1 +
0.490*GPA + 0.001* largerevisions.line.count + 0.130*age - 3.895

df
=48

Rseq =
0.588

Table 4 shows that:

• Programmers with more programming experience have better performance than those with
less programming experience.

• Programmers with higher academic achievement perform better than programmers with
lower academic achievement.

• Older programmers are better programmers than younger ones.
• The following programming styles affect performance.

o 	Programmers who tended to use depth-first more often were better programmers
than ones who did not tend to use depth first less.

o Programmers who saved larger revisions were better programmers than those who
did save smaller revisions.

• Programming styles entered into regression analysis.
• Seeing computer science as a male domain improved performance in programming

5. Discussion

In this section we summarize our main findings.

1- Influence of gender on programming styles: Our study confirms that males and females differ
in bug-removal-avoidance style. It might be that, since females are more humble or less confident,
they acknowledge their bugs more frequently. However, we could not find any relations between
gender and bottom-up style as claimed by Cox and Fisher (2006). It might be that, since there are
few females (7 females vs. 58 males) in our sample, we could not study gender appropriately.

2- Influence of experience on programming styles: Our study confirms the findings of the previous
literature in the sense that our styles change with experience (Mayrhauser 1997). In particular, we
found that months/years of programming experience affect the bottom-up style positively and
years at university affect it negatively. Mayrhauser (1997) explains that knowledge of
programming languages encourages bottom-up. We mainly measured programming experience in
coding; therefore, it seems logical that more years of programming experience encourage
programmers’ use of the bottom-up style. Higher years at university means that they have done
advanced courses and have more experience with models. Therefore, it seems reasonable that
higher-year students do not only rely on the bottom-up style. However, we could not find any
relations of the top-down style. It might be that those higher-year programmers use top-down
where appropriate, and since our indicators are independent of problem and situation, we could
not measure it.

Although the existing research (Vessey 1985, Ko and Uttl 2003) indicates that experience affects
breadth-first and depth-first styles, more experienced programmers use the breadth-first style and
less experienced ones use the depth-first style. We did not find any relations between experience
and breadth-first or depth-first styles. It might be that this relation appears in very different
experiences, for example, experts and novices (Vessey 1985) and computer-science and other
majors (Ko and Uttl 2003). Another possible explanation is that task difficulty mediates theses
relations, because they have been found in the previous studies (Vessey 1985, Ko and Uttl 2003)
on difficult tasks.

3-Influence of attitude on programming styles: We found that attitude towards programming has
a positive effect on depth-first, breadth-first and bottom-up styles. It might be that a positive
attitude encourages almost all styles. Another explanation is that individuals with a positive
attitude tend to choose positive options in personality items.

4- Influence of personality on programming styles: We found that Openness to Experience affects
breadth-first style. It might be that, since high Openness to Experience programmers have broader
views and see more alternatives, they tend to use breadth-first style. Moreover, we found that
Conscientiousness affects depth-first style. It might be that, since high Conscientiousness
programmers are goal-oriented, they are good at finding fast solutions and, therefore, they tend to
use depth-first style. As Cox and Fisher (2009) claimed, personality traits might explain the

differences in programming styles. This finding not only helps programmers to know themselves
better but it also helps supervisors to understand the differences between programmers.

5-Influence of human factors on the combination of programming styles: Programmers switch
between different styles and one programmer might use different styles. Although we did not focus
on the combination of styles, our findings indicate that programmers with a positive attitude
towards programming used both breadth-first and depth-first style. It might be that their positive
attitude helps them to switch to the better style according to situation. Moreover, it makes sense
that experienced programmers switch among styles when needed. However, we could not find this
effect in the current study. It might be that, since we focused on personality and used indicators in
measuring default programming styles, we could not find the influence of experience.

5- Influence of human factors on programming performance. Obviously, prior experience in
programming and academic achievements are the most important factors for programming
performance (Karimi and Wagner 2014). We also found that older programmers show a better
performance. It might be that age indicates general experience and, therefore, older programmers
have more experience and do the job better. Additionally we found that programmers who see
computer science as a male domain show better performance than programmers who do not share
this view. It might be that seeing computer science as a male domain motivates programmers to
write better code since they feel that they compete against stronger rivals.

6- Influence of Programming styles on programming performance. We found that despite
influential human factors like experience, some programming styles are preferred. This finding
helps to improve programmers and programming. In particular, the findings of this research
showed that using the depth-first style improves performance. Our findings are in contrast to the
previous studies (Vessey 1985 and Ko and Uttl 2003) which found that breadth-first style has a
positive effect on performance and depth-first has a negative effect. It might be that task difficulty
mediates relations between programming styles and performance. It means that breadth-first is not
always a good habit and depth-first is not also always a bad habit. Depth-first programmers are
more productive in iterative programming and, therefore, it might be that they have a better self-
perception or are more successful in refining their code.

Additionally, we could not find the influence of bottom-up on performance in this study although
the previous studies (Fisher et al. 2006) did. It might be that bottom-up is not always useful and
for example depends on task factors like generating or modifying source code. Another
explanation is that our indicators for measuring bottom-up are not comprehensive.
Moreover, our findings showed that saving large revisions increases programming performance.
Larger revisions show perfective actions (Hindle et al. 2008) and it might be that programmers
who tended to work with larger revisions have less test-time bugs. Another explanation is that
smaller revisions missed co-changes and decreased software quality.

6- Indirect influence of human factors on programming performance via programming styles.
Human factors affect programming styles and programming styles affect performance. This
indirect effect indicates possible causes for the influence of personality and other human factors
on programming performance. Using regression analysis to explain possible casual relationships
is out of scope of this study. However, we show the casual model of our findings to illustrate the
potential impacts of this study (see figure 6).

Figure 6: Relationships among programming styles, human factors and programming performance

Figure 6 indicates that the effect of Conscientiousness on programming performance is indirect
via depth-first style. In other words, since Conscientious programmers use depth-first style, their
performance is better. Moreover, figure 6 indicates that the effect of years at university on
programming performance is indirect via large-revision, since programmers with higher years at
university do not save small revisions have better programming performance.

7-Programming styles help to give personal recommendations to programmers. We can use our
findings to analyze strengths and weaknesses in programmers and give personal recommendations
to them. For example, we recommend:

• To programmers with low Openness to Experience: Invest more time in finding alternatives
to practice breadth-first style.

• To programmers with low Conscientiousness: Focus on the goal and find simple solutions
to practice depth-first style.

• To programmers in low years at university: Be careful about the revisions you save. Avoid
small and incomplete revisions.

8- Influence of programming styles on team performance. In this study we focused on individual
performance in programming. However, the participants worked in teams and there are studies
about the influence of individual differences on team success. For example, Goral and Lam (2004)
found that teams with extraverted programmers show better performance and Acuna et al. (2009)
also found that Extraversion positively correlated with team success. It is because extraverted
individuals are more social and enjoy team work. Salleh et al. (2009, 2010a, 2010b, 2011, 2013)
conducted a family of experiments and found that paired students at higher levels of Openness to
Experience got better academic achievements. This is because programmers with higher levels of
Openness to Experience not only make more suggestions but also build on the ideas of other
members which result in higher levels of knowledge sharing and better academic achievement.

We further analyzed the data to investigate which personality factors and programming styles
affect team success. To do so, we used the average grade among team members as team success.
We computed min, max and average of all independent variables including personality factors and
programming styles and used number-of-females to study the effect of gender in teams.

Doing correlations analysis on 142 teams we found that mean-Agreeableness and max-
Agreeableness affect team performance positively. Agreeableness is important in team work
(Howard and Howard 2009) and it seems logical that it increases team performance. We could not
find the effect of Extraversion in this study, maybe because in this study grade reflects individual
performance. We also could not find the effect of Openness to Experience in this study. It might
be that, since in our study grade does not reflect the learning outcome but the quality of the project,
the influence of Openness to Experience was not apparent.

Moreover, we found that min-depth-first.1 and max-depth-first.1 affect team success. It means
using depth-first with all team members is useful for team success. This seems logical since depth-
first programmers do not waste time on reflecting and systematic work and, hence, they share work
as soon as possible.

9- Influence of human factors on work schedule. Work schedules depend on task and situational
factors like deadlines. However, it was interesting to monitor commit times and study the influence
of personality on it. We extracted work percentage at night and weekends and correlated them
with human factors.

We found that Conscientiousness and Emotional Stability positively correlated with working at
weekends and age and years at university negatively correlated with working at weekends.
Moreover, Emotional Stability, age and Conscientiousness entered into regression analysis. It
seems reasonable that Emotionally Stable programmers postpone their tasks to weekends. Since
younger programmers here took a one-semester basic software project course, it might be that they
are under more pressure to meet deadlines and, therefore, work on weekends. Moreover, since
Higher Conscientious programmers are goal-oriented, they are more motivated to work on
weekends.

Additionally, we found that attitude towards usefulness of programming affects working at night
positively. It seems logical that programmers who work at midnight enjoy programming.

6. Limitation

First, we used a self-developed questionnaire to operationalize some of the programming styles.
There is the threat that questions do not reflect programming styles. We mitigated this threat by
relying on the previous literature for formulating the indicators and piloting and revising the
questionnaire several times. Moreover, the correlation among indicators shows they are not
cohesive. Sometimes the correlations between indicators of different styles are stronger than
correlations between indicators of the same style. Therefore, we considered and correlated each
indicator separately.

																																																													
2 We	included	teams	with	at	least	3	team	members	in	this	part	of	analysis	

Second, we used a self-assessed survey to measure some of the programming styles. There is the
threat that some respondents provide inaccurate or untrue answers. We mitigated this threat by
relying on volunteers who were interested in the research results and in getting personal feedback.
Furthermore, the research results were confidential and did not affect their grades. Moreover, we
collected several objective programming styles and working schedules from software repositories
and the conclusions are therefore quite well supported.

Third, although the personality questionnaire is standard, we found several significant correlations
between personality factors. Since significant correlations between the Five Factors have been
observed frequently in the Five Factor Manuals (McCrae and Costa 1992 for example), this does
not invalidate our findings.

Fourth, more than half of the participants (37 out of 65) are in the second year of their studies.
There is the threat that such students are likely to be still at the formative stage of developing their
programming style. But generally, the experience of German students in Computer Science is not
limited to university and, for example, 22 out of these 37 second-year students in our sample had
at least 3 years of programming experience and also 7 students out of 15 less experienced second-
year students knew at least 3 programming languages. Therefore, we believe that the programming
experience in our sample is not limited. Besides that, we did not ask for the programming styles
directly but used basic indicators instead and reviewed and piloted the questions with the help of
participants’ supervisors who confirmed that the questions made sense for the participants. 	

Fifth, the participants of this study were student programmers and our results might not be true for
the professional population. This result as just conjectures about the styles of professional
programmers was interesting for us. Moreover, this result is also interesting for computer science
students and their supervisors. We wanted to give them a clue about how their habits are different
and how these differences may influence their performance. Therefore, we are able to assist
prospective professional programmers by identifying their potential weak points and talents early
on.

Sixth, our participants were not in the same year of their education, had different programming
experience levels and worked on different projects. Since we have different experience levels and
different projects in industry as well, this sample can still represent prospective software engineers.

Seventh, like many studies of this kind, this study suffers from volunteer bias; people who are
willing to volunteer their opinion may differ from those who decline to take part.

Finally, we did a correlational study and although personality exists prior to behaviour, the
correlation of personality (and other behaviour) still does not reflect cause and effect (Cloninger
2004). Maybe there are some other variables which affect behaviour and correlate with personality
(for example motivation).

7. Future Work

In this study, we extracted one programming style from software repositories and devised a
questionnaire to assess five other programming styles. Neither our mining nor our questionnaire
is comprehensive, further research is needed to classify existing programming styles and determine
new ones. This can be done by reviewing literature, observing programmers and more mining of
software repositories. How to assess programming styles and whether or not assessments are valid
are also open challenges.

We did investigate single programming styles. Programmers might switch between styles and each
programmer can use multiple styles. Future research is needed to investigate combinations of
programming styles and study the influence of human factors like experience on them.

In this study we investigated effects and relations using correlational analysis with Pearson's
correlation coefficient and linear regression. Other techniques like association rule mining might
discover other interesting relations. Moreover, future studies need to evaluate prediction to help in
programmer selection. Moreover, in this study we focused on individual styles and individual
performance. Future studies need to investigate different styles in team settings. Additionally, in
this study we mainly investigated experience and personality. Future studies should consider other
important factors like cognitive styles (Witkin et al. 1967).

There are studies on the implications of programming styles. For example, Wang and Arisholm
(2008) found that fault probability in hard-first and easy-first task orders is different and the design
approach affects it. It means regarding the design approach, we can prevent a bad programming
style. However, the implication of programming styles is not clear yet. Future research needs to
find out in which situations and for which tasks a certain programming style is appropriate.

In this study we investigated the programming behaviour of 65 student programmers at the
University of Stuttgart in Germany. Future studies should be conducted on larger sample sizes,
with professionals and in different locations to strengthen the results.

8. Conclusion

The research problem addressed in this paper is to analyze some programming styles, which Fisher
and Cox (2009) believe are influenced by personality factors. Looking to validate their claim, we
analyzed the relationships between personality factors and programming styles. Moreover, we
studied the influence of personality factors and programming styles on programming performance
to understand potential benefits of analyzing programming styles.

For that, this paper presents two correlational analyses. In the first study, we analyzed the relations
between age, gender, GPA, experience, personality and attitude on one hand and programming
styles on the other. In the second analysis, we investigated the relations between all factors, human
factors and programming styles, and programming performance. Specifically, we measured
programming performance using the quality of code, project and programmer.

We considered all five personality factors, Openness to Experience, Conscientiousness,
Extraversion, Agreeableness, and Emotional Stability and studied the following programming

styles: top-down, bottom-up, breadth-first, depth-first, bug-removal-avoidance and large-
revisions.

We analyzed the findings and reached the following results. First, we confirm the relationship
between personality factors and programming styles. Programmers with high Conscientiousness
tended to use depth-first style. Conscientiousness encourages a clear view of the goal and eases
opportunistic strategies in programming. Additionally, we can say that programmers with high
Openness to Experience tended to use a breadth-first style. Openness to Experience supports
seeing alternatives and motivates a systematic style in programming.

Second, we reconfirm that programming styles influence performance in programming.
Specifically, we found that depth-first and large-revisions are good styles. Depth-first
programmers might be more productive in iterative programming. Additionally, it might be that
programmers who tend to do small-revisions do not invest enough time in perfective actions and
may miss co-changes.

Finally, we conclude that studying programming styles has the following advantages. (1)
Programming styles help understand the influence of personality in programming. For example,
despite organizational psychology’s results on the influence of Conscientiousness (Barrick and
Mount 1991), we did not see the direct influence of Conscientiousness on performance in
programming. However, we can say that Conscientiousness encourages depth-first style which is
beneficial in programming. (2) Using programming styles we are able to provide personal
recommendations to programmers. For example, based on this research’s results, we recommend
low-Conscientious programmers to examine opportunistic strategies to speed up reaching their
goal.

All this knowledge helps us to select better and fitter programmers and train the existing
programmers in order to improve the quality of source code, software projects and programmers.
We invite future research to consider programming styles in the investigation of personality in
computer programming to clarify the influence of personality in programming.

Acknowledgements

We want to thank all the volunteers who took part in the study, the psychologist advisor of the study: Jan-Paul Leuteritz
from Fraunhofer IAO and anonymous reviewers for their effective recommendations. The first author would like to
thank the members of the Institute of Software Technology (ISTE), University of Stuttgart, who not only provided an
excellent research environment to accomplish the main part of this work there but also helped her in reviewing all the
materials and in organizing and conducting data collection. Especially the first author would like to thank Daniel
Kulesz for his effective recommendations and all his warm support during data collection and Kornelia Kuhle for the
English proofing of all the materials and this paper.

References

1. Acuña, S. T., Gómez, M., & Juristo, N. (2009). How do personality, team processes and
task characteristics relate to job satisfaction and software quality? Information and
Software Technology, 51(3), 627-639.

2. Barrick, M. R., & Mount, M. K. (1991). The big five personality dimensions and job
performance: a meta-analysis. Personnel psychology, 44(1), 1-26.

3. Bell, R. M., Ostrand, T. J., & Weyuker, E. J. (2013). The limited impact of individual
developer data on software defect prediction. Empirical Software Engineering, 18(3), 478-
505.

4. Cloninger SC. Theories of Personality: Understanding Persons (4th Edition). Prentice
Hall, 2004.

5. Collins-Sussman Ben, W. Fitzpatrick Brian, Pilato C. Michael (2011). Version Control
with Subversion For Subversion 1.7. http://svnbook.red-bean.com/ , 2011

6. Costa JrP, McCrae RR. NEO PI-R professional manual. Psychological Assessment
Resources, 1992.

7. Cox A, Fisher M. Programming Style: Influences, Factors, and Elements. Second
International Conferences on Advances in Computer-Human Interactions IEEE 2009; 82-
89. DOI: 10.1109/ACHI.2009.48.

8. Cross, Nigel (2004). Expertise in design: an overview. Design Studies, 25(5), pp. 427–441.
9. Cruz, S. S., da Silva, F. Q., Monteiro, C. V., Santos, P., & Rossilei, I. (2011, April).

Personality in software engineering: Preliminary findings from a systematic literature
review. In Evaluation & Assessment in Software Engineering (EASE 2011), 15th Annual
Conference on (pp. 1-10). IET.

10. Cruz, S., da Silva, F. Q., and Capretz, L.F (2015). Forty years of research on personality in
software engineering: A mapping study. Computers in Human Behavior 46 (2015), pp 94-
113.

11. DiStefano, C., Zhu, M., & Mindrila, D. (2009). Understanding and using factor scores:
Considerations for the applied researcher. Practical Assessment, Research & Evaluation,
14(20), 1-11.

12. Fennema E, Sherman JA. (1976). Fennema-Sherman mathematics attitudes scales:
Instruments designed to measure attitudes toward the learning of mathematics by
females and males. Journal for Research in Mathematics Education. 7(5): 324-326 .

13. Fisher M, Cox A, Zhao L. (2006) Using sex differences to link spatial cognition and
program comprehension. 22nd IEEE International Conference on Software Maintenance;
289-298. DOI: 10.1.1.125.5519.

14. Goldberg LR. (1999). A broad-bandwidth, public domain, personality inventory measuring
the lower-level facets of several five-factor models. Personality psychology in Europe; 7:7-
28. Tilburg, the Netherlands: Tilburg University Press.

15. Gorla N, Lam YW (2004) Who should work with whom?: building effective software
project teams. Communications of the ACM 47 (6):79-82

16. Gow AJ, Whiteman MC, Pattie A, Deary IJ. (2005). Goldberg’s ‘IPIP’ Big-Five factor
markers: Internal consistency and concurrent validation in Scotland. Personality and
Individual Differences; 39 (2):317-329. DOI: 10.1016/j.paid.2005.01.011.

17. Hannay JE, Arisholm E, Engvic H, Sjoberg DIK. (2010). Effects of Personality on Pair
Programming. IEEE Transactions on Software Engineering; 36(1): 61-80. DOI:
10.1109/TSE.2009.41.

18. Hindle, A., German, D. M., & Holt, R. (2008, May). What do large commits tell us?: a
taxonomical study of large commits. In Proceedings of the 2008 international working
conference on Mining software repositories (pp. 99-108). ACM.

19. Howard, P. J., & Howard, J. M. (2010). The Owner's Manual for Personality at Work: How
the Big Five Personality Traits Affect Performance, Communication, Teamwork,
Leadership, and Sales. Center for Applied Cognitive Studies (CentACS).

20. International Personality Item Pool: A Scientific Collaboratory for the Development of
Advanced Measures of Personality Traits and Other Individual Differences.
http://ipip.ori.org/ [June 2013]

21. Karimi Z, Wagner S. (2014). The influence of personality on programming: a summary of
a systematic literature review.; URN: urn:nbn:de:bsz:93-opus-89876, URL: http://elib.uni-
stuttgart.de/opus/volltexte/2014/8987/.

22. Ko AJ, Uttl B. (2003) Individual differences in program comprehension strategies in
unfamiliar programming systems. 11th IEEE International Workshop on Program
Comprehension; 175-184.

23. Mayrhauser AV, Vans AM. (1997). Hypothesis-driven understanding process during
corrective maintenance of large scale software. 28th IEEE International Conference on
Software Maintenance (ICSM); 12-20. DOI: 10.1109/ICSM.1997.624226.

24. Michel, W., Shoda, Y., & Smith, R. E. (2004). Introduction to personality: Toward an
integration. New York: John Wiley

25. Newsted PR (1975) Grade and ability predictions in an introductory programming
course. ACM SIGCSE Bulletin 7 (2):87-91.

26. Sackman H, Erikson WJ, Grant EE. Exploratory experimental studies comparing online
and offline programming performance. Communications of the ACM 1968; 11 (1): 3-11.
DOI: 10.1145/362851.362855.

27. Salleh N, Mendes E, Grundy J, Burch GSJ (2009) An empirical study of the effects of
personality in pair programming using the five-factor model. In: Proceedings of the 2009
3rd International Symposium on Empirical Software Engineering and Measurement. IEEE
Computer Society, pp 214 -225.

28. Salleh N, Mendes E, Grundy J, Burch GSJ (2010a) An empirical study of the effects of
conscientiousness in pair programming using the five -factor personality model. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1. ACM, pp 577-586

29. Salleh N, Mendes E, Grundy J, Burch GSJ (2010b) The effects of neuroticism on pair
programming: An empirical study in the higher education context. In: Proceedings of the
2010 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, ACM, p 22.

30. Salleh N, Mendes E, Grundy J (2011) The effects of openness to experience on pair
programming in a higher education context. In: 24th IEEE-CS Conference on Software
Engineering Education and Training (CSEE&T), IEEE, pp 149-158.

31. Salleh N, Mendes E, Grundy J (2012) Investigating the effects of personality traits on pair
programming in a higher education setting through a family of experiments. Empirical
Software Engineering:1-39.

32. Statistical Computing with R, http://www.r-project.org/ access-date: Nov. 2014
33. Vessey I. (1985). Expertise in debugging computer programs: a process analysis.

International Journal of Man-Machine Studies 23(5): 459-494. DOI: 10.1016/s0020-
7373(85)80054-7.

34. Wang AI, Arisholm E. (2008). The effect of task order on the maintainability of object-
oriented software. Information and Software Technology; 51(2): 293-305. DOI:
10.1016/j.infsof.2008.03.005.

35. Webb NM, Ender P, Lewis S. (1986). Problem solving strategies and group process in
small groups learning computer programming. American Education Research Journal;
23(2):243-261. DOI: 10.3102/00028312023002243.

36. Wiebe E, Williams L, Petlick J, Nagappan N, Balik S, Miller C. Ferzli M. (2003). Pair
programming in introductory programming labs. American Society for Engineering
Education Annual Conference & Exposition.

Appendix A: Questionnaire Items, Answer Alternatives and Descriptive Statistics

Table A1. General Questions and Descriptive Statistics

biographical
variable item answer alternatives and frequencies

age 1-What is your age? 18,(0) 19(5), 20(11), 21(13), 22(8), 23(7), 24(6),
25 and above(15)

gender 2-What is your gender? Male (58), Female(7)

language
3- Is German your first language, the one in which you do most of
your thinking, conversing, creating, writing, and mathematical
calculations?

No (2), Yes (63)

	

Table A2. Questions on Programming Experience, academic achievement and Descriptive Statistics	

experience
variable item answer alternatives and frequencies
years-of-
professional
experience

1-How many months/years of professional programming
experience do you have, working full-time excluding school and
university work?

Less than 6 months(50), 6 months...1 year(6),
1…3 years(9)

years-of-
programming
experience

2-How many years have you been programming including school
and university work?

Less than 1 year(2),1 year ... 3 years(19),3 years
... 5 years(22),More than 5 years(22)

number-of-
programming-
languages

3-In which programming languages have you ever contributed
code larger than 100 LOC? Pascal, Delphi, Basic, Visual Basic, C,
C++, C#, Java, Ada, JavaScript, Python, Others

1(7), 2(8), 3(16), 4(15), 5(10), 6(6), 7(1), 8(2)

largest code
contribution

4-How large is the largest code contribution you have ever made
individually or as a team member?

Less than 100 LOC(3), 100 LOC ... 1000
LOC(7), 1001 LOC ... 5000 LOC(21), 5001
LOC ... 10000 LOC(14), More than 10001
LOC(20)

academic
achievement

3-How do you roughly estimate your overall (average) grade of all
university exams when you are looking at courses you have
successfully passed?

Worse than 3 (weak 5), 2 ... 3(average 41), Better
than 2(good 19)

Table A3. Questions on Programmer ability and Descriptive Statistics

biographical
variable item answer alternatives and frequencies

programmer ability
Which of these options do you usually use to describe yourself in
relation to programming? (Please check all applicable answers.)
I am an experienced programmer.

No (19), Yes (46)

programmer ability
in comparison

Which of these options do you usually use to describe yourself in
relation to programming? (Please check all applicable answers.)
I am more experienced than my friends in the team.

No (48), Yes (17)

Table A4. Questions on Attitude towards Programming and Descriptive Statistics	

attitude scale items descriptive statistics

effective-
motivation-in-
programming

1-I enjoy programming.
2-I don't understand how some people can spend so much time on
writing programs and still seem to enjoy it.

n = 31, min = 5, max = 10, mean = 8.94, Std
Deviation = 1.29

confidence-in-
learning-
programming

3-I have a lot of self-confidence when it comes to programming.
4-For some reason, even though I work hard at it, programming
seems unusually difficult to me.
5-I am sure I can do advanced work in programming.

n = 31, min = 4, max = 15, mean = 11.12, Std
Deviation = 2.64

computer-science-
as-a-male-domain

6-It makes sense that there are more men than women in computer
science.
7-Females are as good as males at computer science.

n = 31, min = 3, max = 10, mean = 7.51, Std
Deviation = 3.90

attitude-towards-
success-in-
programming

8-Being first in a programming competition would make me proud.
9-People would think I was some kind of nerd if I am among the
outstanding students in developing software projects.

n = 31, min = 2, max = 10, mean = 7.45, Std
Deviation = 1.82

usefulness-of-
programming 10-Programming is a worthwhile and useful skill to have. n = 31, min = 3, max = 5, mean = 4.64, Std

Deviation = .55

Table A5. Personality factors and Descriptive Statistics on Personality Factors	

personality factor descriptive statistics
Openness to experience n = 65, min = 25, max = 49, mean = 38.41, Std Deviation = 5.00
Conscientiousness n = 65, min = 25, max = 46, mean = 36.69, Std Deviation = 4.85
Extraversion n = 65, min = 16, max = 47, mean = 35.41, Std Deviation = 6.79
Agreeableness n = 65, min = 25, max = 47, mean = 38.2, Std Deviation = 4.77
Emotional Stability n = 65, min = 21, max = 50, mean = 34.61, Std Deviation = 6.73

	

Table A6. Questions on Programming Styles Indicators and Descriptive Statistics	

programming style item frequencies and mean
bug-removal-avoidance 3-I usually compile my program only after writing a large amount of

code. No(39), Yes(26) mean = .4

depth-first-1
5-Imagine you are fixing a bug in your friend's program. How often do
you use this strategy for finding a clue about the actual problem? I take a
chance and navigate different parts of code to find a clue.

No(36), Yes(29) mean = .44

depth-first-2
6-Imagine you reach the first clue. How often do you use this strategy in
relation to the first clues about the actual problem?
I evaluate the clue: fix the bug and then test the program.

No(19), Yes(46) mean = .71

breadth-first-1
7-Imagine you are fixing a bug in your friend's program. How often do
you use this strategy for finding a clue about the actual problem? I read
and understand the code to find a clue.

No(12), Yes(53) mean = .82

breadth-first -2

8-Imagine you reach the first clue. How often do you use this strategy in
relation to the first clues about the actual problem?
I do not trust the first clues immediately. I keep reading and
understanding the code to make sure.

No(44), Yes(21) mean = .32

bottom-up-1
9-Imagine you did some maintenance tasks on your friend’s program.
What comes to your mind two hours later when you remember the code?
I remember the exact name of methods.

No(44), Yes(21) mean = .32

bottom-up-2 10-I remember the approximate location of methods. No(14), Yes(51) mean = .78
top-down-1 11-I roughly remember the functionality of methods. No(14), Yes(51) mean = .78
top-down -2 12-I exactly remember how large methods were. No(49), Yes(16) mean = .25

