
Camara, Javier, Correia, Pedro, de Lemos, Rogerio, Garlan, David, Gomes,
Pedro, Schmerl, Bradley and Ventura, Rafael (2015) Incorporating Architecture-Based
Self-Adaptation into an Adaptive Industrial Software System. Journal of
Systems and Software . ISSN 0164-1212.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/51044/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.jss.2015.09.021

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/51044/
https://doi.org/10.1016/j.jss.2015.09.021
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Incorporating Architecture-Based Self-Adaptation
into an Adaptive Industrial Software System

Javier Cámara1, Pedro Correia2, Rogério de Lemos3, David Garlan1, Pedro
Gomes4, Bradley Schmerl1, Rafael Ventura2

Abstract

Complex software-intensive systems are increasingly relied upon for all kinds

of activities in society, leading to the requirement that these systems should be

resilient to changes that may occur to the system, its environment, or its goals.

Traditionally, resilience has been achieved either through: (i) low-level mech-

anisms embedded in the implementation (e.g., exception handling, timeouts,

redundancies), which are unable to detect subtle but important anomalies (e.g.,

progressive performance degradation); or (ii) human oversight, which is costly

and unreliable. Architecture-based self-adaptation (ABSA) is regarded as a

promising approach to improve the resilience and reduce the development/op-

eration costs of such systems. Although researchers have illustrated the benefits

of ABSA through a number of small-scale case studies, it remains to be seen

whether ABSA is truly effective in handling changes at run-time in industrial-

scale systems. In this paper, we report on our experience applying an ABSA

framework (Rainbow) to a large-scale commercial software system, called Data

Acquisition and Control Service (DCAS), which is used to monitor and manage

highly populated networks of devices in renewable energy production plants. In

Email addresses: jcmoreno@cs.cmu.edu (Javier Cámara), pcorreia@dei.uc.pt (Pedro
Correia), r.delemos@kent.ac.uk (Rogério de Lemos), garlan@cs.cmu.edu (David Garlan),
pgomes@criticalsoftware.com (Pedro Gomes), schmerl@cs.cmu.edu (Bradley Schmerl),
ventura@dei.uc.pt (Rafael Ventura)

1Institute for Software Research, Carnegie Mellon University, USA.
2Department of Informatics Engineering, University of Coimbra, Portugal.
3School of Computing, University of Kent, UK and CISUC, University of Coimbra, Por-

tugal.
4Critical Software, Portugal.

Preprint submitted to Journal of LATEX Templates February 23, 2015

the approach followed, we have replaced some of the existing adaptive mecha-

nisms embedded in DCAS by those advocated by ABSA proponents. This has

allowed us to assess the development costs associated with the reengineering

of adaptive mechanisms when using an ABSA solution, and to make effective

comparisons, in terms of operational performance, between a baseline indus-

trial system and one that uses ABSA. Our results show that using the ABSA

concepts as embodied in Rainbow enabled an independent team of developers

to: (i) effectively implement the adaptation behavior required from such indus-

trial systems; and (ii) obtain important benefits in terms of maintainability and

extensibility of adaptation mechanisms.

Keywords: Architecture-based self-adaptation, Evolution, Middleware,

Rainbow

1. Introduction

The increasing reliance on software systems to carry out virtually all activi-

ties in society has led to the requirement that these systems be resilient in face

of internal faults, changing resources, varying loads, and even changing usage re-

quirements. Traditionally such system resilience has been achieved in two ways:5

(i) through low-level mechanisms embedded in the system implementation, such

as, exception handling, timeouts and redundancies; or (ii) through the use of

human oversight. Neither of these is adequate for certain systems. Embedded

mechanisms lack flexibility and are typically unable to deal with subtle but im-

portant kinds of anomaly (e.g., progressive performance degradation), whereas10

human oversight is both costly and unreliable.

To address these deficiencies over the past decade there has been considerable

attention given to new paradigms for improving system resilience through the

use of autonomic, or self-adaptive, techniques [1]. One of the more promising

approaches within the field of autonomic computing is architecture-based self-15

adaptation (ABSA) [2, 3]. ABSA adopts a feedback control systems point of

view, centralizing problem detection and automated repair in a supervisory

2

control layer that monitors and adapts a system at run-time (See figure 6).

Decision making (both for problem detection and for repair) by the control layer

is aided by the use of architectural models of the system and its environment.20

Proponents of ABSA have argued that this scheme has a number of inherent

advantages. First, it is automatic and improves reliability while reducing the

costs with respect to human oversight. Second, it decouples the control and

adaptation logic from the system implementation. This allows one to more

easily modify and reuse resilience-improving mechanisms across systems since25

such mechanisms are localized and explicit. Third, the use of architectural

descriptions provides access to systemic information that can be used to perform

sophisticated analysis and detection of subtle anomalies, such as, transient server

failures or progressive performance degradation. Moreover, developers can add

self-adaptation to legacy systems for which the code may not be available.30

Researchers have illustrated these benefits through a number of case stud-

ies [4, 5, 6] that typically employ small-scale examples and prototypes that are

intended to be representative of larger industrial systems. However, it remains to

be seen whether ABSA can be truly effective in a large-scale industrial software

system that has significant constraints on resources, timing, and commitments35

to legacy implementations. Is ABSA able to effectively implement the adapta-

tion behavior required by such large-scale systems? Does ABSA provide clear

benefits in terms of maintainability and extensibility of adaptation mechanisms?

In this paper, we shed light on these questions using a significant case study

by incorporating an ABSA solution on a large-scale commercial software system.40

The system, called Data Acquisition and Control Service (DCAS), is used to

monitor and manage highly populated networks of devices in renewable energy

production plants, and has been in use commercially for over 5 years. DCAS

has a number of properties that makes it an ideal example for investigating the

benefits and drawbacks of ABSA. First, the system has strong requirements for45

robustness and optimal performance, making it a good candidate for autonomic

adaptation. Second, to meet its requirements, DCAS currently deploys both

forms of traditional resilience mechanisms – embedded fault recovery mech-

3

anisms implemented at the object class level for certain kinds of automated

resource allocation, and human oversight for handling other kinds of resource50

management. Third, it is representative of a large class of distributed systems

involving control of physical devices where high availability and efficient resource

management are crucial to commercial success.

Our goal, by using this case study, is to investigate how well ABSA works by

replacing some of the existing adaptive mechanisms in DCAS with those advo-55

cated by ABSA proponents.This approach had two important benefits. First, it

allowed us to make effective comparisons between a baseline industrial system,

typical of other systems that use traditional adaptation mechanisms, and one

that uses an ABSA solution. Second, it allowed us to assess the costs associated

with reengineering adaptive mechanisms to use the new paradigm. This latter60

point is important since most systems that are candidates for ABSA are likely

to have legacy commitments to resilience-enhancing approaches. If the costs of

switching over from those mechanisms to ABSA are too high, then we would be

unlikely to see its widespread adoption, whatever its benefits might be.

For implementing DCAS following the ABSA principles, we used the Rain-65

bow framework [8], a reusable infrastructure for the engineering of self-adaptive

capabilities to monitor, decide, and act on situations that require system adap-

tation. To investigate the questions outlined above: (i) we removed built-in

adaptation mechanisms in DCAS to obtain a version that could be integrated

with Rainbow, thus allowing us, first, to replicate in a Rainbow-based version of70

the DCAS original adaptation behavior (embodied in a prototype – Rainbow-

DCAS), and second, to assess the effort in doing this replacement; (ii) we then

investigated ways in which Rainbow could be used to improve a perceived prob-

lem with the existing DCAS repairs – specifically, performance problems for sit-

uations in which devices are persistently slow in reporting data – and assessed75

the difficulty of modifying adaptation behavior using ABSA in Rainbow-DCAS;

(iii) finally, we investigated the use of ABSA to automate some adaptations

that in the original DCAS were handled by human oversight – specifically, a

scale-out adaptation mechanism that allows the system to extended with new

4

processors.80

In [7] we reported on an initial exploration of these topics. In this paper,

we revise and extend our initial findings by reporting on how ABSA was used

to automate adaptations originally handled by humans. Moreover, we include

new sections on: (i) lessons learned (Section 6), which includes a comprehen-

sive summary discussing the most important findings during our experience,85

(ii) related work (Section 8), which contrasts our experience with other similar

experiences in applying self-adaptive frameworks (e.g., requirements-driven) to

legacy systems, and (iii) threats to validity (Section 7).

The rest of this paper is organized as follows. Section 2 provides a gen-

eral description of DCAS. Section 3 briefly describes the Rainbow platform for90

architecture-based self-adaptation. In Section 4, we describe the approach fol-

lowed for the integration of Rainbow and DCAS, including re-implementation

of existing adaptation mechanisms using ABSA, as well as, the extension of

the Rainbow-based version of DCAS with an automatic scale-out mechanism.

Section 5 provides an evaluation of different aspects regarding the process of95

integration and extension, describing the results obtained. Section 6 describes

some lessons learnt. Section 8 overviews related work, whereas Section 7 dis-

cusses threats to validity. Section 9 concludes the paper and indicates directions

for future work.

2. Data Acquisition and Control Service (DCAS)100

The Data Acquisition and Control Service (DCAS) is a middleware from

Critical Software 5 that provides a reusable infrastructure to manage monitor-

ing and (non-automatic) control of highly populated networks of devices. In

particular, the middleware is designed to be seamlessly integrated with Criti-

cal’s Energy Management System (csEMS)6, which is a platform that provides105

asset management support for power producing companies based on renewable

5http://www.criticalsoftware.com
6http://solutions.criticalsoftware.com/products services/csems/

5

energy sources. The overall csEMS architecture aims at high scalability (with

deployments that monitor networks of up to several thousand devices), flexibil-

ity and customization with management capabilities that enable the operation

of control centers independently of the underlying application (e.g., wind, solar,110

etc). csEMS has been deployed across more than 15 different countries on 4

continents.

The basic building blocks in a DCAS-based system (Figure 1) are the fol-

lowing:

Application

Server

Database

Server

Processor

Node

Processor

Node

Device

Device

Device

Device

Figure 1: Architecture of a DCAS-based system

• Devices are equipped with one or more sensors to obtain data from the115

application domain (e.g., from wind towers, solar panels, etc.). Each of

these sensors has an associated data stream from which data can be read.

There may be different types of devices connected to the network, each

type with its particular characteristics (e.g., protocols, type of data col-

lected, etc.). Each type of device has an associated device profile that120

specifies e.g., the rate at which the device should be polled for data, and

the expected value ranges for the data being collected.

• Database server stores all the information collected from devices, as

well as, configuration data for the system (e.g., device profiles, etc.).

• Processor nodes pull data from the devices at a given rate (configured125

in the device profile), and dispatch this data to the database server. Each

processor node executes an independent instance of the DCAS middleware,

6

which is implemented as a Windows service 7.

• Application server is connected to the database server to obtain data,

which can be presented to the operators of the system or processed by130

application software. However, the DCAS middleware is application-

agnostic, so the application server will not be discussed in the remainder

of this document.

The typical DCAS-based system presents a blackboard architecture in which

the database server acts as a centralized data manager into which processor135

nodes running the DCAS service write information collected from devices con-

nected to the network.

The main objective of a DCAS-based system is to collect data from the con-

nected devices at a rate as close as possible to the one configured in their device

profiles, supporting as many connected devices as possible. Specifically, the pri-140

mary goal in DCAS is providing service while maintaining acceptable levels of

performance, measured in terms of processed data requests per second (rps) in-

serted in the database, while the secondary goal is optimizing the computational

cost of operating the system, measured in number of active processes (called

Data Requester Processor Pollers or DRPPs – introduced in Section 2.1.1) in145

the processor nodes. To achieve these quality goals, a DCAS-based system shall

be able to scale-up, making use of the computational resources in the node(s)

where the middleware is running, and scale-out, supporting the deployment of

several instances of the middleware across different processor nodes within the

same system to extend the number of connected devices.150

2.1. DCAS Structure and Functionality

A different instance of the DCAS service runs in each of the processor nodes

of a DCAS-based system. The main components of the service (shown in Fig-

ure 2) are the following:

7In the remainder of this paper, we refer to the DCAS middleware or DCAS service simply

as DCAS, whereas the overall architecture is designated as a DCAS-based system.

7

• Service Engine orchestrates the flow of data among the different com-155

ponents of the DCAS service.

• Polling Scheduler triggers the process for performing requests to devices

according to their scheduled rate of generation.

• Data Requester performs requests for data from devices.

• Data Persister stores the information obtained from devices into the160

database.

• Alarmer raises alarms if the data coming from the devices is unexpected

(e.g., values out of the range defined in the device profile).

• Data Stream Manager updates the observed device response time (i.e.,

the elapsed time since a particular device is polled until it responds) as-165

sociated with the different data streams of the devices. This information

is internally used by the polling scheduler to adjust the generation rate of

requests for data from devices.

Polling
Scheduler

Service
Engine

1.Dispatch Request

Device

Alarmer

Data
Requester

Data
Persister

2.Perform Request

3a.Get Data

4a. Dispatch Item 3c. Dispatch Item

4b. Dispatch Item

5. Write Item

Data
Stream

Manager

0.Update Stream
Elapsed Time (and Priority)

3b.Update Stream
Elapsed Time

Figure 2: DCAS service operation

Figure 2 illustrates the operation of an instance of DCAS:

8

1. When the Polling Scheduler determines that the scheduled time for the170

execution of a request has arrived, the request is dispatched to the Service

Engine.

2. The Service Engine forwards the request to the Data Requester.

3. The Data Requester:

(a) Communicates with the device, retrieving the requested data and175

packing it into an item.

(b) Updates the elapsed time information of the stream from which data

has been read in step 3a (it is worth reminding that a device can

have one or more data streams assigned from which data is read).

(c) The item is dispatched by the Data Requester to the Service Engine.180

4. The Service Engine:

(a) Dispatches a copy of the item to the Data Persister.

(b) Dispatches a copy of the item to the Alarmer.

5. The Data Persister writes the item to the database.

The value of the device response time of a data stream is continuously up-185

dated according to the time elapsed between a request for data made by the

Data Requester, and the response received from the device.

Moreover, the Polling Scheduler constantly updates the priorities of the

scheduled requests for data from devices according to the information updated

in the Data Stream Manager (see step 0 in Figure 2). Changing the prior-190

ity of devices with low responsiveness helps reducing the frequency with which

these devices are polled, avoiding potential degradation of system performance.

Further details about this issue can be found in Section 2.2.1.

Two important components in DCAS for achieving the desired quality goals

(as expressed in Section 2) are the Data Requester and the Polling Scheduler,195

which are instrumental in the self-adaption mechanisms of DCAS. The following

subsections describe these components in more detail.

9

. . .

Figure 3: Data requester operation

2.1.1. The Data Requester

The Data Requester is in charge of retrieving data from connected devices.

Internally, the Data Requester contains a collection of sub-components, called200

Data Requester Processors (DRPs), which perform requests on devices of a sin-

gle type (Figure 3), and a Primary Request Queue from which requests are

distributed to the different DRPs (based on the device type targeted by the

request).

Each DRP contains an internal Secondary Queue in which device-type spe-205

cific requests are enqueued. A collection of processes, called Data Requester

Processor Pollers (DRPPs), dequeue requests from the Secondary Queue, and

retrieve the data from the appropriate Device according to the specific contents

of the request.

The sequence of events concerning the operation of the Data Requester is as210

10

follows:

1. The Service Engine sends a request to the Data Requester, which is en-

queued in the Primary Request Queue.

2. A process called Data Requester Poller retrieves a request from the Pri-

mary Request Queue, and forwards it to the appropriate DRP. The request215

is enqueued in the Secondary Queue of the DRP (if the queue is full, the

request is discarded).

3. One of the DRPPs in the DRP dequeues the request from the Secondary

Queue, and retrieves the data from the device. The communication be-

tween the DRPP and the device is synchronous, so the DRPP remains220

blocked until the device responds or a timeout expires. This is the main

bottleneck regarding performance of DCAS.

4. When the data is received (or the timeout has expired), the priority asso-

ciated with data stream from which data was read is updated on the Data

Stream Manager.225

5. If data has been received, the DRPP packs it into a data item and dis-

patches it to the Service Engine.

2.1.2. The Polling Scheduler

The Polling Scheduler is in charge of starting the process to request data

from devices according to their scheduled time of execution. Internally, the230

scheduler contains a collection of request queues, each one specific to a particu-

lar polling rate of devices (or more concretely, data streams – Figure 4). Hence,

all the requests to be performed on data streams with the same assigned polling

rate are located within the same queue (independently of the type of the device

to which they are associated). During the initialization of the service, the infor-235

mation regarding the polling rates of the different data streams is loaded from

preconfigured values in the database, and then distributed across the different

queues.

Each queue has an associated process called Polling Scheduler Poller (PSP),

which processes requests in its queue in the following manner:240

11

1. The PSP dequeues the first request of the queue.

2. The PSP clones the request retrieved from the queue and dispatches the

clone to the service engine.

3. The PSP retrieves an updated value for the elapsed time of the data stream

targeted by the request, and computes the corresponding priority based245

on the retrieved value.

4. The PSP re-inserts the original request into the queue in a new position

that depends on the priority of the data stream. The higher the priority of

the data stream, the closer to the first position of the queue the request will

be inserted. This guarantees that requests that correspond to data streams250

with low priority (i.e., those associated with devices that take more time

to respond) get processed less often, improving the overall performance of

the service.

Polling Scheduler

Service Engine

Request Queue
(Polling Rate 1)

Request Queue
(Polling Rate n)

. . .

Data Stream
Manager

Figure 4: Polling scheduler operation

12

2.2. Adaptation Mechanisms

Having described the structure and functionality of DCAS, we now focus on255

the existing adaptation mechanisms of DCAS that are aimed at maintaining sys-

tem performance under different loads. These adaptation mechanisms respond

to failing devices, increased number of devices, and changing data rates.

DCAS implements two adaptation mechanisms to keep an acceptable level of

performance while making an efficient use of computational resources: (i) reschedul-260

ing aims at avoiding performance degradation caused by devices that fail to re-

spond in a timely manner when polled. It consists in decreasing the polling rate

of the data streams associated with the failing devices, so that they are polled

less often (thus reducing the average time that DRPPs remain blocked waiting

for device data); and (ii) scale-up aims at improving performance by exploit-265

ing as much as possible CPU and memory in processor nodes by (de)activating

DRPPs as required.

Scale-up and rescheduling run in two separate control loops embedded in dif-

ferent sub-components of the processor node (data requester and polling sched-

uler, respectively). Moreover, the C# adaptation logic that corresponds to these270

control loops is scattered across different parts of the code, and based on low-

level information that indirectly indicates which aspect of the system needs to

be improved. For instance, if the size of a data request queue associated with a

particular data requester remains close to zero consistently, the scale-up adap-

tation mechanism considers this as an indicator of good performance, implying275

that there are active DRPPs which probably are not necessary and have to be

deactivated. On the contrary, if the queue size increases consistently, scale-up

tries to increase performance by activating new DRPPs.

A third adaptation mechanism for scaling-out is only available as a manual

operation carried out by a human operator in DCAS, and deals with incorpo-280

rating additional processor nodes running the DCAS service when the system

cannot maintain an acceptable performance level when using all available re-

sources in the set of active processor nodes.

13

2.2.1. Rescheduling

The rescheduling mechanism affects the Polling Scheduler, and is aimed at285

avoiding performance degradation of the system caused by devices that fail

to respond in a timely manner (or do not respond at all) when polled. In

a nutshell, the mechanism consists in decreasing the polling rate of the data

streams associated with the failing devices, so that they are polled less often

(thus reducing the amount of time that Data Requester Processor Pollers - or290

DRPPs - remain blocked waiting for device data).

To illustrate the rescheduling process, we introduce the following concepts:

• Device Response Time (DRT) is the time that it takes for a device to

respond when polled by a DRPP.

• Sample Rate (SR) is the preconfigured value for the rate at which a295

device should be polled, and is fixed throughout the execution of DCAS.

• Sample Rate Delay (SRD) is an increment that can be added to the

sample rate to poll devices less frequently. When the execution of the

DCAS service starts, the SRD for all devices is equal to zero. Moreover,

throughout the execution of DCAS, all devices responding in a timely300

manner should have an SRD equal to zero.

• Effective Sample Rate (ESR) or polling rate is the rate at which

devices are effectively polled (ESR=SR+SRD).

Figure 5 illustrates the adaptation process followed for rescheduling. The

process starts by checking if the device response time is above its effective sample305

rate:

• If the device response time is indeed above effective sample rate, the algo-

rithm checks if the number of consecutive checks in which device response

time for the device has been above effective sample rate (represented by

counter CI) exceeds a threshold F (preconfigured value). If the thresh-310

old F has not been crossed, then counter CI is incremented. Otherwise,

14

counter CI is reset to zero and the sample rate delay for the device is

incremented 8 (thus resulting also in the increment of the effective sample

rate).

• If the device response time is below the effective sample rate, the algorithm315

checks if the number of consecutive checks in which device response time

has been below sample rate (represented by counter CD) exceeds thresh-

old F. If threshold F has not been crossed, counter CD is incremented.

Otherwise, counter CD is reset to zero, and only if the sample rate delay

is greater than zero, the sample rate delay is decremented.320

2.2.2. Scale-up

The scale-up mechanism affects the behavior of the Data Requester, and

is aimed at improving the performance of the system by exploiting as much

as possible the resources (CPU and memory) of the processor node in which

a DCAS service instance is running. This is achieved by adding or removing325

Data Requester Processor Pollers (DRPPs) in the secondary queues of Data

Requester Processors (DRPs) as required. In concrete terms:

• If the size of the queue of the DRP remains close to zero, the system is

running as expected, so nothing needs to be done. Indeed, if the queue size

is consistently zero after a fixed number of consecutive checks, the scale-up330

mechanism considers that there are active DRPPs which probably are not

necessary and starts removing them (one at a time).

• If the queue size of the DRP increases consistently during a fixed number

of consecutive checks, scale-up tries to increase performance by adding

new DRPPs.335

It is worth observing that the addition of new DRPPs does not always result

in a proportional increment in the number of requests processed per time unit

8The concrete details regarding the calculation to increment and decrement the sample

rate delay are not discussed in this document.

15

Check Device
Response Time

(DRT)

DRT>ESR? CI>F?

CI=0;
INCREMENT

SRD

DECREMENT
SRD

SRD>0?

Yes

YesYes

No

Yes

No

CI=CI+1;
CD=0;

CD=CD+1;
CI=0;

No

CD>F?

No

CD=0

DRT = Device Response Time

ESR = Effective Sample Rate
SRD = Sample Rate Delay

CI = DRT above ESR check Counter
CD = DRT below ESR check counter
F = Maximum DRT check threshold

Figure 5: Flowchart of the rescheduling adaptation process

since the system is limited by the throughput of the devices being polled.

2.2.3. Scale-out

When devices are connected to the network at run-time, they can be dy-340

namically incorporated to processor nodes in the DCAS-based system, which

are activated progressively according to the demand determined by the system’s

workload and operating conditions.

Scale-out is supported in the original version of DCAS only as a manual

process carried out by a human operator. This is a slow and demanding process345

in terms of effort required to carry out all the necessary operations to incorporate

the new devices. When the DCAS-based system is unable to cope with the

given configured data rates while using the maximum of available computational

16

resources within the current set of active processor nodes, it writes an entry to

the log in the database to notify this event to a human operator. Then, a350

new instance of the DCAS service must be manually deployed, and devices re-

attached across the different service instances (i.e., processor nodes), according

to the particular situation. Each service instance is unaware of the existence

of others, but there is a basic mechanism implemented so that each instance

gets only the data streams it should process. Specifically, data stream entries355

in the database include a DCAS instance identifier that indicates which service

instance should process its requests. Then, each DCAS instance reads data

stream entries in the database upon initialization, ignoring the data streams in

which the DCAS instance identifier does not match its own.

The process followed by a human operator to perform scale-out in a DCAS-360

based system consists of the following steps:

1. determine which (possibly new) devices need to be attached to a processor

node,

2. decide which of those devices can be attached to a currently active pro-

cessor node, and which must be attached to a new one,365

3. insert the appropriate DCAS instance identifier in the data stream entries

in the database,

4. restart active processor nodes that have been assigned with new devices,

and

5. deploy and activate new processor node(s).370

Once the scale-out process has been completed, newly deployed processor

nodes are able to carry out scale-up and rescheduling as described in this section,

according to changing conditions of the devices that they are attached to.

Note that the original developers of DCAS considered implementing an au-

tomated version of scale-out by embedding additional adaptation logic in the375

system, but discarded it because it was found to be rather challenging. In

particular, the DCAS middleware is implemented as a Windows service orig-

inally designed to run in a single processor node. Hence, its code is oblivi-

17

ous to other instances of DCAS running alongside it in other processor nodes.

As a result, the automation of a scale-out process in the original version of380

DCAS using traditional means would have implied major code refactoring, along

with the inclusion of algorithms for distributed decision-making. In contrast,

using ABSA as an alternative solution enables implementing scale-out on an

external architecture-based adaptation layer able to observe and control the

(de)activation of the different instances of the DCAS service running on different385

processor nodes (as shown in Section4). This allows centralized decision-making

based on a global view of the state of the system and its environment provided

by architecture models updated at run time.

3. The Rainbow Approach

Rainbow is a platform supporting architecture-based self-adaptation of soft-390

ware systems. It has the following distinct features: an explicit architecture

model of the target system which is updated at run-time, a collection of adap-

tation strategies, and utility preferences to guide adaptation. Rainbow is aimed

at reducing engineering effort by incorporating an explicit representation of

adaptation knowledge [8]. Rainbow is comprised by a customizable framework395

that can be applied to a wide range of systems, and a language to represent

human adaptation knowledge called Stitch.

The Rainbow framework (Figure 6) includes mechanisms for: monitoring

a target system and its environment (using the observations for updating the

architectural model of the target system), detecting opportunities for improving400

the target system’s quality of services (QoS), and deciding the best course of

adaptation based on the state of the target system 9. The main components of

9Rainbow embodies what is known as the MAPE-K control loop proposed in IBM’s Auto-

nomic Computing initiative [9] to Monitor relevant variables in the system, Analyze whether

adaptation is required, Plan the best course of action, and Execute adaptation, with the ad-

dition of a shared Knowledge base (founded on architecture models in the case of Rainbow),

acting as a cornerstone of the process.

18

the framework are:

• Architecture Evaluator evaluates the model to ensure that the target

system is operating within an acceptable range, as determined by a set of405

architectural constraints. If the evaluator determines that the system is

not operating within the accepted range, it triggers adaptation.

• Adaptation Manager chooses a suitable adaptation strategy based on

the current state of the target system (reflected in the architectural model).

• Strategy Executor executes the adaptation strategy chosen by the adap-410

tation manager on the running target system via effectors.

• Model Manager updates the architecture model using the information

observed in the running target system by the monitoring mechanisms in

the translation infrastructure (probes and gauges).

Rainbow leverages the notion of architectural style [10] to exploit commonali-415

ties between systems, providing reusable infrastructures with explicit customiza-

tion points that can be applied to a wide range of systems: (i) the architecture

model of the target system customizes the model manager; (ii) architectural

constraints related to adaptation goals customize the architecture evaluator;

(iii) style operators and their mappings to target system effectors customize the420

strategy executor; and (iv) utility preferences and a collection of adaptation

strategies with their associated cost-benefit impacts customize the adaptation

manager.

Providing this substantial base of reusable infrastructure with explicit cus-

tomization aims at reducing the cost of developing self-adaptation mechanisms.425

Building upon the elements of the architectural style, Rainbow provides the

Stitch [11] language to represent human adaptation knowledge using three high-

level concepts:

• Operator is the most primitive unit of execution and represents a basic

configuration command provided by the target system (corresponding to430

19

System
Layer

Architecture Layer

Target SystemTarget System

Translation
Infrastructure

Adaptation
Manager

Model Manager

Strategy
Executor

System API ProbesEffectors

Gauges

Architecture
Evaluator

Figure 6: The Rainbow framework [8]

a system-level effector). They are defined in the architectural style of the

system.

• Tactic is an abstraction that groups operators to form a single step of

adaptation. Tactics are used as primitive actions, and have an associated

cost/benefit impact on the different quality dimensions.435

• Strategy encapsulates an adaptation process, where each step is the con-

ditional execution of a tactic. Strategies are characterized in Stitch as a

tree of condition-action-delay decision nodes, where delays correspond to

a time-window for observing tactic effects. System feedback (through the

dynamically-updated architectural model of the system) is used to deter-440

mine the next action (i.e., tactic) at every step during strategy execution.

In previous work, Rainbow has been applied to a wide range of systems,

however the most widely reported has been the ZNN exemplar [6]. ZNN is

an example web server that uses open source, off-the-shelf web servers, load

balancers, and databases to implement a simple news site. We have applied445

adaptation in this context for quality attributes such as performance, cost, and

information quality. In addition to this, Rainbow has been applied to manage

20

and repair the archiving pipeline of a web-based voice talk show and discussion

group provider called TalkShoe. In this case, Rainbow would report problems

with the production of the MP3 file recordings of the episode and report to450

a human operator [12]. In both of these cases, self-repair was added to these

systems through Rainbow; there was no existing control loop that managed the

kinds of adaptations that were implemented in Rainbow. The effort required

for doing this for ZNN was 92 man-hours, and for TalkShoe, 34 man-hours. We

will discuss these numbers in more detail in Section 9.455

4. Implementing ABSA Mechanisms in DCAS

In this section, we describe the process followed for incorporating ABSA into

DCAS, which consists in evolving DCAS to enable its integration with Rainbow,

re-implementing DCAS scale-up and rescheduling mechanisms using Rainbow,

and extending DCAS with an automatic scale-out mechanism.460

4.1. Evolution of DCAS

Evolving DCAS to integrate it with Rainbow involves: (i) removing the logic

that corresponds to the two control loops in which the scale-up and rescheduling

mechanisms reside; and (ii) implementing the translation infrastructure between

DCAS and Rainbow to enable their communication.465

Previous case studies in which Rainbow has been applied [11, 6] describe sys-

tems that typically feature components that already include public interfaces

to access their functionality (e.g., starting/stopping a web server, etc.). In con-

trast, implementing the translation infrastructure between DCAS and Rainbow

required exposing part of DCAS internal functionality through a public inter-470

face, enabling communication with Rainbow for extracting system information

through probes and effecting changes through system-level effectors. To achieve

this, we implemented a lightweight server component embedded in DCAS that

enables the exchange of information between a running instance of the DCAS

service and Rainbow using TCP sockets. Figure 7 illustrates the translation475

21

infrastructure used between Rainbow and DCAS. According to the diagram,

probes and effectors in Rainbow act as clients of the TCP Server, which in turn

acts as a mediator between the actual probes and effectors embedded in DCAS

and the probe and effector clients in Rainbow. Below, we exemplify the flow of

data related to probes and effectors, as depicted in Figure 7:480

• Probes embedded in DCAS update the values of probed variables in the

Local Data Store of the TCP Server, pushing updates whenever variables

change (P1a and P2a). Then, when a Probe Client in Rainbow requests

the value of a particular variable (P1b), it is directly served from the Lo-

cal Data Store to the probe client (P2b). This approach was chosen due485

to the difficulty of invoking the necessary operations to retrieve data in

DCAS from the TCP Server. Specifically, information such as queue sizes

or number of active pollers in the Data Requester, as well as, informa-

tion relative to device data streams could not be obtained from the TCP

Server, so different parts of DCAS code were instrumented to extract this490

information and update it in the Local Data Store of the TCP Server.

• Effector clients in Rainbow send requests for command execution to the

TCP Server (E1), which forwards them to the Effector embedded in DCAS

Figure 7: DCAS-Rainbow translation infrastructure

22

(E2). Next, the Effector executes the command (E3) and returns a re-

sponse to the TCP Server, which states whether execution was successful495

(E4). Finally, the TCP Server forwards the response to the Effector Client

in Rainbow (E5).

4.2. Re-implementation of Scale-up and Rescheduling

Implementing the ABSA version of the scale-up and rescheduling adaptation

mechanisms is carried out by customizing the Rainbow framework by: (i) model-500

ing the architecture of a DCAS-based system; (ii) scripting the adaptation logic

(Stitch adaptation tactics and strategies); and (iii) implementing the client side

of probes, gauges and effectors. Note that the implementation of the client

side of probes, gauges, and effectors is trivial and therefore not discussed in the

remainder of this paper.505

Architecture Modeling. We can identify two quality objectives for the self-

adaptation of a DCAS-based system: (A) performance, and (B) cost. Perfor-

mance analysis is captured by the number of requests per second (rps) stored

in the database server. Cost analysis identifies the number of active pollers in

data requesters as the primary contributor to cost.510

Table 1 displays the major elements of the blackboard architectural style

for DCAS, including architectural types, properties, and operators. Proper-

ties sampleRateDelay, effectiveSampleRate, and deviceResponseTime in DeviceT can be

mapped into the concepts of rescheduling adaptation, discussed in Section 2.2.1.

Property numPollers in ProcessorNodeT corresponds to the number of active pollers515

(DRPPs) in the Data Requester of a processor node, whereas property queue-

Size corresponds to the size of its Primary Requester Queue, and queueStatus to

the growth rate of the queue (negative values indicate that the number of ele-

ments in the queue is shrinking). Finally, property rps in DBServerT indicates the

number of requests per second stored. The ProcessorNodeT.increasePollers() operator520

increases the capability of a processor node by activating a new Data Requester

Processor Poller in its Data Requester, while decreasePollers() deactivates it. The

23

DeviceT.changeSampleRateDelay(sampleRateDelay : int) operator sets the effective sam-

ple rate of the data streams in a device by setting the value of its sample rate

delay.525

Type Property Operator

DeviceT sampleRateDelay changeSampleRateDelay(sampleRateDelay :int)

effectiveSampleRate assignDeviceToPN(location :int)

deviceResponseTime

location

ProcessorNodeT numPollers increasePollers()

queueSize decreasePollers()

queueStatus enablePN()

disablePN()

restartPN()

DBServerT rps

numDevices

numUnassignedDevices

numUnprocessedDevices

Table 1: DCAS architectural style elements. Elements in bold face correspond to the extended

version of the DCAS architectural style for scale-out

Scripting Adaptation. Using the architectural operators defined in DCAS

architectural style, we specified two pairs of tactics with opposing effects. One

pair adds (i) or removes (ii) pollers, whereas the other pair increases (iii) or

decreases (iv) the sample rate delay of the streams associated with a device.

When performance is low, objective A - related to performance, suggests that530

the system should activate additional pollers (using tactic (i) above), if the

processor node has not exhausted the resources assigned to DCAS (memory

and CPU), or otherwise increase the sample rate delay of devices with higher

response time using tactic (iii). When rps remains close to the top of its expected

range, objective B - related to cost, suggests that the system should reduce cost535

24

by deactivating pollers (using tactic (ii)) which may not be required to maintain

an acceptable level of performance in the system.

Based on the tactics described above, we designed a baseline set of strategies

for system adaptation to balance the different quality objectives in the system.

This set of adaptation strategies is able to reproduce the original adaptation540

behavior of DCAS (as described in Section 5.2.1). Regarding scale-up adap-

tation, we define a pair of strategies to increment and decrement the number

of DRPPs in processor nodes as needed (IncreasePerformance and ReduceCost, re-

spectively. For rescheduling, we define another pair of strategies to increase,

and reduce, the sample rate delay for devices which fail to respond in a timely545

manner (strategies increaseDelay and DecreaseDelay, respectively).

IncreasePerformance. Strategy IncreasePerformance first specifies its applicability con-

dition, which is used by Rainbow’s Adaptation Manager during strategy selec-

tion to determine whether the strategy should be considered for adaptation.

In this particular case, the condition is defined using the conjunction of the550

predicates: (i) styleApplies (line 1), which checks whether the model defines the

architectural types used in the strategy; (ii) rpsViolation (line 2), which determines

if the system is experiencing low performance (rps below threshold MIN RPS); and

(iii) !maxLazyStreams, which holds only if the number of active pollers in the sys-

tem is not greater than the number of data streams with low responsiveness.555

Moreover, the predicate qShrinking defines whether the growth rate of the queue

in the processor node is negative.

In the body of the strategy, node t0 (line 6) executes tactic addPoller if the

corresponding guard is satisfied (in this case qShrinking evaluating to false, i.e.,

the queue in the processor node is growing). To account for the delay in observ-560

ing the outcome of the tactic’s execution upon the system, t0 specifies a delay

window of 5000 milliseconds 10 (end of line 6). After the end of t0’s time win-

dow, the guard for nodes t0a (line 7) and t0b (line 8) are evaluated. If the guard

10Observation delays are determined experimentally in accordance with the adaptation logic

implementing the original adaptation mechanisms in DCAS.

25

in t0a is satisfied, the queue is considered to be still growing, hence the tactic to

add another poller is executed again. Otherwise, the guard in t0b is going to be565

satisfied (guards in t0a and t0b are mutually exclusive), and the strategy is going

to end its execution returning a success status (indicated by keyword done, line

8) since the size of the queue in the processor node is already decreasing.

1 de f i n e boolean s t y l eApp l i e s = Model . hasType (M, ”ProcessorNodeT”) ;

2 d e f i n e boolean rp sV io l a t i on = e x i s t s s : T. DBServerT in M. components |

s . rps < M.MIN RPS ;

3 . . .

4 s t r a t egy IncreasePer formance

5 [s t y l eApp l i e s && rpsV io l a t i on && ! maxLazyStreams]{

6 t0 : (! qShr inking)−>addPol l e r ()@[5000 /∗ms∗/]{

7 t0a : (! qShr inking)−>addPol l e r ()@[5000 /∗ms∗/]{

8 t0b : (qShr inking)−>done ;

9 }

10 }

11 t1 : (qShr inking) −> done ;

12 }

Listing 1: Stitch strategy to increase performance via activation of DRPPs.

ReduceCost. When DCAS detects small queue sizes (qViolation2) and the minimum570

level of pollers has not been reached (!minPollers), remove one poller. If queue

sizes remain below the threshold after 3 seconds, remove another poller.

1 s t r a t egy ReduceCost

2 [s t y l eApp l i e s && qVio la t i on2 && ! minPol l e r s]{

3 t0 : (qVio la t ion2)−>removePol ler ()@[3000 /∗ms∗/]{

4 t0a : (qVio la t i on2)−>removePol ler ()@[3000 /∗ms∗/]{

5 t0b : (! qShr inking)−>done ;

6 }

7 t0c : (! qShr inking)−>done ;

8 }

9 }

Listing 2: Stitch strategy to scale-down by deactivating DRPPs.

IncreaseDelay/DecreaseDelay. Increase/decrease sample rate delay of all devices

which exhibit response time above/below (tViolation/tViolation2) one step.575

26

1 s t r a t egy IncreaseDe lay [s t y l eApp l i e s && tV io l a t i on]{

2 t0 : (tV i o l a t i on)−>increaseSampleRateDelay (M.SRD INCREMENT)@[5000 /∗ms

∗/]{

3 t1 : (! tV i o l a t i on)−>done ;

4 }

5 }

6 s t r a t egy DecreaseDelay [s t y l eApp l i e s && tV io l a t i on2]{

7 t0 : (tV i o l a t i on2)−>decreaseSampleRateDelay (M.SRD INCREMENT)@[5000 /∗

ms∗/]{

8 t1 : (! tV i o l a t i on2)−>done ;

9 }

10 }

Listing 3: Stitch strategies for rescheduling.

Although this baseline set of adaptation strategies was able to successfully

replicate the adaptation behavior of DCAS, we discovered that we could do

better since for some cases both in original DCAS and in Rainbow-DCAS us-

ing the baseline set of strategies, the adaptation behavior was not enough to580

recover system performance in a timely manner (please refer to Section 5.2.1

for details). Specifically, we modified IncreasePerformance to add pollers more ag-

gressively by shortening the observation delay between checks in queue sizes, as

well as, increasing the number of pollers that can be activated to a maximum

that duplicates the number of unresponsive data streams. The improvement585

obtained by applying these modifications are described in Section 5.2.1.

4.3. Extension of Rainbow-DCAS with Automatic Scale-out.

Extending Rainbow-DCAS with an automatic scale-out mechanism involves:

(i) extending the existing translation infrastructure; and (ii) extending the ex-

isting customized elements of the Rainbow framework introduced in Section 4.2.590

4.3.1. Extending the translation infrastructure.

Extending the existing translation infrastructure is a trivial operation in

which the repertoire of messages supported by the TCP server, described in

Section 4.1, is extended with requests for data from the new probes and effectors

required by the new scale-out mechanism. These are in turn determined by595

27

the extensions to the architectural style and adaptation logic described in the

remainder of this section.

4.3.2. Extending the customization of Rainbow.

In order to enable dynamic management of new processor nodes in Rainbow-

DCAS, we extended the existing architectural style, as well as, the adaptation600

logic in Rainbow-DCAS with the corresponding tactics and adaptation strate-

gies.

Architecture Modeling. Table 1 shows the major elements of the DCAS ar-

chitectural style with additional properties and operators required for scale-out

adaptation. Specifically, property location in DeviceT corresponds to the identifier605

of the processor node to which the device is assigned. Properties numDevices, nu-

mUnassignedDevices, and numUnprocessedDevices in DBServerT correspond, respectively,

to the overall number of devices in the network, the number of devices which are

not currently assigned to a processor node, and the number of devices assigned

to a processor node, but whose requests are not currently being processed.610

The DeviceT.assignDeviceToPN(location:int) operator assigns a device to a given

processor node, whereas operators TProcessorNode.enablePN()/disablePN()/restartPN()

activate, deactivate, or restart a processor node, respectively.

Scripting Adaptation. Using the architecture operators described above,

we specified tactics that enable Rainbow to assign devices in the network to a615

processor node, as well as to (de)activate or restart processor nodes as required,

according to changes in the number of devices present in the network.

Basing upon these tactics, we implemented a set of strategies that automate

scale-out in a Rainbow-DCAS. This set of adaptation strategies reproduces the

process followed by a human operator when new devices are incorporated to the620

network:

AssignDevices. When new devices (i.e., those that are not assigned to a processor

node) are detected in the network (unassignedDevices), the strategy assigns the

28

devices to an already active processor node, if the set of active processor nodes

has not reached its maximum capacity (!maxAssignedDevices) by using the tactic625

assignDStoPN(). The tactic stops assigning devices to the current processor node

when the latter reaches the maximum capacity. If the strategy detects that there

are still unassigned devices after the first execution of the tactic (node t0a), the

tactic is repeated, assigning the remaining devices to the next processor node.

This process is repeated until all devices are assigned to a processor node, or630

all the processor nodes have the maximum number of devices they support

assigned.

1

2 s t r a t egy Ass ignDevices

3 [s t y l eApp l i e s && unass ignedDevices]{

4 t0 : (unass ignedDevices && ! maxAssignedDevices)−>assignDStoPN ()@[3000

/∗ms∗/]{

5 t0a : (unass ignedDevices)−>do [TOTAL PN] t0 ;

6 t0b : (! unass ignedDevices)−>done ;

7 }

8 }

Listing 4: Stitch strategy to assign devices to processor nodes during scale-out.

ScaleOut. Once all unassigned devices detected in the network have been assigned

to their respective processor nodes by the strategy AssignDevices, the ScaleOut635

strategy kicks in to activate the additional processor nodes required to process

the requests coming from the new devices. In particular, the strategy is executed

when:

• the maximum capacity of the set of currently active processor nodes has

reached its limit (maxAssignedDevices);640

• there are devices already assigned to a processor node whose requests are

not being processed because the corresponding processor node is not active

yet (unprocessedDevices); and

• the number of active processor nodes has not reached the number of avail-

able processor nodes in the system.645

29

1

2 s t r a t egy ScaleOut

3 [s t y l eApp l i e s && maxAssignedDevices && unprocessedDevices &&

numActivePN<numAllocatedPN]{

4 t0 : (maxAssignedDevices && unprocessedDevices && numActivePN<

numAvailablePN)−>activatePN ()@[20000/∗ms∗/]{

5 t0a : (! maxAssignedDevices)−>done ;

6 }

7 }

Listing 5: Stitch strategy to activate processor nodes during scale-out.

So far, we have described the process followed to integrate DCAS with Rain-

bow, re-implement existing adaptation mechanisms, and extend the adaptation

capabilities of the system using Rainbow. This process produced Rainbow-

DCAS, a prototype of DCAS which embodies the principles of ABSA. In the650

next section, we describe how we have used Rainbow-DCAS and our experience

during its development as a vehicle to evaluate the effort required to imple-

ment an ABSA solution, and contrast its performance with that of the original

system.

5. Evaluation655

In this section, we evaluate our modifications to DCAS in two dimensions.

Firstly, we report on the implementation effort involved when integrating Rain-

bow and DCAS, including the re-implementation and extension of adaptation

mechanisms by using ABSA. Secondly, we evaluate the performance of DCAS

when incorporating an ABSA-based solution.660

5.1. Implementation Effort

We report here on the implementation effort involved in: (i) evolving DCAS

by removing its existing, hardcoded self-adaptation mechanisms, and imple-

menting the translation infrastructure to communicate with Rainbow; (ii) cus-

tomizing Rainbow to re-implement scale-up and rescheduling adaptation mech-665

anisms using ABSA; (iii) improving the scale-up and rescheduling adaptation

30

strategies to make the adaptations more responsive to problems; and (iv) im-

plementing automatic scale-out.

The aforementioned tasks were carried out by a team not previously ac-

quainted with DCAS or Rainbow 11.670

5.1.1. Evolution of DCAS.

The overall time spent in tailoring DCAS for Rainbow was 145 hours (ap-

proximately 3 2/3 work weeks). As can be observed in Table 2, although the

implementation of the bulk of the translation infrastructure (TCP Server) did

not require much effort, about 55% of the overall time was spent in developing675

probes and effectors. This stems from the fact that most of the time needed for

developing probes and effectors was devoted to code refactoring and instrumen-

tation. This were required to enabling access to the classes and methods needed

to obtain probe information, and effect changes in the system (please refer to

Section 4.1).680

Task Time (in hours) %

Implementing TCP server 15 10.3

Identifying and removing built-in adaptation 40 27.5

Implementing probes 45 31

Implementing effectors 35 24.1

Miscellaneous configurations 10 6.8

Total 145 100

Table 2: DCAS evolution effort

11Although some of the authors of Rainbow and DCAS participated in the study described

in this paper, all tasks regarding the implementation of Rainbow-DCAS were carried out

by an independent team of three developers at the University of Coimbra without any prior

experience with Rainbow or DCAS.

31

5.1.2. Re-implementing Scale-up and Rescheduling in Rainbow.

We tracked the activities carried out during the customization of Rainbow.

The overall effort invested in customization including the modeling of the sys-

tem’s architecture, scripting of the adaptation (developing tactics and strategies

in Stitch), and development and testing of the translation infrastructure, includ-685

ing probes, gauges, and effectors amounted to 91 hours (approximately 2 1/3

work weeks).

Task Time (in hours) %

Architecture modeling 20 21.9

Implementing client probes and gauges 22 24.1

Implementing client effectors 12 13.1

Scripting adaptation (tactics and strategies) 35 38.4

Miscelaneous configurations 2 2.1

Total 91 100

Table 3: Rainbow customization effort for DCAS

Table 3 details the effort devoted to customization. It is worth observing

that more than half of the effort (59.1 %) was devoted to the development of

the translation infrastructure (probes, gauges, effectors) and the architecture690

model, whereas the time devoted to scripting adaptation was 38.4%.

5.1.3. Evolution of Scale-up and Rescheduling in Rainbow-DCAS.

Once we had a first version of Rainbow-DCAS, which included a baseline set

of adaptation strategies that replicated DCAS adaptation behavior, we evolved

the set of adaptation strategies to improve the performance of Rainbow-DCAS.695

Specifically, in the original DCAS adaptations the system was slow to recover if

devices were persistently slow in reporting data.

Table 4 shows the size of the alternative adaptation mechanisms imple-

mented in Rainbow-DCAS and DCAS, as well as, the number of classes in-

volved in each of the adaptation mechanisms in the latter. The data shows that700

32

Item # SLOC # Classes

Rainbow-DCAS tactics 88 -

Rainbow-DCAS strategies 57 -

DCAS scale-up 93 2

DCAS rescheduling 115 6

Table 4: Size/Scattering of DCAS adaptation mechanisms

although there is not a substantial difference between the number of lines of

source code in Rainbow-DCAS and DCAS (145 lines of Stitch vs. 208 lines of

C#), the implementation of adaptation mechanisms in DCAS is scattered across

two different sets of classes, hampering the evolution of adaptation mechanisms.

However, in Rainbow-DCAS the specification of adaptation is centralized, easing705

the modification of adaptation behavior. Indeed, we found that the evolution

of the baseline set of adaptation strategies demanded time of an order

of magnitude of just minutes, not hours. This contrasts with the ef-

fort required to evolve the original adaptation mechanisms in DCAS,

which typically demands about 2 man-days to tune when the middle-710

ware is deployed in a new location. Moreover, modifying adaptation mechanisms

in Rainbow-DCAS requires just restarting the system after modifying scripted

strategies in Stitch, whereas in DCAS the system has to be recompiled and

redeployed (two processes that demand additional infrastructure and time).

5.1.4. Implementing Automatic Scale-out.715

The time employed in implementing scale-out adaptation in Rainbow-DCAS

was approximately 57 hours, out of which the majority (50 hours) were spent in

customizing Rainbow, and the rest were used to prepare DCAS for incorporating

the new version of scale-out.

Rainbow Customization. Table 5 details the effort required for the different720

tasks involved in Rainbow customization. While little effort was required to

modify the architecture model, the major investments correspond to developing

33

the probes and gauges needed to monitor the information required by the new

properties in the architecture model, as well as, to scripting adaptation tactics

and strategies.725

Task Time (in hours) %

Architecture modeling 2 4

Implementing probes and gauges 15 30

Implementing client effectors 8 16

Scripting adaptation (tactics and strategies) 15 30

Miscelaneous configurations 10 20

Total 50 100

Table 5: Rainbow customization effort for DCAS scale-out

Evolution of DCAS. Table 6 shows that little effort was needed to prepare

DCAS for incorporating the new version of scale-out since most of the required

infrastructure (such as the TCP server, or several effectors that the new adap-

tation mechanism reuses) was already in place.

Task Time (in hours) %

Modification of TCP server 2 28.5

Implementing effectors 3 42.8

Miscellaneous configurations 2 28.5

Total 7 100

Table 6: DCAS evolution effort for scale-out

It is worth observing that the overall time required to incorporate scale-730

out adaptation, which is a far more elaborated mechanism than scale-up and

rescheduling (i.e., requiring several intermediate steps and system-wide changes

to the architecture), represents only about 20% of the overall effort initially re-

quired to incorporate the architecture-based version of scale-up and reschedul-

ing. These numbers indicate that while there is indeed a significant upfront735

34

investment required to incorporate ABSA, this effort pays off not only while

evolving existing architecture-based adaptation mechanisms (as shown in Sec-

tion 5.1), but also when developing new ones, which can easily take advantage

of the existing infrastructure.

5.2. Experimental Evaluation740

The aim of our experiments is assessing the applicability of architecture-

based self-adaptation (ABSA) mechanisms in the context of an application-

agnostic middleware, comparing their performance and efficiency with those

achieved by DCAS built-in adaptation mechanisms. Specifically, we evaluate

the performance of the adaptations to: (i) verify that replicating the adapta-745

tions (i.e., scale-up and rescheduling) in DCAS with Rainbow provides simi-

lar adaptation performance; (ii) measure the adaptation improvement in Rain-

bow obtained by evolving scale-up and rescheduling adaptation strategies; and

(iii) validate the behavior of automatic scale-out.

5.2.1. Scale-up and Rescheduling750

Experimental Setup. For our experimental setup, we deployed both versions

of DCAS across three different machines (Figure 8): dcas-db acts as the backend

database running on Oracle 10.2.0, dcas-main acts as a processor node, running

DCAS, and (dcas-devs) is used to simulate the response of network devices from

which DCAS retrieves information (device response simulation is implemented755

as a simple Web service whose response time can be set in a configuration file).

In the case of Rainbow-DCAS (Figure 8, left), Rainbow’s master is deployed in

a separate machine (dcas-master). All machines run on Windows XP Pro SP3 (DCAS

is deployed as a Windows service), and an Intel core i3 processor, with 1GB of

RAM.760

Our experiments include 100 data streams with a sample rate of 1 second.

The duration is 40 minutes (2400s), and the pattern followed is:

1. 0-600s: normal activity to let the system achieve a steady state;

35

dcas-main

dcas-db

dcas-devs

dcas-

master

dcas-maindcas-db dcas-devs

Figure 8: Experimental setup: Rainbow-DCAS (left) and DCAS (right)

2. 600-1200s: disturbance period, during which we induce low responsiveness

in data streams (adding a 2-second delay in the response time of 25% of765

the data streams); and

3. 1200-2400s: system keeps on running with normal activity until the end

of the experiment.

To assess the effectiveness and flexibility of the Rainbow approach in the

context of DCAS, we carried out two sets of experiments: (i) using a baseline770

set of adaptation strategies to show that the adaptation behavior of DCAS

can be replicated using Rainbow; and (ii) using an evolved set of adaptation

strategies to improve adaptation behavior.

Replicating DCAS Adaptation Behavior. Figure 9 depicts the perfor-

mance (top) and cost (bottom) shown by the different versions of DCAS during775

the execution of our experiments. Comparing the performance of DCAS with

Rainbow-DCAS baseline, we can observe that after the disturbance starts, per-

formance drops in both cases and stays in low levels until the disturbance is

removed. Both implementations show a spike in performance when the distur-

bance is removed, due to the number of accumulated requests in the secondary780

queues of Data Requester Processors. The removal of the delay in data streams,

along with the high number of available active pollers to process the requests

in the queues at that point (t=1200s - Figure 9, bottom), causes the sudden

increase in performance, which goes back to expected levels almost immediately

when queue sizes are reduced back to normal levels. Moreover, the activation785

of pollers in DCAS presents a slight overshoot compared to the Rainbow-DCAS

36

24000 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

1000

0

100

200

300

400

500

600

700

800

900

Time (s)

Re
qu

es
ts

 p
er

 s
ec

on
d

(R
PS

)

DCAS
Rainbow-DCAS Baseline
Rainbow-DCAS

Data Stream Low Responsiveness Period

24000 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

55

0

5

10

15

20

25

30

35

40

45

50

Time (s)

N
um

be
r

of
 a

ct
iv

e
po

lle
rs

 (D
RP

Ps
) DCAS

Rainbow-DCAS Baseline
Rainbow-DCAS

Low Data Stream Responsiveness PeriodLow Data Stream Responsiveness Period

Data Stream Low Responsiveness Period

Figure 9: Performance (top) and number of active pollers (bottom)

37

baseline. This is explained by the longer time periods between the consecutive

queue size checks required to activate pollers (as described in Section 2.2.2),

compared to the higher frequency of probe updates and shorter adaptation cy-

cle time in Rainbow.790

Improving Adaptation Behavior. Once we reproduced the adaptation be-

havior of DCAS, we evolved the baseline set of adaptation strategies to improve

performance during the disturbance period. Results show that Rainbow-

DCAS is able to recover faster than DCAS. Specifically, when the dis-

turbance period starts, the performance of both DCAS and Rainbow-DCAS795

degrades initially, going from values in the expected range (200-250 rps) to val-

ues in the range 0-50. However, by t=800s, performance in Rainbow-DCAS has

been restored to normal levels. In contrast, DCAS does not recover throughout

the whole disturbance period, only going back to normal once the disturbance

is removed by time t=1200s. Moreover, Rainbow-DCAS is faster in reacting to800

the disturbance since we modified the adaptation strategies to activate pollers

more aggressively when low responsiveness appears in data streams. This comes

at the cost of more active pollers, but it is an acceptable solution given that the

main priority of the system is performance.

5.2.2. Scale-out805

Experimental Setup. To assess the behavior of Rainbow-DCAS during

scale-out adaptation, we carried out a set of experiments for which we extended

our earlier experimental setup, deploying Rainbow-DCAS across five machines

(Figure 10): dcas-db acts as the backend database running on Oracle 10.2.0, dcas-pn0

and dcas-pn1 act as processor nodes running DCAS, dcas-devs is used to simulate810

the response of network devices from which DCAS retrieves information, and

dcas-master hosts Rainbow’s master controller. All machines run on Windows XP

Pro SP3, and are equipped with an Intel core i3 processor and 1GB of RAM.

Our experiments include two sets of 50 data streams (namely, ds0 and ds1),

with a sample rate of 1 second each. The system starts execution with only815

one set of 50 data streams (ds0), and one active processor node (dcas-pn0) that

38

dcas-pn1

dcas-pn0

dcas-db dcas-devs
dcas-

master

Figure 10: Experimental setup for scale-out experiments in Rainbow-DCAS

processes their data. The duration of each experiment was 40 minutes (2400s),

and the pattern followed was:

1. 0-200s: normal activity to let the system achieve a steady state;

2. 200-800s: disturbance period, during which we induce low responsiveness820

in data streams (adding a 2-second delay in the response time of 50% of

the data streams in ds0);

3. 800s: activation of the second set of data streams (ds1). Total number

of data streams is now 100. This triggers scale-out adaptation, which

activates dcas-pn1, and assigns the processing of data streams in ds1 to it;825

4. 800-1200s: the system runs with both processor nodes active. 50% of data

streams in ds0 are still under induced low responsiveness;

5. 1200-1600s: we induce low responsiveness in 50% of data streams in ds1.

Both processor nodes are now processing data streams with low respon-

siveness;830

6. 1600-2000s: low responsiveness in ds0 data streams is eliminated;

7. 2000-2400s: low responsiveness in ds1 data streams is eliminated. The

system keeps on running with normal activity until the end of the exper-

iment.

It is worth observing that during these experiments, scale-out adaptation835

runs along with both scale-up and rescheduling mechanisms on each of the

individual processor nodes.

39

Extending Adaptation Behavior with Scale-out. Figure 11 shows both

the performance (top) and cost (bottom) of Rainbow-DCAS during a scale-out

experiment. If we focus on performance, we can observe a drop in rps right840

after the induction of low responsiveness in ds0 (t = 200s). However, it can

be observed how performance quickly recovers due to the immediate reaction of

scale-up adaptation (noticeable by the sudden increment in active dcas-pn0 pollers

in the bottom part of Figure 11). After this, the system keeps on running with

the expected performance level for 50 data streams and one active processor845

node, until the data streams in ds1 are activated (t = 800s). At that point, the

performance level increases since the scale-out mechanism kicks in, activating

processor node dcas-pn1, and resulting in an increased number of processed data

requests per second inserted in the database (now coming from both processor

nodes).850

At this point, we can observe how dcas-pn0 needs to keep 50 active pollers

to maintain an acceptable level of performance, where as dcas-pn1 does still op-

erate with the minimum number of active pollers since data streams in ds1 are

responding in a timely manner. However, when we induce low responsiveness in

ds1 data streams (t = 1200s), we can observe how the performance level drops,855

and the number of active pollers in dcas-pn1 starts to increase.

Finally, the performance level rises again to the expected levels for two pro-

cessor nodes and 100 data streams. This level of performance is preserved until

the end of the execution of the experiment, even when the number of active

pollers in both processor nodes has dropped to a minimum level.860

6. Lessons Learned

During our experience in developing Rainbow-DCAS, we observed that architecture-

based self-adaptation (ABSA) can successfully replicate the adaptation behavior

required from an industrial-class software-based system such as DCAS. More-

over, results show a substantial reduction of the effort required to evolve existing865

architecture-based adaptation mechanisms, and develop new ones once the nec-

40

24000 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

600

0

50

100

150

200

250

300

350

400

450

500

550

Time (s)

Re
qu

es
ts

 p
er

 s
ec

on
d

(R
PS

)

Low Data Stream Responsiveness PeriodLow Data Stream Responsiveness Period
(Processor Node 0)

(Processor Node 1)
Low Data Stream Responsiveness Period

Scale-out adaptation

24000 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

250

0

50

100

150

200

Time (s)

N
um

be
r

of
 a

ct
iv

e
po

lle
rs

 (D
RP

Ps
)

Low Data Stream Responsiveness PeriodLow Data Stream Responsiveness PeriodLow Data Stream Responsiveness Period

Processor Node 0
Processor Node 1

Low Data Stream Responsiveness Period
(Processor Node 0)

(Processor Node 1)
Low Data Stream Responsiveness Period

Scale-out adaptation

Figure 11: Performance (top) and number of active pollers (bottom)

essary infrastructure is put in place.

To validate our findings, we have compared the customization effort of Rain-

bow, while integrating it to DCAS, with other two applications of Rainbow. The

results of this comparison are shown in Table 7. Results show that the effort870

41

Task DCAS ZNN[6] TalkShoe[12]

Architecture modeling 20 13 6

Implementing probes and gauges 22 49 8

Implementing effectors 12 7 5

Scripting adaptation 35 21 8

Miscelaneous configurations 2 2 8

Total 91 92 34

Table 7: Rainbow customization effort

required to implement Rainbow-DCAS is consistent with the num-

bers reported in previous experiences with Rainbow, with an average

time spent in each one of the tasks that ranges between one and two days.

However, our DCAS prototype was developed independently, only with scarce

consulting provided by the original developers of Rainbow and Critical Software,875

so development time was partially spent in getting acquainted with Rainbow and

DCAS. Hence, we assume that subsequent developments using Rainbow would

require less effort.

Beyond the primary observations noted above, we have gained some in-

sight into the development of adaptation mechanisms for this kind of industrial880

software-intensive system, which is the following.

1. Development paradigm matters. In the original DCAS, each adapta-

tion mechanism resides within its own independent control loop in different

sub-components of the processor node (i.e., scale-up and rescheduling re-

side in the data requester and polling scheduler, respectively). This would885

appear to be a consequence of adhering to a strict object-oriented pro-

gramming paradigm when developing the embedded code-based adapta-

tion mechanisms in the original DCAS. While enforcing encapsulation and

information hiding can lead to good modularization, it also constrains the

scope of embedded adaptation mechanisms, restricting their access to in-890

formation (e.g., for anomaly detection) and actuation to their local scope,

42

as well as hampering coordinated adaptation across multiple system com-

ponents. In contrast, the two adaptation mechanisms in Rainbow-DCAS

(implemented as the two set of Stitch strategies described in Section 4.2)

reside within the same control loop in the external control layer that de-895

cides which one should be used, depending on the particular situation, in

a coordinated manner.

2. Explicit information improves adaptation behavior. As a con-

sequence of the limited scope of embedded adaptation mechanisms, the

original DCAS can only use low-level information that indirectly indicates900

the system’s performance. In particular, data request queue growth rates

are used to assess whether more pollers should be added or removed from

a given processor node, in contrast with using explicit information about

the system’s performance (i.e., rps). While this solution works well in this

particular case, the system is adapting to maintain a growth rate of 0 (i.e.,905

a constant size) in request queues, rather than to meet the actual goals of

the system. In general, adapting to control a variable that may not always

be correlated with system goals may result in the system failing to adapt

in some cases in which adaptation is required (and conversely, to adapt in

situations that do not require it). In contrast, Rainbow-DCAS has access910

to systemic information about whether performance goals are being met.

The ability to factor in high level information, like performance, into the

decision-making process is possible because of architectural descriptions.

These descriptions allow systematic reasoning in terms of the actual goals

of the system, rather than ad hoc decisions based on low-level, indirect915

indicators. Further details about how the use of architecture models have

a positive impact on adaptation in DCAS can be found in [13].

3. Not everything should be managed by ABSA. Architectural de-

scriptions reify system information and are exploited to reason at a high

level about the best way of adapting a system. Hence, engineers devel-920

oping ABSA mechanisms must make appropriate choices regarding which

aspects of system operation could benefit from management by the adapta-

43

tion layer, and which would add unnecessary complexity and/or overhead,

and should therefore be handled directly by low-level mechanisms in the

system. For instance, in the particular case of Rainbow-DCAS, details,925

such as, the specifics of the scheme followed for re-prioritizing devices in

rescheduling are abstracted away in the self-adaptive layer and managed

directly at the system level.

4. Sophisticated adaptation demands changes in the monitoring in-

frastructure. Although Rainbow has enabled us to implement an auto-930

mated version of scale-out in Rainbow-DCAS, we have discovered that the

fact that the monitoring infrastructure used by Rainbow must be fixed at

development-time imposes some restrictions on the solution space. Specifi-

cally, the inability to modify the structure of the monitoring and actuation

infrastructures at run-time rules out solutions that reassign dynamically935

part of the devices to different processor nodes for a better distribution

of the load. This limitation is currently being addressed in the new ver-

sion of Rainbow, which will support run-time changes in its monitoring

infrastructure.

5. Explicit adaptation logic reduces evolution effort of adaptation940

mechanisms. We found that the evolution of the baseline set of adapta-

tion strategies in Rainbow-DCAS demanded time of an order of magnitude

of just minutes, not hours. This contrasts with the effort required to evolve

the original adaptation mechanisms in DCAS. Critical Software reported

that the effort demanded to tune adaptation behavior when the middle-945

ware is deployed in a new location was about 2 man-days. The reason

being, in the original version of DCAS, modifying the adaptation logic re-

quires changes in code scattered across different system components. On

the other hand, Stitch strategy code is centralized in a single location and

some aspects of adaptation behavior (e.g., timing issues) are made explicit950

in the code, making them easier to interpret and modify.

Although some of the elements described in our experience are specific to

44

DCAS, there are techniques and artifacts that can be reused when incorporating

ABSA to other legacy systems. In particular, the implementation of explicit

feedback loops by using a customizable framework for self-adaptation can be955

employed across different systems, provided that: (i) a suitable description of

the system’s architecture can be extracted. Specifically, this description should

facilitate developers the process of identifying the points in which the system

should be monitored and actuated upon via effectors in order to introspect and

control the system’s state, respectively, and (ii) the source code for the system is960

available if the legacy system does not provide any interfaces that enable access

to points of monitoring and actuation.

Moreover, in the specific case of Rainbow, many of the customization ele-

ments such as effectors, probes, gauges, adaptation scripts, and even architec-

ture models can be reused across systems that share the same architectural style965

with little or no modification.

7. Threats to Validity

Regarding the internal validity of our study, the main threat concerns the

measurement of results for implementation effort, which may be distorted by

prior experience of members of the development team with either Rainbow or970

DCAS. However, although some of the authors of Rainbow and DCAS par-

ticipated in the study described in this paper, all tasks that concern the im-

plementation of Rainbow-DCAS were carried out by an independent team of

three developers at the University of Coimbra without any prior experience

with Rainbow or DCAS.975

With respect to external validity, the main concern is the limited scope of

our study, since it is restricted to a particular class of systems. In particular,

our results are set in the context of DCAS and Rainbow, and generalization

requires experimenting with further types of controllers and systems. However,

despite the recent appearance of other frameworks for developing self-adaptive980

systems such as DYNAMICO [22], Zanshin [20], or StarMX [4], Rainbow is one

45

of the few frameworks that have been widely available for experimentation in

the specific context of ABSA, to the best of our knowledge. Experience reports

on engineering self-adaptation with new frameworks, such as the requirements-

oriented Zanshin [20], are starting to pave the way for a more comprehensive985

understanding of new self-adaptation paradigms in practice. Our study is, as

far as we know, the first of these experience reports that provides insight into

the feasibility of replacing legacy embedded and manual adaption mechanisms

by ABSA in industrial-scale software systems.

8. Related Work990

Different approaches in the literature for developing adaptive systems range

from those that adopt a prominently control-theoretic perspective [14], to others

that employ requirements [15, 16, 17], or architecture models [1, 18, 19] to reason

about the best way to adapt the target system at run-time.

Some of the proposals include reusable frameworks that facilitate incorpo-995

rating self-adaptation mechanisms in legacy systems. StarMX [4] is a generic

open-source framework that targets primarily systems in the Java domain. Man-

agement of non-Java systems can be achieved via Web Services or JNI, making

StarMX a potential candidate for implementing self-adaptation in legacy sys-

tems. However, the framework has been evaluated to the best of our knowledge1000

only on J2EE applications. Zanshin [16] incorporates an adaptation framework

based on a feedback-loop architecture that has been evaluated using different

systems. In particular, an experience report [20] describes the process of design-

ing and developing adaptation scenarios on a simplified ATM system. Although

the original system does not feature explicit legacy adaptation mechanisms, it is1005

based on feedback loops, allowing adaptation mechanisms to be implemented by

integrating the Zanshin framework with the ATM software via aspects, rather

than from scratch. Although the report does not provide any quantification in

terms of effort devoted to development, it identifies the localization and mod-

ification of the original implementation to support monitoring and adaptation1010

46

execution as one of the more challenging steps of the process. This is consis-

tent with the results in our study, in which the modification of the original

system demanded more effort than the implementation of the new adaptation

mechanisms.

Prior experiences in engineering adaptation with Rainbow [6, 12] dealt with1015

simple systems that did not include any legacy adaptation mechanisms. More-

over, although these studies provide detailed measurements of the effort invested

in implementing self-adaptation, developers were part of the team that created

the ABSA framework.

Various reports in self-adaptive systems [3, 21] point out the need for real1020

data about engineering costs and effectiveness of applying ABSA to real systems.

We see this work as a step in this direction.

9. Conclusions

In this paper, we assessed the benefits of architecture-based self-adaptation

(ABSA) in the context of large-scale commercial software system, called Data1025

Acquisition and Control Service (DCAS). This system is a middleware that al-

ready incorporates self-adaptation mechanisms, and is used to monitor and man-

age highly populated networks of devices in renewable energy production plants.

To perform our evaluations, we independently developed a system that inte-

grates DCAS with Rainbow, which is a framework for supporting architecture-1030

based self-adaptation of software systems.

Our results show that ABSA can successfully replicate the adaptation

behavior required from an industrial-class software-based system, such

as DCAS. Regarding the overall distribution of the effort, approximately 60%

was used to evolve DCAS for its integration with Rainbow, whereas the remain-1035

ing time was spent in customizing Rainbow. Once the baseline set of adap-

tation strategies used to replicate DCAS adaptation behavior was completed,

incremental changes to evolve and improve Rainbow-based adapta-

tion mechanisms demanded little time (on the order of minutes, rather

47

than hours or days). Our experience indicates that although incorporating1040

ABSA in an already adaptive system initially demands an upfront ef-

fort in terms of specification and development, this investment pays

off by substantially reducing effort in further system evolution (in par-

ticular considering the fact that, typically, most of the overall effort is devoted

to system maintenance [23]). We have also observed that centralized global1045

adaptation improves adaptation by facilitating access to systemic information,

and effectively enabling coordinated adaptation. However, we noted that not

everything should be managed by ABSA, and that special attention should be

paid to deciding which aspects of the system must be managed by low-level local

adaptation mechanisms.1050

In this paper, we have also reported our experience using the Rainbow

framework for implementing automatic scale-out adaptation in DCAS. Scale-

out adaptation enables the system to deal with dynamic workloads that might

incorporate new devices at run-time (something that the original DCAS does

not address since scale-out is performed as a manual operation). Even though1055

scale-out adaptation requires system-wide changes and is more elaborated than

scale-up and rescheduling, our experience showed that the effort required to

implement automatic scale-out only represents a small fraction of the

overall effort initially required to incorporate the architecture-based

version of the scale-up and rescheduling. This evidence indicates that1060

while there is indeed a significant upfront investment required to incorporate

ABSA, this effort pays off not only while evolving existing architecture-based

adaptation mechanisms, but also when developing new ones that take advantage

of the existing infrastructure.

Despite the wide range of proposals available for engineering self-adaptive1065

systems, a recent literature review [21] puts forward the fact that research in this

area is primarily evaluated using simple applications, and that collaborations

between academic and industrial partners are very rare. Our study is, to the

best of our knowledge, the first experience report that provides insight into the

feasibility of replacing legacy embedded and manual adaption mechanisms by1070

48

ABSA in industrial-scale software systems.

Future work will deal with the evaluation of ABSA, using other types of

legacy software systems and adaptation frameworks to assess the generality of

our findings. In the context of DCAS, we will tackle more sophisticated ver-

sions of scale-out adaptation mechanisms than those currently implemented in1075

the original DCAS and Rainbow-DCAS by incorporating new features under

development in Rainbow, such as dynamic probe and effector placement. Fi-

nally, we will also investigate general criteria to decide what adaptations should

be global and centralized, versus local and distributed.

10. Acknowledgements1080

Co-financed by the Foundation for Science and Technology via project CMU-

PT/ ELE/0030/2009 and by FEDER via the “Programa Operacional Fac-

tores de Competitividade” of QREN with COMPETE ref.: FCOMP-01-0124-

FEDER-012983.

References1085

[1] J. Kramer, J. Magee, Self-managed systems: an architectural challenge, in:

L. C. Briand, A. L. Wolf (Eds.), FOSE, 2007, pp. 259–268.

[2] B. H. Cheng, R. de Lemos, et al., Software Engineering for Self-Adaptive

Systems: a Research Roadmap, in: Software Engineering for Self-Adaptive

Systems, Vol. 5525 of LNCS, Springer, 2009, pp. 1–26.1090

[3] R. de Lemos, et al., Software engineering for self-adaptive systems: A sec-

ond research roadmap, in: Software Engineering for Self-Adaptive Systems

II, Vol. 7475 of Lecture Notes in Computer Science, Springer, 2013, pp.

1–32.

[4] R. Asadollahi, M. Salehie, L. Tahvildari, Starmx: A framework for de-1095

veloping self-managing java-based systems, in: SEAMS, IEEE, 2009, pp.

58–67.

49

[5] R. Calinescu, L. Grunske, M. Z. Kwiatkowska, R. Mirandola, G. Tam-

burrelli, Dynamic QoS Management and Optimization in Service-Based

Systems, IEEE Trans. Software Eng. 37 (3) (2011) 387–409.1100

[6] S.-W. Cheng, D. Garlan, B. R. Schmerl, Evaluating the Effectiveness of the

Rainbow Self-Adaptive System, in: SEAMS, IEEE, 2009, pp. 132–141.

[7] J. Cámara, P. Correia, R. de Lemos, D. Garlan, P. Gomes, B. R.

Schmerl, R. Ventura, Evolving an adaptive industrial software system to

use architecture-based self-adaptation, in: SEAMS, IEEE / ACM, 2013,1105

pp. 13–22.

[8] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, P. Steenkiste, Rainbow:

Architecture-Based Self-Adaptation with Reusable Infrastructure, IEEE

Computer 37 (10) (2004) 46–54.

[9] J. O. Kephart, D. M. Chess, The vision of autonomic computing, Computer1110

36.

[10] G. Abowd, R. Allen, D. Garlan, Using style to understand descriptions

of software architecture, ACM Transactions on Software Engineering and

Methodology 4 (1993) 319–364.

[11] S.-W. Cheng, D. Garlan, Stitch: A language for architecture-based self-1115

adaptation, Journal of Systems and Software 85 (12) (2012) 2860–2875.

[12] S.-W. Cheng, Rainbow: Cost-Effective Software Architecture-Based Self-

Adaptation, Ph.D. thesis, CMU (2008).

[13] J. Cámara, P. Correia, R. de Lemos, M. Vieira, Empirical resilience eval-

uation of an architecture-based self-adaptive software system, in: QoSA,1120

ACM, 2014, pp. 63–72.

[14] A. Filieri, C. Ghezzi, A. Leva, M. Maggio, Reliability-driven dynamic bind-

ing via feedback control, in: Software Engineering for Adaptive and Self-

Managing Systems (SEAMS), 2012, pp. 43–52.

50

[15] J. Whittle, P. Sawyer, N. Bencomo, B. Cheng, J.-M. Bruel, Relax: a lan-1125

guage to address uncertainty in self-adaptive systems requirement, Require-

ments Engineering 15 (2) (2010) 177–196.

[16] V. E. Souza, Requirements-based Software System Adaptation, Ph.D. the-

sis (2012).

[17] L. Baresi, L. Pasquale, P. Spoletini, Fuzzy goals for requirements-driven1130

adaptation, in: Requirements Engineering Conference (RE), 2010 18th

IEEE International, 2010, pp. 125–134.

[18] D. Menasce, H. Gomaa, S. Malek, J. Sousa, Sassy: A framework for self-

architecting service-oriented systems, Software, IEEE 28 (6) (2011) 78–85.

[19] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Med-1135

vidovic, A. Quilici, D. S. Rosenblum, A. L. Wolf, An architecture-based

approach to self-adaptive software, IEEE Intelligent Systems 14 (1999) 54–

62.

[20] G. Tallabaci, V. Silva Souza, Engineering adaptation with zanshin: An

experience report, in: SEAMS, 2013, pp. 93–102.1140

[21] D. Weyns, T. Ahmad, Claims and evidence for architecture-based self-

adaptation: A systematic literature review, in: Software Architecture, Vol.

7957 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,

2013, pp. 249–265.

[22] G. Tamura, et al., Improving context-awareness in self-adaptation using1145

the dynamico reference model, in: SEAMS, IEEE, 2013, pp. 153–162.

[23] F. P. Brooks, Jr., The Mythical Man Month: Essays on Software Engineer-

ing, 1st Edition, Addison-Wesley, 1975.

51

