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Abstract—Consumer-electronics systems are becoming increas-
ingly complex as the number of integrated applications is
growing. Some of these applications have real-time requirements,
while other non-real-time applications only require good average
performance. For cost-efficient design, contemporary platforms
feature an increasing number of cores that share resources, such
as memories and interconnects. However, resource sharing causes
contention that must be resolved by a resource arbiter, such as
Time-Division Multiplexing. A key challenge is to configure this
arbiter to satisfy the bandwidth and latency requirements of
the real-time applications, while maximizing the slack capacity
to improve performance of their non-real-time counterparts. As
this configuration problem is NP-hard, a sophisticated automated
configuration method is required to avoid negatively impacting
design time.

The main contributions of this article are: 1) An optimal
approach that takes an existing integer linear programming (ILP)
model addressing the problem and wraps it in a branch-and-
price framework to improve scalability. 2) A faster heuristic
algorithm that typically provides near-optimal solutions. 3) An
experimental evaluation that quantitatively compares the branch-
and-price approach to the previously formulated ILP model
and the proposed heuristic . 4) A case study of an HD video
and graphics processing system that demonstrates the practical
applicability of the approach.
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I. INTRODUCTION

The trend of consumer-electronics systems becoming more
and more complex is not possible to overlook. An increasing
number of applications has resulted in a transition to multi-
core platforms, where the number of cores and hardware
accelerators has been growing exponentially; a trend that is ex-
pected to continue in the coming decade [1]. The applications
have different types of requirements, as illustrated in Figure 1.
Some of them (colored white in the figure) have real-time
requirements and must always satisfy their deadlines, while
other non-real-time applications (colored gray) only require
sufficient average performance [2]. The cores and accelerators
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access shared resources, such as memories, interconnects
and peripherals [3], [4] on behalf of the applications they
execute and are referred to as resource clients. However, this
resource sharing causes contention between clients that must
be resolved by an arbiter. Time-Division Multiplexing (TDM)
is a commonly used arbiter that schedules clients based on a
statically computed schedule with a fixed number of time slots.
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Fig. 1. Example of a multi-core system, where n applications (Al) with
different real-time requirements are mapped to the cores. The cores act as
resource clients (ci) accessing a shared resource through an interconnect
controlled by a TDM arbiter.

An important challenge with TDM arbitration in these
systems is to find a schedule that assigns the time slots to
the clients in a way that satisfies the bandwidth and latency
requirements of the real-time clients, while minimizing their
resource utilization (maximizing slack capacity) to improve
performance of the non-real-time clients. This configuration
process is required to complete in reasonable time, even for
large problems, to avoid negatively impacting the design time
of the systems, which is required to stay unchanged [1]. This
is particularly important since the schedule configuration may
be a part of the design-space exploration, thus requiring it to
be repeated many times during system design.

The four main contributions of this article are: 1) We present
an exact approach that takes an existing integer linear program-
ming (ILP) model addressing the TDM configuration problem
and wraps it in a branch-and-price framework [5] to improve
its scalability. The computation time of this algorithm is
optimized using several techniques, including lazy constraints
generation. 2) We present a stand-alone heuristic algorithm
that can be used to solve the problem, providing a trade-off
between computation time and efficiency that is useful when
sub-optimal solutions are acceptable. 3) We experimentally
demonstrate the improved scalability of the branch-and-price
approach and compare it both to the previously formulated
ILP model and to an existing heuristic. We also quantify
the trade-off between efficiency and computation time for
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the optimal and heuristic algorithms. 4) We demonstrate the
practical relevance of the approach by applying it to a case
study of an HD video and graphics processing system. In
addition, the source code of our approach is released as open-
source software and can be found in [6].

The rest of this article is organized as follows. Related work
is discussed in Section II. Section III proceeds by presenting
background information necessary to understand the main
contributions of the article. Then, the configuration problem
is formalized in Section IV, followed by a description of
the existing ILP formulation in Section V. The branch-and-
price approach is introduced in Section VI and its computation
time optimizations are discussed in Section VII. The heuristic
algorithm for slot assignment is then explained in Section VIII.
Section IX presents the experimental evaluation, before we
demonstrate the practical applicability of our approach in a
case study in Section X. Lastly, the article is concluded in
Section XI.

II. RELATED WORK

Scalability is a critical issue in system design, since design
time must remain unchanged despite an exponential increase
in system complexity. Most works in the area of design
automation that use exact optimization techniques do not
scale well enough to be able to manage the complexity of
future consumer electronics systems [7]–[11], and only a
few propose advanced techniques to address the complexity
problem. These techniques can be classified into two major
groups of approaches: 1) a decomposition of the problem into
smaller sub-problems, and 2) navigating the search smartly
during design-space exploration. The first approach deals
with large problems by decomposing them into many smaller
problems. This method is used in [12], [13]. The second
branch of improvements uses problem-specific information
while searching the design space, which is more efficient
compared to using general design-space exploration methods.
Examples of this approach are shown in [14] and [15], where
the authors look for a minimal reason for constraint violation
and prevent this situation in the rest of the search, while using
boolean satisfiability and ILP approaches, respectively.

Another way of dealing with the scalability issue is to
use a heuristic approach. Some methodologies to configure
TDM arbiters have been proposed in the context of off-chip
and on-chip networks. An approach for synthesizing TDM
schedules for TTEthernet with the goal of satisfying deadlines
for time-triggered traffic, while minimizing the latency for
rate-controlled traffic is proposed in [16]. The methodologies
in [17], [18] consider slot assignment in contention-free TDM
networks-on-chips. All of these approaches are heuristics
and the efficiencies of the proposed methods have not been
quantitatively compared to optimal solutions. Furthermore, the
problem of scheduling networks is different from ours, as it
considers multiple resources (network links) and is dependent
on the problem of determining paths through the network.

The problem of TDM arbiter configuration with simplified
client requirements is considered in [19], where unlike this
work, the authors propose a harmonic scheduling strategy. One
of the two previous solutions to the problem considered in
this article is the configuration methodology for multi-channel
memory controllers in [8]. The authors apply a commonly
used heuristic for TDM slot assignment, called continuous

allocation [20]–[23], where slots allocated to a client appear
consecutively in the schedule. The reasons for its popularity
are simplicity of implementation and negligible computation
time of the configuration algorithm. However, with grow-
ing problem sizes, this strategy results in significant over-
allocation, making satisfaction of a given set of requirements
difficult. This is experimentally shown in Section IX when
comparing to our approach. The considered TDM configura-
tion problem was furthermore addressed in [24], where an ILP
formulation is proposed to solve the problem. Although this
solution shows good results for systems of the past and present,
complex future systems require a more scalable approach to
avoid negatively impacting design time.

Besides the difference in the problem formulation, this
article advances the state-of-the-art by being the first to
apply a theoretically well-founded advanced optimization ap-
proach, called branch-and-price [5] in the field of consumer-
electronics systems design. Branch-and-price combines both
of the mentioned approaches to manage complexity; it decom-
poses the problem into smaller sub-problems and uses more
sophisticated search-space exploration methods. Although [25]
applies branch-and-price to the problem of FlexRay scheduling
in the automotive domain, this article gives more elaborate
explanation of the approach and concentrates on the compu-
tation time optimizations. Moreover, this work extends [24]
by using the previously proposed ILP model (Section V) as
a building block in the novel branch-and-price framework
(Sections VI, VII and VIII) to improve its scalability to satisfy
the needs of future design problems.

III. BACKGROUND

This section presents relevant background information to
understand the work in this article. First, we present the
concept of latency-rate servers, which is an abstraction of
the service provided to a client by a resource arbiter. We
then proceed by discussing how TDM arbitration fits with
this abstraction and explain how to derive its latency and rate
parameters.

A. Latency-Rate Servers

Latency-rate (LR) [26] servers is a shared resource ab-
straction that guarantees a client ci sharing a resource a
minimum allocated rate (bandwidth), ρi, after a maximum
service latency (interference), Θi, as shown in Figure 2. The
figure illustrates a client requesting service from a shared
resource over time (upper solid red line) and the resource
providing service (lower solid blue line). The LR service
guarantee, the dashed line indicated as service bound in the
figure, provides a lower bound on the amount of data that can
be transferred to a client during any interval of time.

The LR service guarantee is conditional and only applies
if the client produces enough requests to keep the server
busy. This is captured by the concept of busy periods, which
intuitively are periods in which a client requests at least as
much service as it has been allocated (ρi) on average. This is
illustrated in Figure 2, where the client is in a busy period
when the requested service curve is above the dash-dotted
reference line with slope ρi that we informally refer to as
the busy line. We now have all the necessary ingredients to
provide a formal definition of a LR server in Definition 1.



Clock cycles

A
c
c
u

m
u

la
te

d
 r

e
q

u
e

s
ts

service

bound

requested

service

provided

service

busy lin
e

c1 c1 c1 c1

Θ = 4

ρ = 0.5

c1

Fig. 2. A LR server and associated concepts for a client sharing a resource.

Definition 1 (LR server): A LR server provides guaran-
tees on minimum provided service rji to a client ci requesting
the service during a busy period with duration j. These
guarantees are expressed by Equation (1) and are parametrized
by service latency Θi and rate ρi. The minimum non-negative
constant Θi satisfying Equation (1) is the service latency of
the server.

rji ≥ max(0, ρi · (j −Θi)) (1)

The values of Θi and ρi of each client depend on the
particular choice of arbiter and how it is configured. Ex-
amples of arbiters that belong to the class of LR servers
are TDM, several varieties of the Round-Robin and Fair-
Queuing algorithms [26], as well as priority-based arbiters
like Credit-Controlled Static-Priority [27] and Frame-based
Static Priority [28]. The main benefit of the LR abstraction
is that it enables performance analysis of systems with shared
resources in a unified manner, irrespective of the chosen arbiter
and configuration. It has been shown in [29] that the worst-
case finishing time of the kth request from a client ci in a
LR server can be bounded according to Equation (2), where
szki is the size of the request in number of required slots,
arrki is the arrival time and fink−1

i is the worst-case finishing
time of the previous request from the client. This bound is
visualized for the kth request in Figure 2. Note that this bound
is slightly pessimistic, but only serves to illustrate how the LR
abstraction is used to compute the finishing time of requests.
For optimized bounds and a quantitative evaluation of the
abstraction, refer to [30].

finki = max(arrki + Θi, fink−1
i ) + szki /ρi (2)

Equation (2) forms the base for verification of applications
at a higher level and does not make any assumptions on the ap-
plications by itself. Instead, restrictions on the application are
imposed by the higher level analysis frameworks. For example,
as shown in [31], it is possible to integrate Equation (2) into
a worst-case execution time estimation tool to enable bounds
on execution time of an application sharing resources to be
computed. However, these tools are often limited to analyzing
applications executing on a single core. This restriction does
not apply to verification based on the data-flow model of com-
putation [32], which can verify that distributed applications

with data dependencies meet their real-time requirements, as
demonstrated in [33]. This type of verification is particularly
suitable for throughput-oriented streaming applications, such
as audio and video encoders/decoders [23], [34], [35], and
wireless radios [23], [36]. In this case, Equation (2) is inte-
grated into the data-flow graph as a data-flow component with
two actors [29] before the analysis to capture the effects of
resource sharing.

B. Time-Division Multiplexing
Having introduced LR servers as a general abstraction of

shared resources, we proceed by showing how the abstraction
applies to resources shared using TDM arbitration. We do
this by first defining TDM arbitration and then show how the
service latency and rate parameters of the corresponding LR
server are derived.

A TDM arbiter operates by periodically repeating a sched-
ule, or frame, with a fixed number of slots, f. The schedule
comprises a number of slots, each corresponding to a single
resource access with bounded execution time in clock cycles.
Every client ci is allocated a number of slots φi in the schedule
at design time. The rate (bandwidth) allocated to a client, ρi,
is determined purely by the number of allocated slots in the
schedule and is computed according to Equation (3).

ρi = φi/f (3)

The service latency, on the other hand, depends on the
slot distribution that determines how the allocated slots are
distributed in the schedule.

Although it may intuitively seem like computing the service
latency is just a matter of identifying the largest gap between
slots allocated to the client in the schedule, this is not correct.
The reason is that according to Definition 1, the rate ρ has to be
continuously provided after the service latency Θ. The problem
is illustrated in Figure 2, which shows a TDM schedule along
with its corresponding service bound. As we can see, the
service latency of Θ = 3, which is the largest gap in the
schedule, does not provide a conservative LR guarantee (it
fails at time slot 6 in the TDM table) and the actual service
latency of this schedule is Θ = 4. This example shows us
that the notion of service latency is more complex than it
initially seems, making it harder to compute. This article uses
a very general way to compute the service latency, Θ, of a
TDM arbiter by directly using Definition 1. The rate of a given
schedule is known by Equation (3) and the worst-case provided
service to a client ci during a busy period of any duration j
(i.e. rji ) can be derived by analyzing the schedule (later shown
in Section V). For a given schedule, it is hence only a matter
of finding the minimum service latency that satisfies the LR
characterization in Equation (1).

In terms of implementation, we assume a scalable intercon-
nect supporting TDM arbitration. A simple bus fails to scale
as the number of clients are increasing, as the critical path gets
longer and prevents it from synthesizing at high frequencies.
Although TDM-based networks-on-chips address this scalabil-
ity problem, they behave like multiple TDM resources (one per
link), resulting in a different configuration problem. Instead,
we consider a pipelined tree-shaped interconnect supporting
a distributed implementation of TDM arbitration, such as the
memory tree proposed in [37], which provides the required
scalability yet behaves like a single resource.



IV. PROBLEM FORMULATION

The problem of finding a TDM slot allocation with a given
frame size that satisfies the requirements of a set of clients,
while minimizing the rate allocated to real-time clients is
formulated in this section. We refer to this problem as TDM
Configuration Problem/Latency-Rate with given frame size
(TCP/LR-F).

An instance of the TCP/LR-F problem is defined by a tuple
of requirements 〈C, Θ̂, ρ̂, f〉, where:
• C = {c1, ..., cn} is the set of real-time clients that share

a resource, where n is the number of clients.
• Θ̂ = [Θ̂1, Θ̂2, ..., Θ̂n] ∈ Rn≥0 and
ρ̂ = [ρ̂1, ρ̂2, ..., ρ̂n] ∈ Rn≥0 are given service latency
(in number of TDM slots) and rate (bandwidth)
(required fraction of total available slots) requirements
of the clients, respectively.

• f is a given TDM frame size, f ∈ Z+.
To satisfy the given requirements of a problem instance, we

proceed by formalizing a TDM schedule and its associated
parameters:
• The set F = {1, 2, · · · , f} denotes TDM slots.
• S = [s1, s2, ..., sf] is a schedule we want to find, where
si ∈ {C ∪ ∅} indicates the client scheduled in slot i or
∅ (empty element) if the slot is not allocated.

• φ = {φ1, φ2, ..., φn} is the number of slots allocated to
each client, i.e. φi =| {sj} : sj = ci |.

• Θ = [Θ1,Θ2, ...,Θn] ∈ Rn≥0 and ρ = [ρ1, ρ2, ..., ρn] ∈
Rn≥0 are the service latency and allocated rate, respec-
tively, provided by the TDM schedule.

The goal of TCP/LR-F is to find a schedule S for n clients
sharing the resource such that the objective function, Φ, being
the total allocated rate of all the real-time clients in C is
minimized as shown in Equation (4), while the service latency
and rate constraints (Equations (5) and (6) below) are fulfilled.
This ensures that all real-time requirements are satisfied while
maximizing the unallocated resource capacity available to non-
real-time clients, thus maximizing their performance.

Minimize:
∑
ci∈C

ρi = Φ (4)

ρi ≥ ρ̂i, ci ∈ C (5)

Θi ≤ Θ̂i, ci ∈ C (6)

Note that although the considered TCP/LR-F problem has
a frame size f as a given parameter, the problem of finding the
best frame size is addressed in [24], where both optimal and
heuristic approaches are presented. It is also shown that the
formulated problem with arbitrary frame size is NP-hard by
transforming the Periodic Maintenance Scheduling Problem
(PMSP) [38] to the TCP/LR-F problem with arbitrary frame
size. To prove NP-hardness of our problem with given frame
size using the same logic, the frame size f of the instance we
transform PMSP to is set to the least common multiple of the
clients periods, making it a special case that is covered by the
existing proof. Note that this choice of frame size proves NP-
hardness of the TCP/LR-F problem in general, i.e. not only
for instances with this frame size.

V. ILP MODEL

Since the branch-and-price approach is built on the existing
ILP formulation, it is briefly introduced first. For a more
elaborate description of the formulation and its optimizations,
refer to [24]. In the ILP formulation, the schedule S is
represented using binary decision variables xji indicating that
slot j ∈ F is allocated to a client ci ∈ C. This is defined as:

xji =

{
1, if slot j is allocated to client ci.
0, otherwise.

The minimization criterion (7) is reformulated from Equa-
tion (4) in terms of the variables presented above. The solution
space is defined by four constraints: Constraint (8) states that
a slot can be allocated to maximally one client. Constraint (9)
then dictates that enough slots must be allocated to a client
to satisfy its rate requirement, which is computed according
to Equation (3). The following two constraints focus on the
worst-case provided service offered by the TDM schedule to
a client, rji (rji ≤ r

j
i ), where rji corresponds to the lower solid

blue line labeled ’provided service’ in Figure 2. Constraint (10)
states that the worst-case provided service to a client ci during
a busy period of any duration j starting in any slot k cannot
be larger than the service provided by its allocated slots.

Lastly, Constraint (11) states that the worst-case provided
service of the client, rij , must satisfy its LR requirements and
is a straight-forward implementation of Definition 1.

Minimize:

∑
ci∈C

∑
j∈F x

j
i

f
. (7)

subject to: ∑
ci∈C

xji ≤ 1, j ∈ F. (8)

f∑
j=1

xji ≥ f · ρ̂i, ci ∈ C. (9)

rji ≤
(k+j) mod f∑

l=k

xli, k ∈ F, ci ∈ C, j ∈ F. (10)

rji ≥ ρ̂i · (j − Θ̂i), j ∈ F, ci ∈ C. (11)

After introducing the basic ILP model of TCP/LR-F, we
proceed by discussing a few computation time optimizations.
The first optimization exploits that an increased lower bound
on the number of slots allocated to a client, φ

i
can be found

by considering both its rate (first part) and service latency
(second part) requirements in Equation (12). Unlike the rate
requirement, the number of slots required to satisfy the service
latency requirement depends on where the slots are allocated in
the frame, which is not known beforehand. This lower bound is
obtained by assuming an equidistant allocation, which results
in the minimum number of slots required to be allocated to
satisfy the service latency requirement.∑

j∈F
xji ≥ φi = max(dρ̂i · fe ,

⌈
f

Θ̂i + 1

⌉
). (12)



For example, having requirements ρ̂1 = 0.5 and Θ̂1 = 3
for client c1 and a frame size f = 10, the lower bound
on the number of allocated slots φ

1
is the maximum of

the d0.5 · 10e = 5 slots required to satisfy the bandwidth
requirement and the

⌈
10

3+1

⌉
= 3 slots required to allocate

each fourth slot in the TDM table to the client. Thus, the
lower bound for client c1 equals φ

1
= 5, which in this case is

determined by its bandwidth requirement.
The second optimization removes redundant constraints

generated by Constraints (10) and (11). As one can see, f2 · n
constraints are generated by Constraint (10) and f·n constraints
by Constraint (11). However, it is not necessary to generate
Constraints (10) and (11) for j < Θ̂i, since the service bound
provided by the LR guarantee is always zero in this interval
by Definition 1. This is clearly seen in Figure 2, where the
provided service curve is zero for the first four slots.

Additional constraints can be removed if more slots are
required to satisfy the service latency requirements than the
rate requirements, i.e. when the second term in the max-
expression in Constraint (12) is dominant. In the remainder of
this article, we refer to clients with this property as latency-
dominated, as opposed to bandwidth-dominated, clients. As
shown in [24], for latency-dominated clients Constraints (10)
and (11) only need to be generated for a single point where
j = bΘ̂ic+ 1.

The third optimization reduces the solution space by re-
ducing rotational symmetry. This means that for any given
TDM schedule, f − 1 similar schedules can be generated by
rotating the given schedule and wrapping around its end. The
problem is that all these schedules have the same criterion
value and only one of them needs to be in the considered
solution space. Constraint (13) addresses this problem by
adding a constraint that fixes the allocation of the first slot
to the client with the smallest minimum number of required
slots φ

i
(defined in Constraint (12)). This particular choice

of client has been experimentally determined to significantly
reduce the computation time of the solver.

x1
t = 1, t = argminci∈C φ

i
. (13)

VI. BRANCH-AND-PRICE APPROACH

The presented ILP model finds optimal solutions in rea-
sonable time for current multi-core systems. However, despite
the optimizations, it does not scale to many-core systems with
32 or more clients. To expand the range of problems that we
are able to solve by the ILP model described in the previous
section, a branch-and-price approach [5] is introduced, which
uses the ILP problem formulation from the previous section
as a building block. Branch-and-price allows solving instances
of the TCP/LR-F problem with larger number of clients where
the ILP formulation becomes too slow. The first reason for this
behavior is that it does not need as many constraints in the
ILP formulation for non-latency-dominated clients, where f 2·n
Constraints (10) are required in the ILP. Moreover, it reduces
the number of explored symmetrical solutions and typically
has a smaller branching tree. Both of these properties result
in a significantly reduced computation time for large problem
instances compared to the previously described ILP model.
The structure of this section is the following. First, background
on the branch-and-price approach is provided. Then, all the

necessary problem-dependent parts of the algorithm are de-
scribed. The computation time optimizations of the algorithm
are given in the following section.

A. Preliminaries
Branch-and-price is an exact method to solve ILP problems,

which combines column generation and branch-and-bound
approaches. In order to obtain a problem formulation for the
branch-and-price approach, Dantzig-Wolfe decomposition [5]
is performed on the ILP model from the previous section.
At higher level, this decomposition transforms the space of
binary variables xji of the ILP model into the space of
complete solutions for individual clients, i.e. branch-and-price
works with complete schedules for individual clients instead
of dealing with allocation of single slots. The solutions for a
single client are called columns.

The process of applying Dantzig-Wolfe decomposition on
the ILP model results in an ILP master model MM(Ω) that
contains a set of all possible columns Ω = {Ω1,Ω2, · · · ,Ωn}.
Columns are iteratively generated by a so called sub-model,
here an ILP model for a single client. Then, they are combined
into a complete solution for all clients by the master model.
Note that each client requires its own instance of the sub-
model, since they have distinct requirements.

An example column set is shown in Figure 3. In the
considered TCP/LR-F problem, columns are complete TDM
schedules for individual clients. Here, the set of columns
Ω1 for the first client with requirements ρ̂1, Θ̂1 contains two
columns on the top of the figure and the set of columns Ω2

for the second client is at the bottom. The decision variables
ωi,k indicate whether or not column pk is included in the
schedule for client ci. One of the possible solutions here is to
use column 2 for the first client and column 1 for the second
one, i.e. ω1,1 = 0, ω1,2 = 1, ω2,1 = 1, ω2,2 = 0. Each column
pk is defined via a set of coefficients aji,k. This coefficient is
equal to 1 if column pk allocates slot j to client ci and 0
otherwise.

A drawback of using columns instead of the binary variables
xji of the ILP model is the large number of possible columns.
However, it is sufficient to gradually generate only the most
promising ones and expand the search space of solutions step-
by-step. At a certain (final) moment it can be proven (see [5])
that the optimal solution is found. A master model that consid-
ers only a subset of columns ΩR = {ΩR1 ,ΩR2 , · · · ,ΩRn } ⊆ Ω
is called the Restricted Master Model and is denoted as
MM(ΩR).

Thus, the idea, described above, is known as the column
generation approach. Since column generation is only able to
solve the linear relaxation of the master model, it is necessary
to extend this approach with a branch-and-bound technique in
order to get an integer solution. This combination is known in
the literature as branch-and-price.

B. Outline of the algorithm
The overall scheme of the branch-and-price algorithm in

8 steps is shown in Figure 4. First of all, the algorithm
must generate a set of initial columns ΩR in Step 1 using
a heuristic. Note that the quality of the initial columns only
affects the computation time and not the optimality of the
solution. Step 2 starts the process of column generation by
solving the linear relaxation of the restricted master model.
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The output of this step is quantitative directions (dual values)
that guide the column search for the sub-model. Next, a new
column for some client is constructed by the sub-model (Step
3) subject to the directions obtained in the previous step by
MM(ΩR). If a new promising column for any client is found,
the column is added to ΩR and the next iteration of the column
generation algorithm starts (back to Step 2). Otherwise, the
optimal linear solution of the relaxed MM(ΩR) is a lower
bound for the optimal integral solution and is denoted as ΦLB .
If bounding takes place in Step 4, i.e. this branch is already
worse or the same as the best solution known so far, the current
node is closed in Step 8. In case the branch is still promising,
Step 5 checks whether or not the solution obtained by column
generation is integral. In case it is, a new candidate solution to
the initial integer master model is found. This solution defines
a new upper bound on the criterion, ΦUB , which is updated
before the node is closed in Step 8. In case neither bounding
nor the check on integrality closes the node, branching takes
place.

Using the branch-and-bound technique means having a
branching tree, which is in essence a set of nodes with parent-
child relationships. The node is defined by a partial solution,
i.e. a chain of slot assignment decisions made in the parent
nodes. A decision is to impose/forbid assignment of a slot to
a client. At the beginning, the first slot is fixed in the root
node, as mentioned in the optimizations of the ILP model
in Section V. The column generation procedure (Steps 2, 3,
7) together with bounding (Step 4) and checking solution on
integrality (Step 5) are launched in each node. In case the node
is not closed, a child node is generated with a new decision,
i.e. which slot to impose/forbid assignment to which client.

C. Master Model Formulation
The master model combines TDM tables for individual

clients in order to provide a feasible solution, where each slot
is allocated at most once in the schedule and requirements of
all clients are satisfied. Moreover, it searches for the feasible
schedule with the minimum total allocation. The master model
is formulated as an integer linear programming problem, but
in column generation it is solved as a linear problem, as stated
earlier.

For TCP/LR-F, the Dantzig-Wolfe decomposition of the ILP
model from Section V results in the following master model.
The columns in ΩR are defined via coefficients aji,k, indicating
whether or not a slot in a column is allocated to a client,
defined according to

aji,k =

{
1, if slot j is allocated to client ci in pk ∈ Ωi
0, otherwise.

Decision variables indicating whether client ci ∈ C uses
column pk ∈ Ωi, are defined as

ωi,k =

{
1, if client ci uses column pk ∈ Ωi
0, otherwise.

It is a binary decision variable, which can be interpreted in
the linear relaxed master model as the weight or ”probability”
of using column pk for client ci.

Furthermore, another set of decision variables is introduced.
Variables yj reflect the over-allocation of slot j in the final
solution, i.e. yj = max(0, vj), where slot j is allocated by
vj − 1 clients. It means that any feasible solution has yj =
0,∀j ∈ F . These variables are introduced in order to have
an initial set of columns ΩR even in cases where a feasible
solution could not be found in reasonable time in Step 1 of
Figure 4. This is important since it is in general not possible to
find ΩR that contains a feasible solution in polynomial time.

Minimization of the total allocated rate for the restricted
master model is formalized in the objective function

Minimize :

∑
ci∈C

∑
pk∈ΩR

i
φi,k · ωi,k

f
+M ′·

∑
j∈F

yj = ΦMM ,

(14)
where φi,k is the total number of allocated slots to client
ci in column pk and M ′ is some sufficiently big number,
in this work chosen to be M ′ = 10. The sum of over-
allocation variables yj are multiplied by M ′ to provide a major
penalty for overlapping (infeasible) schedules to ensure they
are weeded out quickly.

The master model comprises only two constraints. The first
one, Constraint (15), is meant for counting the number of times
slot j is over-allocated in the schedule, which is expressed by
variable yj .∑

ci∈C

∑
pk∈Ωi

aji,k · ωi,k ≤ yj + 1, j ∈ F. (15)

Coefficients bi,k are introduced for the second constraint,
indicating whether column pk was constructed for client ci:

bi,k =

{
1, if pk ∈ ΩRi .

0, otherwise.



The second constraint, Constraint (16), forces the solver to
choose at least one column for each client. For the linear
relaxation, the sum of ”probabilities” of using columns for
a particular client ci from ΩRi must be greater than or equal
to 1. Note that this sum is always 1 in the optimal solution
of the initial problem, as criterion minimization pushes it
down. This trick reduces computation time, since a feasible
solution can be found earlier in the branching tree of the master
model, resulting in a better upper bound. Having a good upper
bound earlier allows bounding more efficiently, which reduces
computation time.∑

pk∈ΩR
i

bi,k · ωi,k ≥ 1, ci ∈ C. (16)

D. Sub-Model Formulation
The main purpose of the sub-model is to generate the

columns ΩR for the master model. Apart from that, the sub-
model is used to check optimality of the restricted master
model MM(ΩR). The following condition guarantees opti-
mality of the solution obtained by MM(ΩR) (see [39] for
the proof) and it is used for constructing the sub-model
formulation:

Condition 1 (Optimality condition): A solution to a linear
relaxation of MM(ΩR) is optimal if and only if there is no
column pk ∈ Ω that is infeasible for the dual model to the
linear relaxation of MM(ΩR).

The notion of duality between two LP models is described
in [5]. Basically, it exchanges constraints and variables in
their LP formulations. Note that the procedure of constructing
a dual master model formulation DMM(ΩR) to MM(ΩR)
does not contain any design decisions and follows automati-
cally from the formulation of MM(ΩR).

The formulation of DMM(ΩR) is given below, where λj
are dual variables that correspond to the set of Constraints (15)
and σi are dual variables for Constraints (16) of the master
model. DMM(ΩR) aims to maximize Criterion (17) with
respect to Constraints (18)–(20).

Maximize : −
∑
j∈F

λj +
∑
ci∈C

σi. (17)

subject to:

−
∑
j∈F

aji,k · λj + bi,k · σi ≤
φi,k

f
, ci ∈ C, pk ∈ Ωi, (18)

λj ≤M ′, j ∈ F (19)

λj ≥ 0, j ∈ F (20)

Variables λj and σi are called shadow prices. In terms of the
TCP/LR-F problem, they can be interpreted as how much the
value of Criterion (14) of the master model would decrease if
the corresponding constraints of MM are relaxed. Particularly,
λj indicates a potential gain in terms of criterion value if slot
j is allowed to be allocated twice (in general, allowing slot j
to be allocated k times, the criterion reduces by (k− 1) · λj).
Meanwhile, σi is the price of having one column for client ci
both in terms of its allocated rate ρi and its slot assignment,
i.e. the criterion value (14) would reduce by σi if client ci
could have no columns in the final solution.

As already stated, the sub-model generates new promising
columns for an individual client. Promising are those that
violate feasibility of DMM(ΩR) according to the optimality
stated in Condition 1. The negated value by which Con-
straints (18)–(20) are violated by a new column pk is called
the reduced cost. In TCP/LR-F, the reduced cost value can be
interpreted as how much the cost of having certain column in a
final solution (in terms of the criterion value) must be reduced
before it is included in the optimal solution. From the point of
view of Condition 1, negative reduced cost means the current
solution of MM(ΩR) is not optimal. Basically, the sub-model
searches for a new column, defined by Equations (9), (10)
and (11). To find such a column with minimal reduced cost,
it uses the ILP model from Section V for a single client. This
is how the ILP model is used as a building block in a bigger
framework.

Having minimal reduced cost does not necessarily mean
that the column brings the result towards an optimal solution.
However, choosing the column with the minimal reduced
cost is a heuristic that behaves very well in practice [5] and
eventually leads to the optimal solution due to Condition 1.

Next, the formulation of the sub-model is given. Since
it is required to minimize the reduced cost, violation of
Constraints (18)-(20) needs to be formulated in terms of the
sub-model variables. Remember that the values λj and σi are
constants from the sub-model point of view, since they are
obtained from the master model after Step 2 in Figure 4.
Thus, Constraints (19) and (20) are satisfied by default and
it is sufficient to consider violation of Constraint (18) only.

Looking closely at Constraint (18), it is clear that the sub-
model only needs to determine slot allocation for the given
client ci, i.e. variables aji,k are in fact the same as xji from the
ILP model, previously described in Section V. Furthermore,
φi,k is the number of allocated slots in column k, which
implies φi,k = φi =

∑
j∈F x

j
i . Finally, bi,k is always 1 in

the sub-model, since the schedule is constructed for client ci.
Thus, the sub-model for client ci has the criterion Ξsub (21),
which is the reduced price expression.

Minimize :
∑
j∈F

xji · λj +

∑
j∈F x

j
i

f
− σi = Ξsub. (21)

The constraints of the sub-model duplicate the constraints
of the ILP model in Section V for C = {ci}, i.e. considering
client ci only. Constraint (22) states that the bandwidth require-
ment must be fulfilled, Constraint (23) computes the points
of the worst-case provided service line and Constraint (24)
guarantees satisfying the service latency requirement for the
given client according to Definition 1. Moreover, all the
optimizations for the ILP model, described in Section V, are
used for the sub-model as well.

f∑
j=1

xji ≥ f · ρ̂i (22)

rji ≤
(k−j) mod f∑

l=k

xji , k ∈ F, j ∈ F (23)

rji ≥ ρ̂i · (j − Θ̂i), j ∈ F. (24)



Thus, here the ILP model, formulated in Section V, is used
as a piece in a larger framework to solve large problems
more efficiently due to the ILP decomposition, i.e. instead
of solving a large model that considers all clients at the
same time, the master model and the sub-model solve smaller
sub-problems. A small illustrative example of the column
generation algorithm on a problem instance with 2 clients can
be found in the appendix.

E. Branching Strategy

The third and last main component of the branch-and-price
approach is the branch-and-bound procedure. Here, we focus
on the branching strategy used. Branch-and-price approaches
usually use the 0/1 branching scheme, i.e. some binary variable
is set either to 0 or to 1 in two child nodes. First of all, the
important decision is how to choose variables to branch on.
Branching on master model variables (ωi,p) is not effective
since new columns are added in each iteration and the number
of decisions to make increases with added columns, which
results in a large decision tree and long computation time.
Moreover, it is more efficient to consider variables of the sub-
model as the branching variables, since it influences several
columns at once.

Generally, branching adopts a depth-first search. Note that
two branching decisions must be made: which client to allocate
to which slot. Two branching strategies show good results for
different sizes of problems. Both strategies start by sorting
clients in ascending order according to their service latency
requirements to begin branching from the clients with more
critical requirements.

The first branching strategy has experimentally shown good
results for smaller problems (up to 16-32 clients). It fixes xji
in the following order, assuming the above described sorting
of the clients: x2

1, · · · , x
f
1, x

1
2, · · · , xf

n, i.e. slots are assigned
sequentially from left to right for each client. Note that the first
slot is always allocated to the client with the tightest service
latency requirements to reduce symmetry in the solution space
(similar to the ILP from Section V). This branching first makes
decisions of type xji = 0, i.e. branching goes first to the
branch where slot j is forbidden to be allocated to client ci
and only then to the branch where it is fixed to be allocated.
The reason for this is to obtain a feasible solution as fast as
possible, since negative decisions are less likely to eliminate
any column in ΩR and therefore do not require time to be
spent running column generation. Moreover, going through
the solution space in a systematic manner reduces the number
of explored symmetrical solutions.

The second branching strategy shows better results for larger
use-cases (more than 16-32 clients). It begins by computing
the total ”probabilities” of including each slot j ∈ F in the
solution for all its columns, ωtotal

j . For example, for the first
client this means computing ωtotal

j =
∑
pk∈ΩR

1 :aj1,k=1 ω1,k.
Then it chooses the non-decided slot jc with maximum total
”probability” of being in the solution, jc = argmaxj∈F ω

total
j

and branches on it. In case there are multiple slots with the
same maximum ωtotal

j , the leftmost slot jc is chosen. While
branching on variable x1

jc
, it goes to the branch x1

jc
= 1 first.

If the first client is fully decided or all the ”probabilities”
of undecided slots are zero, the procedure continues with the
following client. This branching strategy typically leads to a

feasible solution early on as slots with non-zero probability
are the promising ones to allocate.

An example with the first three layers of a branching tree
using the second branching strategy is shown in Figure 5. It
assumes the root node contains the set of columns ΩR from
Figure 3 and the master model resulted in the variables ω1,1 =
0.2, ω1,2 = 0.8, ω2,1 = 0.7, ω2,2 = 0.3 in Step 2 of Figure 4.
For the first client there are 4 slots j = (4, 8, 9, 10) with the
same ωtotal

j = 1 and neither of them is decided yet. Therefore,
the branching decision in the root node is to use client ci = 1
and slot j = 4 for branching. As a consequence, the left child
has a partial solution, where x4

1 = 1 and the right child has
x4

1 = 0 (!c1). Note that column generation in the nodes of
the second layer starts with a changed set of initial columns.
Therefore, the branching decisions are made based on different
values of ωi,j .

VII. COMPUTATION TIME OPTIMIZATIONS

The main components of the branch-and-price approach
are specified for TCP/LR-F in the previous section. However,
there are plenty of opportunities for reducing the computation
time of the approach. Numerous experiments and observations
were done and this section presents the five most successful
optimizations to reduce computation time.

First of all, starting the branch-and-price approach from
a feasible initial solution obtained by a heuristic implies a
significant reduction of the computation time, since having a
good upper bound on the solution in the beginning reduces the
size of the branching tree. If the heuristic is good, it may often
be able to find the optimal solution by itself. In this case, the
branch-and-price approach only has to prove the optimality
in the root node of the branching tree, considerably reducing
the computation time. This is the case for our heuristic, later
presented in Section VIII.

Secondly, since the sub-model for non-latency-dominated
clients requires f 2 constraints for checking service latency
guarantees, lazy constraints [40] are used. The basic idea is to
initially formulate the problem only with the most esssential
constraints, omitting those that are only rarely violated. These
other constraints are checked and added one-by-one to the
model only if the solution violates any of them. This process
is done in an efficient way. Instead of always starting from the
beginning of the branching tree, it continues search from the
place in the tree it last finished. We apply this trick to the sub-
model, which we initially formulate assuming all clients are
latency dominated, i.e. having only f Constraints (10) and (11)
for j = bΘ̂ic + 1. Next, for bandwidth-dominated clients,
the solution is checked for satisfaction of Constraints (10)
and (11) for j > bΘ̂ic + 1. If a constraint is violated, it is
added to the model and the solver continues its search until it
is finished. The key idea behind this optimization is to exploit
that although service latency is not always the largest gap
between two consecutively allocated slots to the same client,
it often is, and the extra constraints for bandwidth-dominated
clients are hence typically not necessary.

The next optimization also concerns the branch-and-bound
part. We use problem-specific information to set the bounding
condition more effectively. The bounding condition in every
node is set to be ΦLB > ΦUB − 1/f, where the discretization
step 1/f is subtracted. The reason is that unless there is at least
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Fig. 5. First three layers of the example branching tree.

one slot less, which is exactly 1/f in terms of utilization, it is
not an improved solution to the problem.

Column generation often suffers from a so called ”tailing-
off” effect, i.e. at the moment the reduced prices of sub-models
are close to zero it starts to take a lot of iterations to converge
to exact zeros. To deal with this issue, the fourth optimization,
Lagrangian relaxation, is introduced. It estimates the lower
bound ΦLB on Φ inside the column generation loop by
Equation (25), before the master model is solved to optimum.
Thus, using Lagrangian relaxation stops the column generation
process before Condition 1 holds and closes the node, saving
computation time. It is applicable when either the estimated
lower bound Φ

LB ≥ ΦUB or if the estimated lower bound
Φ
LB

and the one given by the master model after previous
iteration ΦMM

curr discretize to the same number of allocated
slots. Equation (25) computes the lower bound on the criterion
value of the master model after each iteration inside the
column generation procedure after Step 3 of Figure 4. The
estimation is the current criterion value of the master model
ΦMM
curr plus the sum of all of the reduced prices Ξsubi of the

sub-models [41]. The Lagrangian relaxation can never estimate
ΦLB incorrectly [41], i.e. it does not break optimality.

Φ
LB

= ΦMM
curr +

∑
ci∈C

Ξsubi (25)

Note that each time the Lagrangian relaxation is applied, all
the sub-models must be solved to optimum. Hence, running
Lagrangian relaxation each iteration of column generation
could increase the total computation time, so it is an im-
portant decision when to start this process. In our approach,
Lagrangian relaxation is performed each n iterations, where
n is the number of clients. This design decision is motivated
by that when all n clients have run, there is higher chance
that the reduced prices have changed significantly and there is
space for the Lagrangian relaxation to close the node.

The fifth and the final optimization of the computation time
is solution completion by the ILP from Section V. Sometimes
branching goes deep enough so that it is possible to reduce
computation time by launching the ILP model to find a
schedule for all clients simultaneously. It is done when some
percent of positive or negative decisions has been made. Our
experiments have shown that for different sizes of problems
these parameters should be set differently. For example, it is
necessary to increase them with increasing number of clients,
since larger problems could require running the ILP for a long
time. Thus, nodes at this depth are solved to optimality using
the ILP model and are closed afterwards. This procedure is
done by taking the decisions that have already been made,
fixing corresponding variables in the ILP model and solving
this problem with an ILP solver.

VIII. HEURISTIC APPROACH

Although the proposed exact approaches solve TCP/LR-F
optimally, it is sometimes acceptable to sacrifice the quality
of the solution in order to reduce computation time. Moreover,
as mentioned earlier, the branch-and-price approach can use a
heuristic solution to compute good initial columns that reduce
the total computation time. Thus, the purpose of this section
is to present a heuristic that solves the TCP/LR-F problem.

Heuristics of the constructive type (ones that construct a
solution step-by-step) for the considered TCP/LR-F problem
lack a good strategy to backtrack from low quality solutions
and this is the reason we propose a generative heuristic that
generates a complete solution at once. Although the generated
solution may initially be infeasible, the heuristic gradually
changes it towards a feasible one.

The proposed heuristic exploits the sub-model, previously
described in Section VI-D. It is used in combination with
the lazy constraints presented in Section VII and with the
optimality gap set to 5%, i.e. it is not necessarily the optimal
solution that is returned by the solver, but one that is no
further than 5% relative distance from the result of the linear
relaxation of the problem. These improvements significantly
reduce the computation time.

The heuristic constructs the schedule by iteratively run-
ning the sub-model for different clients in a cyclic manner.
Remember that the sub-model aims to minimize Ξsub =∑
j∈F x

j
i ·λj+

∑
j∈F x

j
i

f −σi, where the dual price coefficients
λj control allocation of slot j. In this heuristic, λj is not
coming from the master model, but is determined by the
solutions from previous iterations. Note that in the column
generation procedure, this is done by the master model in Step
2 of Figure 4. Here, the heuristic substitutes Steps 2 and 7 of
Figure 4 with a procedure that assigns appropriate coefficients
λj . Meanwhile the dual price σi is omitted in the heuristic as
it is a constant in a sub-model and constant plays no role in
minimization.

Algorithm 1 shows the proposed heuristic. The number of
clients n, service latency Θ̂ and bandwidth requirements ρ̂
are used as input. Furthermore, there are two parameters of
the heuristic, a coefficient α, which controls the speed of
convergence to the final solution, and the maximum number of
iterations of the sub-model Nmax

iter . Each iteration includes two
main steps: first coefficients λj are computed on Line 4 (ex-
plained later) and then the sub-model for client ci is launched
on Line 5. Note that the current solution is the schedule
constructed out of the n last created columns for individual
clients. The heuristic stops either when the maximum number
of iterations, Nmax

iter , is reached or if the current solution
xj,curri is collision-free, i.e. there are no two clients that share
a slot in the current solution.

The core of the heuristic is fast assignment of coefficients
λj to each slot for a given client, such that if multiple
clients allocate the same slot, some of them will change their



Algorithm 1 The proposed generative heuristic

1: Inputs: n, Θ̂, ρ̂, α,Nmax
iter

2: Niter = 0, i = 1, xj,curri = 0 ∀ci ∈ C, j ∈ F.
3: while Niter < Nmax

iter and xj,curri has collisions do
4: λ = ComputeCoefficients(ci, α)
5: xj,curri = SubModel(Θ̂i, ρ̂i, λ)
6: Niter = Niter + 1
7: i = (i mod n) + 1
8: end while
9: Output: xj,curri

allocation. As we are minimizing the criterion value, a higher
value of the coefficient means it is less desirable for a client
to allocate slot j (λj ∈ [0.9, 2.5], j ∈ F ). The procedure
of assigning coefficients λj for client ci is presented in
Algorithm 2. The algorithm considers four mutually exclusive
and jointly exhaustive cases that are detailed below:

1) Slot j is allocated to some client ck 6= ci and not
allocated to client ci in the current schedule xj,curri .
Generally, in this situation slot j should not be allocated
to client ci to avoid conflict, but in early stages of the
heuristic this slot can be used if necessary, since it is not
known in advance which allocation is better. The corre-
sponding coefficient is assigned λj = min(2, 1+dj,i ·α),
where dj,i is the number of times slot j was allocated
in the previous iterations to any client ck, k 6= i. The
coefficient dj,i hence adds state to the iterative algorithm:
the more times the slot was allocated to other clients
before, the less attractive it is to allocate this slot to client
ci. Furthermore, the higher the value of coefficient α, the
faster the schedule converges, since dj,i·α becomes larger.
The upper bound of 2 limits the maximal penalization.

2) Slot j is allocated to client ci in xj,curri and there is
no conflict. The constant value of λi = 0.9 is chosen
here, since the algorithm prefers not to change the clients
allocation unless necessary. In case this value would be
set too low, the algorithm will tend to allocate a new
slot rather than changing the allocation of the currently
assigned slots.

3) Slot j is allocated in xj,curri to client ci and there is
a conflict. All but one of the conflicting clients should
leave the slot. However, it is not clear in advance which
client should have the slot. Therefore randomness is
introduced here - the coefficient in this case is selected
from uniformly distributed numbers between 1 and 2.5.

4) In case j is not allocated in the current schedule, a value
λj = 1.0 is assigned.

IX. EXPERIMENTAL RESULTS

This section experimentally evaluates and compares the
TDM configuration methodology based on the branch-and-
price approach and the proposed heuristic. First, the ex-
perimental setup is explained, followed by an experiment
that compares the proposed branch-and-price and heuristic
to the existing ILP from Section V in terms of scalability.
Furthermore, it shows the trade-off between criterion value
and computation time for the heuristic approach.

Algorithm 2 ComputeCoefficients
1: Inputs: ci;α;
2: for all j ∈ F do
3: dj,i = number of times slot j was allocated in the

previous iterations to any client ck 6= ci

4: λj =



min(2, 1 + dj,i · α), if xj,curri = 0, xj,currk = 1,
for some k 6= i. (1)

0.9, if xj,curri = 1, xj,currk = 0,

for every k 6= i. (2)
1 + rand() · 1.5, if xj,curri = 1, xj,currk = 1,

for some k 6= i. (3)
1, if xj,currk = 0

for every k = 1, ..., n. (4)
5: end for
6: Output: λ

A. Experimental Setup
Experiments are performed using three sets of 5×200 syn-

thetic use-cases, each comprising 8, 16, 32 and 64 or 128 real-
time clients on one resource. The three sets are bandwidth-
dominated, latency-dominated and mixed-dominated use-
cases. The concepts of latency-dominated and bandwidth-
dominated clients were previously introduced in Section V.
A mixed-dominated client is one that requires approximately
equal allocated rate to satisfy both service latency and band-
width requirements according to the right or left part of Equa-
tion (12), respectively. A mixed-dominated use-case comprises
only mixed-dominated clients. This type of use-cases was not
considered in [24] due to high time complexity. The reason for
looking at this group of instances is that the problem is more
difficult than in bandwidth-dominated use-cases, but unlike
latency-dominated cases, constraints cannot be removed by
the computation time optimizations in Section V. The reason
for evaluating these three classes is to show the impact of the
requirements on the computation time of the proposed branch-
and-price approach, as well as fairly evaluate the efficiency of
the heuristic. We proceed by explaining how bandwidth and
service latency requirements are generated for the three sets.

Parameters for synthetic use-case generation are given in
Table I. Firstly, bandwidth requirements of each client in a
use-case are generated. Here, β is an interval from which
bandwidth requirements for each client are uniformly drawn.
The use-case is accepted if the total required rate of all clients
is in the range [0.8, 0.95] for bandwidth-dominated use-cases,
[0.35, 0.5] for latency-dominated use-cases and [0.7, 0.9] for
mixed-dominated use-cases. Otherwise, it is discarded and the
generation process restarts. The interval of acceptance is lower
for both mixed-dominated and latency-dominated sets to leave
space for over-allocation to satisfy the tighter service latency
requirements. Each time the number of clients is doubled, the
range of bandwidth requirements is divided by 2. This is to
make sure the total load is comparable across use-cases with
different number of clients, which is required to fairly evaluate
scalability.

Service latency requirements are uniformly distributed ac-
cording to 1

γ·ρ̂ , where a larger value of γ indicates a tighter
requirement. The γ values are given in Table I. The reduction
of service latency requirements with increasing number of



TABLE I
PARAMETERS FOR USE-CASE GENERATION

Clients Bandwidth-dominated Latency-dominated Mixed-dominated
β γ β γ β γ

8 [0.06, 0.16] [0.6, 0.9] [0.02, 0.07] [1.6, 3.3] [0.06, 0.14] [0.95, 1.4]
16 [0.03, 0.08] [0.5, 0.75] [0.01, 0.035] [1.58, 3.26] [0.03, 0.07] [0.9, 1.3]
32 [0.015, 0.04] [0.4, 0.6] [0.005, 0.0175] [1.56, 3.22] [0.015, 0.035] [0.85, 1.2]
64 [0.0075, 0.02] [0.3, 0.45] [0.0025, 0.00875] [1.54, 3.18] [0.0075, 0.0175] [0.8, 1.1]

128 [0.00375, 0.01] [0.2, 0.3] [0.00125, 0.004375] [1.52, 3.14] [0.00375, 0.00875] [0.75, 1.0]

clients is empirically determined to provide instances with
comparable difficulty by having similar total allocated rates
for the final optimal schedules. Lastly, if the total possible
load due to the service latency requirements (the right part
of Equation (12)) is outside the interval [0.75, 0.95] and
[0.7, 0.9], for latency-dominated and mixed-dominated use-
cases, respectively, new latency requirements for the use-case
are generated. For all the sets, generated use-cases that are
found infeasible using the optimal approach are discarded and
replaced to ensure a sufficient number of feasible use-cases.
Finally, the frame size is set to f = n · 8 to make sure that the
number of slots available to each client is constant across the
experiment.

All in all, this generation process ensures that all use-
cases are feasible, have comparable difficulty, and that all
clients in the three sets have the desirable dominating property.
Experiments were executed on a high-performance server
equipped with 2x Intel Xeon X5570 (2.93 GHz, 20 cores
total) and 100 GB memory. The ILP model and ILP part of
branch-and-price and the heuristic were implemented in IBM
ILOG CPLEX Optimization Studio 12.5.1 and solved with the
CPLEX solver using concert technology for the latter two. The
branch-and-price and heuristic approaches were implemented
in JAVA.

B. Results
The experiments evaluate the scalability of the proposed

branch-and-price approach and the trade-off between com-
putation time and the total rate (the criterion) allocated to
8, 16, 32, 64 and 128 real-time clients for the optimal and
heuristic approaches. Moreover, it compares the proposed ap-
proaches with already existing exact (the ILP formulation from
Section V) and heuristic (continuous allocation) strategies. A
time limit of 3 000 seconds per use-case was set in order
to obtain the results of the experiments in reasonable time.
Furthermore, to get higher quality solutions at expense of
increased computation time, the heuristic was launched 8
times for latency-dominated and mixed-dominated use-cases
to exploit the random component of the heuristic. Note that the
heuristic is only run once for bandwidth-dominated use-cases,
since these are easier for the heuristic to solve. The heuristic
parameters were set to α = 0.1, Nmax

iter = 250. Besides, the
used branching strategy for the use-cases with 8 and 16 clients
is the first (consecutive) one, while for the use-cases with 32,
64 and 128 clients the second (maximum total probability)
one was selected. Furthermore, after 10, 30, 60, 80, and 95%
of positively decided slot allocations and 40, 100, 120, 260
and 300% of negative decisions in terms of time slots (with
100% being f) is done for the use-cases with 8, 16, 32, 64 and
128 clients, respectively, the completion by the ILP model

is launched. These numbers were empirically determined to
provide a reasonable trade-off between computation time and
quality of the solution.

1) Bandwidth-dominated use-cases: Figure 6 shows the
vertical axis in logarithmic scale of the computation time for
the bandwidth-dominated use-cases for the heuristic, branch-
and-price and ILP approaches for 8, 16, 32, 64 and 128
clients, respectively. The ILP struggles to scale to use-cases
with 32 clients, as 52 out of 200 use-cases are not solved to
optimality within the given time limit, resulting in a failure rate
of above 25%. Therefore, the results for 64 and 128 clients
are only represented by the heuristic on the left and branch-
and-price on the right. The results show that the branch-
and-price approach significantly outperforms the ILP model,
scaling well to the use-cases with 32, 64 and 128 clients. More
specifically, branch-and-price require 10% (4 minutes) and 2%
(14 minutes) of the ILP computation time for 8 and 16 clients,
respectively. Moreover, it solves the use-cases with 32, 64 and
128 clients in 0.5, 6 and 29 hours, respectively, resulting in
less than 9 minutes computation time per use-case on average
for the use-cases with 128 clients. The quality of the solution
is shown in Table II, where the first number is the number of
failures and the second one is the average distance (excluding
the failures) from the best obtained solution. Failure is defined
as no feasible solution for the heuristic and no optimal solution
for the exact approaches within the time limit. The results
for 128 clients are not presented in the table, since they are
identical to the results for 64 clients. The reason for this is
that for both types of use-cases, the heuristic was able to solve
all 200 use-cases to optimality and branch-and-price only had
to prove optimality of the solutions.

Comparing the heuristic and the branch-and-price approach
for the bandwidth-dominated use-cases, the results indicate
a slight time reduction with some loss in the quality of the
solution for the heuristic. The distributions of the computation
time of both the heuristic and the branch-and-price approach
for 8, 16, 32, 64 and 128 clients look similar with exception
of the use-cases marked as plus signs, for which the heuristic
was not able to find any feasible solutions. However, the
results in Table II show that when the heuristic managed to
find feasible solutions, it always found the optimal one. The
second issue that seems suspicious is the visible similarity of
the distribution of computation time of both the heuristic and
branch-and-price approaches, which is caused by using log10

scale, where the small difference becomes invisible. In reality,
the total computation time of the heuristic and the branch-and-
price differ. The heuristic runs in 25%, 29%, 96%, 99% and
99% of the branch-and-price computation time for 8, 16, 32,
64 and 128 clients, respectively. Such a similarity for 32, 64



TABLE II
NUMBER OF FAILURES AND AVERAGE DISTANCE FROM THE BEST OBTAINED SOLUTION. (BD – BANDWIDTH-DOMINATED, LD – LATENCY-DOMINATED

AND MD – MIXED-DOMINATED USE-CASES)

Clients 8 clients 16 clients 32 clients 64 clients
BD LD MD BD LD MD BD LD MD BD LD MD

ILP 0/0 0/0 1/0 0/0 1/0 1/0 52/0.0005 0/0 172/0 - 0/0 -
Branch-and-Price 0/0 6/0 3/0 0/0 1/0 0/0 0/0 0/0 0/0 0/0 5/0 0/0

Heuristic 8/0 46/0.01 23/0.01 2/0 76/0.006 26/0.003 0/0 71/0.001 8/0.0001 0/0 61/0.0001 0/0
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Fig. 6. Computation time distribution for the bandwidth-dominated use-cases.

and 128 clients is a result of the heuristic being successful in
all use-cases, which could be caused by having more space for
allocation without collisions when the frame size is longer.

To push the limits of the branch-and-price approach and find
the maximum number of clients it can manage, a use-case with
256 clients was generated by following the rules in Table I.
However, because of the memory limit of 100 GB, branch-and-
price was not able to finish the run for a single use-case. The
current limits for our approach is hence somewhere between
128 and 256 bandwidth-dominated clients in a use-case.

This experiment shows that for bandwidth-dominated use-
cases the branch-and-price approach significantly outperforms
the ILP model for all sizes of use-cases, both in terms of com-
putation time and quality of the obtained solution. Moreover,
considering all 1000 use-cases, the heuristic saves up to 75%
of the computation time. This is done while sacrificing less
than 1.5% of the use-cases that it fails to solve and giving
optimal results for the other 98.5%.

2) Latency-dominated use-cases: The second group of
use-cases that we focus on is latency-dominated use-cases.
Since these use-cases are more complex than the bandwidth-
dominated ones, instances with 128 clients take too long to run
and are not included in the results. The distribution of log10

of the computation time is shown in Figure 7. Here, it is clear
that for smaller use-cases with 8 and 16 clients, the ILP model
significantly outperforms the branch-and-price approach. That
is, the ILP runs in 2% (15 minutes) and 42% (176 minutes)
of the branch-and-price computation time for 8 and 16 clients,
respectively. However, with increasing number of clients the
situation becomes different. For 64 clients, branch-and-price
requires less time (total 26 hours versus the ILP with 65 hours,

i.e. 2.5 times faster), but it is not able to find any feasible
solution within the time limit for 5 use-cases. For the use-
cases with 128 clients, running the heuristic 8 times in the
beginning takes more than 50 minutes on average and in case
the heuristic is not able to find a feasible solution, which
happened in 14 use-cases out of 56, branch-and-price was able
to find a solution in 2 use-cases out of 14 within the given
time limit.
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Fig. 7. Computation time distribution for the latency-dominated use-cases.

As expected, the heuristic does not show good results on
this type of use-cases with very demanding service latency
requirements. Its failure rate goes up to 38% for 16 clients,
while the lowest failure rate is observed for 8 clients (23%).
However, the average distance from the best found solution
does not exceed 1% for any feasible use-case. It manages
to save 40%, 60% and 90% of the computation time of the
least demanding optimal approach (whichever is faster, ILP or
branch-and-price) for 16, 32 and 64 clients, respectively.

The main reason the results for latency-dominated use-cases
are different from their bandwidth-dominated counterparts is
that latency-dominated clients require O(f) instead of O(f 2)
constraints. Therefore, the ILP model is able to quickly find
a solution for larger problems and, as a consequence, branch-
and-price starts to be faster only from 64 clients.

For the latency-dominated use-cases, we conclude that
branch-and-price shows better results than the ILP starting
from larger problem instances with 64 clients. The heuristic
saves more time, sacrificing approximately the same number of
solvable use-cases with increasing size of problem instances.

3) Mixed-dominated use-cases: Finally, experimental re-
sults for the set of mixed-dominated use-cases is shown in
Figure 8. Again, the ILP model fails to scale to use-cases



with 32 clients, not even feasible solution was found within a
given time limit in 172 out of 200 use-cases, which means
a failure rate above 85%. Thus, the results for 32 and 64
clients are only represented by the heuristic on the left and
branch-and-price on the right. For the use-cases with 8 clients,
the ILP model outperforms branch-and-price in terms of total
computation time, although branch-and-price is slightly better
in terms of median of the computation time. However, branch-
and-price is not able to prove the optimality within the time
limit for 3 use-cases, while the ILP failed only once. For 16
clients, the ILP model runs in 20 hours, while the branch-
and price approach needs less than 5 hours, saving 77% of
the computation time. For 32 and 64 clients, branch-and-price
requires on average less than 1 and 5 minutes on average for
one use-case, respectively, demonstrating improved scalability.

For the mixed-dominated use-cases, the heuristic fails to
find a feasible solution in 23 and 26 use-cases for 8 and
16 clients, respectively, and saves 95% and 88% of the
computation time of the fastest optimal approach. The heuristic
shows good results, especially on the use-cases with 32 and
64 clients, where it is able to solve almost all of them in
90 minutes and 14 hours, respectively, leaving only the proof
of optimality to the branch-and-price approach. This result
is caused by having more latency-dominated clients in the
sets with 8 and 16 clients than in the sets of 32 and 64
clients, which makes the work for the heuristic easier. For the
use-cases with 128 clients, the average time of running the
heuristic 8 times is 75 minutes, which already exceeds given
time limit.

Number of clients
8 16 32 64

C
o

m
p

u
ta

ti
o

n
al

 t
im

e 
(m

s)

Heuristic
Branch-and-Price
ILP

Fig. 8. Computation time distribution for the mixed-dominated use-cases.

The results for the mixed-dominated use-cases show signif-
icant reduction of computation time of the branch-and-price
approach compared to the ILP model, starting approximately
from use-cases with 16 clients, while giving optimal solutions
for all use-cases. The heuristic saves 32% of computation time
on average, sacrificing approximately 8% of the solvable use-
cases.

From these experiments, we confirm the exponential com-
plexity of the problem, although our implementation solves
an instance with 64 clients and 512 slots in less than 8
minutes on average. Moreover, the ILP model is not able
to solve use-cases with more than 16 clients for bandwidth-
dominated and mixed-dominated use-cases and 32 clients

for latency-dominated use-cases. Thus, the branch-and-price
approach is better for more complex use-cases, while ILP
typically shows better results for the use-cases with smaller
number of clients. More specifically, the proposed branch-and-
price approach improves scalability from 16 to 128 clients
for bandwidth-dominated use-cases and from 16 to 64 clients
for mixed-dominated use-cases, while latency-dominated use-
cases remain unchanged at 64 clients. In total, the work in this
article improves scalability with approximately a factor 8.

To further improve the scalability of the branch-and-price
approach, it is necessary to apply additional advanced methods
on the given problem. Alternatively, it is possible to use the
proposed heuristic, which enables saving up to 95% of the
computation time with loss of maximally 38% of feasible
use-cases, being 1% in distance from the optimal solution
on average. In contrast, the commonly used continuous slot
assignment algorithm [20]–[23] failed to find any feasible
solution in all 3000 use-cases. This simple yet common
heuristic is hence unable to cover any use-cases of reasonable
complexity.

X. CASE STUDY

We now proceed by demonstrating the practical applicability
of our proposed TDM configuration methodology by applying
it to a small case study of an HD video and graphics processing
system, where 7 memory clients share a 64-bit DDR3-1600
memory DIMM [42]. The considered system is illustrated in
Figure 9. Similarly to the multi-channel case study in [8],
we derive the client requirements from a combination of the
industrial systems in [43], [44] and information about the
memory traffic of the decoder application from [45]. However,
we assume 720p resolution instead of 1080p and that all
memory requests have a fixed size of 128 B to be able to
satisfy the requirements with a single memory channel.

Input 
Processor (IP) GPUVideo 

Engine (VE)
HDLCD Controller 

(HDLCD)

Memory Controller

DDR3‐1600 DIMM

CPU

IPout VEoutVEin GPUoutGPUin LCDin

Fig. 9. Architecture of the HD video and graphics processing system.

The Input Processor receives an H.264 encoded YUV 4:2:0
video stream with a resolution of 720 × 480, 12 bpp, at a
frame rate of 25 fps [43], and writes to memory (IPout) at
less than 1 MB/s. The Video Engine (VE) generates traffic by
reading the compressed video and reference frames for motion
compensation (VEin), and writing decoder output (VEout).
The motion compensation requires at least 285.1 MB/s to
decode the video samples at a resolution of 1280 × 720,
8 bpp, at 25 fps [45]. The bandwidth requirement to output
the decoded video image is 34.6 MB/s.

The GPU is responsible for post-processing the decoded
video. The bandwidth requirement depends on the complexity
of the frame, but can reach a peak bandwidth of 50 MB/frame
in the worst case [44]. Its memory traffic can be split into
pixels read by the GPU for processing (GPUin) and writing
the frame rendered by the GPU (GPUout). For GPUin, we



require a guaranteed bandwidth of 1000 MB/s, which should
be conservative given that the peak bandwidth is not required
continuously. GPUout must communicate the complete un-
compressed 720p video frame at 32 bpp within the deadline
of 40 ms (25 fps). With a burst size of 128 B, this results
in a maximum response time (finishing time - arrival time)
of 1388 ns per request. To provide a firm guarantee that all
data from this client arrives before the deadline, we separate
this into a service latency and a rate requirement according to
the LR server approach. There are multiple (Θ, ρ) pairs that
can satisfy a given response time requirement according to
Equation (2), where a higher required bandwidth results in a
more relaxed service latency requirement. Here, we require a
bandwidth of 184.3 MB/s, twice the continuous bandwidth that
is needed, to budget time for interference from other clients.
According to Equation (2), this results in a service latency
requirement of 718 ns (574 clock cycles for an 800 MHz
memory).

The HDLCD Controller (HDLCD) writes the image pro-
cessed by the GPU to the screen. It is latency critical [43] and
has a firm deadline to ensure that data arrives in the frame
buffer before the screen is refreshed. Similarly to GPUout,
HDLCD requires at least 184.3 MB/s to output a frame every
40 ms. Note that each rendered frame is displayed twice by
the HDLCD controller to achieve a screen refresh rate of
50 Hz with a frame rate of 25 fps. Lastly, a host CPU and
its associated Direct Memory Access (DMA) controller also
require memory access with a total bandwidth of 150 MB/s
to perform system-dependent activities [44].

The derived requirements of the memory clients in the
case study are summarized in Table III. We conclude the
section by explaining how to transform the requirements
into the abstract units of rate and service latency (in slots)
used by our approach. The rate is determined by dividing
the bandwidth requirement of the client with the minimum
guaranteed bandwidth provided by the memory controller.
The service latency requirement in slots is computed by
dividing the latency requirement in clock cycles by the WCET
of a memory request. Given a request size of 128 B and
assuming the real-time memory controller in [46], the WCET
of a memory request to a DDR3-1600 is 46 clock cycles at
800 MHz and the memory guarantees a minimum bandwidth
of 2149 MB/s [47]. For simplicity, we ignore effects of refresh
interference in the memory, which may increase the total
memory access time over a video frame with up to 3.5% for
this memory. The total required bandwidth of the clients in the
case study is 1839.3 MB/s. This corresponds to 85.6% of the
guaranteed bandwidth of the memory controller, suggesting a
suitably high load. In this use-case, all clients are bandwidth
dominated.

TABLE III
CLIENT REQUIREMENTS IN CASE STUDY

Client Bandwidth [MB/s] Latency [cc] ρ̂ Θ̂[slots]
IPout 1.0 - 0.0005 -
VEin 285.1 - 0.1326 -
VEout 34.6 - 0.0161 -
GPUin 1000.0 - 0.4652 -
GPUout 184.3 574 0.0858 12.5
LCDin 184.3 574 0.0858 12.5
CPU 150.0 - 0.0698 -
Total 1839.3 0.8558

We apply our configuration methodologies to find the op-
timal TDM schedule to satisfy the client requirements, while
minimizing the total allocated bandwidth. The frame size is
set to 64, which ensures that the use-case is solvable and
provides a reasonable trade-off between access granularity and
total TDM schedule size for the number of clients in the
case study. Although the size of the problem is rather small,
the branch-and-price approach results in more than 10 times
reduction of the computation time compared to the ILP model.
More specifically, the branch-and-price approach requires
138 milliseconds, while the ILP model finishes in requires
1395 milliseconds. The reason branch-and-price is faster even
though the case study is small is that the heuristic provides an
optimal solution, as it typically does for bandwidth-dominated
use-cases, significantly reducing the computation time of the
approach. From this case study, we conclude that branch-and-
price can be advantageous not only for larger models, but also
for the models of smaller sizes.

XI. CONCLUSIONS

This article introduces an approach that improves scalability
of the existing approaches to configure resources shared by
Time-Division Multiplexing (TDM) to satisfy bandwidth and
latency requirements of real-time clients, while minimizing
their total allocated rate to improve average performance of
non-real-time clients. The problem considered here is to assign
the slots to the clients, i.e. to find a TDM schedule with
a given length. We propose an optimal approach that takes
an existing integer linear programming model addressing the
TDM configuration problem and wraps it in a branch-and-price
framework to improve its scalability. In addition, a stand-alone
heuristic that quickly finds a schedule is proposed for cases
where an optimal solution is not required.

We experimentally evaluate the scalability of the branch-
and-price approach and quantify the trade-off between compu-
tation time and solution quality for the proposed and existing
optimal and heuristic algorithms. The results show that the
branch-and-price approach can configure use-cases with up to
8x more clients, depending on the type of use-case. Average
improvements are in the range of 3-4x. The heuristic provides
near-optimal solutions in 86% of the use-cases with an average
allocated bandwidth less than 0.26% from the optimum in
less than 50% of the time of the fastest optimal approach
(either ILP or branch-and-price). Throughout the experiments,
our approach outperforms the ILP model on larger use-cases,
while the ILP model shows better results on some use-cases
of modest size. We also demonstrate the practical relevance
of our approach by applying it to a case study of a HD video
and graphics processing system.

ACKNOWLEDGMENTS

This work was partially supported by the Horizon 2020
Programme of the European Commission under the Project
HERCULES 688860 and Eaton European Innovation Centre.

REFERENCES

[1] “International Technology Roadmap for Semiconductors (ITRS),” 2011.
[2] P. Van Der Wolf and J. Geuzebroek, “SoC infrastructures for predictable

system integration,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2011. IEEE, 2011, pp. 1–6.

[3] P. Kollig, C. Osborne, and T. Henriksson, “Heterogeneous multi-core
platform for consumer multimedia applications,” in Proceedings of the
Conference on Design, Automation and Test in Europe, 2009, pp. 1254–
1259.



[4] C. Van Berkel, “Multi-core for mobile phones,” in Proceedings of the
Conference on Design, Automation and Test in Europe, 2009, pp. 1260–
1265.

[5] D. Feillet, “A tutorial on column generation and branch-and-price for
vehicle routing problems,” 4OR, vol. 8, no. 4, pp. 407–424, 2010.

[6] A. Minaeva, P. Sucha, and B. Akesson, “BandP TDM,”
https://github.com/CTU-IIG/BandP TDM, 2015.

[7] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty, “Mod-
ular scheduling of distributed heterogeneous time-triggered automotive
systems,” Design Automation Conference (ASP-DAC), 2012 17th Asia
and South Pacific, pp. 665–670, January 2012.

[8] M. D. Gomony, B. Akesson, and K. Goossens, “A real-time multichannel
memory controller and optimal mapping of memory clients to memory
channels,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 14, no. 2, p. 25, 2015.

[9] Y. Yi, W. Han, X. Zhao, A. Erdogan, and T. Arslan, “An ILP formulation
for task mapping and scheduling on multi-core architectures,” Design,
Automation Test in Europe Conference Exhibition, 2009. DATE ’09, pp.
33–38, April 2009.

[10] J. Lin, A. Gerstlauer, and B. Evans, “Communication-aware heteroge-
neous multiprocessor mapping for real-time streaming systems,” Journal
of Signal Processing Systems, vol. 69, no. 3, pp. 279–291, 2012.

[11] Z. Hanzalek, P. Burget, and P. Sucha, “Profinet IO IRT message
scheduling with temporal constraints,” Industrial Informatics, IEEE
Transactions on, vol. 6, no. 3, pp. 369–380, Aug 2010.

[12] S. Wildermann, M. Glaß, and J. Teich, “Multi-objective distributed
run-time resource management for many-cores,” in Proceedings of the
conference on Design, Automation & Test in Europe, 2014, pp. 221:1–
221:6.

[13] W. Liu, M. Yuan, X. He, Z. Gu, and X. Liu, “Efficient SAT-based
mapping and scheduling of homogeneous synchronous dataflow graphs
for throughput optimization,” Real-Time Systems Symposium, 2008, pp.
492–504, Nov 2008.

[14] F. Reimann, M. Lukasiewycz, M. Glass, C. Haubelt, and J. Teich,
“Symbolic system synthesis in the presence of stringent real-time
constraints,” in Proceedings of the 48th Design Automation Conference,
ser. DAC ’11. New York, NY, USA: ACM, 2011, pp. 393–398.

[15] M. Lukasiewycz and S. Chakraborty, “Concurrent architecture and
schedule optimization of time-triggered automotive systems,” in Pro-
ceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM, 2012, pp.
383–392.

[16] D. Tamas-Selicean, P. Pop, and W. Steiner, “Synthesis of communi-
cation schedules for TTEthernet-based mixed-criticality systems,” in
Proceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM, 2012, pp.
473–482.

[17] A. Hansson, K. Goossens, and A. Rădulescu, “A unified approach to
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APPENDIX

This appendix shows a short illustration of the column gen-
eration algorithm described in Section VI. The small problem
instance used for this purpose considers 2 clients c1, c2 with
Θ̂ = [3, 3] and ρ̂ = [0.5, 0.3]. The TDM frame size is f = 10.
We assume initial columns with a1,1, a2,1 for clients c1, c2,
respectively, according to:

ΩR = {a1,1 = [0, 0, 1, 1, 0, 0, 0, 1, 1, 1] , (26)
a2,1 = [1, 1, 0, 0, 0, 1, 1, 0, 0, 0]} , (27)

the restricted master model MM(ΩR) is formulated as:

Minimize :
5

10
· ω1,1 +

4

10
· ω2,1 + 10

∑
j∈F

yj

subject to :

0 · ω1,1 + 1 · ω2,1 ≤ 1 + y1

0 · ω1,1 + 1 · ω2,1 ≤ 1 + y2

1 · ω1,1 + 0 · ω2,1 ≤ 1 + y3

1 · ω1,1 + 0 · ω2,1 ≤ 1 + y4

0 · ω1,1 + 0 · ω2,1 ≤ 1 + y5

0 · ω1,1 + 1 · ω2,1 ≤ 1 + y6

0 · ω1,1 + 1 · ω2,1 ≤ 1 + y7

1 · ω1,1 + 0 · ω2,1 ≤ 1 + y8

1 · ω1,1 + 0 · ω2,1 ≤ 1 + y9

1 · ω1,1 + 0 · ω2,1 ≤ 1 + y10

1 · ω1,1 + 0 · ω2,1 ≥ 1

0 · ω1,1 + 1 · ω2,1 ≥ 1.

The trivial solution to the relaxed MM(ΩR) is ω1,1 = 1,
ω2,1 = 1, yj = 0 ∀j ∈ F having objective function Φ = 0.9.
The corresponding dual solution is λj = 0 ∀j ∈ F , σ1 =
−0.5, σ2 = −0.4.

When we formulate the sub-model from Equations (21)-
(24) for client c1 to obtain a new column, its solution is
[0, 1, 1, 0, 1, 1, 0, 0, 1, 0]. However, its reduced price Ξsub =∑
j∈F x

j
1 · 0 + 0.5 − 0.5 = 0 (see Equation (21)) is not

negative, which means that this column cannot improve the
objective function of MM(ΩR). On the other hand, the sub-
model for client c2 finds [1, 0, 0, 0, 1, 0, 0, 1, 0, 0] with reduced
price

∑
j∈F x

j
2 · 0 + 0.3− 0.4 = −0.1, which has potential to

improve the objective function of MM(ΩR).
When the new column for c2 is added into MM(ΩR) (see

Step 7 in Figure 4), MM(ΩR) is solved again in Step 2. In
this case, the primal solution stays practically the same (i.e.
ω1,1 = 1, ω2,1 = 1, ω2,2 = 0, yj = 0 ∀j ∈ F ), but the
dual solution changes to λ = [0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0], σ1 =
−0.6, σ2 = −0.4. For this dual solution, the sub-model for
client c1 finds column [0, 1, 1, 0, 1, 1, 0, 0, 1, 0] with reduced
price Ξsub = 0 · 0.1 + 0.5 − 0.6 = −0.1. This new column
allows MM(ΩR) to find solution ω1,1 = 0.5, ω2,1 = 0.5,
ω2,2 = 0.5, ω1,2 = 0.5, yj = 0 ∀j ∈ F with a better value of
the objective function equal to Φ = 0.85.

The last column a2,3 = [1, 0, 0, 1, 0, 0, 1, 0, 0, 0] is added
in the next iteration when MM(ΩR) achieves the optimal
solution of the relaxed master model, which equals to Φ = 0.8.

After that there is no column with negative reduced price and
column generation stops with

ΩR = {a1,1 = [0, 0, 1, 1, 0, 0, 0, 1, 1, 1] , (28)
a2,1 = [1, 1, 0, 0, 0, 1, 1, 0, 0, 0] , (29)
a2,2 = [1, 0, 0, 0, 1, 0, 0, 1, 0, 0] , (30)
a1,2 = [0, 1, 1, 0, 1, 1, 0, 0, 1, 0] , (31)
a2,3 = [1, 0, 0, 1, 0, 0, 1, 0, 0, 0]} . (32)

If the solution is integer (i.e. ω1,1 = 0, ω2,1 = 0, ω2,2 =
0, ω1,2 = 1, ω2,3 = 1, yj = 0 ∀j ∈ Ω), a new better solution
was found and the branch-and-price algorithm continues by
Step 8. Otherwise, the algorithm goes to Step 6 where the
branching takes place.
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