
UNIVERSITÀ DI PISA

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT

QoS-aware Deployment of IoT
Applications Through the Fog

Antonio Brogi, Stefano Forti
Department of Computer Science

University of Pisa, Italy

November 30, 2016
LICENSE: Creative Commons: Attribution-Noncommercial - No Derivative Works

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

1

QoS-aware Deployment of IoT
Applications Through the Fog

Antonio Brogi, Stefano Forti
Department of Computer Science

University of Pisa, Italy

Abstract—Fog computing aims at extending the Cloud by
bringing computational power, storage and communication ca-
pabilities to the edge of the network, in support of the IoT.
Segmentation, distribution and adaptive deployment of function-
alities over the continuum from Things to Cloud are challenging
tasks, due to the intrinsic heterogeneity, hierarchical structure
and very large scale infrastructure they will have to exploit.

In this paper we propose a simple, yet general, model to
support the QoS-aware deployment of multi-component IoT
applications over Fog infrastructures. The model describes oper-
ational systemic qualities of the available infrastructure (latency
and bandwidth), interactions among software components and
Things, and business policies. Algorithms to determine eligible
deployment plans for an application over a Fog infrastructure
are presented. A Java tool, FogTorch, based on the proposed
model has been prototyped.

Index Terms—Fog computing, IoT, QoS-aware deployment.

I. INTRODUCTION

CONNECTED devices are changing the way we live and
work. In the next years, the IoT is expected to bring

more and more intelligence around us, being embedded in or
interacting with the objects that we use everyday. By 2020,
CISCO expects 50 billion of connected devices [1] with an
average of almost 7 per person. Self-driving cars, autonomous
domotics systems, energy production plants, agricultural lands,
supermarkets, healthcare, schools exploit Things that are inte-
gral part of the Internet and of our existence without us being
aware of them.

As a consequence, enormous amounts of data – the so
called Big Data [2] – are collected by IoT sensors to be
stored in Cloud data-centres [3]. There, they are subsequently
analysed to determine reactions to events or to extract analytics
or statistics. Whilst data-processing speeds have increased
rapidly, bandwidth to carry data to and from datacentres has
not increased equally fast [4]. On one hand, supporting the
transfer of data from/to billions of IoT devices is becoming
hard to accomplish in the IoT+Cloud scenario due to the vol-
ume and geo-distribution of those devices. On the other hand,
the need to reduce latency, to eliminate mandatory connectivity
requirements, and to support computation or storage closer to
where data is generated 24/7, is evident [5]. The time has come
to extend the Cloud all through to the IoT, so as to virtualise
and exploit a new hierarchy of resources from the core towards
the edge of the network, where data can be used for prompter
decision making and support [6].

Recent research efforts are investigating how to better
exploit capabilities at the edge of the Internet to support the

IoT and its needs. Computational nodes closer to the edge will
act both as filters – reducing the amount of data sent to the
Cloud – and as processing capabilities – producing analytics
– closer to where data is being sensed or used. Fog (or Edge)
computing [5] precisely aims at exploiting a large number of
highly distributed edge nodes (e.g., mobile devices, routers,
micro-datacentres), to selectively support time-sensitive, geo-
distributed or mobile applications, where IoT sensors and
actuators are used in hundreds of different cyber-physical
processing contexts and services. Fog configures as a powerful
enabling complement to the IoT+Cloud scenario, featuring a
new layer of cooperating devices that can run services and
complete specific business missions, independently from and
contiguously with existing Cloud systems.

One of the problems raised by the aforementioned scenario
is how to master the complexity of deploying applications
over the Fog, mainly due to the scale and heterogeneity of
the Fog infrastructure. While some functions are naturally
suited to the Cloud layer (e.g., service backends) and others
are naturally suited to the Fog layer (e.g., industrial control
loops), other functions (e.g., medium term analytics) may be
better dynamically assigned to different nodes depending on
QoS attributes of the infrastructure. Freeing developers from
having to segment the functionalities of their applications
over the continuum from Cloud to IoT is crucial to achieve
scalability and extensibility, hence for the success of the
Fog/Edge paradigm [4]. Concrete questions like:

- “How many and how powerful Fog nodes should I (buy
and) install to adequately deploy my application?”,

- “Should I deploy this component to the Cloud, to the
new Fog-as-a-Service (FaaS) opened in my city, or on
my premises gateway?”, or

- “Is there any component I should deploy on a different
node after this link failure?”

may be hard to answer promptly even for simple applications.
Early efforts to approach these problems have been tuned
manually [7] or have considered only tree-like network topolo-
gies [8].

Fog computing should support adaptive deployment over the
entire available infrastructure, dynamically taking into account
both the application requirements and the current state of
the infrastructure for what concerns hardware and software
capabilities, link bandwidths and latencies and fault events [9].
The availability of a suitable model of Fog infrastructures and
applications is thus crucial to achieve QoS-aware deployments

2

that are expected to fluidly span various federated providers
over the continuum from Cloud to Things [5]. New methods,
techniques and tools are to be devised so as to distribute
application functionalities vertically and horizontally over the
available nodes.

The goal of this work is to propose a general and
extensible model to support QoS-aware deployment
of IoT applications over Fog infrastructures.

The model we propose describes, at a suitably abstract level,
characteristics of interest and operational systemic qualities
of Fog facilities and of the IoT applications to be deployed.
In that, the model can be exploited to determine eligible de-
ployments (if any) of an application over a given, intrinsically
hierarchical, Fog infrastructure. As we will see, tools based on
the proposed model can be fruitfully applied at design time,
at deployment time, and at run time, supporting the whole
application lifecycle.
The rest of this paper is organised as follows. Section II
describes a motivating example of deployment of a simple
IoT application. Section III describes our modelling of Fog
infrastructures, IoT applications and eligible deployments con-
sidering IoT devices and QoS constraints. Section IV describes
the offline multi-constrained algorithms to find eligible deploy-
ments of an application over an infrastructure in a context-
aware manner and introduces our tool FogTorch. Section V
illustrates applicability of the model and of FogTorch over the
example of Section II. Related work is discussed in Section VI,
while some concluding remarks are drawn in Section VII.

II. MOTIVATING EXAMPLE

Consider a simple fire alarm IoT application offered by an
insurance company to its customers. The application is made
out of three components, as illustrated in Figure 1:
γ0. a Fire Manager, monitoring the environment to start

extinguishing a fire as soon as it is detected,
γ1. an Insights Backend, for visualisation of collected

data and manual system tweaking, and
γ2. a Machine Learning Engine, managed by the

insurance company, to be deployed to the Cloud for
historical data storage and fire detection model updates.

The average RAM consumption of all components is shown
on the left of each of them in Figure 1. On the right hand-side,
the list of software capabilities needed by each component is
shown. Components interact through the depicted links that
must meet the associated QoS constraints in terms of latency
and uplink/downlink bandwidth. Also, to promptly manage fire
emergencies, component γ0 must reach out both a fire sensor
and an extinguisher actuator, and this should happen within 10
milliseconds from where γ0 is deployed to where the sensor
and the actuator are installed. Note that Fog or Cloud nodes are
expected to be able to remotely access Things at neighbouring
nodes, through APIs offered by the Fog middleware layer [5].

Figure 2 sketches the Fog infrastructure available to a
company that wants to deploy the fire alarm application
to protect a warehouse at their premises. The company IT
division has installed three Fog nodes (fog_1,fog_2 and

Fig. 1: The multi-component software of the example. Arrows
on the asymmetric links (i.e., uplink and downlink differ)
indicate the upload direction.

Fig. 2: The available Fog infrastructure.

fog_3) and selected two candidate data-centres (cloud_1,
cloud_2) for deployment purposes.

Software capabilities of each node are listed in the box
on the right hand-side and RAM offerings on the left, as in
Figure 1. Node fog_2 is installed in the company warehouse
and directly connects to the fire sensor (firesensor1) and
to the extinguisher (extinguisher1) that γ0 should exploit
at run time. Average latency and bandwidth of the available
communication links are reported over the links themselves.

The problem the IT division should solve is how to de-
ploy the three components in such a way all specified non-
functional constraints (software, hardware, software interac-
tions, and remote access to IoT) can be met. Even for this
simple example, to find an eligible mapping from software
components to Fog or Cloud nodes, IT experts at the company
would have to evaluate up to 50 candidate deployments. This
is because more than one component can be deployed to the
same node (based upon the available resources): γ0 and γ1

could be deployed on any Fog or Cloud node, and γ2 could
go on either cloud_1 or cloud_2. Determining eligible
deployments becomes humanly infeasible as the infrastructure

3

and the number of application components grow, having worst-
case exponential complexity (the considered problem is NP-
hard).

As we will show in the next sections, and illustrate over
this motivating example in Section V, the model we propose
permits a description of infrastructures and of IoT applications
that can be exploited to algorithmically determine deployments
compliant to the desired QoS constraints.

III. MODELLING THE FOG

A Fog infrastructure consists of IoT devices, one or more
layers of Fog computing nodes, and at least one Cloud data-
centre. In sections to follow we will formally define the
concepts of QoS profiles, Fog infrastructures, IoT applications
and eligible deployments.

A. QoS Profiles

Among the possible QoS metrics, we consider only latency
and bandwidth since, whilst loss and jitter can be remedied
through retransmission and buffering respectively, nothing can
be done to tame the former two at run time. Since Fog
computing will exploit wireless access to the Internet and will
bring computation at or nearer the end user, it is realistic to
model asymmetric link bandwidth (viz., uplink 6= downlink).

Definition 1. The set Q of QoS profiles is a set of pairs 〈`, b〉
where ` and b denote respectively the average latency and
bandwidth featured by (or required for) a communication link.
The bandwidth is a pair (b↓, b↑), distinguishing the download
and upload bandwidth of a link. Unknown/unspecified values
of latency or bandwidth will be denoted by ⊥.

B. Fog Infrastructures

A Fog infrastructure includes IoT devices, Fog nodes and
Cloud data-centres.

Definition 2. A Fog infrastructure is a 4-tuple 〈T, F,C, L〉
where:
• T is a set of Things, each denoted by a tuple t = 〈i, π, τ〉

where i is the identifier of t, π denotes its location and
τ its type,

• F is a set of Fog nodes, each denoted by a tuple f =
〈i, π,H,Σ,Θ〉 where i is the identifier of f , π denotes
its location, H and Σ are the hardware and software
capabilities it provides, and Θ ⊆ T contains all Things
directly reachable from f ,

• C is a set of available Cloud data-centres, each denoted
by a tuple c = 〈i, π,Σ〉 where i is the identifier of c,
π denotes its location and Σ the software capabilities it
provides,

• L ⊆ {〈n, n′, q〉|(n, n′) ∈ (F × F) ∪ (F × C) ∪ (C ×
F)∪ (C ×C)∧ q ∈ Q} is a set of available Fog-to-Fog,
Fog-to-Cloud and Cloud-to-Cloud communication links1,
each associated to its QoS profile.

1We assume that if 〈n, n′, q〉 ∈ L then 〈n, n′, q′〉 /∈ L with q 6= q′. We
also assume that if 〈n, n′, 〈`, b↓, b↑〉〉 ∈ L and 〈n′, n, 〈`′, b′↓, b

′
↑〉〉 ∈ L then

` = `′, b↓ = b′↑ and b↑ = b′↓.

Some observations are now due to justify the choices made
in Definition 2. Firstly, all the elements included in a Fog
infrastructure are characterised by their current geographical
location2, assuming that is known at some level of detail. On
one hand we assume that sensors/actuators and Fog nodes are
provided with geo-spatial location technologies such as GPS.
On the other hand Cloud providers usually disclose to cus-
tomers the geographical area of their data-centres. Identifiers
for the modelled entities help managing the case in which
more than one entity resides in the same location.

Secondly, we abstract from the type of connection tech-
nologies employed both at the Wireless Sensor Network
(Bluetooth, Zigbee, RFID, etc.) and at the Access Network
(xDSL, FttX, 5G, etc.) levels since our focus is on the QoS
a given communication link between two endpoints can offer.
As a consequence, all available links are modelled uniformly
in Θ and L. Things in Θ directly connected to a Fog node
– either via wired or wireless connection – are assumed to
have negligible latency and infinite bandwidth. Since security
issues are considered orthogonal to (and outside the scope
of) this work, we assume that Fog and Cloud nodes can
reach the sensors and actuators of all their neighbour nodes
through some middleware APIs, experiencing the QoS of the
associated links in L.

Thirdly, the model does not deliberatly bind to any particular
standard for hardware and software capabilities specification.
Realistically, hardware specification will include both con-
sumable (e.g., RAM, storage) and non-consumable resources
(e.g., architecture, CPU cores), whereas software capabilities
may concern the available OSs (Linux, Windows, etc.) and
the installed platforms or frameworks (.NET, JDK, Hadoop
MapReduce, etc.). The choice of how to specify hardware
and software capabilities – e.g., with TOSCA YAML [10] like
in the SeaClouds project [11], or with other formalisms – is
however not bound in the model.

Finally, Cloud computing is modelled according to the
hypothesis that it can offer a virtually unlimited amount of
hardware capabilities to its customers. This simplification
permits the description of any among SaaS, PaaS and Iaas
providers, and eliminates the need to describe any particular
commercial offering. Overall, when compared to Fog nodes
capabilities, it is true that a Cloud customer can always
add processing power and storage by purchasing extra VM
instances, as if they were unbounded.

C. Applications
Modern large scale applications are not monolithic any-
more [12]. Therefore, an application running over a Fog com-
puting infrastructure can be thought as a set of independently
deployable components that are working together and must
meet some QoS constraints.

Definition 3. An application is a triple 〈Γ,Λ,Θ〉 where:
• Γ is a set of software components, each denoted by a

tuple γ = 〈i,H,Σ〉 where i is the identifier of γ, and H
and Σ the hardware and software requirements it has.

2For instance, if GPS coordinates are used to model the location of Things,
Fog nodes and Cloud datacentres, then π = 〈πlat, πlon〉.

4

• Λ ⊆ {〈γ, γ′, q〉|(γ, γ′) ∈ (Γ × Γ) ∧ q ∈ Q} denotes
the existing interactions among components3 in Γ, each
expressing the desired QoS profile for the connection that
will support it.

• Θ is a set of Things requests each denoted by 〈γ, τ, q〉,
where γ ∈ Γ is a software component and τ denotes a
type of Thing the component needs to reach with QoS
profile q so to work properly.

The modelling of applications comprises QoS profiles for the
interactions between components to express the desired op-
erational systemic qualities, together with hardware, software
and Things requirements for a component to work properly4.

We now formalise the notion of compatibility of a software
component with a node of a Fog infrastructure, be it a
Fog node or a Cloud data-centre. Fog nodes must offer the
needed software and non-consumable hardware capabilities,
and enough consumable hardware to support at least that com-
ponent. Compatibility of Cloud data-centres only requires the
needed software capabilities to be available for deployment.

Definition 4. Let A = 〈Γ,Λ,Θ〉 be an application and I =
〈T, F,C, L〉 a Fog infrastructure. A component 〈i,H,Σ〉 ∈ Γ
is compatible with a node n ∈ F ∪ C if and only if:
• if n = 〈j, π,H,Σ,Θ〉 ∈ F , then Σ v Σ and H � H, or
• if n = 〈j, π,Σ〉 ∈ C, then Σ v Σ.

The relations v and � read as is satisfied by. Σ v Σ when
software offerings Σ at a node fulfil all software requirements
Σ of a component. H � H when non-consumable and
consumable hardware resources H at a node are enough to
support a given component requirements H.

D. Deployments

We now formalise the notion of deployment of an application
over an infrastructure. Since an IoT application deployment is
much related to the Things it should manage, the deployment
designer, given an application A = 〈Γ,Λ,Θ〉, should be able
to define the Things the application will rely upon, once de-
ployed, i.e. she should be allowed to specify bindings between
Things requests in Θ and actual Things in T . This requires
that one exactly controls the Things that the application will
exploit, what is essential for the whole deployment to work,
sensing from and actuating upon the correct Things.

Definition 5. Let A = 〈Γ,Λ,Θ〉 be an application and I =
〈T, F,C, L〉 a Fog infrastructure. A Things binding ϑ : Θ→ T
for A over I is a mapping from each Thing request onto a
specific Thing.

Additionally, the deployment of multi-scale software systems
may depend on legal or commercial business policies.

Definition 6. Let A = 〈Γ,Λ,Θ〉 be an application and I =
〈T, F,C, L〉 a Fog infrastructure. A deployment policy δ :

3As before, we assume that if 〈γ, γ′, q〉 ∈ Λ then 〈γ, γ′, q′〉 /∈ Λ with q 6=
q′. We also assume that if 〈γ, γ′, 〈`, b↓, b↑〉〉 ∈ Λ and 〈γ′, γ, 〈`′, b′↓, b

′
↑〉〉 ∈

Λ then ` = `′, b↓ = b′↑ and b↑ = b′↓.
4For the sake of simplicity, we assume that one component can only require

one Thing of each type. Such constraint can be relaxed by simply defining Θ
as a multiset.

Γ → 2F∪C for A over I is mapping from each5 software
component of A onto the set of nodes where its deployment is
permitted (or has been already performed).

Function δ specifies the nodes where a certain component
can be (or is already) deployed, according to current business
policies. It implements a whitelisting strategy that is safer
to avoid exploiting undesired computational capabilities for
deployment purposes.

The following definition sets all constraints that an eligible
deployment must meet. Condition (1) guarantees that the
business policies of A are met and checks hardware and
software compatibility of each component with the node onto
which it will be deployed, as per Definition 4. Condition
(2) checks those hardware capabilities that are consumed
when installing more than one component onto the same Fog
node (e.g. RAM, storage) so that components deployed on a
single node cannot exceed its hardware capacity. Condition (3)
ensures that Thing requests of each component are satisfied.
Note that a component γ ∈ Γ deployed on n ∈ F∪C can reach
Things directly (when n directly connects to them) or remotely
access them (when n reaches a Fog node m that directly
connects to them). Both situations are taken into account by
our model. Condition (4) ensures that latency offered by a
link is not greater th required one, and bandwidth consumed
by components interactions and by remote Things access over
the same link does not exceed the link capacity. This concerns
interactions in Λ as well as remote Things access.

Definition 7. Let A = 〈Γ,Λ,Θ〉 be an application, I =
〈T, F,C, L〉 a Fog infrastructure, δ a deployment policy and
ϑ a Things binding for A over I . Then, ∆ : Γ→ F ∪C is an
eligible deployment for A on I that complies with δ and ϑ if
and only if:

1) for each γ ∈ Γ, ∆(γ) ∈ δ(γ) and γ is compatible with
∆(γ),

2) let Γf = {γ ∈ Γ | ∆(γ) = f} be the set of
components of A mapped onto f ∈ F . Then6, for each
f = 〈i, π,H,Σ,Θ〉 ∈ F :

∑
〈j,H,Σ〉∈Γf

H � H,

3) for each Thing request 〈γ, τ, q〉 ∈ Θ such that
ϑ(〈γ, τ, q〉) = t, there exists f = 〈i, π,H,Σ,Θ〉 ∈ F
such that t ∈ Θ and ∆(γ) = f or 〈∆(γ), f, q′〉 ∈ L.

4) let Q(m,n) be7 the multi-set of QoS profiles associ-
ated with component-component and component-Thing
interactions that are mapped on the communication link
between m and n. Then8, for each 〈m,n, 〈`, b〉〉 ∈ L:
〈`, b〉 ∈ Q(m,n) =⇒ ` ≤ ` ∧ b >

∑
〈`,b〉∈Q(m,n)

b .

5If δ(γ) is not specified we assume δ(γ) = F ∪ C.
6Abusing notation,

∑
is used to sum the consumable hardware require-

ments, and � to compare them with available offerings.
7Formally: Q(m,n) =

⦃〈`, b〉 | 〈γ, γ′, 〈`, b〉〉 ∈ Λ ∧ ∆(γ) = m ∧ ∆(γ′) = n⦄ ∪
⦃〈`, b〉 | 〈γ, τ, 〈`, b〉〉 ∈ Θ ∧ ∆(γ) = m ∧ ϑ(〈γ, τ, 〈`, b〉〉) = t

∧ n = 〈i, π,H,Σ,Θ〉 ∈ F ∧ t ∈ Θ⦄.
8Abusing notation,

∑
and 6 are used to sum and compare uplink and

downlink bandwidths.

5

1: procedure FINDDEPLOYMENT(A, I , δ, ϑ)
2: K ← PREPROCESS(A, I , 〈δ, ϑ〉)
3: if K = failure then
4: return failure
5: end if
6: return BACKTRACKSEARCH(∅, A, I , K, ϑ)
7: end procedure

Fig. 3: Pseudocode of the proposed solution. Given an appli-
cation A, a Fog infrastructure I , a deployment policy δ, and a
Things binding ϑ, it returns an eligible deployment ∆ for A
over I that complies with δ and ϑ, or a failure.

IV. FINDING ELIGIBLE DEPLOYMENTS

Given an application A = 〈Γ,Λ,Θ〉 and a Fog infrastructure
I = 〈T, F,C, L〉, as defined before, finding one or more
eligible deployments ∆ : Γ→ F ∪ C is a decidable problem
that requires a worst-case search among O(N |Γ|) candidates,
where N = |F ∪C|. Our problem can be proved NP-hard by
reduction from the Subgraph Isomorphism problem.

A. Algorithms

Algorithms to determine eligible deployments over Fog in-
frastructures should manage latencies, uplink and downlink
bandwidths, constraints over the Things that a component
uses, business policies, context awareness, resource allocation,
the possibility to deploy more than one component on a
single computational node and more than one interaction
onto a single communication link. The algorithms hereby
proposed address all these aspects, adaptively selecting where
a component is to be deployed within the continuum from
Cloud to Things. In what follows we will present:
• a preprocessing procedure that a priori reduces the search

space for eligible deployments, and
• a backtracking procedure and heuristics, to determine a

single eligible deployment.
Figure 3 shows how the preprocessing and the bactracking
search phase combine in order to find an eligible deployment.
Our approach is similar to the SIP solution in [13]. Overall,
our approach requires polynomial space in the dimension of
the input and worst-case O(N |Γ|) time, with N = |F ∪ C|.

B. Preprocessing

The preprocessing procedure scans the input to reduce the
search space by determining, for each software component
γ ∈ Γ, the set Kγ ⊆ (F ∪C)∩ δ(γ) of compatible Fog nodes
and Cloud data-centres, i.e. nodes that satisfy the conditions
of Definition 4 on software and hardware requirements and
comply with δ(γ) (condition (1) of Definition 7). Additionally,
nodes in Kγ satisfy condition (3) of Definition 7 by fulfilling
all Things requests associated to component γ in Θ. The
procedure returns a key-value map K, indexed by component
identifiers, such that K[γ] = Kγ , or a failure when even a
single component has no candidate nodes for deployment.
The latter case makes the whole search for a solution fail
immediately, without further searching.
The preprocessing procedure completes in Θ(N |Γ|) that, as-
suming |Γ| � N , becomes O(N) with N = |F ∪ C|.

1: procedure BACKTRACKSEARCH(∆, A, I , K, ϑ)
2: if ISCOMPLETE(∆) then
3: return ∆
4: end if
5: γ ← SELECTUNDEPLOYEDCOMPONENT(∆, A);
6: for all n ∈ SELECTDEPLOYMENTNODE(K[γ], A) do
7: if ISELIGIBLE(∆, γ, n, A, I , ϑ) then
8: DEPLOY(∆, γ, n, A, I , ϑ)
9: result ← BACKTRACKSEARCH(∆, A, I , K, ϑ)

10: if result 6= failure then
11: return result
12: end if
13: UNDEPLOY(∆, γ, n, I , A, ϑ)
14: end if
15: end for
16: return failure
17: end procedure
18:
19: procedure ISELIGIBLE(∆, γ, n, I , A, ϑ)
20: return CHECKHARDWARE(γ, n)
21: ∧ CHECKLINKS(∆, γ, n, I , A, ϑ)
22: end procedure

Fig. 4: Pseudocode for the backtracking search. It returns an
eligible deployment ∆ for A over I , or a failure.

C. Search

Bactracking works on the output of preprocessing, as listed
in Figure 4. The algorithm computes nodes and links map-
ping at the same time. At each recursive call, BACK-
TRACKSEARCH(∆, A, I , K, ϑ) firstly checks whether
a deployment has been found (ISCOMPLETE(∆)). If not,
it selects a component γ among the undeployed ones
(SELECTUNDEPLOYEDCOMPONENT(∆, A)) and it attempts
deployment on compatible nodes in K[γ] one by one
(SELECTDEPLOYMENTNODE(K[γ], A)). The ISELIGIBLE(∆,
γ, n, I , A, ϑ) procedure guarantees that if a deployment for all
components is found then it is also an eligible one. The method
checks if the action of deploying a certain software component
γ on a given node n ∈ K[γ] is applicable to the current
partial deployment state. Particularly, for the considered partial
deployment:

1) CHECKHARDWARE(γ, n) returns true if and only if con-
sumable hardware at each Fog node is not exceeded by
requests mapped onto it (condition (2) of Definition 7),

2) CHECKLINKS(∆, γ, n, I , A, ϑ) returns true if and only
if latency requirements are met and bandwidth capacity
of each link is not exceeded by interactions mapped onto
it (condition (4) of Definition 7).

Whenever one between (1) and (2) is not satisfied, the current
branch of the search is pruned since ISELIGIBLE(∆, γ, n, A,
I , ϑ) returns false. Otherwise, procedure DEPLOY(∆, γ, n, A,
I , ϑ) is responsible for adding the association between γ and
n to the partial deployment ∆ and to update the current state
of I by decrementing the consumable hardware available at
n of the quantity required by γ and the bandwidth of the
link that will support the interactions between γ and any
deployed component γ′ (also for remote Things). Function
UNDEPLOY(∆, γ, n, A, I , ϑ) performs the dual operation of
DEPLOY(∆, γ, n, A, I , ϑ) in case of backtracking.

6

D. Greedy Behaviour

The heuristic adopted in SELECTUNDEPLOYEDCOMPO-
NENT(∆, A) is fail-first and always chooses the undeployed
component γ that has fewer compatible nodes in K[γ]. It
automatically selects those components that have more re-
quirements in terms of Things or hardware and ensures they
are deployed on the right nodes. Conversely, the heuristic used
in SELECTDEPLOYMENTNODE(K[γ], A) is fail-last and picks
candidate nodes, sorting them by: (1) decreasing number of
Things required by γ that are directly connected to each node,
(2) decreasing hardware capabilities that are offered at each
node (e.g., orderly evaluating the available RAM, the storage
capability and the number of CPU cores), considering Cloud
data-centres as providing infinite hardware.
These heuristics guarantee that Things requests are satisfied
exploiting the best node possible in terms of spatial proximity
and they always try to deploy a component on the most
powerful node that can support it. Our approach adheres to
the assumption that more powerful nodes are usually also
more reliable and require less “work” from final users to keep
it operational. A good Cloud provider should be committed
to transparently offer the best performance possible to its
customers in terms of availability, a Fog node installed at the
customers premises is more likely to be subject to breakdowns,
a mobile phone may run out of battery whilst running some
tasks.

E. FogTorch Prototype

We prototyped a proof-of-concept Java tool, named FogTorch9,
that implements the proposed model and algorithms with the
purpose of demonstrating their technical feasibility. FogTorch
inputs the specification of an infrastructure and of an applica-
tion to be deployed, along with the related Things binding and
deployment policy, and it outputs eligible deployment plans as
per Definition 7 of Section III. The tool has been applied over
the motivating example of Section II as we will discuss next.

V. MOTIVATING EXAMPLE (CONTINUED)

Consider again the example introduced in Section II.
According to our model, a software component like
the Fire Manager of Figure 1 is represented by a
tuple of the kind 〈γ0, RAM:4GB, {Linux,Python}〉,
the desired QoS of its interaction with the ML

Engine component can be represented by the tuple
〈γ0, γ2, 〈200 ms,(2Mbps,1Mbps)〉〉, while its Thing requests
(specifying a maximum latency of 10 msecs between
the component and the IoT devices) are represented as:
〈γ0,fire, 〈10 ms,⊥〉〉 and 〈γ0,extinguisher, 〈10 ms,⊥〉〉.
A Fog node like fog_1 can be represented by the tuple
〈fog_1, π0, RAM:2GB, {C++,Linux,Python}, {extingui-
sher0,firesensor0}〉, a Cloud datacentre
like cloud_1 can be represented by the tuple
〈cloud_1,Netherlands, {Java,.NET,Ruby,MySQL}〉,and
the average QoS of the communication link between
them by 〈fog_1,cloud_1, 〈130 ms,(8Mbps,6Mbps)〉〉.

9Available at https://github.com/di-unipi-socc/FogTorch.

Fig. 5: FogTorch output for the example of Section II.

The policy that component γ2 should be deployed
only on Cloud datacentres can be expressed by setting
δ(γ2) = {cloud_1,cloud_2}. The bindings of Fire
Manager Things requests to the actual IoT devices
fire1 and extinguisher1 at the warehouse is
expressed as ϑ(〈γ0,fire, 〈10 ms,⊥〉〉) = fire1 and
ϑ(〈γ0,extinguisher, 〈10 ms,⊥〉〉) = extinguisher1.
FogTorch, given the input of the example returns the six
eligible deployment plans (out of 50 possible) shown in
Figure 5, ordered according to the heuristics mentioned in
Section IV, the first of them corresponding to ∆(γ0) = fog_2,
∆(γ1) = fog_3, and ∆(γ2) = cloud_1. To summarise, Fog-
Torch simplifies the IT division task of finding a deployment
plan that meets all specified non-functional constraints of the
given application.

VI. RELATED WORK

To the best of our knowledge, only three approaches have
been proposed so far to specifically model Fog infrastructures
and applications. [14] aims at evaluating service latency and
energy consumption of the new Fog paradigm applied to the
IoT, as compared to traditional Cloud scenaria. The model
of [14], however, deals only with the behaviour of software
already deployed over Fog infrastructures. [7] follows a more
pragmatic approach, by proposing a C++ programming frame-
work for the Fog that provides APIs for resource discovery
and QoS-aware incremental deployment via containerisation.
With respect to our work, [7] takes into account Fog nodes
workload but it does not consider bandwidth, Things requests,
and business policies as leading parameters for deployment.
Also, programmers have to manually segment functionalities
of their applications, by a priori determining the number of
layers needed in the Fog hierarchy. Finally, [8] prototyped
a simulator to evaluate resource management and scheduling
policies applicable to Fog environments with respect to their
impact on latency, energy consumption and operational cost.
[8] differs from our approach mainly since it only models
tree-like infrastructure topologies (not accounting for the very
possibility of sharing IoT resources among Fog nodes), and it
only considers applications whose topology can be modelled
by a DAG. Furthermore, it does not consider QoS requirements
among the parameters defining the set of eligible deployments.

The problem of deploying multi-component applications has
been thoroughly studied in the Cloud scenario. Projects like
SeaClouds [11], Aeolus [15] or Cloud4SOA [16], for instance,
have proposed optimised planning solutions to deploy software
systems to different (IaaS or PaaS) Clouds. [17] proposed

7

to use OASIS TOSCA [18] to model IoT applications in
IoT+Cloud scenarios. Recently, [19] have linked services and
networks QoS by proposing a QoS- and connection-aware
Cloud service composition approach to satisfy end-to-end
QoS requirements in the Cloud. The emerging Fog paradigm,
however, introduces new problems, mainly due to its need for
connection-awareness and interactions with the IoT, that were
not considered by [19].

In the context of IoT deployments, formal modelling ap-
proaches have been recently proposed to achieve connectivity
and coverage optimisation [20], [21], improved resource ex-
ploitation of Wireless Sensors Networks [22], and to estimate
reliability and cost of service compositions [23]. Our mod-
elling effort aims at complementing that work, by describing
the interactions among software components and IoT devices
at a higher level of abstraction to achieve segmentation of ap-
plications through the Fog—that, to the best of our knowledge,
was not addressed by previous work.

The problem of finding an eligible deployment of com-
ponents over a Fog infrastructure resembles the Subgraph
Isomorphism problem although it also includes the possibility
of mapping more than one component onto the very same
node. Solutions to Subgraph Isomorphism have been proposed
in the context of Virtual Network embedding [13], [24], [25]
and deployment over WAN [26], by performing node and
link mapping in a single phase, as we do. Recently [27]
has modeled the problem of component deployment through
Mixed Integer Linear programming, trying to optimise some
metrics. This requires the availability of a cost model, which
our model does not feature yet.

VII. CONCLUDING REMARKS

The availability of suitable models of Fog infrastructures and
applications is crucial to succeed in automating QoS-aware
deployments over the continuum from Cloud to Things. Un-
fortunately, the majority of state-of-the-art tools for automated
deployment of distributed software do not deal with non-
functional properties to achieve eligible deployment plans [12].

As we anticipated in Section I, the model that we have
proposed can be exploited:
• At design time, to run what-if analyses to perform capac-

ity planning by identifying beforehand possible critical
deficiencies in the Edge network capabilities, and to
assess resiliency and robustness of the infrastructure to
churn and failures.

• At deployment time, to automatically determine —with
tools like FogTorch—where each application component
can be deployed by satisfying the specified QoS con-
straints,

• At run time, by designing new tools to drive the monitor-
ing of deployed applications and to trigger, when needed,
reconfiguration processes.

The model and algorithms we have proposed can represent
a first step to tackle the problem of finding a representation
of Fog systems that enables cooperation among different
providers. Indeed, our model takes into account various rel-
evant aspects of the Fog in order to determine QoS-aware
deployments of IoT applications:

1) Average latency and (consumable) bandwidth of com-
munication links.

Our model abstracts from the communication tech-
nologies employed at all layers of the architec-
ture, and focuses only on their QoS. Depending
on the scenario and on the state of the network,
we envision that Things control-loops, medium-
term operational support, and long-term business
intelligence tasks of an application may spread all
through the Cloud-Fog-IoT system or collapse into
a single layer adaptively. Our model includes inter-
Cloud and inter-Fog communication, to account for
interoperability and federation at all layers [5].

2) Application requirements and infrastructure capabilities,
in terms of hardware and software.

Our model assumes that a Fog node can be
any computational capability along the continuum
from Things to Cloud (e.g., users mobile devices,
network gateways, micro datacentres, etc.). The
model does not bind to any particular solution for
what concerns the specification of software/hard-
ware offerings, and it can exploit existing domain-
specific languages from the context of Cloud com-
puting (like TOSCA YAML [18] or JSON-based
CloudML [28]). The model permits to describe
the Fog infrastructure, regardless of whether the
latter will exploit only ISP/telco network apparatus
or a wider gamut of devices, whilst taming its
heterogeneous nature and abstracting from the type
of service offered by the involved Cloud providers
(SaaS, IaaS, PaaS).

3) IoT devices and business policies of application compo-
nents.

Fog applications will undoubtedly exploit the IoT
to manage cyber-physical processes. Some IoT de-
vices will be embedded in Fog nodes (e.g., smart
vehicles), some will be fixed (e.g., smart traffic
lights) and some other will move together with
people carrying them (e.g., life-saving devices).
Our model can capture all those cases and enable
Fog nodes to access neighbouring IoT devices with
the related QoS profile, so to account for federation
among providers also for IoT exploitation. As it
happens in modern enterprise IT, deployments of
applications are decided also on the basis of legal
or commercial policies, by specifying on which
nodes a component is allowed to run (e.g., a start-
up sponsored by a specific Cloud provider may
enforce the free use of the data-centres owned by
its sponsor).

We conclude by mentioning some directions for future work
that we intend to follow:

• Opportunistic exploitation of IoT devices. Fog applica-
tions will opportunistically work on a certain number
of devices within a certain area (e.g., smart cars control
systems). We intend to extend the model to take that into

8

account.
• QoS profiles. As our immediate future work, we intend to

employ probability distributions to represent QoS profiles
and to exploit Monte Carlo simulation (as in [29]) to
predict the reliability of deployment plans. Other QoS
metrics which can be considered include reliability of
links and nodes, power consumption, security, and mon-
etary costs.

• Deployment scheduling. The algorithms we presented
adaptively select where to deploy each component by
following a plan first, schedule later approach which
simplistically considers the deployment of components
as commutative. Future work in this direction can be de-
voted to determine appropriate schedulings of deployment
operations.

• Validation – Future work will obviously have to include
experimentations on real case studies for the Fog (cur-
rently under development) in order to compare the au-
tomatedly computed deployments with those determined
by field experts in enterprise IT.

REFERENCES

[1] CISCO, “Fog computing and the internet of things: Extend the cloud
to where the things are,” https://www.cisco.com/c/dam/en us/solutions/
trends/iot/docs/computing-overview.pdf, 2015.

[2] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and
A. H. Byers, “Big data: The next frontier for innovation, competition,
and productivity. 2011,” vol. 5, no. 33, p. 222, 2014.

[3] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The rise of big data on cloud computing: Review and
open research issues,” Information Systems, vol. 47, pp. 98–115, 2015.

[4] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[5] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A
platform for internet of things and analytics,” in Big Data and Internet
of Things: A Roadmap for Smart Environments, 2014, pp. 169–186.

[6] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet
of things realize its potential,” Computer, vol. 49, no. 8, pp. 112–116,
2016.

[7] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwälder,
“Incremental deployment and migration of geo-distributed situation
awareness applications in the fog,” in DEBS 2016, 2016, pp. 258–269.

[8] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in internet of things, edge and fog computing environments,” arXiv
preprint arXiv:1606.02007, 2016.

[9] OpenFog, “An OpenFog Architecture Overview,” https:
//www.openfogconsortium.org/page-section/white-papers/, 2015.

[10] “TOSCA Simple Profile in YAML Version 1.0,” http://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-
Profile-YAML-v1.0.html, accessed: 25/08/2016.

[11] A. Brogi, A. Ibrahim, J. Soldani, J. Carrasco, J. Cubo, E. Pimentel, and
F. D’Andria, “SeaClouds: a european project on seamless management
of multi-cloud applications,” ACM SIGSOFT SEN, vol. 39, no. 1, pp.
1–4, 2014.

[12] J.-P. Arcangeli, R. Boujbel, and S. Leriche, “Automatic deployment of
distributed software systems: Definitions and state of the art,” Journal
of Systems and Software, vol. 103, pp. 198–218, 2015.

[13] J. Lischka and H. Karl, “A virtual network mapping algorithm based
on subgraph isomorphism detection,” in Proc. 1st ACM workshop on
virtualized infrastructure systems and architectures, 2009, pp. 81–88.

[14] S. Sarkar and S. Misra, “Theoretical modelling of fog computing: a
green computing paradigm to support IoT applications,” IET Networks,
vol. 5, no. 2, pp. 23–29, 2016.

[15] R. Di Cosmo, A. Eiche, J. Mauro, G. Zavattaro, S. Zacchiroli, and
J. Zwolakowski, “Automatic deployment of software components in the
cloud with the aeolus blender,” in ICSOC 2015, 2015, pp. 397–411.

[16] A. Corradi, L. Foschini, A. Pernafini, F. Bosi, V. Laudizio, and M. Sera-
lessandri, “Cloud paas brokering in action: The cloud4soa management
infrastructure,” in VTC 2015, 2015, pp. 1–7.

[17] F. Li, M. Vögler, M. Claeßens, and S. Dustdar, “Towards automated
iot application deployment by a cloud-based approach,” in SOCA 2013,
2013, pp. 61–68.

[18] A. Brogi, J. Soldani, and P. Wang, “Modelling and analysing cloud
application management,” in ESOCC 2014, 2014, pp. 171–186.

[19] S. Wang, A. Zhou, F. Yang, and R. N. Chang, “Towards network-
aware service composition in the cloud,” IEEE Transactions on Cloud
Computing, 2016.

[20] J. Yu, Y. Chen, L. Ma, B. Huang, and X. Cheng, “On connected target
k-coverage in heterogeneous wireless sensor networks,” Sensors, vol. 16,
no. 1, p. 104, 2016.

[21] A. B. Altamimi and R. A. Ramadan, “Towards internet of things
modeling: a gateway approach,” Complex Adaptive Systems Modeling,
vol. 4, no. 1, p. 25, 2016.

[22] H. Deng, J. Yu, D. Yu, G. Li, and B. Huang, “Heuristic algorithms
for one-slot link scheduling in wireless sensor networks under sinr,”
International Journal of Distributed Sensor Networks, vol. 11, 2015.

[23] L. Li, Z. Jin, G. Li, L. Zheng, and Q. Wei, “Modeling and analyzing
the reliability and cost of service composition in the iot: A probabilistic
approach,” in ICWS 2012, 2012, pp. 584–591.

[24] Y. Zhu and M. H. Ammar, “Algorithms for assigning substrate network
resources to virtual network components.” in INFOCOM, vol. 12, 2006.

[25] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM TON, vol. 20, no. 1, pp. 206–219, 2012.

[26] T. Kichkaylo, A. Ivan, and V. Karamcheti, “Constrained component
deployment in wide-area networks using AI planning techniques,” in
IPDPS 2003, 2003.

[27] A. Nazari, D. Thiruvady, A. Aleti, and I. Moser, “A mixed integer
linear programming model for reliability optimisation in the component
deployment problem,” Journal of the Operational Research Society [P],
no. In Press, pp. 1–11, 2016.

[28] A. Bergmayr, A. Rossini, N. Ferry, G. Horn, L. Orue-Echevarria,
A. Solberg, and M. Wimmer, “The evolution of CloudML and its
manifestations,” in Proc. of the 3rd International Workshop on Model-
Driven Engineering on and for the Cloud (CloudMDE), 2015, pp. 1–6.

[29] L. Bartoloni, A. Brogi, and A. Ibrahim, “Probabilistic prediction of the
qos of service orchestrations: a truly compositional approach,” in ICSOC
2014, 2014, pp. 378–385.

Antonio Brogi is full professor at the Department
of Computer Science, University of Pisa (Italy) since
2004. He holds a Ph.D. in Computer Science (1993)
from the University of Pisa. His research inter-
ests include service-oriented, cloud-based and fog
computing, coordination and adaptation of software
elements, and formal methods. He has published
the results of his research in over 150 papers in
international journals and conferences.

Stefano Forti received the M.Sc.(Hons.) degree
in computer science and networking (2016) jointly
from the University of Pisa (Italy) and the Sant’Anna
School of Advanced Studies, Pisa. He is currently
Ph.D. student at the Department of Computer Sci-
ence of the University of Pisa. His research interests
include fog, cloud and service-oriented computing,
formal methods and algorithms.

