
15 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Comparing reuse practices in two large software-producing companies / Bauer, Veronika; Vetro', Antonio. - In: THE
JOURNAL OF SYSTEMS AND SOFTWARE. - ISSN 0164-1212. - STAMPA. - 117:(2016), pp. 545-582.
[10.1016/j.jss.2016.03.067]

Original

Comparing reuse practices in two large software-producing companies

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.jss.2016.03.067

Terms of use:

Publisher copyright

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.jss.2016.03.067

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2643660 since: 2016-06-09T17:31:15Z

Elsevier

Comparing reuse practices in two large
software-producing companies

Veronika Bauera,∗, Antonio Vetròa,b

aInstitut für Informatik, Technische Universität München, Germany
bCentro Nexa su Internet & Società, Politecnico di Torino, Italy

Abstract

Context: Reuse can improve productivity and maintainability in software
development. Research has proposed a wide range of methods and techniques.
Are these successfully adopted in practice?

Objective: We propose a preliminary answer by integrating two in-depth
empirical studies on software reuse at two large software-producing companies.

Method: We compare and interpret the study results with a focus on reuse
practices, effects, and context.

Results: Both companies perform pragmatic reuse of code produced within
the company, not leveraging other available artefacts. Reusable entities are
retrieved from a central repository, if present. Otherwise, direct communication
with trusted colleagues is crucial for access.

Reuse processes remain implicit and reflect the development style. In a
homogeneous infrastructure-supported context, participants strongly agreed on
higher development pace and less maintenance effort as reuse benefits. In a
heterogeneous context with fragmented infrastructure, these benefits did not
materialize.

Neither case reports statistically significant evidence of negative side effects
of reuse nor inhibitors. In both cases, a lack of reuse led to duplicate implemen-
tations.

Conclusion: Technological advances have improved the way reuse concepts
can be applied in practice. Homogeneity in development process and tool sup-
port seem necessary preconditions. Developing and adopting adequate reuse
strategies in heterogeneous contexts remains challenging.

Keywords: Software reuse, survey research, technology transfer, empirical,
software engineering

∗Corresponding author
Email address: bauerv@in.tum.de (Veronika Bauer)

Preprint submitted to Elsevier June 7, 2016

1. Introduction

Software reuse, “the use of existing engineering knowledge and artefacts to
build new software systems” [23], is considered a key element to reach the goal
of delivering high quality software in time and on budget over the entire life
cycle of software development, maintenance, and evolution [47, 51, 66, 85].

Starting from the late 1960’ies [58], decades of research efforts have been
spent on analyses, methods, tools, and empirical investigations targeting to
support practitioners in executing reuse tasks [45, 63, 24].

Many conceptual approaches have been proposed, addressing aspects ranging
from the creation and organization of reusable artefacts, e.g. Object-Oriented
techniques and programming languages, Components-off-the-shelf (COTS) ap-
proaches [7], reuse repositories [43, 35], or software product lines (SPLs) [6],
to organizational support and templates e.g. the “experience factory” [4], the
“reuse curator model” [22], or the REBOOT approach [43, 82].

Visions were that reuse would soon be effected on an abstract level by
means of techniques such as automated code generation or Very High Level
Languages [47]. In addition, planned and strategic reuse programs were advo-
cated as most beneficial, once the high initial efforts were completed. Whilst
the reuse community had addressed many technical aspects of reuse (in the
form of domain engineering frameworks, programming language concepts, reuse
libraries, architectures, and generative methods), research on sustaining reuse
initiatives and organizational aspects were still to be tackled [24].

However, due to technological limitations, many of these proposals could at
the time not be transferred into practice in a feasible way. For instance, the
reuse repositories at the core of several approaches proved to be tedious to set
up and maintain, involving significant manual intervention [39].

“Component-based software reuse faces an inherent dilemma: in order for
the approach to be useful, the repository must contain enough components to
support developers, but when many examples are available, finding and choosing
appropriate ones becomes troublesome.” [35] This led to a significant research
effort in classification and retrieval techniques, that, however, could not over-
come the challenge of providing practitioners with an effective way to build,
populate, and maintain a dedicated reuse repository that could be adapted to
meet changing organizational needs [35].

In addition, organizational challenges soon became apparent: Early-on, re-
searchers vocalize one of the most challenging aspect of planned reuse in practice,
namely the separation of those who are investing into reuse and those who profit
from this investment, which requires a global focus of management transcending
the scope of single projects: “The traditional unit of analysis and control for
software managers is the software project, and subsequently the resulting appli-
cation system. [..] Yet there is a range of insights that can only be attained
through the monitoring and management of the software inventory at the level
of the entire firm. [..] Reuse, by its nature, is an activity that spans multiple
projects and application systems enterprise-wide. To manage such reuse requires
monitoring the firm’s software at the level of the organization or enterprise.” [3]

2

Technological evolution, especially the creation of the internet technologies,
have since enabled the building of advanced infrastructures, providing an un-
precedented accessibility to knowledge and potentially reusable artefacts ranging
from code snippets over libraries, components, to services [62].

Furthermore, Software Engineering best practices, such as e.g. requirements
engineering, software architecture design, automated quality analyses by means
of static analyses, code reviews, and continuous integration, support (to dif-
ferent extents) reuse and avoiding redundancies. Also development paradigms
based on the new infrastructure possibilities, such as agile methodologies, In-
ner Source [88], test driven development, etc., have significantly changed the
way software can be developed. This has also lead to a drastic change in the
way reuse can be approached in terms of publishing, retrieving, and maintain-
ing reusable entities [24, 39, 88]. As a previous scarcity of reusable items has
been replaced by a plethora of available options, research has proposed elab-
orate tool support to facilitate access and selection of suitable reuse candi-
dates, e.g., by means of code [77, 72, 14, 32, 59] and model recommenders [31].
At the same time, empirical research has started to quantify the benefits of
reuse [65]. In addition, the Open Source community has embraced the potential
of reuse [84], e.g., in terms of software libraries [33]. Consequentially, the op-
portunities, challenges, and risks of employing third-party reusables have been
studied [11, 73, 74, 15, 61]. In this context, the following questions arise:

How do software producing companies nowadays approach reuse? Which
reuse approaches do they choose for development, maintenance, and evolution?
Do they proceed in a planned and strategic manner on an abstract level? Is reuse
a problem solved in practice?

Current industry encounters provide a variety of insights [10, 9, 8]: Reuse in
general is playing a key role in everyday software development, maintenance, and
evolution. Furthermore, in some highly specialized domains, Software Product
Lines (SPLs) [71] have been successfully adopted, lead to commercial success,
and support a high level of reuse [92]. However, literature suggests that for a
large number of software producing companies, finding, adopting, and sustain-
ing an adequate reuse strategy remains a challenge [67, 57, 8]. In addition, the
means to effect reuse are often limited due to lack of tool support or organiza-
tional limitations [21].

To be able to support practitioners in experiencing successful reuse, we need
to deepen our understanding of the current state of reuse in practice. In ad-
dition, we need to integrate existing evidence and investigate if reported issues
of previous studies (e.g., [23, 76, 30, 67, 65, 49, 33, 21, 87]) are still current in
today’s professional software development1.

1For the selection of studies, we started out from well-known sources, such as textbooks
(e.g. [43]) and journal summary papers on reuse adoption and results in practice (e.g. [65])
as well as reports on research projects (e.g. the REBOOT [82] and ESPRIT [30] projects)
on industrial accounts on reuse and manually followed the references, as well as searching the
citing papers. In addition, we searched the last 10 years of proceedings of the main venue ICSR
for current publications related to reuse in practice (e.g. [49, 33]). Additionally, we included

3

The goal of this paper is to take a first step towards this investigation. To
this end, we systematically integrate insights from two recent in-depth industrial
case studies on reuse practices. We compare their results and relate them to
previous work with the aim to identify open issues potentially relevant for a
wider range of companies.

Specifically, we compare observed reuse practices, effects and influence fac-
tors in two large and diverse software producing companies (denoted as G and
U in the following2). We collected information from a total of 138 professional
software developers by means of an extensive on-line questionnaire (108 respon-
dents) and interviews (30 participants, 35 hours of interviews). The study at
G preceded the study at U and was designed as an exploratory study on the
state of software reuse in practice. Both studies confirm the evidence reported
in the body of reuse literature regarding the prevalence of reuse being limited
to source code.

In this study we present the result of our integration, detailing thoroughly
on study design, methodology, company contexts, and the respective findings.

Besides adding value in terms of reliability3, our findings highlight discrim-
inant factors in the approaches with respect to contexts and related benefits
as well as insights on the pre-conditions for successful reuse. When translated
to recommendations to practice, such findings lay the foundation for devising
successful reuse strategies.

Outline Section 2 provides a brief overview on current studies on software reuse
in practice. Section 3 outlines the study goal and derives our research questions.
Section 4 then presents in detail the two studies that we integrate according to
the methodology described in Section 5. Section 6 reports our results which are
subsequently discussed and related to previous research in Section 7. Section 8
details the limitations of this work before Section 9 concludes the paper and
proposes future work.

2. Reuse in practice

The alleged benefits of software reuse have not failed to attract the atten-
tion of industry, where the need for reduction of redundancies, as well as cost
reduction and quality improvements is perceived. In addition, the vision of
fostering innovation and market penetration due to shorter production cycles

known papers from different venues that contribute to the question (e.g. [21]). Lastly, we
performed an unstructured search on Google scholar to find articles related to software reuse
and adoption and practice (e.g. [91]).

2Whilst the identity of G is disclosed in [9], company U preferred to remain anonymous.
3In addition to our contribution specific to the software reuse community (and to software

engineering at large), we would also like to stress the fact that, from an epistemological point
of view, the importance of confirmatory studies (and even negative results i.e., lack of effect)
has been largely recognised in science (e.g., see [89]), and is becoming more relevant also in the
field of empirical software engineering (see, e.g., the special issue on the Empirical Software
Engineering Journal on Negative Results).

4

promised obvious strategic business advantages. Benefits have been reported
from successful adoptions: lower cost and faster development [83, 54, 91, 9],
higher quality [83], standardized architecture [76, 83], and risk reduction [91]
by resorting to known artefacts. Whilst these reports are encouraging, they are
outnumbered by reports of unsolved challenges (see Section 2.2).

Literature and practice suggest that adoption of a suitable reuse strategy
is challenging: Software reuse takes place in a multi-faceted environment and,
thus, incorporates aspects ranging from technical to organizational at different
levels of abstraction [23, 54, 8].

Congruence of business goals, context factors, and processes need to be es-
tablished for reuse to provide the desired economical effects [57]. Options for
reuse approaches range from loose to tight reuse [67] that involve different levels
of organizational commitment.

In addition, the selection of adopted reuse approaches differs among the
various domains of software development: reuse practices in embedded and
non-embedded software development differ with component-based approaches
and product lines prevailing in embedded systems development, whilst in non-
embedded contexts ad-hoc reuse is most frequent [91].

In accordance with our research questions (see Section 3), the remainder of
this Section gives an overview of reported success factors, enablers, challenges,
and hindrances for reuse adoption. It, furthermore, details briefly on reuse
approaches adopted in practice.

2.1. Success factors and enablers

Several works have proposed processes for, or reported on, adoption attempts
of structured reuse in practice and deduced respective success and failure factors.
In particular, they identified technical as well as non-technical aspects [54, 23,
76] that significantly impact the chances of success in conducting reuse. The
following paragraphs give a brief overview on a selection of recent studies.

2.1.1. Technical success factors and enablers

Technical infrastructure: The presence of an adequate technical infrastructure
is reported as a key reuse enabler [83, 54] or even prerequisite [87] to conduct
software reuse. Infrastructure ranges from repositories for code and the respec-
tive documentation, to support for development, quality assurance, configura-
tion management, and deployment. Particularly, the ease of access to reusable
entities provided by tool support facilitates reuse [84, 21].

2.1.2. Organizational success factors and enablers

Incentives: In an Open Source context, the personal conviction of the benefits
provided by reuse incited developers to rely on reuse [84].

Knowledge: personal networks as well as exposure to a variety of projects
reportedly enable Open Source developers to reuse more code as these factors
helped them to discover and access the respective reusables [84]. In a closed

5

source environment, experience of developers is reported as success factor in
some studies (e.g. [54]), whilst it did not impact reuse success in others (e.g. [83]).

Management: Various sources suggest that sustained management commit-
ment is a key enabler for any advanced reuse program [67, 54, 88]. In par-
ticular, this management commitment is needed to drive the modification of
non-reuse processes as well as to create the awareness of human factors, e.g.
changes in responsibility [88] and adaptation to new processes [67], that impact
organizational change (and address them accordingly).

Process: In several studies, the relevance of a systematic reuse process is
reported as success factor [54, 76]. Tailoring of non-reuse processes is reported
as enabler [67].

Organizations structure: For medium size and large companies, institution-
alized reuse by means of a dedicated workforce is reported as success fac-
tor [54, 71].

Artefacts: Reuse of artefacts other than code, as well as reuse of already
existing artefacts are reported as enabling successful reuse [54, 76].

Quality assurance: High quality of reusable artefacts is a key reuse success
factor as it establishes trust with the users [88]. To achieve this, adequate
methods should be adopted (e.g. quality models [54] or code reviews [87]).

2.2. Challenges and Inhibitors

Besides technical challenges, a substantial number of organizational and hu-
man factors have been identified as potential inhibitors to a successful appli-
cation of advanced reuse practices [67]. Technical factors include creation, re-
trieval, modification, and maintenance of reusables. However, these topics are
strongly linked to human factors, such as cognitive effort [47], program under-
standing, and motivation, as well as organizational factors, such as business
strategy, management commitment, and company culture [86].

2.2.1. Technical challenges and inhibitors

Creation of reusables: The creation of reusables can be challenging due to
several factors. First, determining what reusables should be built by design is
non-trivial. It requires a detailed understanding of the envisioned application
context to reduce friction when integrating reusables [28]4. Second, providers
must strike a critical balance: on the one hand, a reusable should encapsulate
a specific functionality in order to be coherent, understandable, and clearly fit
a defined task. On the other hand, it should be as generic as possible to allow
being reused in numerous different contexts with little adaptation effort [64].

Technical incompatibility is a strong inhibitor to reuse, denoting problems of
interoperability due to incompatible platforms, paradigms, and technologies [80,

4According to Greenfield et al. [28], this lack of knowledge about the final context is an
enormous challenge when providing reusables that are consumed in an ad-hoc way.

6

26, 36]. Technical incompatibilities can decrease or annihilate the possibilities
of extracting or combining existing parts [46].

Storage and retrieval of reusables: Companies aiming for internal reuse repos-
itories are still facing the challenge of populating and classifying them, which
requires a considerable upfront investment and often proves infeasible [39, 8].

Also in the context of Open Source software, challenges in retrieval of reusable
entities as one core inhibitor to successful and widespread adoption of reuse in
practice [64, 26, 52, 36]. Whilst originally the challenge of retrieval lay in locat-
ing and accessing catalogues of reusable entities [64], it is nowadays the number
of potential reusable entities that challenges developers aiming to reuse [77, 32].

Technical Infrastructure: On a technical level, the development infrastruc-
ture used by a company can significantly impact the way reuse can be ap-
proached [87, 8]: the absence of a supporting infrastructure de-facto renders
structured reuse impossible, as it hinders developers to access and retrieve
reusables in a coordinated and controlled way[21]. Furthermore, advanced in-
frastructures can mitigate the risk of errors introduced into reusables [9].

2.2.2. Organizational challenges and inhibitors

Many of the technical challenges mentioned above are challenging on the
conceptual level. However, they tend to be exacerbated due to the organiza-
tional context that embeds them. The following organizational hindrances are
particularly prominent in literature:

Organizations structure: the quality of inter-unit relationships has a signif-
icant impact on a successful outcome of reuse adoption. Competition, overlap-
ping or unclear responsibilities, priority conflicts, and lack of coordination of
reuse activities diminish the likelihood of success of a reuse program [55].

Inertia: product-centric organizations tend to promote a focused view on
development. Managers and developers are usually assessed based on the success
of their isolated projects, incentivising local optimization that counteract reuse
on a company-wide scale [28, 22, 55].

Knowledge: Adoption of advanced reuse is a global topic that requires a
clear positioning of the organization [81] and research into current methods and
techniques for reuse (which tends to be neglected [55]).

Measurement: Introducing central reuse requires significant resources and
collaboration across different organizational units. Without measurement and
adequate compensation, this might lead to unwillingness to cooperate [55].

Management: Introducing the required governance strategies for creation,
maintenance, and decommission of reusable items can be challenging in the
face of heterogeneous preferences and process weaknesses [28]. Adjusting the
context, thus, causes additional overhead that tends to be underestimated in
the initial planning [55, 67], endangering reuse success.

Economic: Investing into the reusability of software or supporting infrastruc-
ture imposes non-negligible costs onto projects and requires firm and long-term
support from management to resolve restrictive resource constraints [55, 40, 76].

7

Disincentives: One of the strongest disincentives is lack of quality of the
entities provided for reuse [55]. This inhibitor needs to be overcome by means
of transparent quality assurance and clear governance lining out assumptions
and guarantees that hold for entities designed for reuse. In addition, the criteria
that are applied to assess developers and managers have an impact on their
motivation to engage into reuse [22, 87].

2.3. Reuse approaches in practice

The following paragraphs briefly introduce reuse approaches that have re-
portedly been adopted in practice.

Clone-and-Own is the most frequent realization of pragmatic reuse and denotes
a reuse approach that relies on copying and, potentially, modifying of (proven)
solutions for the purpose of effective development. It is also known as: code
scavenging [47], ad hoc reuse [19], opportunistic reuse [78], and copy-and-paste
(or cut-and-paste or copy-and-modify) reuse [50], pragmatic reuse [36]. As it has
virtually no preconditions on the organizational context, it is applied widely in
industry [21]. Depending on the given industrial context, this practice can serve
as a disciplined tool [17, 42, 21]. On other occasions, clone-and-own is the only
feasible reuse mechanism at disposal due to, e.g., organizational restrictions or
absence of supporting technology. However, they incur the risk of inducing errors
as well as significantly increasing maintenance efforts [41]. On the conceptual
level, the task of finding working code examples among the vast amount of
available source code can be a time-consuming challenge [44].

Inner Source
As empirical studies have shown, Open Source projects heavily build on code

reuse on the basis of libraries, reaching reuse rates between 30 and 90% [84, 33].
Open Source development relies on transparency, self-selection of tasks, asyn-
chronous communication, and quality assurance. Inner Source5 attempts to
transfer this reuse-inducing6 development style from the Open Source commu-
nity to industry [88]7. The key benefits of Inner Source lie in the full access
of developers to the seed project’s source code and the shared responsibility for
reusable assets. This transparency and availability serve as a key enabler for
reuse. Literature reports instances of successful Inner Source e.g. at Hewlett-
Packard, Alcatel-Lucent, Philips Healthcare, IBM, and SAP. Pointers to the
respective material and a summary of the studies are provided in [87].

Component-based reuse aims to build software systems out of interchangeable
components [75], potentially provided by third-party vendors [37], enabled by

5Research on the topic dates back only to 2002 and has not yet been very extensive. How-
ever, in recent years, the topic has attracted more attention from the research community. [87]

6One of the key goals of Inner Source is reuse. However, it comprises more than just
mechanisms for reuse. In addition, its principles and development practices, as well as the
advanced tool support, clearly enable code-based reuse.

7Literature knows the phenomenon also as Progressive Open Source and Controlled
Source [20], Corporate Source [27], Corporate Open Source [29], and Internal Open
Source [27].

8

separation of implementation and interfaces, with a possibility of extension via
well-defined extension points [37].

Adoptions of component-based reuse have been reported [49], particularly in
the domains of embedded software development [68]; however, most of the pro-
posed methods and techniques designed to support the approach are currently
lacking validation of benefits and accounts of application in practice [38, 2, 90].

Software Product Lines (SPLs) aim to ”reduce the overall engineering effort
required to produce a collection of similar systems by capitalizing on the com-
monality among the systems and by formally managing the variation among
the systems” [48]. Implemented successfully, SPLs reportedly lead to very high
reuse rates and enable rapid creation and delivery of new product variants [71].
However, adopting a product line approach demands significant maturity of
an organization’s process and development capabilities. Commercially success-
ful product line implementations are showcased in the Product Line Hall of
Fame8.

3. Study goal and research questions

We compare software reuse implementations in two large companies: we look
for commonalities and differences in the way the companies perform reuse, on
the problems and benefits experienced and the factors which tend to inhibit or
enable it. Formally, we define the study goal according to [5]:

The goal of the study is to characterise reuse practices
for the purpose of comparing them

with respect to their realisation and effects
from the viewpoint of software professionals

in the context of two large software producing companies.

Effects refer to positive (benefits) and negative (difficulties) consequences of
the presence or absence of the effected reuse approach. From our goal, we derive
two main research questions:

RQ1: Which reuse practices are applied? We assess which (and to
what extent) reuse practices and reuse activities are conducted and how they are
supported by tools and infrastructures. From our point of view, reuse practices
refer to how reuse is organised and implemented in a given company context.
Consequently, the term encompasses several aspects: the entities that are reused
(namely knowledge and artefacts), the process that is followed to create, obtain,
and reuse them, as well as the way in which they are reused on the technical
level.

RQ2: What are the effects of the respective approaches? We investi-
gate which problems and challenges occur in practice and capture the perceived

8http://www.splc.net/fame.html

9

http://www.splc.net/fame.html

benefits of and the success factors for reuse. We are especially interested to see
whether our findings confirm the consensus of the literature, and whether the
two companies report different aspects.

4. Case descriptions

This section introduces the two cases that we subject to comparison in the
present study. The two companies under study are named G and U. We detail
their context and outline the respective case study designs previously conducted
and their main results. Table 1 summarises the context details of both com-
panies9. In addition, we provide detail on the material on which we base the
comparison in the present paper, and report the challenges related to data in-
tegration.

Both studies featured an extensive on-line questionnaire, containing mainly
closed-questions, and a number of semi-structured 1-2 hours interviews always
conducted by two researchers (one conducting the interview, one scribe). The
interview guide and both original questionnaires are included for reference in
the Appendix, Sections 10.1 and 10.4, respectively10.

We conducted each study within a period of 3-4 months during September
2012 to February 2015. The study at G preceded the study at U. Figure 1 shows
the relationship between the studies and this current contribution. Experience
from the first study at G lead us to first conduct the interviews in case U in
order to focus the questionnaire to the most relevant parts for U.

4.1. Case description G

Company G is a multinational corporation, specialised on Internet-related
services and products. The company structure supports flat hierarchies and
multi-project assignments for engineers. Development follows a homogeneous
process with advanced tool support centred around collective code ownership
and agile practices [70]. Developers at G work on multiple projects at the
same time, they are organised in small teams, and develop software with several
programming languages (mainly C++, Java, Python, and JavaScript). Reuse is
mandated for a small set of utility functionalities; however, reusing existing code
in an adequate way is considered best practice and fostered by the development
style and organizational incentives. The reuse goals for the company are faster
development of new features, lower maintenance costs and consistency.

Study demographics We interviewed 10 engineers and collected 39 responses
to a 45-minute on-line questionnaire. The participants originated from more

9Please note that factors in the categories development context and reuse characteristics
reflect tendencies and the state of the companies at the moment of the studies. Both compa-
nies continuously strive to improve their craft, so this table does not necessarily reflect their
situation at the time of reading.

10Due to confidentiality of the data, we are unable to share interview transcripts and ques-
tionnaire response data.

10

Preparation

Interview
s

Q
uestionnaire

Analysis

Preparation

Interview
s

Q
uestionnaire

Analysis

Analysis

Integration

Case G Case U

Figure 1: Study setup: case G, case U, and case integration.

than 25 different teams distributed worldwide and held varying organisational
roles (developers, maintainers, managers, as well as any combination of the
three roles). Their experience ranged from <1 to 20+ years in their current
role (time at the company: <1 to 10+ years). By means of qualitative data
analysis, we extracted the context of reuse, involving roles, responsibilities, and
reuse practices, i.e. reused artefacts and reuse realizations. We collected current
issues, success factors, and ideas for improvement.

Some of the results of the study at G have been published in [9].

4.2. Case description U

U is a national software producing company providing technical information
services and business information products to their clients. The company was
founded in the 1960s, emerged as a service provider and gradually moved to pro-
viding stand-alone software products and services. Currently, U counts around
6000 employees. The company structure is hierarchical, structured along mar-
ket segments. The products have historically grown over decades and contain a
broad mix of technologies. Software development is very heterogeneous across

11

departments and teams, ranging from waterfall processes to tailored Scrum ap-
proaches. Also the level of development tool support, testing practices, and
code ownership is highly diverse. As a result, products are integrated on a bi-
nary level. Developers usually work on specialized topics of a single product
and tend to be responsible for the respective subsystems (Subsystem code own-
ership, see [70]). Reuse is mandated for an internal utility platform providing
domain-independent functionality to products. The company’s reuse goals are:
consistent extension of the .NET framework, consistent integration of existing
products, lower maintenance costs.

Study demographics
We study the current practice of reuse at U by means of an exploratory

study consisting of an interview phase with 20 participants, followed by ques-
tionnaire phase with 69 respondents. We report on the state of practice of reuse,
comprising success factors, challenges and ideas for improvement.

We drew interview participants from each of Us product and support devel-
opment departments and all levels of the hierarchy. The participants worked
at U between 15 and more than 30 years. Even though the company is mainly
based in one area, the teams are distributed. For the data collection and anal-
ysis, we proceeded as for case G.

Questionnaire participants were invited by a newsletter and a post on a
company news portal. Respondents came from 10 of the 13 departments. 44%
worked at U for at most 10 years, 20% for 11-20 years, and 36% for more
than 20 years. 15% reported their role as manager. The respondents job focus
was mainly on development (78%), and architecture (13%). Respondents at U
usually work within one product area and are organised in product departments
over several hierarchical units. They are developing software most frequently in
C# and SQL. In addition, they use Java and C++.

Parts of case U have been published in [8].

4.3. Original case study designs

In preparation of the first case study, we conducted a literature review to
derive the original concepts for interview guides and questionnaire. To meet our
research objective, we opted for a combination of interviews and questionnaire
as they compensate each other’s weaknesses: interviews provided us with a
highly detailed account on reuse practices, highlighting particularities of the
company context, as well as raising new ideas and concerns. However, they were
expensive and time-intensive to conduct for both parties. Therefore, we chose
to complement the interviews with an on-line questionnaire that was designed
to capture responses from a wide range of participants.

Before rolling out the study in either of the cases, we piloted and revised the
interview guide and questionnaires to remove ambiguities, increase understand-
ability, and, in case of the questionnaires, to ensure technical performance.

Semi-structured interviews We conducted semi-structured interviews with de-
velopers, maintainers, and managers at G and U. In case G, our interview
guideline was based on a pre-study with a scope similar to the questionnaire. In

12

U, we added company specific aspects to the interview guideline and iteratively
refined it during the course of the study to accommodate new aspects impacting
U’s reuse practices 11.

In both cases the aim of the interviews was to obtain detailed insights into
reuse application in different development teams and projects, as well as its im-
plications regarding non-technical aspects such as company culture and inter-
personal skills. We, therefore, selected participants from different departments
of both companies. Each interview lasted between one and 2 hours and was
conducted by two researchers, one leading the conversation with the participant
while the other created the transcript and asked clarification questions.

Online questionnaire To gain a comprehensive overview of reuse at the compa-
nies, we developed an on-line questionnaire for each case12.

For each reuse aspect, several multiple choice questions were asked. Fur-
thermore, we invited the participants to contribute additional information in
the form of free text. We asked the participants to provide their main job fo-
cus, their level of experience in their current role, the time spent working at
the company and the type of project they were working on. Taking part in the
questionnaire took approximately 30–40 minutes. Participation was optional.

4.4. Data collection & analysis procedures

After performing the interviews, we processed the transcripts by applying
techniques from grounded theory, which support inductive content analysis. To
extract the important information, we coded the transcripts13 twice: first, we
went through a phase of initial coding [16] to separate the transcripts into state-
ments, assign them with codes, and triage them to focus on the ones relevant to
reuse in practice. Based on the relevant codes, we build up emergent categories.
In another, focused, round of coding [16], we pruned the categories to the most
significant ones and created relationships between them. The coding process

11We found the following differences to case G: a strong cultural heterogeneity of the dif-
ferent development units, an organizational structure that skewed resources to the products,
diverging development and quality assurance approaches, processes, and toolsets, different
product release and rollout processes, restriction in access to code across development units,
a significant amount of highly relevant legacy systems with maintenance cycles of 20+ years,
heterogeneity of the employees’ skill sets and experience.

12When conducting the first study, we noticed technical limitations of the platform and room
for improvement in the resolution of our scales. After conducting the first study, we improved
the questionnaire for the next by migrating to a professional platform and adjusting the
resolution of the scales: As described in the methodology section (Section 5), in case G we used
a simple questionnaire setup with multiple choice options for selection. We, therefore, could
not measure tendencies of opinions or attitudes, as it would have been possible using, e.g.,
Likert scales. For this reason, we changed the scales on most questions during the preparation
of case U. In addition, we incorporated results, such as success factors or challenges, from the
first study. In particular, we aimed to test the success factors of case G (see Table 7, question
SFB4) for their suitability as improvements in case U. For the two questionnaires, refer to the
Appendix, Section 10.4. In addition, we accounted for the different company contexts and
philosophies, as mentioned above.

13Coding means “categorising segments of data with a short name that simultaneously
summarises and accounts for each piece of data” [16].

13

resulted in clusters of categories connected with each other, containing the rele-
vant statements. In the case of U, we set out with a collection of potential codes
obtained from the study at G. However, we adapted and pruned the collection
to accommodate new information related to the new organizational context14.

4.5. Methodological differences

Although the two investigations presented above shared goals, research meth-
ods and research questions, their implementation was not identical and, thus,
necessitated methodological fine-tuning to perform the comparison. The follow-
ing paragraphs highlight the differences of the cases and their consequences.

Timing. The investigation at G preceded the one at U and the comparison
of the two studies was not planned at that time. When designing case U, we
built partially on results of case G, including, e.g., items that were relevant as
additional answer options in some questions (see, e.g., SFB3 in Table 3).

Study design. In case G, interviews and questionnaire phases were run simul-
taneously: The questionnaire sourced information on a large scale, whilst the
interviews delivered a high level of detail to interpret the questionnaire. In case
U, the interviews were conducted first. They delivered a very detailed view
of the reuse practices and served as a filter to tailor the questionnaire to U’s
context. As a result, some questions do not have a direct counterpart in both
studies (see, e.g., FAR3 in Table 3).

Scales. The scales used in the questionnaires differ: in case G questions could be
answered only by multiple choice and free text. In case U, a different approach
was used: The responses were given either on a four- or five-point Likert scale or
as free text. For each question in U, we report the question code, followed by a
tuple (L<scale level 4 or 5>, <semantics of lowest bound of scale>, <semantics
of highest bound of scale>). Example: FAR1 (L4, never, always). Last, the
wording of the questions is not always identical15 (see e.g. question CHR1 in
Table 3).

Diffusion. In G, 600 participants were randomly selected from a database of
employees and invited via personalized email. In U, due to legal restrictions,
we were unable to invite participants directly. Instead, we published a link in a
company internal newsletter of the development departments and an entry in a
company internal developer news portal. In addition, we invited our company
contact and interview partners to spread the word.

14For instance, the roles and responsibilities present at the companies differed noticeably due
to different hierarchy structures (flat at G vs. hierarchical at U) and development approaches.
Consequently, also the notions of teams, products and projects required a mapping between
the cases (the notion of projects in G best corresponded to products in the context of U)
with G providing a more fluid communication and contribution structure compared to U that
followed a strict hierarchical structure.

15Note that the questions in case U were originally expressed in German and translated for
this paper.

14

Table 1: Characterization of the participating companies
Company U Company G [9]

Company settings
Established 1960s 1990s
Overall staff* ˜6000 ˜40000
Software staff* ˜1000 >2000
Software production* client product portfolio online product portfolio
Application domain* business information systems online services
Type of software* business business
Organisation of development
units

hierarchical, strong separa-
tion in departments

flat hierarchies, peer-driven,
interconnected

Scope national international
Development context
External requirements for re-
lease cycles

yes no

Development style heterogeneous homogeneous
Code ownership strong collective
Code reviews rarely mandated
Development infrastructure local central
Source code repositories several local ones one central
Product assembly binary integration continuous source integration
Developer focus dedicated aspects of single

products
multiple aspects of multiple
projects

Staff experience of sample* high medium
Reuse characteristics
Reuse approach* ad-hoc (loose*) in transition

to structured (tight*)
tool-supported ad-hoc
(loose*)

Current reuse scope department company
Global requirements engineer-
ing for reuse

limited, grass-root limited, tool-based

Global incentives for reuse no yes
Co-ordination of reuse within department on-demand
Co-ordination overhead for
reuse

significant low

Reuse consumer** within department all
Reuse producer** within department all
Pool of available artefacts for
reuse

limited significant

Dedicated personnel for reuse yes for basic, domain indepen-
dent functionality

yes for basic, domain indepen-
dent functionality

Reuse tool support low advanced
Accessibility of reusable arte-
facts

mixed good

Formal reuse assessment no no
Motivation for reuse high high
Satisfaction with current
reuse benefits

mixed positive

Study data
Total number participants 89 49
Participant average time in
company

11-20 years 1-3 years

* adapted from [67], ** adapted from [51].

4.6. Selected material for comparison

Tables 2 and 3 contain the questions we used for the comparison between the
two cases. They were selected since they had matching counter-parts in both
studies. The response options are reported in Section 6 (see Tables 6 and 7). To
interpret and discuss the findings (Section 7), we draw on parts of the interview
data. Due to the differences reported above (and verifiable also in the Appendix,
Section 10.4, and on Tables 2 and 3), we rely both on reported guidelines to
qualitatively compare case studies [18] and quantitative methods to analyse and

15

compare the surveys’ questions [1]: we report our analysis methodology in the
following section.

Table 2: Questions selected for comparison for RQ1
Question
ID

Question text U Question text G

Extent of code reuse (ECR)
ECR2 What type of functionality do you reuse

and which organisational unit provides
it? — L5, no use, always use

What type of functionality do you
reuse?

ECR3 What is the scope of functionality that
you reuse? — L5, no use, always use

What is the scope of the reused arte-
facts?

Finding artefacts (FAR)
FAR1 How often do you use the following ways

to find reusable artefacts? — L4, never,
always

What are your top-three ways to search
for reusable artefacts?

Reused artefacts (RAF)
RAF1 How often do you reuse the following

artefacts? — L4, never, always
Which are the top-three types of arte-
facts you reuse?

RAF2 What are your sources for obtaining
reusable artefacts? — L4, never, always

What are your standard sources for
reusable artefacts?

Technical realization of reuse (TRR)
TRR1 How often do you use the following tech-

niques to realize reuse? — L4, does not
apply, strongly applies

Which of the following possibilities of
reuse do you employ most? Please indi-
cate the top three.

TRR2 Which granularity do the reused entities
have? — L4, does not apply, strongly
applies

What granularities do the reused enti-
ties typically have?

5. Analysis Methodology

From the analysis methodology perspective, the different scales are the most
relevant issue for the comparison. We address it by applying an aggregation on
the Likert scales of U and a scale conversion procedure to answers from survey
G to make them fully comparable with those of survey U. Subsequently, we
apply regular hypothesis testing. To explain why data conversion was needed
we will refer as example to the question on RAF1 from Table 2.

On survey U, the question RAF1 was formulated on the following way:
How often do you reuse the following artefacts? Participants could select on a 4
points Likert scale the frequency of usage of that item (values: never, occasion-
ally, regularly, always). We aggregate answers on points 3 and 4 and label them
Category H: regular or high usage. Similarly, we aggregate answers on points
1 and 2 and label them as Category L: irrelevant or low usage. Table 5 in the
Appendix provides the aggregations used for the other scales types.

On survey G, question RAF1 was formulated differently: Which are the top-
three types of artefacts you reuse? For such type of questions participants could
select up to three items, for others they did not have any limit. However, this
was not enforced by the software: as a consequence, some participants could
exceeded the number of available choices and selected up to four items, however
most participants selected only one or two options16. Thus we believe it is

16This applies to all questions affected by this issue, i.e.: FAR1, RAF1, TRR1 from Table 2,

16

Table 3: Questions selected for comparison for RQ2
Question
ID

Question text U Question text G

Challenges, effects, and context factors of reuse (CHR)
CHR1 How often do the following aspects neg-

atively impact reuse in your team? —
L4, never, always

In your opinion, are there difficulties
disrupting the reuse process in your
team?

CHR2 How often do potential disadvantages
of reuse occur in your project? —L4,
never, always

In your opinion, are there problems
caused by reuse in your project?

CHR3 How often do the following problems oc-
cur due to lack of reuse in your project?
—L4, never, always

In your opinion, are there problems
caused by the absence of reuse in your
project?

Success factors and benefits (SFB)
SFB1 How often are the potential benefits of

reuse realized in your project? —L4,
never, always

Which benefits of reuse do you experi-
ence in your project?

SFB3 How important are the following factors
to increase the benefits from reuse? —
L4, unimportant, very important

In your opinion, what would be the
three most important actions to make
reuse beneficial in your company?

SFB4 In your opinion, which factors con-
tribute to successful reuse projects in
your company? — free text

In your opinion, what are the three most
important key factors to make reuse
beneficial in your company?

Reuse in everyday development practice (RED)
RED1 How much do you agree with the follow-

ing statement* on reuse on your daily
work? — L4, does not apply, strongly
applies

not present in G, taken from Reuse fail-
ure modes, Frakes and Fox [23].

RED4 How much do the following statements*
regarding the implementation of reuse
apply to your organizational unit? —
L4, does not apply, strongly applies

not present in G, taken from the organi-
zational part of reuse maturity models,
e.g. [25].

Finding artefacts (FAR)
FAR3 How much do the following statements*

apply regarding the accessibility and
modifiability of company internal source
code? — L4, does not apply, strongly
applies

Success factor derived from G [9].

* The statements are reported in the Appendix Table 7 next to the respective question code.

reasonable to apply the following conversion procedure to make the answers of
survey G comparable to those of survey U:

• We compute for each item the frequency of selection assuming that such
a selection is equivalent to Category H regular or high usage: in fact
participants are asked to select the top three used artefacts.

• Accordingly, we assume that when the item is not selected, this is equiv-
alent to Category L irrelevant or low usage : we are confident that this
is a quite straightforward assumption, because enforcement on the three
options was not applied and some participants in fact exceed that number
of selected options.

With such conversion the data structure is identical to that of survey U,
where for each item a contingency table is assigned. Therefore, we apply the

and SFB3 and SFB4 from Table 3. For the latter two, categories H and L are not about
high or low frequency, but concern high or low relevance.

17

χ2 test [1] on each of the resulting contingency tables to check whether the
proportions in H and L differ significantly (with α = 0.05). If the test is
rejected (i.e. pvalue ≤ 0.05) then we assign usage of item i to the category H or
L, depending on which has the highest number of answers. When interpreting
the findings of our analysis, we relate the statistical analysis to the findings of
the interviews.

6. Study Results

Figures 5 to 6 summarize the study results for RQ1, Figures 7 to 8 for RQ2.
Figure 3 explains how to read the graphical representation. For each item, the
statistical significance of the answer tendency according to the χ2 test (low
or high relevance or likelihood) is represented. Rectangles denote statistical
significance for the respective item, full circles denote an inconclusive answer
(due to an even distribution or a non-significant skew), empty circles denote
missing data. The underlying statistical data is available in the Appendix,
Tables 6 and 7.

Figure 2 represents synthetically the main findings:

Autonomous

Development process
 and culture

Homogeneous,
inner sourceHeterogeneous

Development
 infrastracture

Centralised and
accessible

Local with
fragmented

access

Beneficial effects

Company U Company G

D
ev

el
op

m
en

t c
on

te
xt

R
eu

se

Higher
development

pace

Less
maintenance

effort

Realization
On demand
automatic
retrieval

Departments

Scope Company-wideDepartment-
wide

Unclear

Drawbacks Dependencies

Personal
contact

Figure 2: Summary of results, according to authors’ data analysis and interpretation.

We found that reuse in both companies focused mainly on one artefact type,
i.e. source code, thus not leveraging further reuse possibilities proposed by state
of the art techniques. In the presence of an elaborate development tool-support
and a quality-gated central repository, this infrastructure is more relevant for

18

RAF1

Requirement
documentation / Use
cases.

Personas.

UI Designs.

Style guides.

Architecture
documentation.

Informal design
models (Box and
lines, natural
language).

Semiformal design
models (UML).

Formal design
models.

Own, domain specific
design models.

Code in binary form.

Source code.

Prototypes.

System tests.

Unit-Tests.

Other.

O
ther

RE
Design and Architecture

Im
plem

entation
Test

Case U,
not significant

Item 1

Item 2

Item 3

Low High
Case U,

significant,
low

Case G,
no data

Figure 3: Example of the graphical representation of the results.

access and retrieval than personal contact (and can be seen as an instance
of a successful reuse repository implementation); without this infrastructure,
personal recommendations and contacts are important for pointers and access
to potential solutions.

We found clear benefits (in terms of development speed and less mainte-
nance efforts) when software reuse was effected in a homogeneous, ad-hoc, tool-
supported way, and at a comparatively high level of granularity. In contrast,
benefits did not materialise when reuse was effected in a heterogeneous way, and
tool support was mostly absent. In both cases, these characteristics reflected
the development process and culture of the company.

Finally, we can report some improvements in terms of reuse implementation
due to technical advances, as well as one instance of inner source practices that
enabled reuse. However, many of the organizational challenges remain and need
to be addressed in order to establish reuse approaches that are beneficial to
companies.

19

FAR1

Communicating with
colleagues.

Web search.

Browsing repositories.

Browsing
documentation.

Tutorials.

Code search tools.

Code completion.

Code recommenders.

Other.

None
O

ther
Developm

ent support
Reuse support

RAF2

Developer Portals.

Open Source
Repositories.

Commercial
repositories.

Internal repositories.

Colleagues own
department.

Colleagues.

External Sources
Internal Sources

Low High Low High

Figure 4: RQ1 - Sources of reusable entities and way of access, questions FAR1 and RAF2.

20

Legend:

Case G

Case U

significant no datanot significant

no datanot significantsignificant

RAF1

Requirement
documentation / Use
cases.

Personas.

UI Designs.

Style guides.

Architecture
documentation.

Informal design
models (Box and
lines, natural
language).

Semiformal design
models (UML).

Formal design
models.

Own, domain specific
design models.

Code in binary form.

Source code.

Prototypes.

System tests.

Unit-Tests.

Other.

O
ther

RE
Design and Architecture

Im
plem

entation
Test

RAF1

Requirement
documentation / Use
cases.

Personas.

UI Designs.

Style guides.

Architecture
documentation.

Informal design
models (Box and
lines, natural
language).

Semiformal design
models (UML).

Formal design
models.

Own, domain specific
design models.

Code in binary form.

Source code.

Prototypes.

System tests.

Unit-Tests.

Other.

O
ther

RE
Design and Architecture

Im
plem

entation
Test

Low High Low High

Figure 5: RQ1 - Reused entities, question RAF1.

21

TRR1

Code scavenging
(copy, paste, modify).

Software libraries.

Software frameworks.

Component-based
development.

Design patterns.

Architecture reuse.

Product lines.

Application
generators.

Code generators

None.

TRR2

Small code sections.

Fine-grained, such as
single
methods/functions.

One or more classes.

Complete libraries.

Coarse-grained, such
as entire frameworks.

Low High Low High

Legend:

Case G

Case U

significant no datanot significant

no datanot significantsignificant

Figure 6: RQ1 - Technical realization of reuse, questions TRR1 and TRR2.

22

CHR1

"Not invented here"
phenomenon.

Licensing/legal
issues.

Difficulty of adapting
artefact to project
needs.

Inconvenient
granularity of
reusable artefacts.

Process for clearance
of external artefacts
is too slow.

Coordination effort
with other divisions.

Finding the right
artefacts is difficult.

Accessing the
artefact is difficult.

Other.

CHR2

Loss of control.

Dependency
explosion.

Performance decay.

Decrease of code
understandability.

Ripple effects caused
by changes in reused
artefacts.

Code becomes
unchangeable.

Excessive restriction
of the solution space.

 No.

Other.

Low High Low High

Legend:

Case G

Case U

significant no datanot significant

no datanot significantsignificant

Figure 7: RQ2 - Inhibitors to reuse and issues due to reuse, questions CHR1 and CHR2.

23

CHR3

Inconsistencies.

High maintenance
effort.

Increased
development effort.

High testing load.

Lower code quality.

Duplicate
implementations.

SFB1

Less maintenance
effort.

Higher consistency.

New functionality is
made available.

Higher code quality.

Higher development
pace.

Regular bug fixes.

None.

Other.

Low High Low High

Legend:

Case G

Case U

significant no datanot significant

no datanot significantsignificant

Figure 8: RQ2 - Issues of absence of reuse and benefits of reuse, questions CHR3 and SFB1.

24

7. Discussion and relation to state of the art

In this section, we discuss and interpret the findings of the data comparison
for each research question, providing explanations thanks to the material of
the interviews. In addition, we relate the results to the positions found in the
literature17.

We structure the paragraphs as follows: Comparison agreement (i.e. aspects
in common between the two companies, according to the methodology applied
to analyse the results), comparison differences (i.e. diverging aspects in the two
companies, according to the methodology applied to analyse the results), in-
terview data (if appropriate), interpretation of the findings, related literature in
support or that contrast the findings. The id’s reported with the questionnaire
items refer to their label in the respective data table given in the context of
each RQ.

7.1. RQ1 — Comparing reuse practices

The survey questions related to this research question are reported in Table 2.
See Table 6 for the responses, as well as the comparison and statistical values.

Reused artefacts (RAF1, Figure 5)
Comparison agreement: According to question RAF1 (L4, never, always),

we observe that in both cases the majority of potentially reusable artefacts
are not reused. In particular, no artefacts from the Requirement Engineering,
Design and Architecture, and Test and Deployment phases are reused.

Comparison differences: In case G, source code (id=25) is the only response
of statistical high relevance. In contrast, in case U no artefact is reused fre-
quently with statistical significance (however the responses indicate that about
half of respondents reuse source code (id=25) and style guides (id=34)).

Interview data: The interview data reflects the findings of the questionnaire:
Source code is the clear reusable entity in G and also mentioned frequently as
reusable in U.

Interpretation: These findings indicate that much of the potential for reuse
is unleveraged in the two companies. Literature proposes reuse on a much wider
scale from models to requirements (see, e.g., [47, 31, 53]). Reasons for this might
be that artefacts of earlier development stages are not available, accessible, or
considered useful.

Related literature: When comparing these findings to the ones reported
by [67], we see that this focus tends to be typical for companies with a loose
reuse approach. In companies aiming for a more advanced reuse approach, de-
spite lacking the prerequisites in terms of process and tool support, ad-hoc code
reuse is used as best effort to create, e.g., SPLs [21]. Our findings on U supports
this observation. Also a more recent on-line survey [91] confirms the presence

17We relate our findings to the following work: [9, 11, 12, 13, 21, 22, 25, 28, 31, 33, 34, 39,
40, 41, 43, 47, 51, 53, 54, 56, 60, 67, 69, 71, 72, 77, 79, 81, 82, 83, 84, 88, 91].

25

of ad-hoc code reuse. Furthermore, it reports moderate reuse of requirements,
which, however, we can not confirm in our two cases.

Extent of code reuse (ECR2 and ECR3)
Comparison agreement: The results for questions ECR2 and ECR3 (L5, no

use, always use) show that domain-independent general purpose functionality
(id=9) are highly relevant with statistical significance in both companies.

Comparison differences: In case G, product-specific functionality (id=11)
are excluded as extent of code reuse. In contrast, in case U, although not in
a significant way, domain-specific (id=10) and product specific functionality are
mentioned by more then half of respondents, with all types of functionality
highly reused (from id=1 to id=8).

Interview data: For case G, interviews confirm a core of basic functionality,
on which systems are built. For case U, interviews report of a reuse approach
that is arranged along multiple layers of general purpose functionality, but also
domain specific reusable entities. Considerable leeway is given to single depart-
ments with respect to their local design decisions.

Interpretation: In U, reuse of more specialised functionality might indicate
an opportunity for a more structured tight reuse approach, e.g., in the form of
a product line.

Related literature: In literature, reuse of utility functionality is well covered,
especially in the form of Open Source libraries and frameworks [39, 33]. In
commercial scenarios, product line and component-based approaches suggest a
similar behavior [71]. Work on Inner Source, furthermore, suggests that well
defined domain specific functionality can be a suitable and valuable entity for
reuse [88].

Finding and accessing reusables (FAR1, Figure 4)
Comparison agreement: In both cases, the results for questions FAR1 (L4,

never, always) show that a number of retrieval options are currently considered
irrelevant with statistical significance: code recommenders (id=16), browsing
documentation (id=17), and tutorials (id=18). Web search (id=12) is reported
in both cases by about half respondents, yet not significant.

Comparison differences: For case U, communicating with colleagues is the
most important (and the only significant) way to find reusable artefacts. In con-
trast, within G code search tools are in this position, while considered irrelevant
in company U.

Interview data: The interviews in G confirm the high usage of the code search
tools, but also stress the communication (synchronously and asynchronously)
and trust among engineers. In U, interviews as well as one of the answers to
FAR3 (L4, does not apply, strongly applies), indicate that code available in
U can not readily be searched and accessed across departments. Therefore,
retrieval and accessibility are limited by lack of technical infrastructure.

Furthermore, in both interview rounds, the concepts of reuse producers and
reuse consumers emerged: in case G, due to the development process and in-
frastructure, all developers assume both roles, drawing on, as well as feeding
into, a global pool of reusables; in U, on the contrary, the producer role is lim-

26

ited locally, because a dedicated group of developers takes care of the common
platform, whereas the remaining developers provide reusable code either within
their departments or not at all.

Interpretation: These findings highlight the importance of three enabling
factors of reuse: trust between colleagues, automated support for artefact re-
trieval, and technical accessibility of artefacts. In the absence of infrastructure,
personal communication is crucial with the disadvantages of being slow and
costly. Communication is still important in the presence of infrastructure; how-
ever, it is more concerned with the goal of clarification. The key access point
shifts to the tool support asynchronously available to each developer.

Despite the reliance on tools, reactive support systems are not yet widely
used to improve reuse.

Related literature: The mentioned enabling factors are, amongst others, con-
sidered preconditions for the so-called Inner Source approach [88], as well as
the development of SPLs [71]. Technical support, such as code recommenders
(id=16) are one example of research that should contribute to these three as-
pects [77] and might, in principle, target the right goals; however, these tools
are not yet used widely (only one respondent per case declared to use them).
This could be an indication that from a research perspective, more work needs
to be done to adapt research work to the reality of practitioners, especially in
terms of usability and scalability [69, 72].

Sources of artefacts (RAF2, Figure 4)
On the item level, we observe no agreement for question RAF2 (L4, never,

always). However, there is a tendency in both cases towards company-internal
artefact sources.

Comparison differences: The only statistically significant source in case G is
that of internal repositories (id=37). In U, all but one source (colleagues from
own department, id=39), are of low usage.

Interview data: In G, interviews further stress the importance of the central
repository for reuse success.

In U, interview data indicates that, in the absence of technical access, one
of the main sources of reusable artefacts might be the code that developers
have previously written themselves. Also, the fact that developers stay in their
department for many years and acquire specialist knowledge might impact their
willingness to rely on and trust the work of others.

Participants from both companies mentioned the business and legal risks of
reuse across company borders. Licensing was mentioned as significant inhibitor
to reusing Open Source code, and the reliability and robustness of an external
commercial software provider as high risk to reusing proprietary reusables.

Interpretation: In the case of G, the internal infrastructure and repository
seem to provide adequate support for reuse across the company. In U, this kind
of reuse is hampered by a combination of specialist knowledge and organizational
and technical separation.

In both cases, internal sources preferred over external ones due to the po-
tential risks entailed to the latter.

27

Related literature: Whilst the web is considered a huge repository in litera-
ture [39], this is scarcely reflected in the context of both companies: legal restric-
tions, security policies, and domain specificity prevent a significant exchange of
reusable artefacts across company boundaries. Access to reusable entities is,
thus, mediated by personal networks of developers. In addition, we can confirm
that the potential risks imposed by dependencies on third parties [11] impact
the decision of companies with respect to third-party reuse.

Technical reuse realization (TRR1 and TRR2, Figure 6)
Comparison agreement: For question TRR1 (L4, does not apply, strongly ap-

plies), in both cases code scavenging (id=42), component-based development (id=45),
architecture reuse (id=47), product lines (id=48), and application generators (id=49)
are not considered relevant.

Comparison differences: In case U, all offered ways to technically realize
reuse are marked as not relevant with statistical significance. In case G, realising
reuse by means of software libraries (id=43) is of statistically significant high
relevance.

Interview data: In case G, the interview data is largely consistent with the
survey, although some instances of code scavenging were mentioned. For U, in
contrast to the survey, the interview data suggests application of code scavenging
(id=42), as well as some libraries (id=43) and framework-based reuse (id=44)
(see also question TRR2).

IP and RL: see TRR2
Comparison agreement: Question TRR2 (L4, never, always) addresses the

granularity of the reused artefacts. There is no common findings between the
cases.

Comparison differences: Complete libraries (id = 55) are of high relevance
in case G. In contrast, reuse in case U takes place on all levels of granularity,
however, none of the corresponding answer is statistically more relevant than
the other.

Interview data: -
Interpretation: Generally, G realizes reuse homogeneously on a higher ab-

straction level than U, where reuse is effected in a very heterogeneous way.
Furthermore, the selection for U indicates a conflict to the results of the in-
terviews and the responses of TRR1: reusing small code entities (snippets and
single classes) suggests the presence of code scavenging. However, it is possi-
ble that the respondents do not have a strong preference for any of the reuse
methods or do generally not reuse code as much (see RAF1).

Related literature: The realisation of reuse reported in case U aligns with the
findings of Fichman and Kemerer [22]: in a study with 15 software developing
teams, they found that reuse was prevalent on an informal, local, scope but
neglected on an inter-project, systematic, level. The authors identified as root
cause to the failure an incentive conflict with respect to team priorities such as
completing a project on time and on budget. The case of U, furthermore, also
confirms findings by Dubinski et al. [21]: in the absence of supporting technical
infrastructure and processes, developers resort to primitive reuse mechanisms

28

to model complex reuse approaches.
Work on Inner Source highlights the pivotal role of technical infrastruc-

ture for reuse, especially when effected in a loose and ad-hoc way [88]. Case
G confirms these findings: reuse is conducted in an informal and ad-hoc way.
However, supported by an advanced infrastructure (that required significant re-
sources and management commitment, confirming findings of, e.g., [67, 54]), a
viable company-wide development process, and suitable organizational incen-
tives, reuse takes place in a large scale and across project boundaries.

Summary of RQ1
Case G exhibits a homogeneous approach to reuse, progressing in an inner

source style that allows for ad-hoc and opportunity driven development. Case U
exhibits a very heterogeneous approach in which many different styles co-exist.
From this perspective, both companies reflect their development processes in
the way they effect reuse.

Both cases focus on code reuse (G in the form of libraries, U with no predom-
inant granularity). This entails that the large potential present in additional
development artefacts remains unleveraged. The frequent reuse of general pur-
pose functionality is confirmed.

Automated and tool-supported access to and retrieval of reusables is con-
sidered as key factor for effective reuse. In G, the impact of the infrastructure
clearly shows in the finding and retrieving actions of reuse. In U, their absence
restricts reuse to a local scope.

In both cases, the sources of reusables are mainly within the companies. The
reported reasons for this were business risks in terms of security or robustness
of the provider, as well as licensing aspects.

7.2. RQ2 — Comparing effects and context factors

The questions relevant for this RQ are reported in Table 3. The responses,
the comparison, and the statistical values are reported in Table 7.

Inhibitors (CHR1, Figure 7)
Comparison agreement: Question CHR1 (L4, never, always) reports disrupt-

ing factors to the reuse process. There is no statistically significant inhibitor of
high relevance. Respondents in both cases agree that Inconvenient granularity
of reusable artefact (id=60) does impact them.

Comparison differences: The ”not invented here” phenomenon (id=57) is
reported little and is rated as irrelevant in case U. Questions FAR3 and RED118

(both: L4, does not apply, strongly applies) indicate that difficulties in retrieving
and accessing artefacts significantly disrupt the reuse process in U.

Interview data: At G, participants report the perceived ease of creating
needed functionality from scratch over understanding existing solutions as in-
hibitor. Also, they mention the considerable (cognitive) effort involved in se-
lecting suitable candidates from a plethora of potential results.

18Due to differences in the questionnaires, some of the items present in CHR1 for case G
are contained in FAR3 and RED1 in case U. Therefore, we include them in this paragraph.

29

In U, the interviews disclose a further inhibitors to reuse: organizational
and technical separation of departments, as well as the absence of a thorough
global reuse strategy that takes into account different life cycle characteristics
of system parts. This leads to the creation of unsuitable artefacts19.

Interpretation and related literature: At G, the reported negative connota-
tion with the required cognitive effort for selection and adaptation could be seen
as a more subtle instance of the ”not invented here” (NIH) syndrome [28]. At
U, the difficulties in access across project boundaries are one of the main in-
hibitors to reuse, aligning with the observations of [21]. The lack of availability
of reusables provided by other parties could, potentially, explain the perceived
absence of NIH.

Difficulties due to reuse (CHR2, Figure 7)
Comparison agreement: Question CHR2 (L4, never, always) reports on dif-

ficulties encountered due to reuse. None of the presented options was of high
frequency with statistical significance, nor did the respondents highlight signif-
icant other issues. The only difficulty in common in both cases, but not in a
statistically significant way, is that of dependency explosion (id=67).

Comparison differences: In case G around one third of the respondents
reported ripple effects caused by changes in reused artefacts (id=70) and a de-
crease in code understandability (id=69) as negative consequences of reuse (no
statistical significance).

Interview data: In G, the complexity of the technical dependency structure
was considered a challenge, however mitigated by the infrastructure and offset
by the experienced gains. In U, participants mentioned a variety of harmful
dependencies that they linked to negative aspects of reuse: technical ones (e.g.
unstable interfaces, versioning dependencies), as well as organizational ones (e.g.
diverging release cycles, delays due to coordination efforts).

Interpretation: Difficulties around reuse arise on several levels ranging from
technical to organizational. In the context of organizational heterogeneity, non-
technical dependencies impose a variety of challenges that inhibit beneficial
reuse.

Related literature: Previous work suggests that additional rework due to
reuse might not be a significant overhead [83]. Also, organizational heterogeneity
is known as a challenge in the context of establishing development practices
exceeding the scope of separate organizational entities [88]. Our findings support
both of these suggestions.

Difficulties due to lack of reuse (CHR3, Figure 8)
Comparison agreement: Question CHR3 (L4, never, always) reports the

negative consequences due to the lack of reuse. Both cases report regular oc-
currences20 of inconsistencies (id=75), high maintenance effort (id=76), and

19Unsuitable, e.g., on the conceptual level by incompatible abstractions and decompositions
that increase the effort of reusing artefacts, but also on the business level, causing significant
investments in low-return artefacts and eroding management trust.

20Around 50% of the participants report these occurrences; however, they are not statisti-

30

increased development effort (id=77).
Comparison differences: The only factor of significant relevance in case G

is the occurrence of duplicate implementations (id=80). In U, no factor is of
statistical significance.

Interview data: The item duplicate implementations is missing in case U;
however, the interviews indicate multiple instances of this issue. In both cases,
unwanted redundancies were not yet tracked systematically (or tracked at all).

Interpretation: Both companies to some degree incur the typical drawbacks
associated with lack of reuse. However, the only aspect of significance is the
one of duplicate implementations (which, arguably, entails some of the other
drawbacks).

Related literature: Research has been addressing discovering and tracking
redundancies in the form of code clones [79, 60, 41] and re-implementations [56,
12, 13]. At this point, several industrial tools exist that support structural (as
opposed to semantic) detection approaches on an industrially viable scale [34].
Therefore, this issue might be mitigated within a reasonable timeframe.

Benefits (SBF1, Figure 8)
Comparison agreement: For question SBF1 (L4, never, always), there is no

statistically significant agreement.
Comparison differences: Only case G reports statistically significant high

occurrences of the benefits higher development pace (id=104) and less mainte-
nance effort (id=100).

Interview data: Participants in case G consider their reuse realisation as
beneficial, i.e. fulfilling the goals behind their reuse approach. In case U, par-
ticipants indicate that the aimed-for benefits of the given reuse strategy have
not yet materialized as expected.

Related literature & Interpretation: Generally, improved code quality is one
of the benefits associated with reuse [51, 65]. We could not directly confirm
this in our studies: In case G, participants already considered the produced
artefacts as high quality and, thus, would not attribute this characteristic to
reuse in particular. Instead, they considered their code quality as one of the
main enablers of reuse. On the other hand, for G, we can confirm the gain in
development speed [83, 54] and the decrease in maintenance effort [71].

In case U, the heterogeneity of development did not allow a clear assessment
of the quality of the reused code. With respect to development speed and
maintenance effort, our data provided no clear results.

Success factors (SBF4)
Comparison agreement: Question SBF4 was multiple choice in case G and

free text in case U. Therefore, we can not provide a comparison based on our
statistic test, but instead report the findings for each case separately.

Comparison differences: Respondents in case G report two statistically sig-
nificant relevant success factors: the high quality of artefacts (id=132) and sup-

cally significant.

31

porting infrastructure and tools (id=134)21. More than 50% of the respondents
also mentioned adequate abstractions (id=129) as success factor. The remaining
options (direct communication culture (id=130), suitable incentives (id=131),
well-defined process for reuse (id=133), stricter rules for dependency manage-
ment (id=135), homogeneous development culture (id=136)) for success factors
were reported as significant and low relevance22.

In the case U, the free text responses reflected a negative tendency. However,
we added the success factors from case G as potential improvements for case U
(question SFB3 — L4, unimportant, important). All but two of these factors
were reported as significant and high relevance by the respondents of case U.

Interview data: The interviews in G indicate that the accessibility of arte-
facts as well as the ”safety net” and immediate feedback provided by an ex-
tensive tool support increase the inclination to build on existing solutions. In
addition, automation is seen as the only feasible way to draw reusable artefacts
from a large code base. Last, the benefits were tangible to developers. This
further motivated them to reuse during development. In U, the interview par-
ticipants stress the negative effects of the heterogeneous development culture.
As a result, they saw the need for one or more reuse champions that lobby a
homogeneous development and reuse strategy across departments.

Interpretation: We consider this a noteworthy finding, as it indicates that
developers are more willing to trust existing artefacts if they can thoroughly
inspect and validate them, and they have faith in the process (and quality
assurance) by which those artefacts were created. In addition, the potential
improvements at U indicate the need for changes in the reuse and development
processes.

Related literature: Parts of these findings coincide with literature: Kruger [47]
considers abstraction the ”essential feature of any reuse technique” and stresses
the importance of an ”integration framework” for reuse. Joss [40] reports man-
agement support, education of engineers, suitable incentives, tool support23

as relevant success factors for introducing structured reuse. Several studies
(e.g. [67, 81]) suggest that, besides conceptual difficulties, the adoption of a reuse
approach is significantly driven or inhibited by the organisational commitment
towards the adoption process. Whilst in case G the most significant reported

21Since the difference between these two answers is only one response, we consider the
second item also as highly relevant.

22Note that the respective question in case G asks for the top 3 success factors, but this was
not enforced by the software. As a result, most participants selected only one or two options,
whilst others exceeded the number and selected up to four items. Since for this question none
of the other options approaches even moderate frequency, the ranking seems comparable to
the frequencies in U.

23It might be noteworthy to consider the differences in ”tool support” w.r.t. the drastic
advances of the technologies and paradigms used for programming and reuse. In a component
repository, as e.g. proposed by the REBOOT approach in the 1990s (see [43, 82]), this relates
to a basic protocol for repository and configuration management, whilst in today’s setting,
this refers to advanced code search and recommendation systems, central build and testing
infrastructure etc. (see e.g. [9])

32

success factors were of technical nature (indirectly enabled by the organization),
the results also align with [84], reporting the belief in benefits as motivator and
success factor for reuse. In case U, the most important improvements included
the mentioned organisational aspects. In terms of the definitions of reuse ma-
turity and ”good” reuse stated in the literature (see [25] for an exemplary reuse
maturity model), case G challenges conventional academic assumptions and sup-
ports reports of successful reuse through Inner Source (see [87]): Whilst reuse
is ingrained in the organisation, thorough planning and formal reuse assessment
are not. However, due to their trust in their code and engineering quality, as well
as their elaborate development support infrastructure, developers at G imple-
mented a beneficial version of opportunistic ad-hoc reuse that matches exactly
the company goals.

Summary of RQ2
For this research question, we found no statistically significant inhibitors or

negative effects. However, technical incompatibilities and organizational hetero-
geneity as well as dependencies were identified as factors challenging beneficial
reuse. Furthermore, participants in G report the challenge of identifying the
right reusables from a large number of candidates and adapting them to meet
current needs.

In terms of difficulties encountered due to lack of reuse, both cases agree on
occurrences of duplicate implementations.

In the homogeneous and tool-supported context of G, a significant increase in
development speed and a significant decrease of maintenance efforts are reported
as benefits of reuse. In U, these effects have not been observed.

In G, the quality of the reusables and the supporting infrastructure are seen
as clear success factors. Participants in U considered a tight network of personal
connections across departments and reuse champions as crucial preconditions
to successful reuse adoption.

8. Threats to Validity

When studying development practices in specific companies, it is very chal-
lenging to generalise results even to similar companies. Our study is not immune
to this threat to the external validity, however we provided a detailed contextu-
alisation of the two companies, which should serve as a framework for further
studies to compare findings with ours. In the long run, such a contextuali-
sation framework should help to provide a sensible generalisability of results.
Regarding the internal threats, we identify three main issues:

Self-selection bias: The participation in our studies was optional and might
have led to a biased selection of participants: in case G, most participants of
interviews and questionnaire displayed a favorable attitude towards reuse, so it
is possible that only engineers considering reuse as beneficial volunteered to take
part. In case U, on the contrary, a significant number of participants vented their
disappointment with the current state of reuse. In addition, the departments
that, during the interviews, appeared least concerned with improvements did

33

not participate at all in the questionnaire. To mitigate this threat, we attempted
to select our interview participants in both cases from as many departments and
as many different positions on reuse as possible.

Selection of participants: For each study, the participants of the interviews
were sampled by convenience through personal contact in the respective com-
pany. This might have introduced a bias in the results. To mitigate this threat,
we sampled the interview participants from different organizational units and
different roles. We could not control the selection of the questionnaire par-
ticipants. In case G, the respondents matched the expected distribution of
departments. In case U, several departments did not contribute.

Heterogeneity of sample: The sample of the participants of the two studies
differs in terms of the time spent at the respective company. This could poten-
tially influence the knowledge of reuse practices and, thus, bias the responses.
This sampling difference follows from two characteristics in which the studied
companies differ: age of the company (G < 20 years, U > 50 years) and turnover
of staff on projects (at G, developers moved between projects frequently, whilst
at U staying with the same products for more than 10 years was not uncom-
mon). However, we believe that this does not affect our findings: first, at G,
reuse practices are homogeneous and streamlined with the development pro-
cess. Newcomers are trained extensively to adhere to the given development
practices (including the reuse practices). Therefore, we are confident that our
participants at G were fully familiar with and aware of the reuse practices at
their company.

Limitations of research methods: Our interpretation of the answers from the
questionnaire at G rely on the assumption that non-selected items in multiple
choice questions are considered equivalent to rate those options as irrelevant or of
low usage. This assumption might not be completely true for questions in which
participants were asked to select up to three items. However, the exact number
of selected items was not software-enforced. As a result, respondents typically
selected between one and three items and sometimes exceeded the number and
selected four items or more. At U, the questionnaire design prevented this
complication.

Subjectivity in responses: When designing the questionnaires, we aimed to
capture the responses by means of precise measures. However, as we frequently
asked participants about their experiences (e.g. on the perceived maintenance
effort without reuse) and their agreement, we could not assume that they were
equipped with the necessary tooling to provide objective measurements as re-
sponses. As a result, we resorted to more abstract, yet subjective, answer op-
tions (e.g. high, medium, low). Whilst these can only provide a tendency, this
is a typical procedure for this kind of study (see, e.g., [54]) and, nevertheless,
captures the perceived benefits/drawbacks of reuse in the respective cases. We,
therefore, consider this aspect a minor threat to the validity of our conclusions.

Study design: As mentioned in Section 4, the study setup differs between
the two cases: in case G, interviews were conducted during the same phase as
the questionnaire. In case U, the interviews preceded the questionnaire. In this
way, we could focus the content of the questionnaire and reduce it in size. We

34

consider the change in design a minor threat to validity of our conclusions, as
we retained the questions needed for the comparison.

Timeliness of second study: Despite our best efforts, the studies could not
be conducted in a more narrow timeframe. However, we consider the impact
of this delay as minor for the following reasons: The company studied in the
first case is still developing in the same way (Inner Source), focusing on code
reuse and trying to compensate drawbacks of the approach by more elaborate
tool support. Since the company is stable and continuous in their approach, the
data is still accurate. Therefore, we assume that the comparison is valid from
this perspective.

9. Conclusion

In this study, we reported on the comparison of two in-depth case studies
on software reuse in industrial practice, integrating data from 138 professional
developers of two companies, G and U.

The comparison highlights that reuse in practice occurs pragmatically in
different flavours, however, mostly limited to source code. This largely confirms
the findings of previous research. The technological potential offered by state of
the art infrastructure has been partially embraced, rendering operational once
infeasible approaches, such as repositories as source for reusable entities.

Successful reuse is tightly coupled to the company goals and ingrained in the
development culture, also in terms of management and tool support. Perceived
business success of reuse seems more determined by coherence between culture
and approach than by the structuredness of the adopted approach.

In the homogeneous and coherent reuse setting, clear benefits for develop-
ment and maintenance are reported. These benefits did not materialize in the
heterogeneous setting.

Establishing any kind of systematic reuse in heterogeneous company and
development contexts poses significant challenges and requires structured deci-
sion support. Further work is needed to support companies in heterogeneous
contexts to identify and install the required preconditions of suitable reuse ap-
proaches.

Acknowledgements

The authors would like to thank all participants and supporters from the
companies for their support. Furthermore, thanks go to Maximilian Junker and
the anonymous reviewers for their valuable feedback on earlier versions of this
work. Parts of this work were funded by the Federal Ministry of Education and
Research, Germany (BMBF).

[1] A. Agresti. An introduction to categorical data analysis. Wiley, New York,
1996.

35

[2] C. Ayala, Ø. Hauge, R. Conradi, X. Franch, and J. Li. Selection of third
party software in off-the-shelf-based software development—an interview
study with industrial practitioners. Journal of Systems and Software,
84(4):620–637, 2011.

[3] R. D. Banker, R. J. Kauffman, and D. Zweig. Repository evaluation of
software reuse. Software Engineering, IEEE Transactions on, 19(4):379–
389, 1993.

[4] V. Basili, G. Caldiera, and H. Rombach. The experience factory. Encyclo-
pedia of software engineering, 1994.

[5] V. R. Basili, G. Caldiera, and H. D. Rombach. The goal question metric
approach. In Encyclopedia of Software Engineering. Wiley, 1994.

[6] L. Bass, P. Clements, S. Cohen, L. Northrop, and J. Withey. Product line
practice workshop report. Technical report, Software Engineering Institute,
1997.

[7] D. Batory and S. O’Malley. The design and implementation of hierarchi-
cal software systems with reusable components. ACM Trans. Softw. Eng.
Methodol., 1(4):355–398, Oct. 1992.

[8] V. Bauer. Challenges of structured reuse adoption — Lessons learned. In
Profes 2015, 2015.

[9] V. Bauer, J. Eckhardt, B. Hauptmann, and M. Klimek. An Exploratory
Study on Reuse at Google. In SER&IP’s 2014.

[10] V. Bauer and L. Heinemann. Understanding API Usage to Support In-
formed Decision Making in Software Maintenance. In CSMR 2012, 2012.

[11] V. Bauer, L. Heinemann, and F. Deissenboeck. A Structured Approach to
Assess Third-Party Library Usage. In ICSM’12, 2012.

[12] V. Bauer, T. Voelke, and E. Juergens. A novel approach to detect unin-
tentional re-implementations. In ICSME’14, 2014.

[13] V. Bauer, T. Völke, and S. Eder. Combining clone detection and latent
semantic indexing to detect reimplementations. In under review at SANER
2016, 2016.

[14] M. Bruch, M. Monperrus, and M. Mezini. Learning from examples to
improve code completion systems. In ESEC/SIGSOFT FSE, 2009.

[15] J. Businge, A. Serebrenik, and M. G. J. van den Brand. Eclipse API Usage:
The Good and The Bad. In Sixth International Workshop on Software
Quality and Maintainability, 2012.

[16] K. Charmaz. Constructing grounded theory: A practical guide through qual-
itative analysis. Pine Forge Press, 2006.

36

[17] J. R. Cordy. Comprehending Reality - Practical Barriers to Industrial
Adoption of Software Maintenance Automation. In Proceedings of the IEEE
11th International Workshop on Program Comprehension, 2003.

[18] D. Cruzes, T. Dyb̊a, P. Runeson, and M. Höst. Case studies synthesis: a
thematic, cross-case, and narrative synthesis worked example. Empirical
Software Engineering, pages 1–32, 2014.

[19] R. P. Dı́az. Status report: Software reusability. IEEE Software, 10(3):61–
66, 1993.

[20] J. Dinkelacker, P. Garg, D. Nelson, and R. Miller. Progressive Open Source.
In ICSE’ 02, 2002.

[21] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-
necki. An exploratory study of cloning in industrial software product lines.
In CSMR 2013, 2013.

[22] R. G. Fichman and C. F. Kemerer. Incentive compatibility and systematic
software reuse. The Journal of Systems and Software, 57:45–60, 2001.

[23] W. B. Frakes and C. J. Fox. Quality improvement using a software
reuse failure modes model. Software Engineering, IEEE Transactions on,
22(4):274–279, 1996.

[24] W. B. Frakes and K. Kang. Software reuse research: Status and future.
In IEEE Transactions on Software Engineering, volume 31, pages 529–536,
2005.

[25] V. C. Garcia, D. Lucrédio, A. Alvaro, E. S. De Almeida, R. P. de Mat-
tos Fortes, and S. R. de Lemos Meira. Towards a maturity model for a
reuse incremental adoption. In SBCARS, pages 61–74. Citeseer, 2007.

[26] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or why
it’s hard to build systems out of existing parts. In Proceedings of the 17th
International Conference on Software Engineering, ICSE ’95, pages 179–
185, New York, NY, USA, 1995. ACM.

[27] R. Goldman and R. P. Gabriel. Innovation happens elsewhere: Open source
as business strategy. Morgan Kaufmann, 2005.

[28] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories: Assem-
bling Applications with Patterns, Models, Frameworks, and Tools. Wiley,
2004.

[29] V. K. Gurbani, A. Garvert, and J. D. Herbsleb. A case study of a corporate
open source development model. In Proceedings of the 28th international
conference on Software engineering, pages 472–481. ACM, 2006.

37

[30] S. Hallsteinsen and M. Paci. Experiences in software evolution and reuse:
twelve real world projects, volume 1. Springer Science & Business Media,
1997.

[31] L. Heinemann. Facilitating reuse in model-based development with context-
dependent model element recommendations. In Recommendation Systems
for Software Engineering (RSSE), 2012 Third International Workshop on,
pages 16–20, June 2012.

[32] L. Heinemann, V. Bauer, M. Herrmannsdoerfer, and B. Hummel. Identifier-
based context-dependent api method recommendation. In CSMR’12, 2012.

[33] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and M. Irlbeck.
On the Extent and Nature of Software Reuse in Open Source Java Projects.
In ICSR’11, 2011.

[34] L. Heinemann, B. Hummel, and D. Steidl. Teamscale: Software quality
control in real-time. In Proceedings of the 36th ACM/IEEE International
Conference on Software Engineering (ICSE’14), 2014.

[35] S. Henninger. An evolutionary approach to constructing effective soft-
ware reuse repositories. ACM Transactions on Software Engineering and
Methodology (TOSEM), 6(2):111–140, 1997.

[36] R. Holmes and R. J. Walker. Systematizing Pragmatic Reuse Tasks. ACM
Trans. Softw. Eng. Methodol., 2012.

[37] J. Hopkins. Component primer. Communications of the ACM, 43(10):27–
30, 2000.

[38] D. Hristov, O. Hummel, M. Huq, and W. Janjic. Structuring software
reusability metrics for component-based software development. In Proceed-
ings of Int. Conference on Software Engineering Advances (ICSEA), 2012.

[39] O. Hummel and C. Atkinson. Using the web as a reuse repository. In Reuse
of Off-the-Shelf Components, pages 298–311. Springer, 2006.

[40] R. Joos. Software reuse at motorola. In IEEE Software, volume 11, 1994.

[41] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code clones
matter? In Proceedings of the 31st International Conference on Software
Engineering, pages 485–495. IEEE Computer Society, 2009.

[42] C. J. Kapser and M. W. Godfrey. “Cloning considered harmful” considered
harmful: patterns of cloning in software. Empirical Software Engineering,
2008.

[43] E.-A. Karlsson. Software reuse: a holistic approach. John Wiley & Sons,
Inc., 1995.

38

[44] I. Keivanloo, J. Rilling, and Y. Zou. Spotting working code examples. In
Proceedings of the 36th International Conference on Software Engineering,
pages 664–675. ACM, 2014.

[45] Y. Kim and E. A. Stohr. Software reuse: Issues and research directions. In
Twenty-Fifth Hawaii International Conference on System Sciences, 1992.

[46] H. Koziolek, T. Goldschmidt, T. de Gooijer, D. Domis, S. Sehestedt,
T. Gamer, and M. Aleksy. Assessing software product line potential: An
exploratory industrial case study. Empirical Software Engineering, 2015.

[47] C. Krueger. Software reuse. ACM Computing Surveys, 24(2):131–183, 1992.

[48] C. W. Krueger. Software product line reuse in practice. In Application-
Specific Systems and Software Engineering Technology, 2000. Proceedings.
3rd IEEE Symposium on, pages 117–118. IEEE, 2000.

[49] R. Land, D. Sundmark, F. Lueders, I. Krasteva, and A. Causevic. Reuse
with software components - a survey of industral state of practice. In
ICSR’09, 2009.

[50] B. M. Lange and T. G. Moher. Some strategies of reuse in an object-oriented
programming environment. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’89, pages 69–73, New York,
NY, USA, 1989. ACM.

[51] W. Lim. Effects of reuse on quality, productivity, and economics. IEEE
Software, 11(5):23–30, 2002.

[52] J. Llorens, J. Fuentes, R. Prieto-Diaz, and H. Astudillo. Incremental Soft-
ware Reuse. ICSR, 2006.

[53] M. Luckey, A. Baumann, D. Méndez, and S. Wagner. Reusing security
requirements using an extended quality model. In Proceedings of the 2010
ICSE Workshop on Software Engineering for Secure Systems, pages 1–7.
ACM, 2010.

[54] D. Lucrédio, K. dos Santos Brito, A. Alvaro, V. C. Garcia, E. S. de Almeida,
R. P. de Mattos Fortes, and S. L. Meira. Software reuse: The brazilian
industry scenario. Journal of Systems and Software, 81(6):996 – 1013,
2008. Agile Product Line Engineering.

[55] A. Lynex and P. J. Layzell. Organisational considerations for software
reuse. Annals of Software Engineering, 5:105–124, 1998.

[56] A. Marcus and J. I. Maletic. Identification of high-level concept clones in
source code. In ASE’01.

39

[57] Marcus A. Rothenberger and Kevin J. Dooley and Uday R. Kulkarni and
Nader Nada. Strategies for Software Reuse: A Principal Component Anal-
ysis of Reuse Practices. In IEEE Transactions on Software Engineering,
2003.

[58] M. McILROY. Mass produced soptware components. In NATO Software
Engineering Conference Report, 1968.

[59] C. McMillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang, and
B. Mobasher. Recommending source code for use in rapid software pro-
totypes. In ICSE, 2012.

[60] T. Mende, F. Beckwermert, R. Koschke, and G. Meier. Supporting the
grow-and-prune model in software product lines evolution using clone de-
tection. In CSMR 2008, 2008.

[61] Y. Mileva, V. Dallmeier, and A. Zeller. Mining API Popularity. In Test-
ing - Practice and Research Techniques, volume 6303 of Lecture Notes in
Computer Science, pages 173–180. Springer, 2010.

[62] A. Mili, R. Mili, and R. T. Mittermeir. A survey of software reuse libraries.
Annals of Software Engineering, 5:349–414, 1998.

[63] H. Mili, F. Mili, and A. Mili. Reusing software: Issues and research di-
rections. In IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
volume 21, 1995.

[64] R. T. Mittermeir and W. Rossak. Software bases and software archives:
alternatives to support software reuse. In Proceedings of the 1987 Fall Joint
Computer Conference on Exploring technology: today and tomorrow, pages
21–28. IEEE Computer Society Press, 1987.

[65] P. Mohagheghi and R. Conradi. Quality, productivity and economic ben-
efits of software reuse: a review of industrial studies. Empirical Software
Engineering, (12):471–516, 2007.

[66] P. Mohagheghi and R. Conradi. An empirical investigation of software reuse
benefits in a large telecom product. ACM Trans. Softw. Eng. Methodol.,
17(3):13:1–13:31, June 2008.

[67] M. Morisio, M. Ezran, and C. Tully. Success and failure factors in software
reuse. Software Engineering, IEEE Transactions on, 28(4):340–357, 2002.

[68] M. Morisio, C. B. Seaman, V. R. Basili, A. T. Parra, S. E. Kraft, and S. E.
Condon. Cots-based software development: Processes and open issues.
Journal of Systems and Software, 61(3):189–199, 2002.

[69] E. Murphy-Hill and G. C. Murphy. Recommendation Delivery. In Rec-
ommendation Systems in Software Engineering, chapter 9, pages 223–242.
Springer, 2014.

40

[70] I. Nordberg, M.E. Managing code ownership. Software, IEEE, 20(2):26–33,
Mar 2003.

[71] K. Pohl, G. Böckle, and F. J. van der Linden. Software product line engi-
neering: foundations, principles and techniques. Springer Science & Busi-
ness Media, 2005.

[72] S. Proksch, V. Bauer, and G. C. Murphy. How to build a recommenda-
tion system for software engineering. In Software Engineering, pages 1–42.
Springer, 2015.

[73] S. Raemaekers, A. van Deursen, and J. Visser. An analysis of dependence on
third-party libraries in open source and proprietary systems. In CSMR’12,
2012.

[74] S. Raemaekers, A. van Deursen, and J. Visser. Measuring software library
stability through historical version analysis. In SQM, 2012.

[75] H. Rehesaar. Capability assessment for introducing component reuse.
In ICSR’11 - Top Productivity through Software Reuse, pages 87–101.
Springer, 2011.

[76] D. C. Rine. Success factors for software reuse that are applicable across
domains and businesses. In Proceedings of the 1997 ACM symposium on
Applied computing, pages 182–186. ACM, 1997.

[77] M. Robillard, R. Walker, and T. Zimmermann. Recommendation systems
for software engineering. Software, IEEE, 27(4):80–86, 2010.

[78] M. B. Rosson and J. M. Carroll. The reuse of uses in smalltalk program-
ming. ACM Transactions on Computer-Human Interaction, 3:219–253,
1996.

[79] C. K. Roy and J. R. Cordy. A survey on software clone detection re-
search. SCHOOL OF COMPUTING TR 2007-541, QUEEN’S UNIVER-
SITY, 115, 2007.

[80] M. Shaw. Architectural issues in software reuse: It’s not just the function-
ality, it’s the packaging. In ACM SIGSOFT Software Engineering Notes,
volume 20, pages 3–6. ACM, 1995.

[81] K. Sherif and A. Vinze. Barriers to adoption of software reuse. a qualitative
study. Information and Management, 41:159–175, 2003.

[82] G. Sindre, R. Conradi, and E. Karlsson. The reboot approach to software
reuse. Journal of Systems and Software, 30(3):201–212, 1995.

[83] O. P. N. Slyngstad, A. Gupta, R. Conradi, P. Mohagheghi, H. Rønneberg,
and E. Landre. An empirical study of developers views on software reuse in
statoil asa. In ACM/IEEE international symposium on Empirical software
engineering, 2006.

41

[84] M. Sojer and J. Henkel. Code Reuse in Open Source Software Develop-
ment: Quantitative Evidence, Drivers, and Impediments. Journal of the
Association for Information Systems, 2010.

[85] W. Spoelstra, M. Iacob, and M. van Sinderen. Software reuse in agile
development organizations: a conceptual management tool. In SAC 2011,
2011.

[86] T. A. Standish. An essay on software reuse. Software Engineering, IEEE
Transactions on, (5):494–497, 1984.

[87] K.-J. Stol, P. Avgeriou, M. A. Babar, Y. Lucas, and B. Fitzgerald. Key
Factors for Adopting Inner Source. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 2014.

[88] K.-J. Stol and B. Fitzgerald. Inner Source – Adopting Open Source Devel-
opment Practices in Organizations: A Tutorial. In IEEE Software, 2015.

[89] J. W. Tukey. We need both exploratory and confirmatory. The American
Statistician, 34(1):23–25, 1980.

[90] T. Vale, I. Crnkovic, E. S. de Almeida, P. A. da Mota Silveira Neto, Y. C.
Cavalcanti, and S. R. de Lemos Meira. Twenty-eight years of component-
based software engineering. Journal of Systems and Software, 111:128 –
148, 2016.

[91] J. Varnell-Sarjeant, A. A. Andrews, and A. Stefik. Comparing reuse strate-
gies: An empirical evaluation of developer views. In COMPSACW 2014,
pages 498–503. IEEE, 2014.

[92] D. M. Weiss, P. Clements, K. Kang, and C. Krueger. Software product line
hall of fame. In Software Product Line Conference, 2006 10th International,
pages 237–237, Aug 2006.

42

10. Appendix

10.1. Interview guide

Table 4 presents an overview of the interview topics as well as sample ques-
tions from the interview guide.

10.2. Scale aggregations

Table 5 provides the details of how the aggregation of the Likert scales
was computed for each question. The column Question ID refers to the ID of
the questions. Scale U encodes the type of the Likert scale for the respective
question in the questionnaire of U. L4 encodes a four point scale; L5 encodes
a five point scale. Together with the scale code, we report the two boundary
values of each scale. The column aggregation shows how the aggregation of the
respective scale was computed: P1 to P4 (or P5, where applicable) encode the
possible options that could be selected. Their sum represents the aggregation
of the number of participants that selected the respective options. For instance,
for the question FAR1, we aggregated the number of participants that selected
option P1 or P2 in code Low (L) and the number of participants that selected
option P3 or P4 in code High (H). Next to the aggregation, we report the
semantic value of the aggregated value.

10.3. Result of comparison RQ 1 and RQ 2

Tables 6 and 7 report the results of the comparison for RQs 1 and 2. They
contain the following information:
Question ID refers to the code of the question in the questionnaire (for the
respective questions see Tables 2 and 3).
Response options lists the possible answers.
Answ low/high represent the count of participants that selected the low/high
end of the Likert-scale (case D) or marked a selection (case G) for the respective
item, according to the analysis methodology described in Section 5. This data
is reported to facilitate replication of the analysis by third parties.
Pval chi.square reports the p-value of the χ2 test.
Verdict expresses if the vote for the item tended to the low or the high cate-
gory. Blank fields in the tables represent information that was missing in the
respective questionnaire.

43

Table 4: Interview guide: topics and sample questions for cases G and U
Interview topics
Economic, social, conceptual, and technical aspects of reuse

What are current goals of reuse? Where do you see potential?
Are there current issues? If yes, which?
Is there need for support? If yes, which? (Tools, processes, SE practices, ...)

Reuse assessment
When do you consider reuse as successful? Generally (fulfilling company goals)? From your
specific perspective?
How do you assess the success of reuse, the fulfilment of reuse goals?
How do you decide on how reuse should be done?
How do you proceed to implement the selected way of reuse? Steps? Support?
In which phases do you expect/target reuse benefits? In which form should benefits occur?
Which business goals do you aim to support with (internal/external) reuse?
What are the current product goals and requirements?
In which way is reuse currently effected?
What kind of reuse do you aim for?
What are preconditions/requirements/challenges on the process/conceptual/technical/organ-
isational/communication levels?

Experiences with current reuse
What works currently in terms of reuse? Why?
What did not work wrt. reuse so far? Why?
What were the biggest mistakes committed wrt. reuse?
How can these mistakes be mitigated/corrected?

Planning and conflicts of interest
Reuse as a source of conflict within company, local vs. global optimization
How is reuse planning done locally (department/team/group) and globally (company-wide)?
Balance of resources between products and basis?
What is harder: providing or maintaining reusable entities?
What do you consider essential for a professional stance wrt. reuse?
How do you address reuse and evolution of entities?
How important is tool support? For which parts of the process?

Product line adoption
Starting points, goals, trigger for decision
Process, issues and challenges: on which level? How addressed?
Successful? How could success be validated?
Which methods/strategies were effective? What would you do differently next time?

Product line evolution
Challenges? Key points? Success criteria and factors?
What (in terms of content) should be in the platform? In initial phase? In further evolution?
How do you proceed to coordinate the different stakeholders? Requirements engineering?
Sources of requirements for platform? Process? How are requirements persisted? How is a
decision reached?
Reference architectures: relevant? present? in which shape? Are deviations acceptable?
What needs to happen to achieve the acceptance and use of an internal framework? How is
knowledge transferred?
How do you proceed with a common platform? What about governance, guarantees, compen-
sations? Resources?

Development context
How important is homogeneity of process, tool infrastructure, quality assurance, goals?

Reuse from external sources
How important is the provenance of reused code? Security? Certification? Accountability,
liability? Type of usage?
How do you procure/inspect/maintain (clone-and-own/external/central)? Who is responsible,
has an overview, assesses external entities and their usage? Are there rules/limitations for the
use of external entities?

Improvements
What is your most important wish for improvement wrt. reuse?

44

Table 5: Scale aggregations for questionnaire U. Question ID refers to the respective question,
Scale U relates the type of the scale (L4 for a 4 point Likert scale, L5 for a 5 point Likert
scale) and reports the extreme values of the given scale. Aggregation illustrates how, for the
given scale, the values were aggregated in the categories Low and High. P<n> denotes the
number of responses at the given point of the Likert scale.

Question
ID

Scale U Aggregation

Low High
Extent of code reuse (ECR)
ECR2 L5, no use, always use P1: no use P2+P3+P4+P5: use
ECR3 L5, no use, always use P1: no use P2+P3+P4+P5: use
Finding artefacts (FAR)
FAR1 L4, never, always P1+P2: irrelevant, low

usage
P3+P4: regular, high us-
age

Reused artefacts (RAF)
RAF1 L4, never, always P1+P2: irrelevant, low

usage
P3+P4: regular, high us-
age

RAF2 L4, never, always P1+P2: low usage P3+P4: high usage
Technical realization of reuse (TRR)
TRR1 L4, does not apply, strongly

applies
P1+P2: irrelevant, low
usage

P3+P4: regular, high us-
age

TRR2 L4, does not apply, strongly
applies

P1+P2: irrelevant, low
frequency

P3+P4: regular, high
frequency

Challenges, effects, and context factors of reuse (CHR)
CHR1 L4, never, always P1+P2: never, occasion-

ally
P3+P4: regularly, al-
ways

CHR2 L4, never, always P1+P2: never, occasion-
ally

P3+P4: regularly, al-
ways

CHR3 L4, never, always P1+P2: never, occasion-
ally

P3+P4: regularly, al-
ways

Success factors and benefits (SFB)
SFB1 L4, never, always P1+P2: never, occasion-

ally
P3+P4: regularly, al-
ways

SFB3 L4, unimportant, important P1+P2: unimportant,
slightly important

P3+P4: important, very
important

SFB4 free text —
Reuse in everyday development practice (RED)
RED1 L4, does not apply, strongly

applies
P1+P2: does not apply,
applies slightly

P3+P4: applies,
strongly applies

RED4 L4, does not apply, strongly
applies

P1+P2: does not apply,
applies slightly

P3+P4: applies,
strongly applies

Finding artefacts (FAR)
FAR3 L4, does not apply, strongly

applies
P1+P2: does not apply,
applies slightly

P3+P4: applies,
strongly applies

45

Table 6: Responses and values relevant for RQ1

Q
u
e
st

io
n

ID

R
e
sp

o
n
se

o
p
ti

o
n
s

U
a
n
sw

lo
w

U
a
n
sw

h
ig

h

U
p
v
a
l

ch
i.
sq

u
a
re

U
v
e
rd

ic
t

G
a
n
sw

lo
w

G
a
n
sw

h
ig

h

G
p
v
a
l

ch
i.
sq

u
a
re

G
v
e
rd

ic
t

1 ECR2 Serialization (e.g. XML). 14 38 <0.001HIGH 17 19 0.74 -
2 ECR2 Networking. 19 35 0.03 HIGH 19 17 0.74 -
3 ECR2 Persistency. 16 37 <0.001HIGH 19 17 0.74 -
4 ECR2 Visualization/GUI. 11 44 <0.001HIGH 24 12 0.05 LOW
5 ECR2 Architecture (e.g. rich client, plugin). 16 38 <0.001HIGH 21 15 0.32 -
6 ECR2 Algorithms 18 38 0.01 HIGH NA NA NA NA
7 ECR2 User Interfaces 17 38 0.01 HIGH NA NA NA NA
8 ECR2 General utility. NA NA NA NA 12 24 0.05 HIGH
9 ECR3 Domain-independent general functionality. 9 46 <0.001HIGH 8 27 <0.001HIGH
10 ECR3 Domain-specific functionality. 24 33 0.23 - 17 18 0.87 -
11 ECR3 Product-specific functionality. 23 33 0.18 - 26 9 <0.001LOW
12 FAR1 Web search. 27 32 0.52 - 20 19 0.87 -
13 FAR1 Browsing repositories. 46 12 <0.001LOW 23 16 0.26 -
14 FAR1 Communicating with colleagues. 17 43 <0.001HIGH 14 25 0.08 -
15 FAR1 Code search tools. 52 6 <0.001LOW 9 30 <0.001HIGH
16 FAR1 Code recommenders. 58 1 <0.001LOW 38 1 <0.001LOW
17 FAR1 Browsing documentation. 50 11 <0.001LOW 30 9 <0.001LOW
18 FAR1 Tutorials. 50 8 <0.001LOW 38 1 <0.001LOW
19 FAR1 Other 2 0 0.16 - 36 3 <0.001LOW
20 FAR1 Code completion. NA NA NA NA 37 2 <0.001LOW
21 RAF1 System tests 44 14 <0.001LOW NA NA NA NA
22 RAF1 Unit-Tests 41 18 <0.001LOW NA NA NA NA
23 RAF1 Personas 50 7 <0.001LOW NA NA NA NA
24 RAF1 Code in binary form 36 18 0.01 LOW 26 12 0.02 LOW
25 RAF1 Source code 30 29 0.90 - 1 37 <0.001HIGH
26 RAF1 Informal design models (Box and lines, natural

language)
42 12 <0.001LOW 36 2 <0.001LOW

27 RAF1 Semiformal design models (UML) 52 4 <0.001LOW 38 0 <0.001LOW
28 RAF1 Formal design models 45 9 <0.001LOW 38 0 <0.001LOW
29 RAF1 Own, domain specific design models 44 13 <0.001LOW 36 2 <0.001LOW
30 RAF1 Requirement documentation / Use cases 44 16 <0.001LOW 33 5 <0.001LOW
31 RAF1 Architecture documentation 45 11 <0.001LOW 33 5 <0.001LOW
32 RAF1 Prototypes 51 8 <0.001LOW 36 2 <0.001LOW
33 RAF1 UI Designs 38 21 0.03 LOW 28 10 <0.001LOW
34 RAF1 Style guides 28 30 0.79 - 27 11 0.01 LOW
35 RAF1 Other 2 0 0.16 - 38 0 <0.001LOW
36 RAF2 Developer Portals. 39 22 0.03 LOW 25 14 0.08 -
37 RAF2 Internal repositories. 43 17 <0.001LOW 5 34 <0.001HIGH
38 RAF2 Commercial repositories 51 7 <0.001LOW NA NA NA NA
39 RAF2 Colleagues own department. 26 36 0.20 - NA NA NA NA
40 RAF2 Colleagues. 42 19 <0.001LOW 24 15 0.15 -
41 RAF2 Open Source Repositories. 50 11 <0.001LOW 25 14 0.08 -
42 TRR1Code scavenging (copy, paste, modify). 47 10 <0.001LOW 24 12 0.05 LOW
43 TRR1Software libraries. 37 21 0.04 LOW 4 32 <0.001HIGH
44 TRR1Software frameworks. 36 19 0.02 LOW 17 19 0.74 -
45 TRR1Component-based development. 38 18 0.01 LOW 28 8 <0.001LOW
46 TRR1Design patterns. 48 9 <0.001LOW 23 13 0.10 -
47 TRR1Architecture reuse. 47 9 <0.001LOW 31 5 <0.001LOW
48 TRR1Product lines. 51 3 <0.001LOW 35 1 <0.001LOW
49 TRR1Application generators. 51 3 <0.001LOW 35 1 <0.001LOW
50 TRR1Code generators 50 6 <0.001LOW NA NA NA NA
51 TRR1None. NA NA NA NA 36 0 <0.001LOW
52 TRR2small code sections. 28 27 0.89 - 29 8 <0.001LOW
53 TRR2fine-grained, such as single methods/functions. 24 29 0.49 - 26 11 0.01 LOW
54 TRR2one or more classes. 27 26 0.89 - 19 18 0.87 -
55 TRR2complete libraries. 27 28 0.89 - 6 31 <0.001HIGH
56 TRR2coarse-grained, such as entire frameworks. 34 21 0.08 - 24 13 0.07 -

46

Table 7: This table contains the responses relevant for RQ2

Q
u
e
st

io
n

ID

R
e
sp

o
n
se

o
p
ti

o
n
s

U
a
n
sw

lo
w

U
a
n
sw

h
ig

h

U
p
v
a
l

ch
i.
sq

u
a
re

U
v
e
rd

ic
t

G
a
n
sw

lo
w

G
a
n
sw

h
ig

h

G
p
v
a
l

ch
i.
sq

u
a
re

G
v
e
rd

ic
t

57 CHR1”Not invented here” phenomenon. 39 18 0.01 LOW 21 11 0.08 -
58 CHR1Licensing/legal issues. 49 12 <0.001LOW 18 14 0.48 -
59 CHR1Difficulty of adapting artefact to project needs. 33 29 0.61 - 15 17 0.72 -
60 CHR1Inconvenient granularity of reusable artefacts. 41 21 0.01 LOW 25 7 <0.001LOW
61 CHR1Process for clearance of external artefacts is too

slow.
33 25 0.29 - Interview data

62 CHR1Coordination effort with other departments. 30 32 0.80 - Interview data
63 CHR1Other. 3 6 0.32 - 27 5 <0.001LOW
64 CHR1Finding the right artefacts is difficult. See FAR3 and RED1. 14 18 0.48 -
65 CHR1Accessing the artefact is difficult. See FAR3 and RED1. 30 2 <0.001LOW
66 CHR2Loss of control. 46 14 <0.001LOW 22 9 0.02 LOW
67 CHR2Dependency explosion. 35 27 0.31 - 15 16 0.86 -
68 CHR2Performance decay. 43 18 <0.001LOW 27 4 <0.001LOW
69 CHR2Decrease of code understandability. 50 10 <0.001LOW 20 11 0.11 -
70 CHR2Ripple effects caused by changes in reused arte-

facts.
44 17 <0.001LOW 19 12 0.21 -

71 CHR2Code becomes unchangeable. 44 17 <0.001LOW 28 3 <0.001LOW
72 CHR2Excessive restriction of the solution space. 47 13 <0.001LOW Interview data
73 CHR2No. NA NA NA NA 23 8 0.01 LOW
74 CHR2Other. 3 2 0.66 - 30 1 <0.001LOW
75 CHR3Inconsistencies. 32 29 0.70 - 17 16 0.86 -
76 CHR3High maintenance effort. 30 31 0.90 - 18 15 0.60 -
77 CHR3Increased development effort. 34 27 0.37 - 12 21 0.12 -
78 CHR3High testing load. 29 32 0.70 - 23 10 0.02 LOW
79 CHR3Lower code quality. 43 16 <0.001LOW
80 CHR3Duplicate implementations. Interview data 9 24 0.01 HIGH
81 FAR3 I can readily read the source code available within

the company.
45 14 <0.001LOW Interview data

82 FAR3 I can effect required changes independently. 44 14 <0.001LOW Interview data
83 FAR3 The integration of existing code requires little ef-

fort from my side.
42 14 <0.001LOW Interview data

84 FAR3 The original developer of reused code is responsi-
ble for maintaining it.

14 44 <0.001HIGH Interview data

85 RED1 The quality of artefacts is acceptable for reuse. 34 28 0.45 - Interview data
86 RED1 Reusable assets are classified in a comprehensive

way.
55 6 <0.001LOW Interview data

87 RED1 In everyday work I attempt to reuse artefacts. 5 58 <0.001HIGH Interview data
88 RED1 When I want to reuse an artefact, it already exists

in the company.
48 14 <0.001LOW Interview data

89 RED1 Reusable assets are accessible with acceptable ef-
fort.

44 19 <0.001LOW Interview data

90 RED1 Existing artefacts are found easily. 54 9 <0.001LOW Interview data
91 RED1 Existing artefacts are understandable. 39 22 0.03 LOW Interview data
92 RED1 Existing artefacts match the required functional-

ity.
42 21 0.01 LOW Interview data

93 RED1 Functionally matching artefacts can be integrated
with ease.

42 21 0.01 LOW Interview data

94 RED4 Reuse is the responsibility of individual develop-
ers.

11 51 <0.001HIGH Interview data

95 RED4 Planning for reuse happens in a grassroots fash-
ion.

20 42 0.01 HIGH Interview data

96 RED4 Reuse is initiated and coordinated by a small
group of people.

34 28 0.45 - Interview data

97 RED4 Providing reusable assets is a shared initiative. 46 18 <0.001LOW Interview data
98 RED4 Dedicated personal is assigned to provide reusable

assets.
41 23 0.02 LOW Interview data

99 RED4 Development and provision of reusable artefacts is
coordinated across departments and departments.

51 13 <0.001LOW Interview data

47

Table 7: This table contains the responses relevant for RQ2 — continued from previous page

Q
u
e
st

io
n

ID

R
e
sp

o
n
se

o
p
ti

o
n
s

U
a
n
sw

lo
w

U
a
n
sw

h
ig

h

U
p
v
a
l

ch
i.
sq

u
a
re

U
v
e
rd

ic
t

G
a
n
sw

lo
w

G
a
n
sw

h
ig

h

G
p
v
a
l

ch
i.
sq

u
a
re

G
v
e
rd

ic
t

100 SFB1 Less maintenance effort. 33 26 0.36 - 10 22 0.03 HIGH
101 SFB1 Higher consistency. 31 29 0.80 - 20 12 0.16 -
102 SFB1 New functionality is made available. 38 22 0.04 LOW 19 13 0.29 -
103 SFB1 Higher code quality. 37 23 0.07 - 17 15 0.72 -
104 SFB1 Higher development pace. 36 24 0.12 - 3 29 <0.001HIGH
105 SFB1 Regular bug fixes. NA NA NA NA 21 11 0.08 -
106 SFB1 None. NA NA NA NA 32 0 <0.001LOW
107 SFB1 Other. 2 2 1 - 32 0 <0.001LOW
108 SFB3 Suitable abstractions. 14 46 <0.001HIGH see SBF4.
109 SFB3 Direct communication culture. 9 51 <0.001HIGH see SBF4.
110 SFB3 Suitable incentives. 19 41 0.01 HIGH see SBF4.
111 SFB3 Higher quality of artefacts. 5 57 <0.001HIGH see SBF4.
112 SFB3 Well-defined process for reuse. 14 47 <0.001HIGH see SBF4.
113 SFB3 Supporting infrastructure and tools. 9 53 <0.001HIGH see SBF4.
114 SFB3 Stricter rules for dependency management. 16 43 <0.001HIGH 23 6 <0.001LOW
115 SFB3 Homogeneous development culture. 17 44 <0.001HIGH see SBF4.
116 SFB3 None of the above. NA NA NA NA 27 2 <0.001LOW
117 SFB3 Other. 2 4 0.41 - 25 4 <0.001LOW
118 SFB3 Clear strategic decisions for interface support. 7 54 0 HIGH 21 8 0.02 LOW
119 SFB3 Introduce maturity levels for reused artefacts. 22 40 0.02 HIGH 24 5 <0.001LOW
120 SFB3 Bundle code more coherently in terms of function-

ality, e.g. into dedicated libraries.
21 40 0.02 HIGH 17 12 0.35 -

121 SFB3 Split libraries to provide more specific functional-
ity.

25 35 0.2 - 18 11 0.19 -

122 SFB3 Merge libraries to ease the discovery of already
implemented functionality.

NA NA NA NA 23 6 <0.001LOW

123 SFB3 List available artefacts in a ”marketplace” to ease
the discovery of useful functionality.

9 54 0 HIGH 16 13 0.58 -

124 SFB3 Announce the release of new artefacts. 8 55 0 HIGH 25 4 <0.001LOW
125 SFB3 Developers could broadcast requests for specific

functionality.
10 50 0 HIGH 28 1 <0.001LOW

126 SFB3 Existing code could be consolidated and prepared
for reuse.

16 46 0 HIGH 23 6 <0.001LOW

127 SFB3 Structured and company-wide requirements engi-
neering.

14 49 0 HIGH Interview data

128 SFB3 Focus on usefulness for the respective customer. 22 39 0.03 HIGH NA NA NA NA
129 SFB4 Adequate abstractions. Free text 13 18 0.37 -
130 SFB4 Direct communication culture. Free text 25 6 <0.001LOW
131 SFB4 Suitable incentives. Free text 29 2 <0.001LOW
132 SFB4 High quality of artefacts. Free text 10 21 0.05 HIGH
133 SFB4 Well defined reuse process. Free text 25 6 <0.001LOW
134 SFB4 Supporting infrastructure and tools. Free text 11 20 0.11 -
135 SFB4 Dependency management. Free text 21 10 0.05 LOW
136 SFB4 Homogeneous development culture. Free text 21 10 0.05 LOW
137 SFB4 Other. Free text 29 2 <0.001LOW

48

10.4. Questionnaires

This part of the appendix presents the two original questionnaires as dis-
tributed to the participants of the studies at G and U. The questionnaire at
G was rolled out in English, the one at U in German. The questions used for
the comparison are translated to English in the paper and the respective data
tables.

10.4.1. Questionnaire for study at G

The questionnaire has been redacted to remove sensitive information and
comply with the disclosure policy of the company.

49

8/19/2014 Assessing reuse in the software industry

1/2

Assessing reuse in the software industry

Welcome to our survey on reuse in the software industry!

Reuse of development artefacts has become an important aspect in
large-­scale software development. Many studies have assessed
different aspects of reuse in open-­source projects. Data on reuse in
industrial context, however, is scarce.

With your help, we aim to collect information about a wide range of
aspects of reuse in industrial software development. We want to
better understand current strategies and issues related to reuse in
the industrial context. Based on these results, we aim to focus our
research on aspects of reuse relevant in industry.

The questions address topics in company-­wide reuse management,
as well as project-­specific details. If you currently work on more than
one project, please answer the questions for the project you are
mainly working on.

The survey is anonymous. The participating researchers are under
NDA. Any information drawn from this study is subject to clearance
by Google before publication.

Should you have any questions regarding this survey, do not hesitate
to contact us via mail:
Contact Technical University Munich: bauerv@in.tum.de
Contact Google: klimek@google.com

Thank you for participating in our survey!

Weiter »

50

8/19/2014 Assessing reuse in the software industry

2

Assessing reuse in the software industry

Some facts about you

Please indicate your current role.
Engineer (development).

Engineer (maintenance).

Technical lead.

Product manager.

Technical program manager.

Which product area are you currently working in?

How many years of experience do you have in your current role?
Including equivalent roles at other companies.

< 1 year.

1 year to 4 years.

5 years to 10 years.

11 years to 15 years.

15 years to 20 years.

> 20 years.

For how many years have you been working for your current company?
< 1 year.

1 year to 3 years.

4 years to 6 years.

6 years to 10 years.

> 10 years.

Please indicate your

51

8/19/2014 Assessing reuse in the software industry

On average, how long have you been on your project(s)?
< 1 year.

1 year to 3 years.

4 years to 10 years.

> 10 years.

If you currently develop software, which of the following programming languages are you
using on a regular basis?

Java

C/C++

C#

Python

Ruby

Php

Scala

JavaScript

Go

Haskell

Sonstiges:

Please indicate the country you are currently working in.

« Zurück Weiter »

Powered by Google Docs

Missbrauch melden -­ Nutzungsbedingungen -­ Zusätzliche Bestimmungen

52

8/19/2014 Assessing reuse in the software industry

Assessing reuse in the software industry

Legal aspects of reuse

Which of the following statements do you believe reflects best legal aspects of reuse in your
projects?

Reuse of third-­party artefacts always has to be approved.

Legal aspects of reuse are very carefully monitored.

Legal aspects of reuse are considered.

Legal aspects of reuse are ignored.

Legal aspects of reuse are not relevant, because we reuse internal artefacts only.

None of the above.

I don't know.

Who do you believe to be in charge to ensure compliance with legal regulations of reuse?
The project manager.

The developer.

There is a dedicated person/department surveilling compliance.

I don't know.

Sonstiges:

« Zurück Weiter »

Powered by Google Docs

Missbrauch melden -­ Nutzungsbedingungen -­ Zusätzliche Bestimmungen

53

8/19/2014 Assessing reuse in the software industry

Assessing reuse in the software industry

Reuse strategies and artefacts

Reuse strategies

For which types of projects do you employ strategical reuse?
Strategical reuse implies that reuse is driven by specific organizational goals. Usually guidelines or
policies describe which reuse is adequate for a given situation.

We generally follow strategical reuse.

For prototype development.

For product development.

For internal tool development.

We do not follow a specific strategy for reuse.

For which types of projects do you employ ad-­hoc reuse?
Ad-­hoc reuse means that developers are allowed to reuse any available artefact which seems suitable
for the task at hand.

We generally follow ad-­hoc reuse.

For prototype development.

For product development.

For internal tool development.

We do not follow a specific strategy for reuse.

Reused artefacts

Which artefacts are you encouraged to reuse?
Binaries.

Source code.

Informal design models (Box and lines, natural language).

Standardized semiformal design models (e.g. UML).

Formal design models.

Own, domain specific design models.

54

8/19/2014 Assessing reuse in the software industry

2

Requirement documentation / Use cases.

Architecture documentation.

Prototypes.

UI Designs.

Style guides.

Sonstiges:

Which are the top-­three types of artefacts you reuse?
Code in binary form

Source code

Informal design models (Box and lines, natural language)

Semiformal design models (UML)

Formal design models

Own, domain specific design models

Requirement documentation / Use cases

Architecture documentation

Prototypes

UI Designs

Style guides

Sonstiges:

« Zurück Weiter »

Powered by Google Docs

Missbrauch melden -­ Nutzungsbedingungen -­ Zusätzliche Bestimmungen

55

8/19/2014 Assessing reuse in the software industry

Assessing reuse in the software industry

Sources for reusable artefacts

What are your top-­three ways to search for reusable artefacts?
Web search.

Browsing repositories.

Communicating with colleagues.

Code search tools.

Code recommenders.

Code completion.

Browsing documentation.

Tutorials.

Sonstiges:

What are your standard sources for reusable artefacts?
Sourceforge.

Maven.

GitHub.

Stackoverflow.

Internal repositories.

Colleagues.

Sonstiges:

What do you do to properly understand and adequately select reusable artefacts?
I read guidelines.

I review interface documentation.

I review implementations.

I participate in trainings for third-­party technologies/artefacts.

I explore third-­party products.

I look for example usages on blogs and tutorials.

Nothing.

Sonstiges:

« Zurück Weiter »

Powered by Google Docs

56

8/19/2014 Assessing reuse in the software industry

Assessing reuse in the software industry

Extent of code reuse

How many different third-­party libraries and frameworks have you introduced your project?
Third-­party refers to artefact producers outside your company.

None.

1-­2

3-­4

more than 5.

The last time you wanted to migrate away from an artefact, how difficult was it?
1 -­ minor impact, linking with a new library was be sufficient.

2

3

4 -­ high impact, migrating away was (nearly) impossible.

0 -­ have never done it.

The last time you reused an artefact, how complex was it?
1 -­ very simple, e.g. logging functionality.

2

3

4

5 -­ very complex, e.g. mathematical algorithm library.

What type of functionality do you reuse?
Serialization (e.g. XML).

Networking.

Persistency.

Visualization/GUI.

Architecture (e.g. rich client, plugin).

General utility.

None.

Sonstiges:

What is the scope of the reused artefacts?
Domain-­independent general functionality.

Domain-­specific functionality.

57

8/19/2014 Assessing reuse in the software industry

Product-­specific functionality.

Sonstiges:

Which of the following possibilities of reuse do you employ most? Please indicate the top
three.

Code scavenging (copy, paste, modify).

Software libraries.

Software frameworks.

Component-­based development.

Design patterns.

Architecture reuse.

Product lines.

Application generators.

None.

Sonstiges:

What granularities do the reused entities typically have?
fine-­grained, such as single methods/functions.

small code sections.

one or more classes.

complete libraries.

coarse-­grained, such as entire frameworks.

Sonstiges:

« Zurück Weiter »

Powered by Google Docs

Missbrauch melden -­ Nutzungsbedingungen -­ Zusätzliche Bestimmungen

58

10.4.2. Questionnaire for study at U

The questionnaire has been redacted to remove sensitive information and
comply with the disclosure policy of the company.

59

Druckversion

Fragebogen

1 Willkommen

Herzlich Willkommen zu unserer Umfrage zur "Wiederverwendung in der Software-Entwicklung"!

Mit diesem Fragebogen möchten wir die Informationen aus bereits in geführten Interviews mit Ihrer Hilfe auf eine breitere Basis stellen.

Unser Ziel ist es, ein besseres Verständnis für die aktuellen Strategien und Probleme in punkto Wiederverwendung in zu erhalten. Die Informationen dienen somit dazu, ein besseres Bild über die
vorhandenen Prozesse zu bekommen und diese zu verbessern.

Unsere Fragen adressieren sowohl Themen des unternehmensweiten Wiederverwendungsmanagements, als auch abteilungsspezifische Details.

Die Umfrage dauert ca. 30 Minuten und ist anonym. Ergebnisse werden nur in aggregierter Form erhoben. Alle Informationen, die mittels dieser Studie gewonnen werden, unterliegen vor Veröffentlichung
einer Überprüfung und Freigabe durch

Bei Fragen zu dieser Umfrage kontaktieren Sie uns gerne per Email:
Kontakt Technische Universität München: Veronika Bauer
Kontakt

Vielen Dank für Ihre Teilnahme!

2 Persönliche Daten

Persönliche Angaben

In diesem Abschnitt des Fragebogens erheben wir einige Daten zu Ihrer Person und Ihrer Rolle in
In welcher bteilung arbeiten Sie aktuell?

Bitte wählen Sie Ihren fachlichen Schwerpunkt aus:

Entwicklung
Architektur
UX-Design
Management

Bitte wählen Sie Ihre Rolle aus:

Mitarbeiter

Führungskraft

Wieviele Jahre Berufserfahrung haben Sie in Ihrer aktuellen Tätigkeit?

< 5 Jahre 5 - 10 Jahre 11 - 15 Jahre 16 - 20 Jahre 21 - 25 Jahre > 25 Jahre.

Seit wievielen Jahren arbeiten Sie für

< 5 Jahre 5 - 10 Jahre 11 - 15 Jahre 16 - 20 Jahre 21 - 25 Jahre > 25 Jahre.

Falls Sie zurzeit Software entwickeln, welche der folgenden Programmiersprachen benutzen Sie regelmäßig?

Nie Gelegentlich Regelmäßig Ständig

Java

C

C#

Php

JavaScript

C++

SQL

Sonstiges

3 Wiederverwendung im Berufsalltag

Im Folgenden wird der Begriff Artefakt für Ergebnisse des Entwicklungsprozesses benutzt, z B. Quellcode, Anforderungsdokumente oder Dokumentation.
Wie sehr treffen folgende Aussagen auf Ihre Erfahrung mit Wiederverwendung im Alltag zu?

Trifft nicht
zu. Trifft stark

zu.

Im Alltag versuche ich Wiederverwendung zu betreiben.

Wenn ich etwas wiederverwenden möchte, existiert das benötigte Artefakt
schon in

In vorhandene Artefakte kann ich mit vertretbarem Aufwand für
die Nutzung in meinem Projekt bekommen.

Es ist einfach, vorhandene Artefakte zu finden.

Die vorhandenen Artefakte sind gut zu verstehen.

Die vorhandenen Artefakte erfüllen die von mir gesuchte Funktionalität.

Die funktional passenden Artefakte können einfach integriert werden.

Die Qualität der Artefakte ist gut genug für die Wiederverwendung.

Die vorhandenen und wiederverwendbaren Artefakte sind verständlich
kategorisiert.

Aus welchen Gründen betreiben Sie Wiederverwendung?

Welche Ziele werden Ihnen bezüglich Wiederverwendung vorgegeben?

60

Wie stark treffen folgende Aussagen auf die Umsetzung der Wiederverwendung in Ihrer Organisationseinheit zu?

Wiederverwendung involviert viele organisatorische Ebenen. Mit dieser Frage möchten wir ausloten, auf welchen Ebenen das Thema in eine Rolle spielt.

Trifft nicht
zu. Trifft stark

zu.

Wiederverwendung wird individuell von den Entwicklern betrieben.

Die Koordination von Wiederverwendung findet auf inoffiziellem Weg statt.

Ein kleinerer Personenkreis initiiert und koordiniert Wiederverwendung.

Die Bereitstellung von wiederverwendbaren Artefakten ist eine
gemeinschaftliche Initiative.

Es gibt designierte Rollen, die für die Herstellung von wiederverwendbaren
Artefakten zuständig sind.

Die Entwicklung und Bereitstellung wiederverwendbarer Artefakte wird
abteilungsübergreifend abgestimmt.

4 Wiederverwendungsstrategien

Wiederverwendungsstrategien

Die folgenden Aussagen betreffen die allgemeinen strategischen Aspekte von Wiederverwendung. Bitte geben Sie Ihren Zustimmungsgrad an.

Trifft nicht
zu. Trifft stark

zu.

Die Möglichkeit, Wiederverwendung auszunutzen, beeinflusst unsere
Geschäftsentscheidungen.

Wir nutzen strukturierte Anforderungserhebung, um Möglichkeiten zur
Wiederverwendung zu identifizieren.

Wir sammeln gezielt bereits existierende Artefakte für Wiederverwendung.

Wiederverwendung findet auf eine geplante und strukturierte Weise statt.

Die Angemessenheit von Wiederverwendung wird am unmittelbaren Nutzen
gemessen.

Mein Management fördert Wiederverwendung.

Wir haben einen strukturierten Entwicklungsprozess, der Wiederverwendung
explizit mit einschließt.

Wir entwickeln Produktfamilien.

Software ist unser wichtigstes Kapital.

Wir halten unsere Wiederverwendungsstrategie strikt ein.

Wir zielen darauf ab, Lücken in unseren wiederverwendbaren Artefakten zu
füllen.

Die folgenden Aussagen betreffen die organisatorische Umsetzung von Wiederverwendung in Ihrer Abteilung. Bitte geben Sie Ihren Zustimmungsgrad an.

Trifft nicht
zu. Trifft stark

zu.

Wir stellen wiederverwendbare Artefakte innerhalb unserer Abteilung zur
Verfügung.

Wir stellen firmenweite Basisfunktionalität zur Verfügung.

Wir verfügen über eine einheitliche und tragfähige Infrastruktur, die
Wiederverwendung unterstützt.

Unsere Produkte spiegeln unsere Organisationsstruktur wider.

Unsere Produkte spiegeln die Art, wie wir Wiederverwendung betreiben,
wider.

Wir messen den Nutzen, der durch Wiederverwendung entsteht.

Wir erheben den Aufwand, der in die Wiederverwendung fließt.

Alle wiederverwendbaren Artefakte haben einen Verantwortlichen, der sich
um Wartung und Support kümmert.

In unserer Abteilung nehmen wir bereits existierende Artefakte und passen
sie für uns an.

In unserer Abteilung tendieren wir dazu, unsere eigenen Versionen von
existierenden Artefakten herzustellen.

5 Herausforderungen und potenzielle Risiken der Wiederverwendung

Herausforderungen und potenzielle Risiken der Wiederverwendung

Wie häufig beeinträchtigen folgende Aspekte den Wiederverwendungsprozess in Ihrem Team?

Nie Gelegentlich Regelmäßig Ständig

"Not invented here" Phänomen.

Lizenzierung/gesetzliche Aspekte.

Schwierigkeiten, die Artefakte auf die Projektanforderungen
anzupassen.

Unpassende Granularität der wiederverwendbaren Artefakte.

Prozess für Freigabe von externen Artefakten ist zu langsam.

Abstimmungsaufwand mit anderen Abteilungen.

Sonstige:

Wie häufig treten potentielle Nachteile der Wiederverwendung in Ihrem Projekt auf?

Nie Gelegentlich Regelmäßig Ständig

Kontrollverlust

Abhängigkeitsexplosion

Performanzeinbußen

Verringerung der Veständlichkeit des Codes

Folgeänderungen durch Änderungen in den
wiederverwendeten Artefakten

Code wird unveränderbar

Übermäßige Einschränkung des Lösungsraums

Sonstige:

Wie häufig treten folgende Probleme aus Mangel an Wiederverwendung in Ihrem Projekt auf?

Nie Gelegentlich Regelmäßig Ständig

61

Inkonsistenzen

Hoher Wartungsaufwand

Zunehmender Entwicklungsaufwand (z.B. durch doppelte
Implementierungen)

Steigender Testaufwand

Geringere Code-Qualität

Sonstige:

Gibt es Ihrer Meinung nach weitere Schwierigkeiten und Herausforderungen, die bisher nicht genannt sind?

Sie können diese hier kurz beschreiben.

6 Erfolgsfaktoren und potenzielle Vorteile der Wiederverwendung

Erfolgsfaktoren und potenzielle Vorteile der Wiederverwendung

Wie häufig realisieren sich die potentiellen Vorteile der Wiederverwendung in Ihrem Projekt?

Nie Gelegentlich Regelmäßig Ständig

Weniger Wartungsaufwand

Höhere Konsistenz

Neue Funktionalität verfügbar

Höhere Code-Qualität

Höheres Entwicklungstempo

Sonstiges

Wie wichtig wären folgende Faktoren, um Wiederverwendung in Ihrem Unternehmen nützlicher zu machen?

1 - Unwichtig 2 3 4 - Sehr wichtig

Code kohärenter zusammenbündeln im Sinne von
Funktionalität (z B. in Bibliotheken).

Bibliotheken aufteilen, um genauere Funktionalität zu liefern.

Listen mit verfügbaren Artefakten in einem "Marketplace",
um das Auffinden von bereits implentierten Funktionalität zu
vereinfachen.

Verfügbarkeit von neuen Artefakten bekanntmachen.

Entwickler könnten Nachfragen für bestimmte
Funktionalitäten melden.

Bereits existierender Code könnte konsolidiert und für die
Wiederverwendung aufbereitet werden.

Strengere Regeln zum Abhängigkeitsmanagement.

Klare Kommunikation von Schnittstellenstrategien (z.B.
geplante Stabilität, Dauer der Unterstützung).

Wiederverwendbare Artefakte mit einem Reifegrad
kennzeichnen.

Strukturierte und abteilungsübergreifende
Anforderungserhebung.

Orientierung am Nutzen für den jeweiligen Kunden.

Sonstiges

Wie wichtig sind folgende Faktoren, damit Wiederverwendung in Ihrer Firma nutzbringender wird?

1 - Unwichtig 2 3 4 - Sehr wichtig

Geeignete Abstraktionen

Direkte Kommunikationskultur

Passende Anreize

Höhe Qualität der Artefakte

Klar definierter Prozess zur Wiederverwendung

Unterstützende Infrastruktur und Werkzeuge

Abhängigkeitsmanagement

Homogene Entwicklungskultur

Sonstiges

Welche Faktoren tragen Ihrer Meinung zu den erfolgreichen Wiederverwendungsprojekten bei?

7 Wiederverwendbare Artefakte

Wiederverwendbare Artefakte

Wie häufig verwenden Sie folgende Artefakte wieder?

Nie Gelegentlich Regelmäßig Ständig

Quellcode in binärer Form

Quellcode

Informelle Designmodelle (Kästen und Linien, natürliche Sprache)

Standarisierte semi-formale Designmodelle (z.B. UML)

Formale Designmodelle

Eigene, dömanspezifische Designmodelle

Anforderungsdokumentation/Anwendungsfälle

Architekturdokumentation

Prototypen

UI Designs

Gestaltungsrichtlinien

Systemtests

Unit-Tests

62

Sonstiges

Personas

Was sind Ihre Bezugsquellen für wiederverwendbare Artefakte?

Nie Gelegentlich Regelmäßig Ständig

Entwicklerportale (z B. Stackoverflow)

Interne Repositories

Kommerzielle Repositories (z B. CodePlex)

Kollegen in eigener abteilung

Kollegen in anderer bteilung

Open Source Repositories (z.B. GitHub, Sourceforge, ...)

Sonstiges:

8 Quellen von wiederverwendbaren Artefakten

Auffinden von wiederverwendbaren Artefakten

Wie häufig benutzen Sie folgende Wege, um wiederverwendbare Artefakte aufzufinden?

Nie Gelegentlich Regelmäßig Ständig

Websuche

Suche in lokalen Repositories

Kommunikation mit Kollegen

Werkzeuge für Code-Suche

Code-Recommender

Explorieren von Dokumentation

Tutorien

Sonstiges:

Was machen Sie, um wiederverwendbare Artefakte richtig zu verstehen und die angemessenen auszuwählen?

Nie Gelegentlich Regelmäßig Ständig

Ich lese Leitfäden.

Ich lese die Schnittstellendokumentation.

Ich lese den Quellcode.

Ich nehme an Trainings für Technologien/Artefakte von
Drittanbietern teil.

Ich experimentiere mit Produkten von Drittanbietern.

Ich lese Tutorials.

Ich arbeite mit Code-Beispielen.

Ich kontaktiere den Ersteller.

Ich tausche mich mit Kollegen aus.

Ich verwende Unit-Tests.

Sonstiges:

Wie weit treffen folgende Aussagen bezüglich der Verfügbarkeit und Änderbarkeit des firmeninternen Quellcodes zu?

Trifft nicht zu. Trifft stark zu.

Der firmenweit vorhandene Quellcode ist für mich gut
einsehbar.

Ich kann nötige Änderungen unabhängig durchführen.

Die Integration von bestehendem Code erfordert wenig
Aufwand von meiner Seite.

Die Verantwortung zur Pflege von wiederverwendetem Code
liegt bei dem jeweiligen Ersteller.

9 Artefakte zur Verfügung stellen

Bereitstellen von Artefakten

Stellen Sie Artefakte (z.B. Code) innerhalb des Unternehmens zur Wiederverwendung zur Verfügung?

Ja, alles ist für andere Projekte verfügbar.

Ja, manche Artefakte sind verfügbar.

Nein, Artefakte werden nicht mit anderen Projekten geteilt.

Aus welchen Gründen stellen Sie Artefakte (nicht) zur Wiederverwendung bereit?

Wie stellen Sie sicher, dass andere Ihre Artefakte richtig wiederverwenden können?

Bitte beschreiben Sie kurz ob Sie Maßnahmen treffen, und wenn ja welche, um andere bei der Wiederverwendung Ihrer Artefakte zu unterstützen.

Welche Art von Funktionalität teilen Sie auf welcher Ebene?

Stelle ich
nicht zur

Verfügung.

Stelle ich bereit
für

abteilungsinterne
Basis.

Stelle ich
bereit für
alle (nicht

Basis).

Integriere ich
in

firmeninterne
Basis.

Domänenunabhängige Funktionalität.

Domänenspezifische Funktionalität, z.B. Standardlösungen.

Projektspezifische Funktionalität, z B. bestimmte Algorithmen, die auf die
Projektanforderungen zugeschnitten sind.

Sonstiges

Über welche Kanäle stellen Sie Ihre Artefakte zur Verfügung?

Nie Gelegentlich Meistens Immer

Firmenweites Repository

Tutorien

63

Blogs

Email

Entwicklerportal

Abteilungsinternes Repository

Sonstiges

10 Umfang der Code-Wiederverwendung

Umfang der Code-Wiederverwendung

Wie verhält sich in ihrem Projekt geschätzt der Anteil an firmenintern wiederverwendetem Code zum Anteil des neu entwickelten Codes?

Anteil Wiederverwendung

Welche Art von Funktionalität verwenden Sie wieder und woher beziehen Sie diese?

Verwende ich
nicht wieder.

Beziehe ich aus
abteilungsinterner

Basis.

Beziehe ich aus
firmeninterner
Quelle (nicht

Basis).

Beziehe ich aus
firmeninterner

Basis.

Beziehe ich von
externen

Anbietern.

Serialisierung (z.B. XML)

Netzwerk

Persistenz

Visualisierung/GUI

Architektur (z B. Rich client, Plugin)

Algorithmen.

Oberflächen.

Sonstiges:

Welchen Typ Funktionalität verwenden Sie wieder?

Verwende ich
nicht wieder.

Beziehe ich aus
abteilungsinterner

Basis.

Beziehe ich aus
firmeninterner
Quelle (nicht

Basis).

Beziehe ich aus
firmeninterner

Basis.

Beziehe ich von
externen

Anbietern.

Domänenunabhängige Basisfunktionalität,
z B. Infrastrukturlösungen.

Domänenspezifische Basisfunktionalität,
z B. Standardlösungen für das
Geschäftsfeld.

Projektspezifische Funktionalität, z B.
bestimmte Algorithmen, die auf die
Projektanforderungen zugeschnitten sind.

Haben Sie Bibliotheken oder Frameworks von Drittanbietern in Ihr Projekt eingebracht?

Ja Nein

11 Technische Umsetzung der Wiederverwendung

Wie setzen Sie Wiederverwendung technisch um?

Ich baue auf:

Trifft nicht zu. Trifft stark zu.

Copy-Paste-Modify.

Softwarebibliotheken.

Software Frameworks.

Komponentenbasierte Entwicklung.

Designvorlagen.

Architekturvorlagen.

Produktlinien.

Anwendungsgeneratoren.

Code-Generatoren.

Sonstiges:

Welche Granularität haben die wiederverwendeten Entitäten typischerweise?

Nie Gelegentlich Regelmäßig Ständig

Kleine Codeabschnitte.

Einzelne Methoden/Funktionen.

Eine oder mehrere Klassen.

Vollständige Bibliotheken.

Ganze Frameworks.

Sonstiges

Wie schwierig war das Integrieren der letzten Funktionalität, die Sie wiederverwendet haben?

1- Sehr einfach 2 3 4 5 - Sehr
Komplex

Komplexität technische Integration

12 Migrieren von wiederverwendeten Artefakten

Wartung von wiederverwendeten Artefakten

Was machen Sie, wenn Sie Fehler in von anderen Projekten-Teams im Unternehmen bereitgestellten Artefakten finden?

Nie Gelegentlich Meistens Immer

Ich tausche das Artefakt aus.

Ich behandle den Fehler in meinem Projekt.

64

Ich sende einen Fehlerbericht.

Ich ignoriere den Fehler.

Sonstiges

Ich behebe den Fehler an der Quelle.

Wann migrieren Sie zu einer neuen Version von einem von anderen Firmen bereitgestellten Artefakt?

Nie Gelegentlich Meistens Immer

Sobald es verfügbar ist.

Mit dem eigenem Releasezyklus.

Wenn Teile, die im System benutzt
werden, betroffen sind.

Wenn es kritische Fehlerbehebungen
(Bug fixes) beinhaltet.

Wenn es aufgrund von Abhängigkeiten
sein muss.

Niemals.

Wann migrieren Sie zu einer neuen Version von einem von anderen Projekt-Teams im Unternehmen bereitgestellten Artefakt?

Nie Gelegentlich Meistens Immer

Sobald es verfügbar ist.

Mit dem eigenem Releasezyklus.

Wenn Teile, die im System benutzt
werden, betroffen sind.

Wenn es kritische Fehlerbehebungen
(Bug fixes) beinhaltet.

Wenn es aufgrund von Abhängigkeiten
sein muss.

Niemals.

Wie schwierig war die letzte Migration, die Sie durchgeführt haben?

0 - Nie gemacht.

1 - Sehr einfach, es waren nur minimale Änderungen nötig.

2 - Akzeptabler Aufwand.

3 - Aufwändig.

4 - Sehr schwer, die Migration war (fast) unmöglich.

13 Persönliche Einschätzung des aktuellen Stands der Wiederverwendung

Persönliche Einschätzung des aktuellen Stands der Wiederverwendung in

Wie weit treffen Ihrer Meinung nach folgende Aussagen zu Library zu?

Trifft nicht
zu. Trifft stark

zu.

Die ist eine sinnvolle Idee für die Entwicklung unserer Produkte.

Die Umsetzung de entspricht meinen Erwartungen.

Die bringt mein Projekt aufgrund von Abhängigkeiten in
Schwierigkeiten.

Der Funktionsumfang der ist zu groß.

Die erleichtert meine Entwicklungsarbeit.

Die Qualität der erfüllt meine Erwartungen.

Ich bin bereit, für die Weiterentwicklung der Ressourcen aufzuwenden.

Der Nutzen der wiegt die investierten Aufwände auf.

Welche Wünsche haben Sie bezüglich der

Haben Sie Schwierigkeiten mit der

Wie erleben Sie die Arbeit der Spezialistenkreise?

(z.B

Trifft nicht
zu. Trifft stark

zu.

Diese Gruppen sind ein Schritt zu einer besseren Abstimmung.

Für eine wirkliche Einflussnahme sind diese Gruppen mit zu wenig
Ressourcen ausgestattet.

Diese Gruppen tragen wesentlich zu einem abteilungsübergreifenden
Verständnis der Probleme bei.

Die Vernetzung, die über diese Gruppen stattfindet, hat einen positiven
Einfluss auf meine Arbeit.

Die von den Gruppen betrachteten Probleme sind relevant.

Die Spezialistenkreise haben einen zu geringen Einfluss.

Die Spezialisten sind in unserem Team gut vernetzt.

Über die Spezialistenkreise werden wichtige Themen schneller an die
richtigen Leute getragen.

Die Arbeit der Spezialisten führt zu einer besseren
Wiederverwendungsstrategie.

Sind Sie insgesamt zufrieden mit dem gegenwärtigen Umfang der Wiederverwendung bei

... wird zu viel
Wiederverwendung

betrieben.

... wird
Wiederverwendung
auf angemessene
Weise betrieben.

... wird noch nicht
genügend

Wiederverwendung
betrieben.

Abteilungsübergreifend

In meiner eigenen Abteilung

Sie sind nun am Ende des Fragebogens angekommen. Mit dem Weitergehen auf die nächste Seite können Sie Ihre Antworten abschicken.

65

Falls Sie uns noch Kommentare zum Fragebogen zukommen lassen möchten, können Sie dies hier tun.

Folgende Aspekte hätte ich noch erwartet/Folgende Rückmeldung zum Fragebogen möchte ich Ihnen noch mitteilen:

14 Endseite

Vielen Dank für Ihre Teilnahme!

Ihre Antworten wurden gespeichert.

Mit Fragen oder Rückmeldungen bezüglich dieses Fragebogens können Sie uns gerne per Email an kontaktieren.

66

	Introduction
	Reuse in practice
	Success factors and enablers
	Technical success factors and enablers
	Organizational success factors and enablers

	Challenges and Inhibitors
	Technical challenges and inhibitors
	Organizational challenges and inhibitors

	Reuse approaches in practice

	Study goal and research questions
	Case descriptions
	Case description G
	Case description U
	Original case study designs
	Data collection & analysis procedures
	Methodological differences
	Selected material for comparison

	Analysis Methodology
	Study Results
	 Discussion and relation to state of the art
	RQ1 — Comparing reuse practices
	RQ2 — Comparing effects and context factors

	 Threats to Validity
	Conclusion
	Appendix
	Interview guide
	Scale aggregations
	Result of comparison RQ 1 and RQ 2
	Questionnaires
	Questionnaire for study at G
	Questionnaire for study at U

