
HAL Id: hal-01778725
https://hal.science/hal-01778725

Submitted on 26 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Validation Approach for Quasi-Synchronous
Checkpointing oriented to Distributed Diagnosability

Houda Khlif, Hatem Hadj Kacem, Saúl Eduardo Pomares Hernández, Ahmed
Hadj Kacem, Cédric Eichler, Alberto Calixto Simón

To cite this version:
Houda Khlif, Hatem Hadj Kacem, Saúl Eduardo Pomares Hernández, Ahmed Hadj Kacem, Cé-
dric Eichler, et al.. An Efficient Validation Approach for Quasi-Synchronous Checkpointing ori-
ented to Distributed Diagnosability. Journal of Systems and Software, 2016, 122, pp.364 - 377.
�10.1016/j.jss.2016.04.070�. �hal-01778725�

https://hal.science/hal-01778725
https://hal.archives-ouvertes.fr

An Efficient Validation Approach for

Quasi-Synchronous Checkpointing oriented to

Distributed Diagnosability

Houda Khlif1, Hatem Hadj Kacem1, Saúl E. Pomares Hernandez2,3,4,
Ahmed Hadj Kacem1, Cédric Eichler3,4 and Alberto Calixto Simón5

1 ReDCAD Laboratory FSEGS, University of Sfax, Sfax, Tunisia;

houdakhlif@gmail.com; Hatem.Hadjkacem@fsegs.rnu.tn; Ahmed.Hadjkacem@fsegs.rnu.tn
2 Instituto Nacional de Astrof́ısica, Óptica y Electrónica (INAOE)

Luis Enrique Erro 1, C.P. 72840, Tonantzintla, Puebla, Mexico; spomares@inaoep.mx
3 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France; ceichler@laas.fr

4Univ de Toulouse, LAAS, F-31400 Toulouse, France
5 Universidad del Papaloapan, UNPA, Av, Ferrocarril s/n, C.P. 68400,

Loma Bonita, Oaxaca, Mexico; acalixto@unpa.edu.mx

Abstract

The Autonomic Computing paradigm is oriented towards enabling
complex distributed systems to manage themselves, even in faulty sit-
uations. The diagnosability analysis is a priori study through which a
system can be self-aware about its current state. It is from the determi-
nation of a consistent state that a system can take some actions to repair
or reconfigure itself. Nevertheless, in a distributed system it is hard to
determine consistent states since we cannot observe simultaneously all the
local variables of different processes. In this context, the challenge is to
efficiently monitor the system execution over time to capture trace infor-
mation in order to determine if the system accomplishes both functional
and non-functional requirements. Quasi-Synchronous Checkpointing is
a technique that collects information from which a system can establish
consistent snapshots. Based on this technique, several checkpointing al-
gorithms have been developed. According to the checkpoint properties,
they are classified into: Strictly Z-Path Free (SZPF), Z-Path Free (ZPF)
and Z-Cycle Free (ZCF). Checkpointing algorithms are often evaluated
with regard to performance, generally through simulation. However, their
correctness has been mildly studied. In this paper, we propose an efficient
validation approach based on a graph transformation oriented towards the
automatic detection of the aforementioned properties.

1 Introduction

As computing systems have reached a level of complexity, their management has
become increasingly difficult. As a result, the initiative of autonomic computing

1

has been introduced to prevent human intervention and enable the system to
manage itself, even in faulty situations. An Autonomic Distributed System is
considered to be a set of geographically-distributed autonomic components that
communicate and collaborate with each other. In general, autonomic computing
has four elements: self-configuration, self-healing, self-optimization and self-
protection. The diagnosability analysis is a priori a study through which a
system can be self-aware about its current state [2]. It is from the determination
of a consistent global state that a system can take some action to repair or
reconfigure itself. Nevertheless, in a distributed system, it is hard to determine
consistent states since we cannot observe simultaneously all the local variables
of different processes [16]. In this context, the challenge involves efficiently
monitoring the system execution over time in order to capture trace information.
With this information, consistent global states will be determined to evaluate if
the system accomplishes both functional and non-functional requirements.

Checkpointing is a well-known technique used to identify consistent global snap-
shots from local recorded states called checkpoints. Informally, a global snap-
shot is consistent if the set of checkpoints that compose it (one per process)
accomplishes the following two constraints: first, all the local checkpoints in
the snapshot are concurrent and no Z-path exists from one local checkpoint to
another or itself [13]. This last case is called a Z − Cycle (these patterns are
formally defined in Section 2.2).

Intuitively, to illustrate the concurrency constraint we present the following
example scenario (a Z-path example scenario is presented in Section 2.2). In
order to distributively diagnose the load balancing in two servers, the servers
share a common variable v. At the beginning this variable is equal to zero, which
means that there is no local load, and each time its load increases or decreases,
such variable is locally incremented or decremented accordingly. If a server
changes its variable by more than 10 units, it will send a message to the other
server to inform it of the new value. At the reception of the message, the server
updates the content of its local variable vx with the value of v piggybacked onto
the message only if v > vx. The safety non-functional requirement is defined by
|v1−v2| ≤ δ. If the safety requirement is satisfied, this means that the system is
balanced. The problem is distributively determining at what moments in time
such constraint can be consistently evaluated. In the scenario depicted in Figure
1, there are two snapshots: the first one is composed of the checkpoints C2

1 and
C2

2 , and the second one is composed of C3
1 and C3

2 .

p1

p2

C
1

1 C
2

1 C
4

1

C
1

2 C
2

2 C
3

2

m
1

m
2 m

3

C
3

1

v1=10 v1=80 v1=75 v1=90

v2=10 v2=80 v2=85 v2=90

time

Figure 1: A Distributed Monitoring Scenario

2

The first snapshot is inconsistent since it does not contain all the history of the
causal events at the moment of the cut (the delivery event of m2 is in the cut,
but not its send event). If we evaluate the safety constraint in this snapshot
with δ = 50, the result will give a false alert of unbalance since v1 = 80 in C2

1

and v2 = 10 in C2
2 . The second snapshot is consistent since the entire causal

history of the events is included at the moment of the cut. For this reason,
only in consistent snapshots does the safety requirement need to be evaluated
in order to be certain of the result.

Checkpointing algorithms are organized into three classes: asynchronous, syn-
chronous and quasi-synchronous [12]. In asynchronous checkpointing, also known
as uncoordinated checkpointing, each process takes its checkpoints indepen-
dently, which leads to the domino effect. In synchronous, or coordinated check-
pointing, processes coordinate their checkpoints by the addition of control mes-
sages so that a globally consistent set of checkpoints is always maintained in
the system. Major disadvantages of coordinated checkpointing are: the process
execution may have to be suspended during the checkpointing coordination,
resulting in performance degradation, and it requires extra message overhead
to synchronize the checkpointing activity. In quasi-synchronous checkpointing,
or Communication Induced Checkpointing (CIC), coordination is achieved by
piggybacking control information on application messages and taking forced lo-
cal checkpoints in case of dangerous patterns. CIC algorithms nullify the risk
of a domino effect while still allowing asynchronous execution. Several quasi-
synchronous checkpointing algorithms, which propose different methods to force
checkpoints and produce checkpoint and communication patterns, have been
developed. They are classified into: Strictly Z-Path Free (SZPF), Z-Path Free
(ZPF) and Z-Cycle Free (ZCF).

In the literature, the simulation has been the method adopted for the per-
formance evaluation of checkpointing algorithms. Checkpointing algorithms are
often evaluated with regard to performance, generally through simulation. How-
ever, few works have been designed to validate their correctness. In this paper,
we propose an efficient validation approach based on graph transformation ori-
ented towards the automatic detection of the previously mentioned properties.
To achieve this, we firstly took the vector clocks resulting from an algorithm
execution and modeled them into the happened-before graph (HBR graph). For
efficiency sake, this graph is then reduced into the immediate dependency graph
(IDR graph), i.e., the minimal causal graph. An undesirable pattern may how-
ever not always be detectable in this minimal graph. Consequently, we designed
a set of transformations rules that automatically enrich this graph and proved
that it can then be used to verify whether an algorithm is SZPF, ZPF, ZCF
or not. An experimental study shows that, in addition to reducing the size
of the input graph, using an enriched IDR graph rather than the HBR graph
significantly reduces the patterns to consider by suppressing redundancies.

This paper is structured as follows. In Section 2, we define the system model and
background, describe the classification of quasi-synchronous checkpointing, and
define the main approaches of graph transformation. In Section 3, we present
some related works. In section 4, we describe the process of our approach, and
present a set of transformation rules that we have designed. Section 5 contains

3

a formal proof of the proposed rules and Section 6 is to discuss the performance
of the obtained results. Finally, we summarize our contributions and suggest
new research.

2 Preliminaries

2.1 System Model

Processes The system under consideration is composed of a set of processes
P = {p1, p2, · · · , pn}. The processes present an asynchronous execution and
communicate only by message passing.

Messages We consider a finite set of messages M , where each message m ∈M
is sent considering an asynchronous reliable network that is characterized by no
transmission time boundaries, no order delivery, and no loss of messages. The
set of destinations of a message m is identified by Dest(m).

Events We consider two types of events: internal and external events. An
internal event is a unique action that occurs at a process p in a local manner and
which changes only the local process state. We denote the finite set of internal
events as R. The set R represents the set of relevant events. We consider
only the checkpoints as internal events. We denote by Cx

i the xth checkpoint
of process pi. The sequence of events occurring at pi, between Cx−1

i and Cx
i

(i > 0), is called a checkpoint interval (denoted as Ixi). An external event is
also a unique action that occurs at a process; it is seen by other processes, thus,
affecting the global state of the system. The external events considered in this
paper are the send and delivery events. Let m be a message. We denote by
send(m) the emission event and by delivery(p,m) the delivery event of m to
participant p ∈ P . The set of events associated to M is the set:
E(M) = {send(m) : m ∈M} ∪ {delivery(p,m) : m ∈M ∧ p ∈ P}.
The whole set of events in the system is the finite set E = R ∪ E(M). The
distributed computation is modeled by the partially ordered set Ê = (Ê,→),
where “→”denotes Lamport′s Happened Before Relation [10].

2.2 Background and Definitions

Happened Before Relation (HBR)

Definition 1. The Happened Before Relation (HBR) [10], “→”, is the smallest
relation on a set of events E, satisfying the following conditions:

1. If a and b are events belonging to the same process, and a was originated
before b, then a→ b.

2. If a is the sending of a message by one process, and b is the delivery of
the same message in another process, then a→ b.

3. If a→ b and b→ c, then a→ c.

4

Immediate Dependency Relation (IDR) The IDR is the transitive re-
duction of the HBR. We denote it by “↓”, and it is defined as follows [7]:

Definition 2. Two events a, b ∈ E have an immediate dependency relation
“↓” if the following restriction is satisfied:

a ↓ b if a→ b and ∀c ∈ E,¬(a→ c→ b)

Thus, an event a causal-immediately precedes an event b, if and only if no other
event c belonging to E exists, such that c belongs to the causal future of a and
to the causal past of b.

Quasi-Synchronous Checkpointing (QSC) QSC is a popular technique
that can be used for fault-tolerance which allows processes to recover in spite
of failures. Processes achieve fault-tolerance by asynchronously saving recovery
information during their execution. When a failure occurs, previously saved
recovery information (consistent global state) can be used to restart the compu-
tation from an intermediate state, therefore reducing the amount of lost com-
putation. According to Netzer et al. [14], a local checkpoint can belong to a
consistent global snapshot, which is composed of a set of local checkpoints C
(one per process) if and only if no checkpoint in C has a Z-path with such lo-
cal checkpoint (including itself). Even more restrictive, a local checkpoint that
forms a Z-cycle cannot be part of any consistent global snapshot. Such kind
of checkpoint is said to be useless and represents a waste of resources. These
concepts are formally defined as follows.

Definition 3. A communication and checkpoint pattern (CCP) is a pair (Ê,
RÊ) where Ê is a partially ordered set modeling a distributed computation, and

RÊ is a set of local checkpoints defined on Ê. An example of communication and
checkpoint pattern is given in Figure 2.

p1

p2

p3

C
1

1 C
2

1 C
3

1

C
1

2 C
2

2

C
1

3 C
2

3 C
3

3 C
4

3

I
1

4

C
1

4

p4

C
2

4

C
3

2
m
1

m
2

m
3

m
5

m
4

m
6

C
3

4

I
2

4

Figure 2: A communication and checkpoint pattern with a possible crash sce-
nario

Netzer et al. [14] defined the notion of a zigzag path (Z-path) in a CCP as a
generalization of HBR, as follows:

Definition 4. A Z-path exists from Cx
i to another Cy

j (Cx
i

Z−→ Cy
j) iff there

are messages m1,m2, ...,ml such that:

1. m1 is sent by process pi after Cx
i ,

5

2. if mk (1 ≤ k < l) is received by process pr, then mk+1 is sent by pr in the
same or at a later checkpoint interval (although mk+1 may be sent before
or after mk is received), and

3. ml is received by process pj before Cy
j .

Helary et al. defined the following in [6].

Definition 5. A Z-path [m1, ...,ml] is causal, iff for each pair of consecutive
messages mk and mk+1: delivery(mk) → send(mk+1). Otherwise, it is a non
causal Z-path.

Definition 6. A non-causal Z-path from a checkpoint to a checkpoint is a se-
quence of messages m1, m2, · · · , mn satisfying the conditions of Definition 4,
such that for at least one i (1 < i < n), mi is received by some process Pr after
sending the message mi+1 in the same checkpoint interval.

Definition 7. A Z-cycle is a noncausal Z-path from a local checkpoint Cx
i to

itself: Cx
i

Z−→ Cx
i .

Definition 8. The length l of a Z-path (or Z-cycle) is determined by the number
of messages m1, m2, ..., ml involved.

In the above example (see Figure 2), the messages [m5,m4] form a causal Z-
path of length two from the checkpoint C2

1 to the checkpoint C2
4 . The messages

[m3,m2,m1] form a non-causal Z-path of length three from the checkpoint C1
4

to the checkpoint C2
1 . Finally, the messages [m4,m3] form a Z-cycle at C3

3 and
[m5,m4,m3,m2,m1] form a Z-cycle of length five at C2

1 . These patterns, as we
will see, are automatically detected by our validation approach.

2.3 Classification of quasi-synchronous checkpointing

The main advantage of a QSC algorithm is that it can reduce the number of
useless checkpoints. Quasi-synchronous checkpointing algorithms are classified
into three different classes, namely, Strictly Z-Path Free (SZPF), Z-Path Free
(ZPF), and Z-Cycle Free (ZCF) [12].

Strictly Z-path free checkpointing eliminates altogether all the noncausal Z-
paths between checkpoints.

Definition 9. A checkpointing pattern is said to be strictly Z-path free (or
SZPF) if no noncausal Z-path exists between any two (not necessarily distinct)
checkpoints.

In a ZPF system, it is possible to prevent useless checkpoints by eliminating
only those noncausal Z-paths in which there is no sibling causal path.

Definition 10. A checkpointing pattern is said to be Z-path free (or ZPF) iff
for any two checkpoints A and B, a Z-path exists from A to B iff a causal path
from A to B exists.

In a ZCF model, only Z-cycles are prevented.

Definition 11. A checkpointing pattern is said to be Z-cycle free (or ZCF) iff
none of the checkpoints lie on a Z-cycle.

6

According to Netzer et al. [14] all checkpoints taken in SZPF, ZPF and ZCF sys-
tems are useful. The construction of consistent global states is more difficult in
a ZCF than in the other systems because of the existence of noncausal Z-paths.
However, a ZCF system has the potential to have the lowest checkpointing
overhead as it takes forced checkpoints only to prevent Z-cycles. Based on the
property ensured (SZPF, ZPF or ZCF), a QSC algorithm can guarantee that
a set C of checkpoints generated in their solution achieves a consistent global
snapshot. In other words, a QSC algorithm can guarantee a certainty eval-
uation of non-functional requirements only if it accomplishes the SZPF, ZPF
or ZCF properties. From here, we note the importance of automatically de-
tecting/validating if a quasi-synchronous checkpointing algorithm satisfies such
properties, according to the case.

2.4 Graph Transformation

Graph Transformation is a rule-based approach targeted towards the modifica-
tions on a graph [17, 4, 3]. A rule is described by a pair of graphs r = (L,R),
where L is called the left-hand side graph and R is called the right-hand side
graph. Applying the rule r = (L,R) means finding a match of L in the host
graph and replacing L by R. The suppression of the occurrence of L in G may
cause the appearance of edges without a starting node or a terminating node
or both. Those edges are called “dangling edges”. Two main approaches have
dealt with this problem, which are the SPO and the DPO approaches [3].

The Single PushOut Approach (SPO) A SPO rule is of the form (L,R).
Its application to a graph G is related to the existence of an occurrence of L in
G. The application of the SPO rule to a graph G involves the removal of the
graph corresponding to Del = (L\(L ∩ R)) and the addition of an isomorphic
copy of Add = (R\(L ∩R)).

The Double PushOut Approach (DPO) A DPO rule is of the form
(L,K,R), where K is used to clearly specify the invariant part to preserve
after applying the rule. If both conditions of existence of the occurrence of L
and absence of suspended edges are checked, the application of the rule involves
the removal of the graph corresponding to the occurrence of Del = (L\K) and
the addition of an isomorphic copy of Add = (R\K).

Neighborhood Controlled Embedding Approach (NCE) The NCE mech-
anism [17] is based on the specification of the connection instructions. Such
instructions, described by a pair (n, δ), enrich rewriting rules by flexibly speci-
fying the addition of edges. The execution of an instruction connection involves
the introduction of an edge between the added node n and all the neighboring
nodes of the removed node, whose label is δ. dNCE (d for edge direction), eNCE
(e for edge label), and edNCE are extensions of the NCE approach. The dNCE
connection instructions are described by a triplet (n, δ, d), where d ∈ {in, out}
controls the direction of the edges. The eNCE connection instructions are de-
scribed by a triplet (n, p/q, δ), where p and q are edge labels. The edNCE
is the combination of the eNCE and dNCE approaches. The edNCE connec-
tion instructions are of the form (n; p/q; δ; d; d′). Such instructions lead to the

7

introduction of a q-labeled edge and in the direction indicated by d′ between
the node n and each node n′ that used to be p-neighbours and d-neighbours
(in-neighbours if d=in and out-neighbours otherwise) of a removed node.

3 Related Work

Finding a method to construct a consistent snapshot in a ZCF system has been
an open problem. The impossibility of designing an optimal ZCF algorithm has
been treated by Tsai et al. [20]. Recently, some algorithms which are ZCF have
been proposed, for example, the Fully Informed (FI) algorithm of Helary et al.
[6], the Fully Informed aNd Efficient (FINE) algorithm of Luo et al. [11], the
Delayed Communication-Induced Checkpointing (DCFI) algorithm [18] and the
Scalable Fully Informed (SF-I) algorithm [19] of Calixto et al. The present work
introduces an approach for the validation of checkpointing properties that can
be used with any CIC algorithm. To the best of our knowledge, it presents the
first solution based on graph transformation accomplishing this purpose. Wang
[21, 22] defines a graph called “Rollback dependency graph” to show Z-paths
in a distributed computation. It is easy to detect Z-paths in such a graph, but
detecting Z-cycles is a critical problem. Park et al. [15] propose a scheme for
detecting Z-cycles of length two. Such scheme takes forced checkpoints to break
them. Chin-Lin Kuo et al. [9] propose an in-line distributed algorithm to de-
tect all Z-cycles of length more than two and their involved checkpoints. This
algorithm conceptualizes an appropriate data structure to express Z-paths and
Z-cycles. It requires considerable piggybacked Z-path information, but it de-
tects, for a distributed computation, all the existing Z-cycles and their involved
checkpoints. In order to use this last solution for validation purposes, such
algorithm must be executed simultaneously at runtime along with the check-
pointing algorithms, which implies an expensive and additional use of memory,
processing and bandwidth resources.

4 Validation approach for checkpointing algo-
rithms

Figure 3 illustrates the general process of our approach. To implement our
approach, we have chosen the Graph Matching and Transformation Engine
(GMTE)1. GMTE s a graph rewriting engine able to search small and medium
patterns in huge graphs in a short time. As input it receives graph descriptions
and transformation rules written in XML [5]. In our approach, the GMTE
receives a checkpoint graph which models the execution of a checkpointing al-
gorithm. The initial graph is modified using transformation rules to exhibit
dangerous patterns or confirm their absence. In our solution, the specification
of rewriting rules rely on both SPO and edNCE approaches. The SPO approach
offers a flexible way of dealing with dangling edges, and it is known to be more
expressive than the DPO approach. SPO rules are enriched with edNCE in-
struction to ease the addition and the removal of nodes.

1GMTE is available at http://homepages.laas.fr/khalil/GMTE/

8

GMTE

Graph rule

Graph file

Unwanted Patterns

Checkpointing algorithm

Output Graph

Validation Verdict

Figure 3: Validation process

4.1 Transformation rules for the validation of an HBR
graph

In this section, we present a set of validation rules designed over the HBR graph.
These rules were initially introduced in a previous work [8]. Figure 4 contains
the HBR graph which corresponds to the scenario depicted in Figure 2.

C
1
1 C

2
1 C

3
1

C
1
2 C

2
2

C
1
3 C

2
3 C

3
3

C
1
4

C
4
3

C
2
4 C

3
4

c-labeled edge

t-labeled edge

d-labeled edge

C
3
2

Figure 4: HBR graph of the scenario depicted in Figure 2

The HBR graph contains three types of edges: c-labeled edges for local relations,
d-labeled edges for direct relations and t-labeled edges for transitive relations.
The edges of an HBR graph give full causal information about a system exe-
cution; nevertheless, as we will see, working with the full graph considerably
increases the complexity in finding the undesirable patterns.

Figure 5 shows the general patterns of Z-paths and Z-cycles in HBR and IDR
graphs. In an HBR graph, a Z-path can be of two forms depending on its length.

A Z-path of length two is a pattern (n1
d−→ n3, n2

c−→ n3, n2
d−→ n4), as shown

in Figure 5.(a). A long Z-path (i.e., a length greater than two) is, as illustrated
in Figure 5.(d), a succession of Z-paths of length two. Similarly, a Z-cycle is

either of length two and in the form (n1
d−→ n3, n2

c−→ n3, n2
d−→ n1) (see

Figure 5.(b)) or is a succession of Z-paths from one checkpoint to itself (see

9

Figure 5.(e)).

d

c

d

(a) Z-path of length two

n1

n3 n2

n4

d

c

d

d

c

d

(d) Z-path of length l

c

d

.

.

d

c

d

d

d

d d

d

d

c

c c

c c

(b) Z-cycle of length two

 in HBR Graph

(e) Z-cycle of length l

 in HBR Graph

n2 n3

n1

d d

.

.

.

.

.

.

d d

(f) Z-cycle of length l

 in IDR Graph

n2 n3

n1

(c) Z-cycle of length two

 in IDR Graph

d

d

d d

d

d

c c

c c

d d

.

.

.

.

.

.

Figure 5: General patterns of Z-paths and Z-cycles

Firstly, we check whether the HBR graph is exempt from Z-paths of length
two using rule r1 characterized in Figure 6. The application of r1 leads to the
addition of a z-labeled edge between two checkpoints (nodes) involved in a Z-
path of length two. The application of r1 to G1 shows the existence of three

Z-paths: from C2
1 to C2

4 (C2
1

d−→ C4
3 , C3

3
c−→ C4

3 , C3
3

d−→ C2
4), from C1

4 to C2
2

(C1
4

d−→ C3
3 , C2

3
c−→ C3

3 , C2
3

d−→ C2
2) and from C2

3 to C2
1 (C2

3
d−→ C2

2 , C1
2

c−→
C2

2 , C1
2

d−→ C2
1). Rule r2 characterized in Figure 7 detects long Z-paths. Two

successive Z-paths form another Z-path (n1
z−→ n3, n2

d−→ n3, n2
z−→ n4).

Detected Z-paths are once again exhibited by adding a z-labeled edge. Figure
7 illustrates the application of r2 to G2, giving G3. Here, there exists a long

Z-path from C1
4 to C2

1 (C1
4

z−→ C2
2 , C2

3
d−→ C2

2 , C2
3

z−→ C2
1).

The second verification step of our approach tackles the detection of Z-cycles.
It is conducted through the sequential execution of the rules r3 and r4. Rule
r3 (presented in Figure 8) is used to detect Z-cycles of length two. During its
application, any vertex involved in a Z-cycle is replaced by a zc-labeled node.
Figure 8 illustrates the application of r3 to G3, resulting in G4. In the running
example, C3

3 is involved in the only existing Z-cycle of length two. In turn,
the rule r4 allows the detection of long Z-cycles. Figure 9 presents r4 and

10

r1 = L1 = , R1 = c

d

d

c

d

d

z

c-labeled edge

t-labeled edge

Graph G1 = HBR Graph Graph G2d-labeled edge

Applying r1

C
1
1 C

3
1

C
1
3

C
1
4

C
4
3

C
2
4 C

3
4

z-labeled edge

C
1
1 C

3
1

C
1
3

C
1
4

C
4
3

C
2
4 C

3
4

C
3
3C

2
3

C
3
3C

2
3

C
1
2 C

2
2 C

3
2 C

1
2 C

3
2

C
2
1 C

2
1

n1

n2 n3

n4

n1

n2 n3

n4

C
2
2

Figure 6: Application of rule r1

r2 = L2 = , R2 =

c-labeled edge

Graph G2 Graph G3d-labeled edge

Applying r2

C
1
1 C

3
1

C
1
2 C

2
2

C
1
4

C
4
3

C
2
4 C

3
4

C
3
2

t-labeled edge

C
1
1 C

3
1

C
1
2 C

2
2

C
1
3

C
1
4

C
4
3

C
2
4 C

3
4

C
3
3C

2
3

C
3
3C

2
3

C
2
1

C
2
1

C
3
2

d

z

z

d

z

z

z

n1

n2 n3

n4

n1

n2 n3

n4

C
1
3

z-labeled edge

After applying r1

Figure 7: Application of rule r2

illustrates its application on G4. By applying rule r4, each node involved in
a long Z-cycle is replaced by a new zc-labeled node. In the given example, a
z-cycle involving C2

1 (C2
1

z−→ C2
4 , C1

4
c−→ C2

4 , C1
4

z−→ C2
1) exists. In both rules,

connection instructions are used to preserve vertices; For any edge e such as

11

n1 (the deleted vertex), a similar vertex with the zc-labeled vertex (the added
vertex) is added. The result of the transformation process is a graph whose Z-
paths and Z-cycles have been put under the spotlight. We therefore can decide
whether the algorithm is ZPF, ZCF or none of these. In the running example,
the graph Output G5 shows the existence of Z-paths and Z-cycles. Thus, this
system is neither ZPF nor ZCF.

r3 = L3 = , R3 =

zc

dd

c

Graph G3 Graph G4

C
1
1 C

3
1

C
1
2 C

2
2

C
1
3

C
1
4

C
4
3

C
2
4 C

3
4

C
3
2

zc

C
2
1C

1
1 C

3
1

C
1
2 C

2
2

C
1
3

C
1
4

C
4
3

C
2
4 C

3
4

C
3
2

C
3
3C

2
3

C
2
1

n1

n2 n2

dd

c
n2 n3

C
2
3

c-labeled edge

t-labeled edge

d-labeled edge

z-labeled edge

Applying r3

Figure 8: Application of rule r3

Applying r4

C
1
1 C

3
1

C
1
2 C

2
2

C
1
3

C
1
4

C
4
3

C
2
4 C

3
4

C
3
2

zc

zc

C
2
1C

1
1 C

3
1

C
1
2 C

2
2

C
1
3

C
1
4

C
4
3

C
2
4 C

3
4

C
3
2

zc

r4= L4 = , R4 =

zc

zz

n1

n2 n3

zz

n2 n3

C
2
3 C

2
3

c-labeled edge

t-labeled edge

d-labeled edge

z-labeled edge

Graph G4 Graph G5 = Graph Output

Figure 9: Application of rule r4

12

4.2 Transformation rules for the validation of a IDR graph

By applying the HBR rules to the HBR graph, we can detect all existing Z-
paths and Z-cycles regardless of their length. However, the application of these
rules becomes more time-consuming on big graphs. In fact, one main problem
linked to the Happened Before Relation is the combinatorial state explosion [1]
which exponentially increases with the number of processes. To lift this limita-
tion and for efficiency sake, we propose the study of the minimal causal graph
(IDR graph). To this end, we implemented the Minimal Causal and Set Rep-
resentation (MCSR)2 tool which constructs, for a distributed computation, the
corresponding IDR graph. Such a graph constitutes a significant reduction in
the state-space of the system. The IDR graph presented in Figure 10 corre-
sponds to the scenario depicted in Figure 2. Compared with the HBR graph,
the IDR graph does not contain transitive edges (all t-labeled edges and some
c-labeled edges, which are local and transitive at the same time, are deleted).

C
1
1 C

2
1 C

3
1

C
1
2 C

2
2

C
1
3 C

2
3 C

3
3

C
1
4

C
4
3

C
2
4 C

3
4

22

1 1 1

3 333

4 4 4

c-labeled edge

d-labeled edge

C
3
2

2

Figure 10: Example of an IDR graph

Similarly, we present the general pattern of a Z-path (Figure 5. (a) and (d))
and a Z-cycle (Figure 5. (c) and (f)) in an IDR graph. We remark that some
c-labeled edges, which are transitive, are removed, thereby making the detection
of Z-cycles more difficult. To solve this issue, each vertex of the IDR graph is
labeled by the number of the process to which it belongs. By doing so, detecting
Z-paths in IDR and HBR graphs can be done in the same way, through the
execution of r1 and r2. The detection of Z-cycles in IDR graphs, however,
requires new rules described below.
We start by applying rules r1 and r2 to detect Z-paths. Their application to
the IDR graph of Figure 10 exhibits the existence of three Z-paths of length
two from C2

1 to C2
4 , from C1

4 to C2
2 , and from C2

3 to C2
1 and of a long Z-path of

length three from C1
4 to C2

1 (see Figure 11).

In general, a Z-cycle of length two in an IDR graph is in the form of (n1
d−→

n2, n2
d−→ n3) as described in Figure 5. (c). However, this pattern does not

necessarily imply a Z-cycle; it does if and only if n1 and n3 belong to the same
process. To determine whether a minimal Z-cycle exists indeed, rule r3 re-
labels the first edge of such a pattern. The value of this new label is equal to
the difference between n1 and n3’s process number. If the result is 0 (i.e., the
edge is 0-labeled), n1 and n3 belong to the same process and the edge is part of
a minimal Z-cycle. The application of r3 to the running example G2 is depicted
in Figure 12. We note the existence of an 0-labeled edge indicating a Z-cycle

2MCSR is available at http://homepages.laas.fr/khalil/GMTE/

13

c-labeled edge

z-labeled edge

Graph G1 = IDR Graph Graph G2d-labeled edge

Applying

r1 and r2

C
1
1 C

2
1 C

3
1

C
1
2 C

2
2

C
1
3 C

2
3 C

3
3

C
1
4

C
4
3

C
2
4 C

3
4

22

1 1 1

3 333

4 4 4

C
3
2

2

C
1
1 C

2
1 C

3
1

C
1
2 C

2
2

C
1
3 C

2
3 C

3
3

C
1
4

C
4
3

C
3
4

22

1 1 1

3 333

4 4

C
3
2

2

C
2
4

4

Figure 11: Application of r1 and r2

of length two involving C3
3and a 1-labeled edge corresponding to the successive

d-labeled edges (C3
3

z−→ C2
4 , C2

4
d−→ C3

2) which do not belong to a Z-cycle.

c-labeled edge

z-labeled edge

Graph G2 Graph G3
d-labeled edge

Applying r3

dr3= d

x1

x2 x3

C
1
1 C

2
1 C

3
1

C
1
2 C

2
2

C
1
3 C

2
3 C

3
3

C
1
4

C
4
3

C
3
4

C
3
2

C
2
4

C
1
1 C

2
1 C

3
1

C
1
2 C

2
2

C
1
3 C

2
3 C

3
3

C
1
4

C
4
3

C
3
4

22

1 1 1

3 333

4 4

C
3
2

2

C
2
4

4
0 1

n1

n3

d

x1

x2 x3

n1

n3

x2-x3

n2 n2

L3 = , R3 =

22

1 1 1

3 333

4 4

2

4

Figure 12: Application of r3

Rule r4 defined in Figure 13 exploits this new representation. It detects 0-
labeled edges and replaces their destination vertex by a zc-labeled, revealing
the existence of a Z-cycle pattern. Its application to the running example em-
phasizes the existence of a Z-cycle involving C3

3 (see Figure 13). This node is
replaced by a zc-labeled node. As we have previously mentioned, the removal
and the addition of nodes requires the definition of connection instructions to
retrieve all existing connections. Finally, rule r5, specified in Figure 14, detects
long Z-cycles. A long Z-cycle, in an IDR graph, is in the form of (n1

z−→ n2, n2
z−→ n3). Rule r5 is applied to G4. Its application detects a long Z-cycle involv-

ing C2
1 . The output graph G5 of the IDR process shows all existing Z-cycles.

Therefore, by applying the IDR rules, we can also deduce whether the system
is ZPF or ZCF. This is formally proved in Section 5.

14

Graph G3 Graph G4

0
r4=

C
1
1 C

2
1 C

3
1

C
1
2 C

2
2

C
1
3

C
1
4

C
4
3

C
3
4

C
3
2

C
2
4

0 1

C
1
1 C

2
1 C

3
1

C
1
2 C

2
2

C
1
3 C

2
3 C

3
3

C
1
4

C
4
3

C
3
4

C
3
2

C
2
4

0 1

zc

n2n1 zcn1
0

Applying r4

L4 = , R4 =

C
2
3

c-labeled edge

z-labeled edge

d-labeled edge

Figure 13: Application of r4

c-labeled edge

z-labeled edge

d-labeled edge

Applying r5

r5=

zc

L5 = , R5 =

C
1
1 C

3
1

C
1
2 C

2
2

C
1
3

C
1
4

C
4
3

C
3
4

C
3
2

C
2
4

0 1

zc

C
1
1 C

2
1 C

3
1

C
1
2 C

2
2

C
1
3

C
1
4

C
4
3

C
3
4

C
3
2

C
2
4

0 1

zc

Graph G4 Graph G5

z

zc

n2 n3

zz

n1

n2 n3

z

C
2
3C

2
3

Figure 14: Application of r5

4.3 Interpreting the result

We focus on the Z-cycles patterns detected in G5 for HBR and IDR, since these
patterns are also composed of Z-paths. We recall that, in order to construct
a consistent global state we need to find a set C of checkpoints (one by each
process), which are Z-path free among them. In order to guarantee the non-
functional requirement of fault-tolerance in the scenario depicted in Figure 2, we
need to establish the nearest point of recovery (consistent global state) before
the crash. In this scenario, in a first attempt to establish such point of recovery
C, we take the checkpoints C2

1 , C2
2 and C3

3 since they are Z-path free among
them. Then, we verify if C1

4 or C2
4 can be included in C. According to the graph

G5 , the Z-cycles at C3
3 and C2

1 prevent both C1
4 and C2

4 from being included
in C. And as consequence, it is not possible to construct a consistent snapshot
with such checkpoints.

15

Understanding why. To be consistent a global snapshot must contain all the
events in its causal history. In this case, if we take C1

4 and C3
3 , the checkpoint

C3
3 knows about the delivery of m3 but at C1

4 the send of m3 is missing. The
same situation occurs between C3

3 and C2
4 with respect to m4 in an opposite

way. For these reasons C1
4 and C2

4 cannot be included in C.

5 Formal proof

Previously, we have presented a set of patterns to detect Z-paths and Z-cycles,
in the first time it was in the HBR graph, and in the second time it was in the
IDR graph. In this section, we explain why we have chosen such patterns and
why these patterns are able to detect Z-paths and Z-cycles in such graphs.

Z-path Proof Firstly, we recall the definition of a noncausal Z-path. A non-
causal Z-path from a checkpoint to a checkpoint is a sequence of messages,
provided that at least two successive messages mi and mi+1 exist such that
delivery(mi+1) → send(mi). Then, we can assume two possible cases. In the
first case, the noncausal Z-path contains only two noncausal messages. In the
second case, all the messages are sent in a noncausal way, which corresponds to
the most complex case.
In Figure ??, we present the general pattern of noncausal Z-paths in the HBR
and IDR graphs. We note two main forms in the HBR graph, which are t-c-t
and d-c-d. Then, as the IDR graph does not contain transitive edges, we note
only the form d-c-d in such a graph.
We proof the correspondence between the patterns in the HBR and IDR graphs,
as follows:

Condition 1. A Quasi-synchronous checkpointing algorithm is ZPF if its HBR
graph G = (R, →) does not contain the two following subgraphs:

NZP-t = NZP-d =,

d

c

nd1

nd1≠ nd4
nd4

n3n2

d

t

c

nt1

nt1≠ nt4
nt4

n3n2

t

Condition 2. A Quasi-synchronous checkpointing algorithm is ZPF if its IDR
graph G′ = (R, ↓) does not contain the following subgraph:

Theorem 1. Condition 2 is equivalent to Condition 1.

Proof. Before presenting the proof, we need to make some assertions. We mod-
eled a non causal Z-path of length l, in the form of:
where the arc z can be a set of nested subgraphs of the form NZP-t and/or
NZP-d. We note that, since the IDR is the transitive reduction of the HBR, we
have G′ ⊆ G with the same transitive closure. Keeping this in mind, we divide

16

NZP-d =

d

c

nd1

nd4

n3n2

d

, nd1≠ nd4

NZP-z =

z

c

nz1

nz4

n3n2

z

, nz1≠ nz4

the proof into two main parts. In the first part, we focus on demonstrating that
for each NZP-t pattern in G we are able to find a NZP-d pattern in G′. In the
second part, we demonstrate that for each NZP-Z pattern in G we are able to
find a NZP-d in G′.
For the first part, we define the following Lemma:

Lemma 1. If a NZP-t ⊆ G exists, then a NZP-d ⊆ G′ exists such that NZP-d
⊂ NZP-t.

We proof in a direct form. For the pair nt1
t−→ n3 and n2

t−→ nt4, it means
that, a sequence of events (nodes) exists in G′, between nt1 and n3, such that

nt1
d−→ n′13

d−→ ... n′′13
d−→ n3, and between n2 and nt4 of the form n2

d−→ n′24
d−→ ... n′′24

d−→ nt4. Since the pair n2
c−→ n3 belongs to both graphs G and G′

we have that the following pattern:

NZP-d = ⊆ G’

d

c

n’’13

n’24

n3n2

d

It is included in the NZP-t ⊆ G.

Lemma 2. If a NZP-z ⊆ G exists, then a NZP-d ⊆ G′ exists such that NZP-d
⊂ NZP-z.

We proof in a direct form. We have three cases according to it: the arc z
represents a NZP of the form NZP-d, NZP-t or nested. For simplicity, but
without a loss of generality, we assume that the two arcs z in the NZP-Z are of
the same type.

17

Case 1 NZP-z = NZP-d This case implies that a node exists between nz1

and n3 and another node between n2 and nz4, such that n′24
d−→ n3 and n2

d−→
n′′13, respectively. Since the pair n2

d−→ n3 belongs to both graphs G and G′ we
have the following pattern:

NZP-d = in G’

d

c

n’24

n’’13

n3n2

d

It is included in the NZP-t ⊆ G.

Case 2 NZP-z = NZP-t This case implies that a node exists between nz1
and n3, and another node between n2 and nz4 such that nt4

t−→ n3 and n2
t−→ nt1, respectively. By using Lemma 1, this means that, a finite sequence of

nodes exists such that, nt4
d−→ n′43

d−→ ... n′′43
d−→ n3 and n2

d−→ n′21
d−→ ...

n′′21
d−→ nt4. Since the pair n2

c−→ n3 belongs to both graphs G and G′ we have
the following pattern:

NZP-d =

d

c

n’’43

n’21

n3n2

d

in G’

It is included in the NZP-t ⊆ G

Case 3 Nested NZP This case implies that a finite set of NZP patterns
exists between nz1 and n3, and n2 and nz4 in the form nz1

z−→ n′13
z−→ ... n′′13

z−→ n3 and n2
z−→ n′24

z−→ ... n′′24
z−→ nz4. Since the pair n2

c−→ n3 belongs
to both graphs, G and G′ we identify the following single pattern:

NZP-d =

z

c

n’’13

n’24

n2

z

It is included in the NZP-t ⊆ G.

18

From this result, it follows to apply either Case 1 or Case 2 according to the
type of z arcs.

Z-cycle Proof By definition, a Z-cycle is a noncausal Z-path from a local
checkpoint to itself. Causal Z-cycles cannot exist because an event cannot hap-
pen before itself. In Figures 15 and 16, we illustrate the general pattern of
a Z-cycle in HBR and IDR graphs. We consider three cases of a Z-cycle: a
Z-cycle of length two and two cases of a long Z-cycle. In the first case, the
Z-cycle contains only two noncausal messages. In the second case, all messages
belonging to the Z-cycle are sent in a noncausal way, which corresponds to the
most complex case.

d

c d

.

.

. d

d

dc

d

Z-Cycle of length 2

d

d

Z-Cycle of length l (case 1)

tt

d

c

dd

c

d d
.

.

.

d

c

Z-Cycle of length l (case 2)

Figure 15: General pattern of a Z-cycle in HBR graph

d

Z-Cycle of length 2

d

d

d

.

.

.
d

d

d

d

Z-Cycle of length l (case 1)

d

c

dd

d d.

.

.

d

c

Z-Cycle of length l (case 2)

Figure 16: General pattern of a Z-cycle in IDR graph

Condition 3. A Quasi-synchronous checkpointing algorithm is ZCF if its HBR
graph G = (R, →) does not contain the two following subgraphs:

19

NZC-dc = NZC-t =,
d

c

nd1

n3n2

d t

c

nt1

n3n2

t

Condition 4. A Quasi-synchronous checkpointing algorithm is ZCF if its IDR
graph G′ = (R, ↓) does not contain the following subgraph:

NZC-d =
d

nd1

n3n2

d

Theorem 2. Condition 4 is equivalent to Condition 3.

The case of a Z-cycle of length l, we modeled in the form of:

NZC-z =
z

nz1

n3n2

z

Proof. We divide the proof into two main parts. In the first part, we focus on
demonstrating that for each NZC-t pattern in G, we are able to find a NZC-d
pattern in G′. In the second part, we demonstrate that for each NZC-z pattern
in G, we are able to find a NZP-d in G′.

For the first part, we define the following Lemma:

Lemma 3. If a NZC-t ⊆ G exists, then a NZC-d ⊆ G′ exists such that NZC-d
⊂ NZC-t.

We proof in a direct form. For the pair nt1
t−→ n3 and n2

t−→ nt1, a sequence

of events (nodes) in G′ exists between nt1 and n3, such that nt1
d−→ n′13

d−→
... n′′13

d−→ n3 and between n2 and nt1 of the form n2
d−→ n′21

d−→ ... n′′21
d−→

nt1. Since the pair n”21 and n”13 belongs to both graphs G and G′ we have the
following pattern:
It is included in the NZC-t ⊆ G.

Lemma 4. If a NZC-z ⊆ G exists, then a NZC-d ⊆ G′ exists such that NZC-d
⊂ NZC-z.

Likewise, we have three cases according to it: the arc z represents a NZC of the
form NZC-d, NZC-t or nested.

20

NZC-d = ⊆ G’ d

nd1

d

n’’13n’’21

Case 1 NZC-z = NZC-d This case implies that a node exists between nz1

and n3, and between n2 and nz1, such that n213
d−→ n3 and n2

d−→ n213,
respectively. Since the pair n2 and n3 belongs to both graphs G and G′ we have
the following pattern:

NZC-d = ⊆ G’ d

n 213

n3n2

d

It is included in the NZC-t ⊆ G.

Case 2 NZC-z = NZC-t This case implies that a node exists between nz1
and n3, and another node between n2 and nz1, such that nt1

t−→ n3 and n2
t−→ nt1, respectively. By using Lemma 3, this means that a finite sequence of

nodes exists such that nt1
d−→ n′13

d−→ ... n′′13
d−→ n3 and n2

d−→ n′21
d−→ ...

n′′21
d−→ nt1. Since the pair n”21 and n”13 belongs to both graphs G and G′ we

have the following pattern:

NZC-d = ⊆ G’ d

nd1

n’’13n’’21

d

It is included in the NZC-t ⊆ G.

Case 3 Nested NZC This case implies that a finite set of NZP patterns
exists between nz1 and n3, and n2 and nz1 in the form nz1

z−→ n′13
z−→ ... n′′13

z−→ n3 and n2
z−→ n′21

z−→ ... n′′21
z−→ nz1. This means that, it follows to apply

Case 1 or Case 2 according to the type of z-labeled arcs.

6 Performance analysis

The objective of this section is to illustrate the efficiency of designing the IDR
rules. As we have previously mentioned, the IDR graph is the transitive re-
duction of the HBR graph. The use of such graph to validate checkpointing
algorithms is an important contribution in terms of cost reduction. In fact, the

21

cost of graph transformation approaches depends on the number of nodes and
edges in the host graph. In general, there are at maximum max(COt

q, CO
m
k)

occurrences of the pattern L in the host graph G, where t= number of nodes
in L, m= number of edges in L, q= number of nodes in G and k= number of
edges in G (COl

r gives the number of possible combinations of l objects from a
set of r objects).
Let p and n be two integers (p = number of processes in the system, n = number
of events). The maximum number of edges in the HBR graph and the IDR graph
is when we have the maximum number of concurrent messages in each round
(see Figure 17). Therefore, the number of nodes is n = number of rounds × p.

. . .

. . .

. . .

. . .

. . .
. . .

Number of rounds

M
ax

im
um

 N
um

be
r

of

 p
ro

ce
ss

es
 p

IDR edge

transitive edge

Figure 17: Maximum number of edges in an HBR graph

The maximum number of edges in the HBR graph (HBR edges = IDR edges +
transitive edges) is:

e = p(n-p) + (n−p)(n−2p)
2

The maximum number of edges in the IDR graph is only:

e′ = p(n-p)

Figure 18 shows the maximum number of matches used to detect Z-paths of
length two in HBR and IDR graphs. These graphs present three executions of
a system with 100 processes and a different number of nodes (500, 1000, 2000,
3500, and 5000, respectively). The Z-path of length two is composed of 4 nodes
and 3 edges. Consequently, the maximum number of matches is max(CO4

n,
CO3

e) if this pattern is detected in the HBR graph, and it is max(CO4
n, CO3

e′)
in case of an IDR graph. The results show that both the HBR and the IDR
curves are increasing. The number of matches (three edges (Z-path) of e edges
(in HBR graph) or e′ edges (in IDR graph)) increases when the number of nodes
increases, and it is much higher in the HBR curve. To conclude, the execution
of the IDR rules not only detects the same number of dangerous patterns as the
HBR rules but also provides a considerable cost reduction.

7 Conclusion and future work

The need for checkpointing is intensified with the occurrence of autonomic com-
puting systems. By saving local states periodically and determining a consis-
tent global state, checkpointing techniques make the system self-aware about

22

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of nodes

M
a
x

im
u

m
 n

u
m

b
e
r

o
f

m
a
tc

h
e
s

1021

1020

1019

1018

1017

1016

1015

1014

1013

1012

1011

HBR

IDR

Figure 18: Comparison of number of matches in HBR and IDR graphs

its current state and enable it to repair or reconfigure itself in case of failures.
To construct a consistent global state, quasi-synchronous checkpointing algo-
rithms detect dangerous checkpointing patterns, such as Z-paths and Z-cycles
and break them by taking forced checkpoints.
In this paper, we have proposed a validation approach for quasi-synchronous
checkpointing algorithms. We have used graph transformation approaches to
verify the correctness of such algorithms. To achieve this, we have modeled
the system execution by first using the HBR graph and then by using the IDR
graph. Then, we designed a set of transformation rules to verify if the algorithm
is exempt from non-desirable patterns in such graphs. The application of these
rules shows all existing Z-paths and Z-cycles regardless of their length. With
the obtained results, we can validate that the algorithm is ZPF and determine
whether it is ZCF. The use of graph transformation approaches ensures correct
results without much need of time and space. The low cost is explained by the
fact that the designed rules are not executed at runtime. Added to that, the
use of the IDR rules ensures a cost reduction compared with the HBR rules.
As a future work, we aim to design transformation rules oriented to the Minimal
Causal and Compact Graph (CAOS graph). This graph is based on the Causal
Order Set Abstraction (CAOS) to present causal dependencies in terms of sets
of events. Compared with the IDR graph, it greatly reduces the number of
nodes and edges. This is the reason why finding an efficient method to detect
non desirable patterns in such graph can be an important contribution in terms

23

of cost reduction.

References

[1] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction
using partial order techniques. International Journal on Software Tools for
Technology Transfer (STTT), 2(3):279–287, 1999.

[2] M. O. Cordier, Y. Pencol. T. Massuy and T. Vidal. Characterizing and
checking self-healability. In Proceedings of the 2008 conference on ECAI
2008: 18th European Conference on Artificial Intelligence, pages 789–790.
IOS Press Amsterdam, The Netherlands, 2008.

[3] H. Ehrig, H. Kreowski, and G. Rozenberg. Tutorial introduction to the
algebraic approach of graph grammars based on double and single pushouts.
In Graph-Grammars and Their Application to Computer Science, volume
532 of LNCS. Springer, March 5-9 1990.

[4] J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In
Handbook of Graph Grammars, pages 1–94. World Scientific Publishing,
1997.

[5] M. A. Hannachi, I. Bouassida-Rodriguez, K. Drira, and S. P. Hernandez.
GMTE: A tool for graph transformation and exact/inexact graph matching.
In Graph-Based Representations in Pattern Recognition. 9th IAPR-TC-15
International Workshop, GbRPR 2013, Vienna, Austria, volume 7877 of
LNCS. Springer, 2013.

[6] J. M. Helary, A. Mostefaoui, R. H. B. Netzer, and M. Raynal.
Communication-based prevention of useless checkpoints in distributed com-
putations. Distributed Computing, 13:29–43, January 2000.

[7] S. E. P. Hernandez. The minimal dependency relation for causal event
ordering in distributed computing. Applied Mathematics & Information
Sciences, 9(1):57–61, Janury 2015.

[8] H. Khlif, H. Hadj-Kacem, S. P. Hernandez, C. Eichler, A. Hadj-Kacem,
and A. Simon. A graph transformation-based approach for the validation of
checkpointing algorithms in distributed systems. In Proceedings of the 23nd
IEEE International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE), pages 80–85, 2014.

[9] C. L. Kuo and Y. M. Yeh. An algorithm for detecting z-cycles in distributed
computing system. In Int. Computer Symposium, pages 1124–1133, Decem-
ber 2004.

[10] L. Lamport. Time, clocks and the ordering of events in a distributed system.
ACM, 21:558–565, July 1978.

[11] Y. Luo and D. Manivannan. Fine: A fully informed and efficient
communication-induced checkpointing protocol for distributed systems.
Journal of Parallel and Distributed Computing, 69:153–167, February 2009.

24

[12] D. Manivannan and M. Singhal. Quasi-synchronous checkpointing: Models,
characterization, and classification. IEEE Transactions on Parallel and
Distributed Systems, 10(7):703–713, 1999.

[13] R. H. B. Netzer and J. Xu. Adaptive message logging for incremental
replay of message-passing programs. Technical report, Brown University,
Providence, RI, USA, 1993.

[14] R. H. B. Netzer and J. Xu. Necessary and sufficient conditions for consistent
global snapshots. IEEE Transactions on Parallel and Distributed Systems,
6:165–169, February 1995.

[15] T. Park and H. Y. Yeom. Application controlled checkpointing coordina-
tion for fault-tolerant distributed computing systems. Parallel Computing,
26:467–482, 2000.

[16] Y. Pencole. Diagnosability analysis of distributed discrete event systems.
In 16th European Conference on Artificial Intelligence ECAI 2004, August
22-27, Valencia, Spain, pages 43–47. IOS Press, 2004.

[17] G. Rozenberg. Handbook of Graph Grammars and Computing by Graph
Transformation: Volume I. Foundations, volume 3. World Scientific Pub-
lishing Co., Inc., 1997.

[18] A. C. Simon, S. E. P. Hernandez, and J. R. P. Cruz. A delayed checkpoint
approach for communication-induced checkpointing in autonomic comput-
ing. In Workshops on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises, June 2013.

[19] A. C. Simon, S. E. P. Hernandez, J. R. P. Cruz, P. Gomez-Gil, and K. Drira.
A scalable communication-induced checkpointing algorithm for distributed
systems. IEICE Transactions on Information and Systems, E96-D(4):886–
896, April 2013.

[20] J. Tsai, Y. Wang, and S. Kuo. Evaluations of domino-free communication-
induced checkpointing protocols. Information Processing Letters, 69:1–69,
1998.

[21] Y. M. Wang. Maximum and minimum consistent global checkpoints and
their applications. In Symposium on Reliable Distributed Systems, pages
86–95, 1995.

[22] Y. M. Wang. Consistent global checkpoints that contain a given set of local
checkpoints. IEEE Transactions on Computers, 46(4):456–468, April 1997.

25

	Introduction
	Preliminaries
	System Model
	Background and Definitions
	Classification of quasi-synchronous checkpointing
	Graph Transformation

	Related Work
	Validation approach for checkpointing algorithms
	Transformation rules for the validation of an HBR graph
	Transformation rules for the validation of a IDR graph
	Interpreting the result

	Formal proof
	Performance analysis
	Conclusion and future work

