
Computational Offloading Mechanism for Native and

Android Runtime based Mobile Applications

Abdullah Yousafzaia,∗, Abdullah Gania,∗∗, Rafidah Md Noora, Anjum
Naveeda, Raja Wasim Ahmada, Victor Changb

aFaculty of Computer Science and Information Technology, University of Malaya, Kuala
Lumpur, Malaysia

bInternational Business School Suzhou, Xi’an Jiaotong Liverppol University, Suzhou,
China

cSchool of Computer Information Engineering, Sangji University, Korea

Abstract

Mobile cloud computing is a promising approach to augment the compu-
tational capabilities of mobile devices for emerging resource-hungry mobile
applications. Android-based smartphones have opened real-world venues
for mobile cloud applications mainly because of the open source nature of
Android. Computational offloading mechanism enables the augmentation
of smartphone capabilities. The problem is majority of existing computa-
tional offloading solutions for Android-based smartphones heavily depends
on Dalvik VM (an application-level VM). Apart from being a discontinued
product, Dalvik VM consumes extra time and energy because of the just-in-
time (JIT) compilation of bytecode into machine instructions. With regard
to this problem, Google has introduced Android Runtime (ART) featuring
ahead-of-time (AHOT) compilation to native instructions in place of Dalvik
VM. However, current state-of-the-art offloading solutions do not consider
AHOT compilations to native binaries in the ART environment. To address
the issue in offloading ART-based mobile applications, we propose a com-
putational offloading framework. The proposed framework requires infras-

∗Corresponding author
∗∗Principal Corresponding author
Email addresses: yousafzai.abdullah@gmail.com (Abdullah Yousafzai),

abdullah@um.edu.my (Abdullah Gani), rafidah@um.edu.my (Rafidah Md Noor),
anjum@um.edu.my (Anjum Naveed), wasimraja@siswa.um.edu.my (Raja Wasim
Ahmad), ic.victor.chang@gmail.com (Victor Chang)

Preprint submitted to Elsevier September 24, 2016

tructural support from cloud data centers to provide offloading as a service
for heterogeneous mobile devices. Numerical results from proof-of-concept
implementation revealed that the proposed framework improves the execu-
tion time of the experimental application by 76% and reduces its energy
consumption by 70%.

Keywords: Mobile Cloud Computing, Computational Offloading, Android
Runtime Environment, Application Partitioning, Mobile Cloud Scheduling

1. Introduction

Smartphones are gaining immense popularity since the emergence of new
mobile applications (e.g., face recognition, natural language processing, in-
teractive gaming, and augmented reality)[1, 2]. These mobile applications
are typically resource hungry; they require intensive computation, and high
energy consumption [3]. However, the physical size of mobile devices limits
their computational resources and battery. As a result, a tension exists be-
tween resource-hungry applications and resource-constrained mobile devices;
such tension poses a significant challenge for future mobile platform devel-
opment [4, 5]. To address this challenge, mobile cloud computing (MCC)
has been introduced as a promising approach that offloads the extensive
computation via wireless access (e.g., cell network, Wifi, or Bluetooth) to
resource-rich cloud infrastructure. In MCC, the ecosystem of computational
offloading contains different types of computational resources, which may be
used depending on their availability and scheduling decisions.

Figure 1 presents a generic view of an MCC environment. The foremost
available resource used by mobile applications is the cloud service providers
(CSP); they provide on-demand services (i.e., software, platform, and infras-
tructure) in a pay-as-you-go system [6]. The second type of resource is the
cloudlet [7], a nearby (local) Internet-enabled rich computing infrastructure
that is connected to mobile devices using wireless access. The third type of
resource is the local proximate mobile cloud [8], which is based on the for-
mation of an ad-hoc network of devices within vicinity to collectively serve
one another using either Wifi or Bluetooth network interfaces.

For a mobile device, the simplest means of augmentation is using mobile
cloud through service-oriented or client/server patterns. Such augmentation
is feasible assuming that the requested service, application source code, or ap-
plication binaries are available on server. Despite its simplicity, this approach

2

CSP 1

CSP 2

CloudletCloudlet

Proximate Cloud

Figure 1: A Generic View of Mobile Cloud Environment

may result in computational losses and waiting times in case of network dis-
connection or service disruption. The most common computational offloading
mechanism is code migration, which migrates intermediate-level instructions
between a mobile device and a server. These intermediate-level instructions
must be executed on the same type of application-level VM (ALVM) (i.e.,
Dalvik VM) on both the mobile device and server. The literature also reveals
offloading mechanisms that consider thread-state migration or thread-state
synchronization ALVM. Both code migration and thread-state synchroniza-
tion are highly dependent on ALVMs. That is, the computational offloading
mechanisms of Android-based smartphones depend on Dalvik VM (DVM).
This dependency invalidates the mechanisms for the newly launched An-
droid Runtime (ART) environment. ART has obvious benefits in terms of
execution time and battery consumption. ART uses ahead of time (AHOT)
compilation to transform device-independent DEX code into device-specific
native code [9].

3

The mobile cloud approach significantly augments the computational ca-
pabilities of mobile devices [10, 11]. However, the development of a unified
and comprehensive MCC system remains as a challenging task. The diffi-
culty lies in the heterogeneity of hardware and software platforms available
on mobile devices and the cloud system. To overcome this above-mentioned
challenges, we propose a unified computational offloading framework for na-
tive and ART-based mobile applications. The proposed framework will not
transfer an application binary or its source code from the mobile device to
the server. The application must be modified by developers to support the
offloading primitives required by our proposed framework.

The rest of the article is organized in five sections. Section 2 presents
an overview of existing computational offloading mechanism through a clas-
sification. Section 3, discusses the arguments on why a new process based
migration is required. Section 4 presents the details about the structural
and functional components of our proposed framework. Section 5 outlines a
proof-of-concept experiment, along with the limitation and future prospects
of the proposed framework. Finally, Section 6 concludes the article.

2. Related Work

Previous experimentations confirm that remote execution can potentially
reduce the power consumption and execution time of applications running
on weak smartphones [12]. In a mobile cloud environment (MCE), most
of the existing computational offloading mechanisms, which improves the
performance and the battery consumption of mobile devices, can be classified
under three broad categories, namely, i) VM/phone clone migration, ii) code
migration, and iii) thread-state migration.

2.1. VM/Phone Clone Migration

VM/phone clone migration uses virtualization technology to maintain a
synchronized mirror for each connected smartphone on a computing infras-
tructure. This mechanism allows certain operations to be performed directly
on the mirror. A high-level diagram of components and mechanisms involved
in VM-based augmentation of mobile devices is presented in Figure 2.

Research on Cloudlets [7] , paranoid Android [13] , virtual smartphone
[14], and phone mirroring [15] are prominent in the literature on this class of
computational offloading. Cloudlets[7] proposes the use of local resource-rich
computers, to which a smartphone connects over a single-hop wireless LAN

4

Make Phone image or overlay
image

Deploy Phone Image

Record Phone Events Trace for
replay

Replay Event Trace

Computing

Infrastructure

Deploy Phone Image

Make VM image or overlay
image

Replay Event Trace

Record Phone Events Trace for
replay

User’s Phone

Virtualized Phone

Figure 2: VM Based Augmentation of Mobile Devices

and migrates a current system image. Paranoid Android [13] uses QEMU
for running replica Android images in the cloud to enable multiple exploit
and attack detection techniques to run simultaneously with minimal effect
on phone performance and battery life. Virtual Smartphone [14] uses An-
droid x86 port to efficiently execute Android images in the cloud on VMware
ESXi virtualization platform. Phone mirroring [15] framework maintains
a synchronized mirror for each connected smartphone on a computing in-
frastructure, which allows certians operations to be performed directly on
the mirror. Cloud-based augmentations of smartphones using VMs/phone
clones either deliver or obtain an overlay image (i.e., the difference between
two consecutive VM images) or a replay trace to and from the computing
infrastructure (Figure 2. Through the overlay image, smartphones synchro-
nize part of execution on the remote VMs and vice versa. However, this
mechanism is hindered by the amount of data transfer [16]. An example of
the image size (in MB) for a non-live image transfer of An android Jelly-
Beans phone is presented in Figure 3 (a). The time required to backup and
restore these images from and to the phone is illustrated in Figure 3 (b). To

5

reduce the communication overhead caused by large file sizes, replay mecha-
nisms [16–19], in which execution of mobile device instructions are captured
as a trace and then executed on remote VMs and vice versa, can be used
while synchronizing remote VMs with phone state. However, reply mech-
anisms generate large trace files and require extensive modifications to the
virtual machine monitors (VMM). From a practical point of view, the phone
clones/VMs needs the same hardware platform as the server side to retain a
working synchronized image.

Figure 3: (a) Phone Image Sizes (in MBs) (b) Phone Image Backup and Restore Time (in
seconds)

2.2. Code Migration and Delegation

The most popular and common technique to leverage the computational
power of cloud in mobile devices is code migration and delegation. This
technique involves the delegation of code execution to remote cloud servers
[5] by either migrating a platform-independent intermediate code or using a
service-oriented client/server setup [20]. Code migration and remote execu-
tion are illustrated in Figure 4. The difference between code migration and
remote execution via plain client/server or SOA fashion is clearly presented
in the figure. When a server is disconnected or unavailable the mobile ap-
plication can be locally executed on a mobile device in code migration. By
contrast, the SOA-based execution halts until the server becomes available.

Many attempts have been done in past [21–29] to enable remote execution
using code migration. Remote execution using code migration improve the
performance and battery consumption of mobile devices. Most of these code
migration based offloading attempts rely on programmers to specify program
partitions using code annotation and skeletons. These program partitions are

6

Computing

Infrastructure

Application Execution Flow
On Mobile Device

Offloading annotation found
by the offloading runtime.

Time

Transfer time

Code Migration

Remote Execution
Client/Server, SOA

Figure 4: Remote Execution using Code Migration and Delegation

utilized for specification of local and remote application execution decisions.
A number of the code offloading-based mechanisms [30] replicate the ap-
plication binary, intermediate representation, or source code at the server
and perform remote execution in a client/server or service-oriented manner.
Figure 5 provides the result of an experiment performed with basic code mi-
gration using two different settings for a 1000 x 1000 matrix multiplication.
The figure illustrates the effect of remote execution using code migration on
the execution time of an application.

Despite the significant improvement in execution time, code migration
does not support existing applications that do not consider a MCE notion.
In addition, static partitioning for high-end mobile devices with intermittent
connectivity might not be useful. Further, in case of SOA or client/server
setup disconnection or server failure, computation may be lost and the execu-
tion on the phone may have to be restarted. Finally, if ALVM is not available,
code migration is not a trivial task because of the underlying heterogeneity
of hardware and software platform across the connected systems.

7

Figure 5: Impact of remote execution using code migration on the execution time (in
seconds) of an application.

2.3. Thread-State Migration

In a MCE, thread migration is the migration of low-level thread states
(heap contents, stack, descriptors, register values) from one ALVM (i.e.
Dalvik, JVM, .Net Runtime) to another.A generalized illustration of thread-
state migration is presented in Figure 6.

Figure 6: Generalized representation of thread synchronization used in MCE

8

Thread-state migration mechanism is strictly dependent on ALVMs as
these ALVMs provides the abstraction and interoperability of threads across
different hardware platforms. These ALVMs require massive modifications
to enable thread-state synchronization mechanisms. CloneCloud[10] and its
variants [31] as well as COMET[32] exploit the concept of thread migration
to improve the overall performance of mobile devices. CloneCloud[10] uses
a combination of static analysis and dynamic profiling to partition applica-
tions at runtime. The application partition is migrated as a thread from a
mobile device at a chosen point to the clone in the cloud. The partition is
executed in the cloud for the remainder of the process. Then, the migrated
thread is reintegrated back to the application executing on a mobile device.
On contrary, COMET[32] leverages the underlying memory model of Dalvik
runtime and modifies the Dalvik running on a phone and server simultane-
ously to implement distributed shared memory (DSM). In doing so, thread
synchronization is enabled between the mobile device and the server. The
modification of Dalvik on smartphone severely affect an application, running
locally on the mobile device because the application is not executed, or can-
not be offloaded, or the server is disconnected. This phenomenon is tested
by executing standard benchmark several times on two similar devices with
the same specifications in terms of hardware and software configurations.
However, One of the phones has a modified DVM from COMET, whereas
the other has the original stock DVM. The benchmark results in Figure 7
measures the mega floating-point operations per second (MFLOPs), which
clearly demonstrate the effect on performance caused by the modification of
DVM. These thread-state migration mechanisms become automatically in-
valid in ART environment [33], which is introduced by Google in place of the
Dalvik runtime environment. ART features AHOT compilation to device-
specific native binaries; this feature expedites the application execution by
reducing the overhead caused mainly by the just-in-time (JIT) compilation
in DVM [34].

3. Motivation for Process Migration Based Computational Offload-
ing Framework

The classification discussed in Section2 is summarized in Table 1. The
table also outlines the dependencies and limitations in current state-of-the-
art offloading mechanisms.

The categorized computational offloading mechanisms used in a MCE

9

Figure 7: Performance Comparison of Modified DVM vs. Stock DVM using Standard
Benchmarks. (in Mega FLOPS.)

Table 1: Comparison of Computational Offloading Mechanisms used in Mobile Cloud
Environments
Computational
Offloading
Mechanisms

Application
Modification

Dependency Major Drawback

VM/Phone
Clone Migration

No
Hardware
Virtualization

High communication overhead in addition to the overhead
of time elapsed in generating overlay state for VM synchrnoization.

Code
Migration and
Delegation

Yes ALVMs

Static partitioning using annotations for high-end mobile
devices with intermittent connectivity is not useful.
Computation is lost and restarted in case of SOA,
client/server disconnection, or server failure.

Thread
Synchronization

No/
Auto

ALVMs
The overhead (profiling and analyzing or setup
overhead) caused by the modification of ALVM to execute
an application that does not want/need to be offloaded.

strictly depend on virtualization technology. The mechanisms dependent on
application-level virtualization exploit the intermediate code, which can be
seamlessly migrated between devices with different hardware and software
architecture. By contrast, the VM migration-based computational offloading
mechanisms depend on hardware virtualization techniques. ART compiles
mobile applications into native machine-dependent binaries upon installa-
tion. However, current state-of-the-art offloading solutions do not consider
the native code of ART-based mobile applications.

To verify the native code behavior of ART, we gathered the DEX files
of an installed application from two Android devices. One device is running
Dalvik, whereas the other is running ART. The gathered files are checked

10

with the file1 tool available in most Linux distributions (Figures 8 and 9).
The DEX files gathered from Dalvik- and ART-based phones are in bytecode
format and Executable and Linking Format (ELF), respectively.

Figure 8: File type of Dalvik DEX file.

Figure 9: File type of ART DEX file.

The ELF file is platform dependent [35]. For instance, the ELF file com-
piled for an ARM platform cannot be executed on an x86-based platform.
Most current state-of-the-art computational offloading mechanisms are ex-
ploiting Dalvik bytecode, which is platform independent. The same Dalvik
bytecode can be executed without any modification on any platform where
DVM is running.

Recently, 1,208,476 mobile applications from the Google Play Store have
been statistically analyzed to investigate the number of mobile applications
utilizing native libraries [36]. A total of 446,562 mobile applications (37.0%)
used at least one natively compiled library. Considering the result of this
recent study, computational offloading mechanisms should be reevaluated to
overcome the issue of native code. Therefore, we have proposed a process
migration-based computational offloading framework.

4. Proposed Framework

Figure 10 illustrates the high-level components of the proposed frame-
work. The framework is modularized into components that are present either
at a mobile device or in a cloud server.

1http://linux.die.net/man/1/file

11

Figure 10: Proposed Mobile Cloud Computing Framework

The proposed framework exploits the concept of context switching in an
operating system process and extends the basis of checkpoint/restart and
process-migration mechanism. The process state of any computer program,
as well as the ART-generated ELF file, is architecture dependent. A process
state from an ARM-based machine cannot be used to restart the process on
an x86-based machine. This condition is due to the difference in assembly,
hardware components, instruction sizes, application binary interface, and
other related factors. In most cases (almost 90%95%), mobile devices use
an ARM-based machine [37, 38],], whereas the physical or virtual machines
in the cloud are normally based on x86 architectures. Thus, we have three
options for the process migration-based computational offloading for native
and ART-based mobile applications. First, we can use a certain type of
manual transformation of a process state from one architecture to another

12

[39]. We can disregard this option because it requires massive modification of
the compiler or source code for both endpoints. Second, we can emulate the
ARM instruction set in the cloud using binary translators, such as QEMU
[40], which is not feasible for deadline and performance sensitive applications.
Finally, we can utilize a compatible infrastructure (e.g., ARM) on the server.
The availability of ARM infrastructure in the remote cloud or local cloudlet
is crucial to actually envision the MCC ecosystem and enable phone clones
and VMs in the remote servers.

We assume that the network conditions are stable, that no disconnection
occurs during an offloading transaction, and that an offloading transaction
is atomic. These assumptions are made to retain the focus on migration
mechanism rather than network analysis and disconnection management,
although these options should be explored in the future.

The description of the components on the mobile device and server as
well as their interactions are described in the following sub-sections.

4.1. Mobile Devices Modules

On the mobile device, we have modified the original Android stack with
an additional kernel module, which exploits the concept of context switching.
Primarily, the module is configured to connect to the remote offloading server
(i.e., VM in cloud) via an associated user space communicator, which also
resides and is running on the mobile device. The connection parcel (Figure
11(a)) is composed of a device manifest and a software platform manifest.

The device manifest consists of the complete device profile, including the
unique device ID, hardware information, and emulated/virtualized instance
ID if the connection is established with the offloading server otherwise null.
The software platform manifest will specify the operating system profile. If
the connection to the remote offloading server is successful, then the kernel
module residing in the device kernel will traverse all running applications
and suspend any application that is being marked by the user as offloadable.
After the suspension of applications, the module will serialize all the soft
process states along with the packet header over the socket to the offloading
server. The soft process state will include heap, thread local storage, stack,
virtual memory areas, page backup, processor register contents, opened file
states, and network socket states. The process state can be compressed with a
lightweight compression mechanism to reduce the offloading parcel size. The
header contains the device manifest and the application manifest (Figure
11(b)). The application manifest will contain the application profile, which

13

is utilized by the instance manager to push a specific application from the
central application repository to the virtualized/emulated phone running on
the server. Finally, when a soft process state is received by the mobile device
from the offloading server, the mobile device will extract the application
manifest. The kernel module will then update the received process state for
the extracted application manifest.

Figure 11: (a) Connection Parcel (b) Process state synchronization packet header

4.2. Offloading Server Modules

The offloading server is composed of loosely coupled components. The
modules required at the server are described in the following sub-sections.

4.2.1. Admission Control

Admission control modules enforce the fair-usage policy of server re-
sources. In case of a cloudlet with a weak pricing-model based admission
control, ensuring the efficacy of the system is vital [41, 42]. Admission con-
trol can regulate the number of active server users depending on the system
utilization or a manual policy defined by the system administrator. To share
the resources among different devices, requests will be queued and processed
using any feasible scheduling policy (e.g., FIFO, round robin) defined by
the system administrator or dynamically selected based on the system load
and other metrics. Furthermore, whenever a mobile device sends requests
to the offloading server, the admission control will communicate with the
instance manager to verify whether the device can be emulated/virtualized
or not. Afterwards, the admission control verifies the availability of the soft-
ware platform is available. If both conditions are satisfied, the request is
transferred and the ID of the emulated/virtualized instance received from
the instance manager is sent back to the requesting mobile device. Once the
request is granted, the subsequent process state synchronization packets from
that device are directly transmitted/forwarded to the instance manager.

4.2.2. Instance Manager

An instance manager manages the creation and deletion of emulated/virtualized
Android instances. The instance manager is composed of four sub-components,

14

namely, i) process-migration controller, ii) instance initializer, iii) application
proxy store, and iv) process-state synchronizer.

Process-Migration Controller

The process-migration controller is the core component of the instance man-
ager. This module communicates with the admission control upon a con-
nection request from a mobile device. The module is also responsible for
receiving process-state synchronization packets from the end-user mobile de-
vice. Upon receiving a message from the admission control, the controller
queries the instance definition table to determine whether the requested de-
vice profile can be emulated/virtualized. If it can be emulated, then a query
will be executed over the running instance store to find a running instance
that can furnish the client request. If the query is successful, then a response
with the existing running emulated/virtualized instance ID is sent to admis-
sion control, which acknowledges the end-user mobile device. If no running
device is found, then the instance initializer is tasked to create an emu-
lated/virtualized device whose ID is sent back to the user. Upon receiving
a process-state synchronization parcel, the parcel is sent to the process-state
synchronizer.

Instance Initializer

Upon receiving a device creation request from the process-migration con-
troller, a new virtualized/emulated instance will be initialized with the spec-
ification from the device manifest and software platform manifest. The
newly created emulated/virtualized device instance ID is acknowledged to
the process-migration controller. An entry for this instance is then added in
the running instance table.

Process-State Synchronizer

Upon receiving the process-state synchronization parcel from the controller,
the synchronizer extracts the emulated instance ID and application manifest
from the header. Then, it verifies whether an application with the extracted
application manifest was pushed before or available at the extracted instance
ID. If an application is available on the target device, the synchronizer pushes
the checkpoint data received from the end-user mobile device to the emulated
instance. If no application with the extracted application manifest is avail-
able at the target device, the synchronizer sends a message containing the

15

extracted instance ID and the application manifest to the application store
proxy. Subsequently, the synchronizer waits for a signal from the applica-
tion store before executing the application on the device and then pushes
the checkpoint data on the device. The module communicates with the emu-
lated/virtualized device using an Android debug bridge and a communicator
program installed and executed on the emulated/virtualized device upon ini-
tialization.

4.2.3. Application Store Proxy

The application store proxy acts as a cache for applications to be stored
for subsequent requests. Upon receiving a request from the synchronizer, the
application store proxy will check whether an application with that manifest
exists in the cache. If available, the application store proxy will push the
application to the emulated/virtualized device. Otherwise, the application
can be downloaded using a method, such as that explained in [43]. If an
application is unavailable in the local store and Google Play Store, another
request is directly sent to the requesting device to share the application.
Once an application is available in the local store, it is then pushed to the
emulated instance, and the process-state synchronizer is acknowledged.

4.2.4. Module on Emulated/Virtualized Device

Similar with a mobile device, the emulated/virtualized Android device is
configured with an additional kernel module and an associated user space
communicator, which communicates with the end-user mobile device and
other components in the offloading server (e.g., process-state synchronizer).
When a soft process state is received by the emulated Android device from
the end-user mobile device, it extracts the application manifest. The ker-
nel module updates the received process state for the extracted application
manifest. To send a process state to the end-user mobile device, the kernel
module must use a method similar to that discussed in Section 4.1.

5. Proof of Concept

5.1. Empirical Setup

For a proof of concept, we deployed an ARM infrastructure box (Com-
pulab Utilite2) at the server. We also deployed an x86 machine to host

2http://www.compulab.co.il/utilite-computer/web/utilite-overview

16

certain components of the proposed framework and foresee the ARM box.
The topology of the experimental setup is presented in Figure 12

Figure 12: Experimental Setup Topology

The server PC configuration comprises Ubuntu 14.04, 4 GB Ram, and
Core i7 CPU 3.4 GHz. A Samsung GT-I9100G smartphone is used as the
client device. The server hosts the framework modules (i.e., application store
proxy, instance manager, and admission control) to the ARM box. The proof-
of-concept application is a 1000 x 1000 matrix multiplication program written
in C with no migration or annotations and interfaces. The proof-of-concept
application is also compiled with the standard Android toolchain downloaded
along with the AOSP/CyanogenMod source code.

To capture the energy consumption of the application, we attached a
hardware power meter to the battery of the smartphone (Figure 13). This
step must be performed for two reasons. i) Smartphones do not offer a way
to obtain fine-grained energy measurements of an application; (ii) The API
of the smartphone does not capture power statistics for native applications.

5.2. Experiment Details

To migrate an application state from the client device (Samsung GT-
I9100G) to the ARM box, both devices are flushed with the custom kernel
to enable the insertion of kernel modules. Both devices (client device and
ARM box) execute a user-space program to communicate with each other
and transfer the process state over the socket. For the proof-of-concept ex-
periment, the experimental applications are installed and executed on both
devices. Once the communicators residing on the devices set up the link with
each other, the modules on both sides detect the setup and start synchroniz-
ing the process state. However, the kernel modules periodically synchronize
the applications executing on the other device because of the lack of syn-
chronization markers in the experimental application. Thus, the migration

17

Figure 13: Hardware power meter setup used for energy measurements

control is unsuitable. We have performed 10 experiments and then averaged
the results for presentations. Our first parameter of interest is the improve-
ment in the execution time of the offloaded matrix multiplication application.
Figure 14 presents the results of this parameter. The execution time of the
offloaded application demonstrates a substantial improvement of approxi-
mately 76% compared with that of the baseline local execution. Similarly,
the execution time of the offloaded application is reduced by almost 23%
compared with that of the client server (SOA).

Figure 14: Execution Time Impact (in milliseconds)

18

The second important parameter is the energy consumption of the of-
floaded application. Similar to the analysis of the first parameter, this ex-
periment is performed 10 times. The averages are presented in Figure 15.
This experiment also shows the efficacy of the proposed framework compared
with that of baseline local execution and SOA-based execution. However, the
energy consumption of our proposed technique is more than that of the SOA-
based execution because of the communication agent residing in the phone
and extra bookkeeping, which ensures the consistency and accuracy of data
offloading.

Figure 15: Energy Consumption Impact (in Joules)

The third important parameter is the number of bytes transferred between
successive synchronizations of application states from the client device to the
server ARM box. We make two cases for this parameter. First, we assume
that client data is unavailable on the server and must be transferred to the
server from the client device. Second, we assume that client data are available
on the server. The results of the experiment are presented in Figure 16.

The number of bytes transferred in the first case (Figure 16) is approx-
imately 12.2 MB per synchronization. The application declares and stores
three 1000 1000 matrices (two are operands, one is the resultant). Thus,
the memory acquired by the process for these three matrices are 12 MB
(1,000,000 3 4 bytes). The bookkeeping of our framework adds an additional
200 KB to the memory. For the second case, only 206.4 KB is transferred
for each synchronization interval. The data transfer amount in bytes can
be further reduced by applying a differential-based mechanism used in VM
migrations.

19

Figure 16: Data transfer (in bytes) between the client device and ARM box

5.3. Limitations of the proposed framework

The implementation of all the components of the devised framework is
unfinished. Some of the components are at the initial development phase.
Other components are implemented but needs improvement to handle the
following issues to transform every mobile application to a mobile cloud ap-
plication.

5.3.1. Improved Migration Mechanism

In the experimental setup of our framework, we capture and deploy the
process state using Android kernel modules. The experiment reveals that
using kernel module is not suitable for the migration for a number of reasons.
They include code complexity, difference in kernel version between devices
(in case of proximate mobile cloud), disabled kernel modules by default, need
for a rooted and custom ROM on the phone to exploit this method, and the
user curiosity on the security and privacy exploitation, which can be made
in the kernel space. To handle these issues, an improved migration-based
mechanism is required, which we will study in our future work.

5.3.2. Automatic Application Partitioning

All previous DVM-based partitioning mechanisms are incompatible with
ART. To allow existing applications to take advantage of mobile cloud us-
ing computational offloading, these applications must be partitioned for the
migration/synchronization points to be identified. These partitioning mech-
anisms, such as those used in CloneCloud [10] and its variants, should be au-
tomatic, to transform any mobile application to a mobile cloud application.

20

The partitioning mechanisms should work in such that when an application
is installed on a mobile device using ART, the compilation process of ART
should be modified to annotate and add special migration primitives to the
code. The schematic of the original ART process and the envisioned modified
ART process is presented in Figure 17 (a) and (b), respectively.

Figure 17: (a) The original Android Runtime Process (ART) (b) Modified ART Process

By inserting migration markers, the application can be migrated with
great ease because the synchronization points are defined. The migration can
be performed in a controlled manner by a user-level migration mechanism
surpassing the kernel-level-state acquisition. The modified ART compilation
process should be the same on both the mobile device and cloud to generate
a similarly partitioned application.

5.3.3. Scheduling Partitions

In case the mobile cloud the user is connected is a complex mobile cloud
scenario containing multiple type of resource as illustrated in Figure 1. The
partitioning of the application in the above discussed manner (5.3.2) will
help us to make a graph representation of the application which will be
useful in formulating the scheduling problem. Once the partitioning of ap-
plication is done, now two problems arise from the partitioned code i) to
identify the dependencies between the partitions, (ii)schedule the offloading
decisions/partitions over the resources available in the mobile cloud taking

21

into account the partition dependencies (such that independent partitions
can be executed in parallel) and other factors such as device context. A
scheduling decision to whether offload a particular partition to CSP, cloudlet,
or an ad-hoc mobile cloud node or not will be based on an objective func-
tion considering the dependencies between the partitions and the cost model.
An illustration of such a schedule of an application with fourteen partitions
on different types of resources available in the mobile cloud is presented in
Figure 18.

Figure 18: Schedule of automatically generated application partitions on mobile cloud
resources

6. Conclusion

In this study, we have thoroughly examined the existing computational
offloading primitives used in MCE. A computational offloading framework
for native and ART-based mobile application is subsequently proposed. We
conducted experiments to verify the efficacy of the proposed framework com-
pared with that of baseline local execution and client-server models. The
limitations of the study as well as future research directions are identified
to transform every mobile application available on centralized application
stores, such as the Google Play Store, into a mobile cloud application.

22

Acknowledgment

This work is fully funded and partially funded by Bright Spark Program
and High Impact Research Grant from the University of Malaya under refer-
ence BSP/APP/1635/2013 and UM.C/625/1/HIR/MOE/FCSIT/03, respec-
tively.

References

[1] J. Cohen. Embedded speech recognition applications in mobile phones:
Status, trends, and challenges. In Acoustics, Speech and Signal Pro-
cessing, 2008. ICASSP 2008. IEEE International Conference on, pages
5352–5355, March 2008.

[2] T. Soyata, R. Muraleedharan, C. Funai, Minseok Kwon, and W. Heinzel-
man. Cloud-vision: Real-time face recognition using a mobile-cloudlet-
cloud acceleration architecture. In Computers and Communications
(ISCC), 2012 IEEE Symposium on, pages 000059–000066, July 2012.

[3] Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab Hamid, Feng Xia,
and Muhammad Shiraz. A review on mobile application energy profil-
ing: Taxonomy, state-of-the-art, and open research issues. Journal of
Network and Computer Applications, 58:42–59, 2015.

[4] Abdullah Yousafzai, Victor Chang, Abdullah Gani, and Rafidah Md
Noor. Multimedia augmented m-learning: Issues, trends and open chal-
lenges. International Journal of Information Management, 36(5):784 –
792, 2016.

[5] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman,
Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: making
smartphones last longer with code offload. In Proceedings of the 8th
international conference on Mobile systems, applications, and services,
pages 49–62. ACM, 2010.

[6] Abdullah Yousafzai, Abdullah Gani, Rafidah Md Noor, Mehdi Sookhak,
Hamid Talebian, Muhammad Shiraz, and Muhammad Khurram Khan.
Cloud resource allocation schemes: review, taxonomy, and opportuni-
ties. Knowledge and Information Systems, pages 1–35, 2016.

23

[7] Mahadev Satyanarayanan, P. Bahl, R Caceres, and N. Davies. The
case for vm-based cloudlets in mobile computing. Pervasive Computing,
IEEE, 8(4):14–23, Oct 2009.

[8] Abdullah Yousafzai, Victor Chang, Abdullah Gani, and Rafidah Md
Noor. Directory-based incentive management services for ad-hoc mobile
clouds. May 2016.

[9] EGOR F. 64-bit android* and android run time.
https://software.intel.com/en-us/android/articles/

64-bit-android-and-android-run-time, 2014. (Visited on
06/30/2015).

[10] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. Clonecloud: Elastic execution between mobile device and
cloud. In Proceedings of the Sixth Conference on Computer Systems,
EuroSys ’11, pages 301–314, New York, NY, USA, 2011. ACM.

[11] Yonggang Wen, Weiwen Zhang, and Haiyun Luo. Energy-optimal mobile
application execution: Taming resource-poor mobile devices with cloud
clones. In INFOCOM, 2012 Proceedings IEEE, pages 2716–2720, March
2012.

[12] Byung-Gon Chun and Petros Maniatis. Augmented smartphone appli-
cations through clone cloud execution. In HotOS, volume 9, pages 8–11,
2009.

[13] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Her-
bert Bos. Paranoid android: Versatile protection for smartphones. In
Proceedings of the 26th Annual Computer Security Applications Confer-
ence, ACSAC ’10, pages 347–356, New York, NY, USA, 2010. ACM.

[14] E.Y. Chen and M. Itoh. Virtual smartphone over ip. In World of Wire-
less Mobile and Multimedia Networks (WoWMoM), 2010 IEEE Inter-
national Symposium on a, pages 1–6, June 2010.

[15] Bo Zhao, Zhi Xu, Caixia Chi, Sencun Zhu, and Guohong Cao. Mirroring
smartphones for good: A feasibility study. In Patrick Snac, Max Ott,
and Aruna Seneviratne, editors, Mobile and Ubiquitous Systems: Com-
puting, Networking, and Services, volume 73 of Lecture Notes of the

24

Institute for Computer Sciences, Social Informatics and Telecommuni-
cations Engineering, pages 26–38. Springer Berlin Heidelberg, 2012.

[16] Shih-Hao Hung, Chi-Sheng Shih, Jeng-Peng Shieh, Chen-Pang Lee, and
Yi-Hsiang Huang. Executing mobile applications on the cloud: Frame-
work and issues. Computers & Mathematics with Applications, 63(2):573
– 587, 2012. Advances in context, cognitive, and secure computing.

[17] Jason Flinn and Z. Morley Mao. Can deterministic replay be an enabling
tool for mobile computing? In Proceedings of the 12th Workshop on
Mobile Computing Systems and Applications, HotMobile ’11, pages 84–
89, New York, NY, USA, 2011. ACM.

[18] Ajay Surie, H. Andrés Lagar-Cavilla, Eyal de Lara, and M. Satya-
narayanan. Low-bandwidth vm migration via opportunistic replay. In
Proceedings of the 9th Workshop on Mobile Computing Systems and
Applications, HotMobile ’08, pages 74–79, New York, NY, USA, 2008.
ACM.

[19] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein.
Reran: Timing- and touch-sensitive record and replay for android. In
Proceedings of the 2013 International Conference on Software Engineer-
ing, ICSE ’13, pages 72–81, Piscataway, NJ, USA, 2013. IEEE Press.

[20] Ricky KK Ma and Cho-Li Wang. Lightweight application-level task mi-
gration for mobile cloud computing. In Advanced Information Network-
ing and Applications (AINA), 2012 IEEE 26th International Conference
on, pages 550–557. IEEE, 2012.

[21] S. Kosta, A. Aucinas, Pan Hui, R. Mortier, and Xinwen Zhang. Thinkair:
Dynamic resource allocation and parallel execution in the cloud for mo-
bile code offloading. In INFOCOM, 2012 Proceedings IEEE, pages 945–
953, March 2012.

[22] Soumya Simanta, Kiryong Ha, Grace Lewis, Ed Morris, and Mahadev
Satyanarayanan. A reference architecture for mobile code offload in
hostile environments. In David Uhler, Khanjan Mehta, and JenniferL.
Wong, editors, Mobile Computing, Applications, and Services, volume
110 of Lecture Notes of the Institute for Computer Sciences, Social Infor-
matics and Telecommunications Engineering, pages 274–293. Springer
Berlin Heidelberg, 2013.

25

[23] Dejan Kovachev, Yiwei Cao, and Ralf Klamma. Augmenting pervasive
environments with an xmpp-based mobile cloud middleware. In Martin
Gris and Guang Yang, editors, Mobile Computing, Applications, and
Services, volume 76 of Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering, pages
361–372. Springer Berlin Heidelberg, 2012.

[24] D. Kovachev, Tian Yu, and R. Klamma. Adaptive computation offload-
ing from mobile devices into the cloud. In Parallel and Distributed Pro-
cessing with Applications (ISPA), 2012 IEEE 10th International Sym-
posium on, pages 784–791, July 2012.

[25] Byoung-Dai Lee. A framework for seamless execution of mobile applica-
tions in the cloud. In Zhihong Qian, Lei Cao, Weilian Su, Tingkai Wang,
and Huamin Yang, editors, Recent Advances in Computer Science and
Information Engineering, volume 126 of Lecture Notes in Electrical En-
gineering, pages 145–153. Springer Berlin Heidelberg, 2012.

[26] Tim Verbelen, Tim Stevens, Pieter Simoens, Filip De Turck, and
Bart Dhoedt. Dynamic deployment and quality adaptation for mo-
bile augmented reality applications. Journal of Systems and Software,
84(11):1871 – 1882, 2011. Mobile Applications: Status and Trends.

[27] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt. Aio-
los: Middleware for improving mobile application performance through
cyber foraging. Journal of Systems and Software, 85(11):2629 – 2639,
2012.

[28] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal. Cuckoo:
A computation offloading framework for smartphones. In Martin Gris
and Guang Yang, editors, Mobile Computing, Applications, and Ser-
vices, volume 76 of Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, pages 59–79.
Springer Berlin Heidelberg, 2012.

[29] H. Flores, S.N. Srirama, and R. Buyya. Computational offloading or
data binding? bridging the cloud infrastructure to the proximity of the
mobile user. In Mobile Cloud Computing, Services, and Engineering
(MobileCloud), 2014 2nd IEEE International Conference on, pages 10–
18, April 2014.

26

[30] Salwa Adriana Saab, Farah Saab, Ayman Kayssi, Ali Chehab, and
Imad H. Elhajj. Partial mobile application offloading to the cloud for
energy-efficiency with security measures. Sustainable Computing: Infor-
matics and Systems, pages –, 2015.

[31] Seungjun Yang, Donghyun Kwon, Hayoon Yi, Yeongpil Cho, Yongin
Kwon, and Yunheung Paek. Techniques to minimize state transfer costs
for dynamic execution offloading in mobile cloud computing. Mobile
Computing, IEEE Transactions on, 13(11):2648–2660, Nov 2014.

[32] Mark S Gordon, Davoud Anoushe Jamshidi, Scott A Mahlke, Zhuo-
qing Morley Mao, and Xu Chen. Comet: Code offload by migrating
execution transparently. In OSDI, pages 93–106, 2012.

[33] Google. Art and dalvik. https://source.android.com/devices/

tech/dalvik/, 2013. (Visited on 03/30/2015).

[34] Sean Buckley. Art experiment in android kitkat improves battery
life and speeds up apps. http://www.engadget.com/2013/11/06/

new-android-runtime-could-improve-battery-life/, 2013. (Vis-
ited on 03/30/2015).

[35] Tool Interface Standards Committee et al. Executable and linkable for-
mat (elf). Specification, Unix System Laboratories, 2001.

[36] Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupé,
Mario Polino, Paulo de Geus, Christopher Kruegel, and Giovanni Vigna.
Going native: Using a large-scale analysis of android apps to create a
practical native-code sandboxing policy. 2016.

[37] Forbes. Arm holdings and qualcomm: The winners in mo-
bile. http://www.forbes.com/sites/darcytravlos/2013/02/28/

arm-holdings-and-qualcomm-the-winners-in-mobile/, 2013. (Vis-
ited on 09/10/2015).

[38] Kristin Bent. Arm snags 95 percent of smart-
phone market, eyes new areas for growth. http://

www.crn.com/news/components-peripherals/240003811/

arm-snags-95-percent-of-smartphone-market-eyes-new-areas-for-growth.

htm, 2012. (Visited on 09/10/2015).

27

[39] Kasidit Chanchio and Xian-He Sun. Data collection and restoration for
heterogeneous process migration. Software: Practice and Experience,
32(9):845–871, 2002.

[40] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In
USENIX Annual Technical Conference, FREENIX Track, pages 41–46,
2005.

[41] M. Whaiduzzaman, A. Gani, and A. Naveed. Pefc: Performance en-
hancement framework for cloudlet in mobile cloud computing. In
Robotics and Manufacturing Automation (ROMA), 2014 IEEE Inter-
national Symposium on, pages 224–229, Dec 2014.

[42] Md Whaiduzzaman, Abdullah Gani, and Anjum Naveed. An empiri-
cal analysis of finite resource impact on cloudlet performance in mobile
cloud computing. In CEET-2014. CEET, 2014.

[43] Dan Nanni. How to download apk files from google play store on linux.
http://xmodulo.com/download-apk-files-google-play-store.

html, 2015. (Visited on 08/30/2015).

28

