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Abstract

Data stream processing applications have a long running nature (24hr/7d) with workload conditions that may exhibit
wide variations at run-time. Elasticity is the term coined to describe the capability of applications to change dynamically
their resource usage in response to workload fluctuations. This paper focuses on strategies for elastic data stream
processing targeting multicore systems. The key idea is to exploit Model Predictive Control, a control-theoretic method
that takes into account the system behavior over a future time horizon in order to decide the best reconfiguration to
execute. We design a set of energy-aware proactive strategies, optimized for throughput and latency QoS requirements,
which regulate the number of used cores and the CPU frequency through the Dynamic Voltage and Frequency Scaling
(DVFS) support offered by modern multicore CPUs. We evaluate our strategies in a high-frequency trading application
fed by synthetic and real-world workload traces. We introduce specific properties to effectively compare different elastic
approaches, and the results show that our strategies are able to achieve the best outcome.
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1. Introduction

Data Stream Processing [1] (hereinafter DaSP) is a com-
puting paradigm enabling the online analysis of live data
streams processed under strict Quality of Service (QoS) re-
quirements. These applications usually provide real-time
notifications and alerts to the users in domains like en-
vironmental monitoring, high-frequency trading, network
intrusion detection and social media.

Elasticity in DaSP is a vivid and recent research field.
It consists in providing mechanisms to adapt the used re-
sources in cases in which the workload fluctuates inten-
sively. Such mechanisms are able to scale up/down the
used resources on demand, based on the actual monitored
performance [2]. This problem has been studied in the
last years, with works proposing elastic approaches both
for single nodes and distributed environments [3, 4, 5]. A
review of these solutions is described in Sect. 6.

This paper provides advanced strategies that fill missing
aspects of the existing work. Most of the elastic supports
are reactive [3, 4, 5, 6], i.e. they take corrective actions
based on the actual QoS measurements. In this paper we
present predictive strategies that try to anticipate QoS vi-
olations. Furthermore, most of the existing approaches
(see Sect. 6) are throughput-oriented and do not take into
account explicitly the processing latency as the main pa-
rameter to trigger reconfigurations. In this paper we pro-
pose strategies that address both throughput and latency
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constraints. Finally, the existing approaches do not face
energy/power consumption issues. In this paper we tackle
this problem by targeting multicore CPUs with Dynamic
Voltage and Frequency Scaling (DVFS) support.

The proactivity of our approach has been enforced us-
ing a control-theoretic method known as Model Predictive
Control [7] (MPC), in which the system behavior over a
future time horizon is accounted for deciding the best re-
configurations to execute. As far as we know, this is the
first time that MPC has been used in the DaSP domain.

A first version of this work has been published in Ref. [8].
This paper extends this preliminary work by presenting
two energy-aware strategies with different resource/power
usage characteristics: the first targets high-throughput,
while the second is oriented toward low-latency workload.
Furthermore, we provide a detailed analysis of our runtime
mechanisms for elasticity and a comparison with state-of-
the-art techniques. Finally, in this paper we specifically
study the complexity issues related to the online execu-
tion of our adaptation strategies by presenting a Branch&
Bound approach to deal with this problem.

The outline of this paper is the following. Sect. 2 pro-
vides a brief overview of DaSP. Sect. 3 describes our strate-
gies. Sect. 4 shows the details of the reconfiguration mech-
anisms. Sect. 5 analyzes our strategies and compares them
with the state-of-the-art. Finally, Sect. 6 reviews similar
research works and Sect. 7 concludes this paper.

2. Overview of Data Stream Processing

DaSP applications are structured as data-flow graphs [1]
of core functionalities, where vertices represent operators
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connected by arcs modeling data streams, i.e. unbounded
sequences of data items (tuples).

Important in DaSP are stateful operators [1] that main-
tain an internal state while processing input tuples. A
typical case is represented by partitioned-stateful opera-
tors [1], which are applied when the input stream conveys
tuples belonging to different logical substreams. In that
case, the operator can maintain a different internal state
for each substream. Examples are operators that process
network traces partitioned by IP address, or market feeds
partitioned by a stock symbol attribute.

Owing to the fact that the significance of each input tu-
ple is often time-decaying, the internal state can be repre-
sented by the most recent portion of each substream stored
in a sliding window [1]. The window boundaries can be
(time-based) or (count-based).

2.1. Intra-operator Parallelism

In this work we study elasticity for parallel partitioned-
stateful operators, which represent the target of the most
recent research [2, 9]. A parallel operator is composed of
several functionally equivalent replicas [1] that handle a
subset of the input tuples, as sketched in Fig. 1.
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Figure 1: Parallel partitioned-stateful operator: all the tuples
with the same key are routed to the same replica.

The operator receives a stream of tuples X =
{x1, x2, . . .} and produces a stream of results Y =
{y1, y2, . . .}. For each tuple xi ∈ X , let η(xi) ∈ K be
the value of a partitioning key attribute, where K is the
domain of the keys. For each key k ∈ K, pk ∈ [0, 1] denotes
its relative frequency. The replicas are interfaced with the
input and the output streams through the splitter and the
merger functionalities. The first is responsible for rout-
ing each input tuple to the corresponding replica using a
(hash) routing function m : K → [1, n], where n is the
number of replicas. The merger collects results from the
replicas and transmits them onto the output stream.

All the tuples with the same key are processed sequen-
tially by the same replica in the arrival order. Therefore,
no lock is needed to protect the state partitions since each
partition is accessed exclusively by the same replica. Fur-
thermore, this solution allows the ordering of results within
the same group to be preserved (this can be a necessary
property depending on the application semantics).

2.2. Motivations for Elastic Scaling

Real-world stream processing applications are character-
ized by highly variable execution scenarios. The dynamic-
ity can be described in terms of three different factors:

1. (D1) variability of the stream pressure: the input rate
can exhibit large up/down fluctuations;

2. (D2) variability of the key distribution: the frequency
of the keys {pk}k∈K can be time-varying, making load
balancing impossible to be achieved statically;

3. (D3) variable processing time per input tuple that
may change during the application lifetime. This is
possible for different reasons like the current system
availability (sharing between applications), or for en-
dogenous causes related to the elastic operator, e.g.,
the processing time may be dependent on the number
of tuples maintained in the window to be processed.

Applications must tolerate these variability issues in or-
der to keep the operator QoS optimized according to some
user criteria. Our strategies will be designed to optimize
two performance aspects: i) throughput, i.e. the number
of results delivered per time unit; ii) latency (or response
time), i.e. the time elapsed from the reception of a tuple
triggering the operator internal processing logic and the
delivering of the corresponding result.

To achieve the needed QoS, one could think to config-
ure the operator in such a way as to sustain the peak
load (e.g., the highest expected arrival rate) by using all
the available resources at the maximum CPU frequency
supported by the hardware. However, this solution may
be very expensive both in distributed environments (num-
ber of machines turned on) and on single nodes (too high
power consumption). The goal of any elastic support is
to meet the application-dependent QoS specifications with
high probability by keeping the operating cost within an
affordable range. To this end, we target strategies able to
modify the following configuration parameters of an elastic
operator: i) the number of cores (replicas) used n ∈ [1,N ];
ii) the routing function m : K → [1, n]; iii) the operating
frequency f ∈ F of the CPU(s).

2.3. SASO Properties

To evaluate our strategies we will refer to the well-known
SASO properties [10, 2]:

• (P1) stability : a stable strategy avoids frequent mod-
ifications of the current operator configuration;

• (P2) accuracy : high accuracy means that the strategy
minimizes the number of QoS violations;

• (P3) settling time: a strategy with a good settling
time is able to reach the desired configuration quickly;

• (P4) overshoot : a strategy overshoots when it over-
estimates the configuration to meet the needed QoS
(using more resources than needed).
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These properties are strictly related and represent con-
trasting objectives. Stability is important because recon-
figurations cause performance overhead (latency peaks,
throughput drops) due to the protocol executed to change
the operator configuration consistently with the compu-
tation semantics (this will be proved experimentally in
Sect. 5). Therefore, it is important to choose a configura-
tion that remains stable for a reasonable amount of time in
the future. However, a very stable strategy that minimizes
QoS violations (accuracy) implies a severe overshooting to
avoid changing the configuration too frequently. Of course,
overshooting increases resource/power consumption. Fi-
nally, the amplitude of a reconfiguration is a further pa-
rameter to control for two reasons: i) largest reconfigura-
tions may be more costly; ii) if the controller takes large
reconfigurations on average, it can find a stable configu-
ration quickly without a large number of small changes
(settling time) but it is more sensitive to prediction errors
and to fluctuations in the workload. Our goal is to design
adaptation strategies able to make trade-offs among these
properties.

2.4. Assumptions

In this paper we will make a set of assumptions. First,
we will suppose that all the replicas are executed on homo-
geneous cores (A1 ). Furthermore, we target single-node
systems composed of several multicore CPUs (A2 ). There-
fore, we will address distributed environments in our future
work. Finally, we will assume that the underlying archi-
tecture is dedicated to the execution of one elastic parallel
operator (A3 ). The coexistence of multiple operators or
applications sharing the same resources is an interesting
aspect that can integrated in our model-based approach.
This will be investigated in our future research.

3. The Approach

We key idea of our approach is to apply the MPC
method to design scaling strategies. Fig. 2 shows a generic
MPC controller and its three main components:

• disturbance forecaster : disturbances are exogenous
events that cannot be controlled, e.g., the arrival rate
and the processing time per input tuple. The con-
troller must be able to measure and estimate their fu-
ture values through forecasting tools (e.g., time-series
analysis [11], Kalman filters [12]). We denote by d(τ)
the vector of disturbance variables measured during
control step τ (a sampling interval) and by d̃(τ + 1)
the predicted vector for the next step;

• system model : the MPC controller exploits a sys-
tem model to compare alternative configurations. The
model captures the relationship between QoS vari-
ables (e.g., service rate, latency, power) denoted by
q(τ) and the current configuration expressed as a set
of decision variables u(τ);

• optimizer : at each control step the controller
solves an optimization problem to obtain the opti-
mal reconfiguration trajectory Uh(τ) = (u(τ),u(τ +
1), . . . ,u(τ+h−1)) over a prediction horizon of h ≥ 1
steps. The problem is constrained by the system
model to predict the QoS, and by constraints on the
admissible values of the decision variables.
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Figure 2: Internal logical structure of a MPC controller: dis-
turbance forecaster, system model and optimizer components.

The fundamental principle of MPC is that only the first
element u(τ) of the optimal reconfiguration trajectory is
used to steer the system to the next control step, and the
whole strategy is re-evaluated at the beginning of the next
control interval using the new disturbance measurements
to update the forecasts. In this way the prediction horizon
is shifted by one step each time (receding horizon control).

In the rest of this section we will describe the application
of MPC to our problem of elastic DaSP operators.

3.1. Disturbances

At control step τ the updated measurements related to
the last step τ − 1 are available and gathered by the con-
troller. Tab. 1 summarizes this set of measurements.

Symbol Description

TA, σA Mean and standard deviation of the inter-arrival time

per triggering tuple (of any key). The arrival rate is

λ = T−1
A .

{pk}k∈K Frequency distribution of the keys.

{ck}k∈K Arrays of sampled computation times of the keys during

the last control step, expressed in clock cycles (ticks).

Each ck is an array of samples for key k, collected by

the replica owning the key k during the last step.

Table 1: Basic monitored disturbance metrics collected by the
splitter and the replica functionalities.

A triggering tuple is a tuple that triggers the operator
internal processing logic (e.g., a new window must be pro-
cessed). The replicas monitor the computation times per
triggering tuple {ck}k∈K and collect these punctual values
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by transmitting them to the controller at each step. To re-
duce the amount of measurements, each replica performs
a sampling using a monitoring interval which is a submul-
tiple of the control step. Times are collected in ticks, thus
independently from the current CPU frequency.

The controller needs various additional metrics derived
from the basic ones. They are summarized in Tab. 2.

3.2. Performance and Power Models

Tab. 3 shows the decision variables and the QoS vari-
ables which are the model inputs/outputs.

Throughput model. This model is aimed at giving an
estimate of the average number of triggering tuples that
the operator serves per time unit. We are interested in
the inverse of the throughput, that is the operator effec-
tive service time denoted by TS , i.e. the average time
interval between the generation of two consecutive results.
From the arrays of measurements ck for each k ∈ K, the
controller measures the average number of ticks required

Symbol Description

Tk Mean computation time per triggering tuple with key k.

T iR Mean computation time per triggering tuple (of any key)

processed by replica i.

T Mean computation time per triggering tuple (of any key)

processed by any replica.

T iA Mean inter-arrival time (of any key) to replica i.

Pi Probability to transmit a triggering tuple (of any key) to

the i-th replica.

T idS , σS Mean and standard deviation of the ideal service time of

the operator.

ρi Utilization factor of the i-th replica.

ρ Utilization factor of the operator.

WQ Operator mean waiting time per triggering tuple (of any

key).

ca, cs Coefficients of variation for the operator inter-arrival and

ideal service time.

Table 2: Metrics derived by the controller from the basic ones.

Symbol Description

Decision variables

n(τ) Number of replicas used.

mτ :K → [1, n(τ)] Routing function used by the splitter.

f(τ) The operating frequency (GHz) used by the op-

erator.

QoS variables

TS(τ) Effective service time of the operator. It is the

inverse of the throughput.

RQ(τ) Response time (latency) of the operator.

Φ(τ) Power consumed by the operator (in watts).

Table 3: Decision variables selected by the controller and the
QoS variables output of the models.

to process a triggering tuple with key k. We denote it
by Ck(τ − 1). The mean computation time per triggering
tuple of key k ∈ K can be derived as follows:

T̃k(τ) =
C̃k(τ)

f(τ)
(1)

This expression assumes that the computation times are
proportional to the CPU frequency, which is true for CPU-
bound computations [13]. For memory-bound computa-
tions, in which the CPI (clock cycles per instruction) im-
proves with lower frequencies, this estimation may become
less accurate. In the following we will assume Expr. 1 a
valid estimation by assessing its accuracy in Sect. 5.

The mean computation time per triggering tuple (of any
key) processed by the i-th replica is:

T̃ iR(τ) = P̃i(τ)−1 ·
∑

k|mτ (k)=i

p̃k(τ) · T̃k(τ) (2)

where P̃i(τ) =
∑
k|mτ (k)=i p̃k(τ). The formula is a

weighted mean of the computation times of the keys routed
to that replica.

In Expr. 1 and 2 we use the values of the key frequencies
{pk}k∈K and the computation times {Ck}k∈K for the next
step. Since their current values cannot be measured until
the next control step, they need to be forecasted:

• by using the result of predictive history-based filters;

• in some cases it can be sufficient to use the last mea-
sured values as the next predicted ones, i.e. p̃k(τ) =

pk(τ − 1) and C̃k(τ) = Ck(τ − 1) for any k ∈ K.

The mean inter-arrival time of triggering tuples to the
i-th replica is given by:

T̃ iA(τ) =
T̃A(τ)∑

k|mτ (k)=i p̃k(τ)

This follows from the observation that the i-th replica re-
ceives only a fraction of the input tuples transmitted by
the splitter, i.e. the ones whose key attribute is mapped
onto that replica by the current routing function. In the
above formula the inter-arrival time value for the current
step T̃A(τ) must be predicted using forecasting tools in
order to track the future workload.

The utilization factor of the i-th replica is:

ρ̃i(τ) =
T̃ iR(τ)

T̃ iA(τ)

If it is greater than one, that replica is a bottleneck. If no
replica is a bottleneck, the splitter is able to route tuples
to the replicas without blocking on average. Otherwise,
if a replica is a bottleneck, its input queue grows up to
reaching its maximum capacity. At this point the back-
pressure throttles the splitter which is periodically blocked
from sending new tuples to the replicas. The ideal service
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time of the operator (the one in isolation) accounts for the
slowest replica, the one with the highest utilization factor:

T̃ idS (τ) = T̃ bR(τ) ·
∑

k|mτ (k)=b

p̃k(τ) (3)

Such that:

b ∈ arg max
i∈[1,...,n(τ)]

ρ̃i(τ)

and the effective service time is given by the maximum
between the ideal one and the inter-arrival time:

T̃S(τ) = max
{
T̃A(τ), T̃ idS (τ)

}
(4)

We observe that to optimize the throughput it is not
strictly necessary to balance the workload, but it is suffi-
cient that all the replicas have utilization factor less than
one. Under the assumption that the load is evenly bal-
anced among the replicas, the ideal service time formula
can be simplified as follows:

T̃ idS (τ) =

∑
k∈K p̃k(τ)T̃k(τ)

n(τ)
=
T̃ (τ)

n(τ)
(5)

Latency model. Inspired by the approach studied in
Ref. [14], we model the latency (response time) by using
a Queueing Theory approach. The mean response time of
the operator during a control step τ can be modeled as the
sum of two quantities:

RQ(τ) = WQ(τ) + T (τ) (6)

WQ is the mean waiting time before starting a service, and
T is the mean computation time per triggering tuple.

Our idea is to model the operator as a G/G/1 queueing
system with inter-arrival times and service times having
general statistical distributions. An approximation of the
mean waiting time is given by Kingman’s formula [15]:

W̃K
Q (τ) ≈

(
ρ̃(τ)

1− ρ̃(τ)

)(
c̃2a(τ) + c̃2s(τ)

2

)
T̃ idS (τ) (7)

where ρ̃(τ) = T̃ idS (τ)/T̃A(τ) and the coefficients of varia-
tion are ca = σA/TA and cs = σS/T idS .

We choose this model for its generality, since it does not
need restrict assumptions on the type of the arrival and
service stochastic processes. Simpler formulas of the wait-
ing time for other queueing systems like M/M/1, M/D/1
and M/G/1 exist and can be used in our strategies by
assuming that the transmission rate of the stream source
can be modeled as a Poisson process. However, the case of
Expr. 7 is more general and challenging because several in-
formation (e.g., coefficients of variation) must be efficiently
monitored by the runtime to apply it. In this paper we will
use Expr. 7 by making the following simplifications:

• we model the operator has a single queueing system
with ideal service time equal to the one of a replica

divided by the number of replicas used n(τ) (as stated
in Expr. 5 ). This roughly approximates the service
time of the operator provided that we are always able
to evenly balance the load among the replicas;

• although the mean inter-arrival time for the next step
T̃A(τ) is forecasted using statistical filters, the esti-
mated coefficient of variation is kept equal to the last
measured one, i.e. c̃a(τ) = ca(τ − 1);

• the coefficient of variation of the ideal service time is
equal to c̃s(τ) = cs(τ − 1). So doing, we suppose that
cs is unaffected by changes in the parallelism degree.

To increase the model precision we use a feedback mech-
anism in order to fit Kingman’s approximation to the last
measurements. This mechanism is defined as follows:

W̃Q(τ) = r(τ) · W̃K
Q (τ) =

WQ(τ − 1)

W̃K
Q (τ − 1)

· W̃K
Q (τ) (8)

The parameter r is a correction factor defined as the ratio
between the measured mean waiting time during the past
step τ − 1 collected by the splitter functionality and the
last prediction obtained by Kingman’s formula. The idea
is to adjust the next prediction according to the past error.

Power model. We are not interested in determining the
exact amount of power consumed. It is sufficient a propor-
tional estimation such that we can compare different oper-
ator configurations. We focus on the dynamic power dis-
sipation originated from the activities in the CPU, which
follows the underlying formula [16, 13, 17]:

Φ̃(τ) ∼ Ceff · n(τ) · f(τ) · V2 (9)

where the power during step τ is proportional to the used
number of cores, the CPU frequency and the square of the
supply voltage V, which in turn depends on the frequency
of the processor. In the model Ceff represents the effective
capacitance [18], a technological constant that depends on
the hardware characteristics of the CPU.

3.3. Optimization Process

The decision variables take their values from a set of
finite options. To simplify our problem, we take out
the routing function from the decision variables. Conse-
quently, we assume that at each step the controller is able
to find a routing function that balances the load. In this
way the controller uses Expr. 5 to estimate the ideal service
time instead of the more general Expr. 3. This assump-
tion is realistic in cases where the ratio between the most
frequent and the least frequent key is acceptably small.

The MPC controller is designed with a rebalancer com-
ponent in charge of computing a new routing function that
balances the workload among the replicas. This compo-
nent is triggered in two cases: i) each time it detects that
the load difference between the most and the least loaded
replicas is higher than a threshold; ii) any time the MPC
controller changes the number of replicas. The internal
structure of the MPC controller is sketched in Fig. 3.
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Figure 3: Internal logical structure of the MPC controller with
the rebalancer component for generating the routing function.

3.3.1. Problem statement

The MPC controller solves at each step a minimization
problem whose objective function J is expressed as the
sum of a cost L over all the steps of the prediction horizon,
i.e. minJ (τ) =

∑h−1
i=0 L(q(τ+i),u(τ+i)). A general form

for L is the following:

L(q̃(τ + i),u(τ + i)) = Qcost
(
q̃(τ + i)

)
+ QoS cost

+Rcost
(
u(τ + i)

)
+ Resource cost

+ Swcost
(
∆u(τ + i)

)
Switching cost

(10)

In the following we will describe in detail the three com-
ponents of the objective function.

QoS cost. In this work we use two QoS cost definitions
according to the target QoS policy of the system:

• throughput-based cost : the goal in this formulation is
to make the operator able to sustain the input rate.
We model this objective as follows:

Qcost
(
q̃(τ + i)

)
= α T̃S(τ + i) (11)

That is a linear cost proportional to the effective ser-
vice time, where α > 0 is a unitary price per time
instant. To minimize the QoS cost the controller
chooses one of the configurations with minimum ser-
vice time (i.e. the predicted inter-arrival time);

• latency-based cost : in latency-sensitive applications
the response time needs to be bounded to some maxi-
mum thresholds [19]. We model this requirement with
a cost function defined as follows:

Qcost
(
q̃(τ + i)

)
= α exp

(
R̃Q(τ + i)

δ

)
(12)

where α > 0 is a positive cost factor. The cost lies
in the interval (α, e α] for latency values within the

interval (0, δ], where δ > 0 is the desired threshold.
Such kind of cost heavily penalizes configurations with
a latency greater than the threshold.

Resource cost. The resource cost is defined as a cost pro-
portional to the number of used replicas or to the overall
power consumed. This corresponds to the two following
cost definitions:

Rcost
(
u(τ + i)

)
= β n(τ + i) per-core cost (13)

= β Φ̃(τ + i) power cost (14)

where β > 0 is a unitary price per unit of resources used
(per-core cost) or per watt (power cost).

Switching cost. We use the following switching cost def-
inition to represent an abstract cost for changing the cur-
rent configuration:

Swcost
(
∆u(τ + i)

)
= γ

(
‖∆u(τ + i)‖2

)2

(15)

where γ > 0 is a unitary price factor, and ∆u(τ) is the
difference between the decision vectors used at two con-
secutive control steps. Quadratic switching cost functions
are common in the control theory literature [7]. Any norm
can be used in this definition. In this paper we use the
Euclidean norm.

This switching cost term has two important effects on
reconfigurations:

• it is proportional to the reconfiguration amplitude,
hence it penalizes larger reconfigurations. Large re-
configurations likely require migrating more keys to
keep the load balanced, and this may be source
of further QoS violations (this will be studied in
Sect. 5.2.2);

• it allows the controller to be more conservative in re-
leasing/acquiring resources. The effect is that the use
of the switching cost allows smoothing the reconfig-
uration sequence in case of frequent fluctuations of
the arrival rate, where resources are continuously ac-
quired and released in control steps close in time.

A final consideration should be made on the nature of
the parameters α, β and γ. They are defined as the ratio
between a dimensionless weight (priority) and a scale fac-
tor, used to normalize the values of the cost terms using
reasonable estimations of their maximum bounds obtained
through preliminary experiments without controller.

3.3.2. Search space reduction

At the worst case the optimization phase needs to ex-
plore the combinatorial set of all the feasible combinations
of the decision variables. The number of possible trajecto-
ries isO(Ωh) where Ω = N×|F|, thus the optimization has
an exponential increase in worst-case complexity with an
increasing number of reconfiguration options and longer
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prediction horizons. For this reason, the computational
overhead of the controller could become a major concern,
as the strategy needs to occupy a small (negligible) frac-
tion of the control step interval. Therefore, methods to
reduce the computational overhead are mandatory for the
real-time execution of our approach.

The MPC optimization is essentially a search prob-
lem over a tree structure called evolution tree [20], whose
height corresponds to the horizon length h and the arity to
the total number of configuration options Ω, as shown in
Fig. 4. An approach to reduce the explored search space
consists in Branch & Bound methods (B&B). In this paper
we will use the following procedure:

• we assign to each explored node i of the tree a variable
Ci which represents the cost spent to reach that node
from the root. The cost of the root is zero;

• for each node we have Ω possible branches. The
subtree rooted at node i is explored if and only if
Ci < Copt, where Copt is the minimum cost of all
the root-to-leaf paths currently explored during the
search process. If i is a leaf, we further set Copt = Ci.

This procedure can be applied if the cost function J is
monotonically increasing with the step of the horizon. Ac-
cording to Expr. 10, L > 0 for each step, thus the cost
function J satisfies this property.
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Figure 4: Evolution tree (h = 2) and B&B procedure to reduce
the search space explored by the MPC optimization phase.

The procedure does not affect the final choice, which
is the same of the exhaustive search. However, the space
reduction depends on the size of the pruned subtrees and
we have no guarantee of its efficacy in general.

In conclusion, B&B techniques mitigate the problem but
do not solve it at all. For large configuration spaces the
overhead could be unacceptable even using B&B. Possible
solutions can be evolutionary algorithms, AI methods or

heuristics [21]. The employment of such techniques is one
of our future research directions, especially when we will
move our methodology to distributed environments.

4. Runtime System

We have implemented our elastic strategies in the
FastFlow1 framework [22] for stream processing applica-
tions on multicores. In this section we briefly present our
runtime environment and how to perform reconfigurations
efficiently on shared-memory architectures.

In the implementation the splitter, merger and the repli-
cas are executed by threads with fixed affinity on the cores
of the underlying architecture. According to the FastFlow
cooperation model [22], threads interact by exchanging
memory pointers to shared data through pop() and push()
primitives on lock-free queues. The splitter is interfaced
with the input stream through a TCP/IP POSIX socket.
The controller is executed by a dedicated control thread.

4.1. Reconfiguration Mechanisms

In the case of an increase in the number of replicas, the
controller instantiates the new replica threads, and creates
the FastFlow queues used to interconnect them with the
splitter and merger and the controller itself. The controller
sends special control messages through dedicated queues
to the splitter and the merger in order to notify them of
the new replicas. Then, the splitter starts the migration
protocol described in the sequel. Symmetric actions are
taken in the case of a removal of a subset of replicas.

In case of an increase or a decrease in the number of
replicas, the controller computes a new routing function
which is notified to the splitter. As studied in our past
work [8], on shared-memory machines the best solution is
to keep the workload as balanced as possible among the
replicas. Accordingly, many keys can be moved during a
reconfiguration. On distributed-memory architectures like
clusters, where state migration may need to transfer the
state between machines, different heuristics [23, 3, 2] can
be used to accept a slight load unbalance among replicas
by moving only a small subset of the keys.

Finally, variations in the current CPU frequency do not
affect the structure of the parallel implementation and can
be performed transparently. They are performed by the
controller using the C++ MAMMUT library2 (MAchine Mi-
cro Management UTilities), which allows the controller to
change the frequency of the cores by writing on proper
sysfs files of the Linux OS.

4.2. State Migration

The state migration protocol is critical. We identify
four fundamental properties of a reconfiguration protocol,

1http://mc-fastflow.sourceforge.net
2The Mammut library is open source and freely available at

https://github.com/DanieleDeSensi/Mammut
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which represent general design principles to perform re-
configurations with low latency:

• (R1) gracefulness: the splitter and the replicas should
avoid discarding input tuples, processing tuples with
the same key out-of-order, and should prevent the
generation of duplicated inputs/results;

• (R2) fluidness: the splitter should never wait for the
migration completion before re-starting to distribute
new incoming tuples to the replicas;

• (R3) non-intrusiveness: the migration should involve
only the replicas exchanging parts of their state. The
other replicas must be able to process the input tuples
without interferences;

• (R4) fluentness: while a replica involved in the migra-
tion is waiting to acquire the state of an incoming key,
it should be able to process all the input tuples with
other keys for which the state is ready to be used.

In the next section we will use these properties to qual-
itatively evaluate the main existing solutions. Then, we
will present our approach.

4.2.1. Qualitative comparison

The approach in Ref. [2] processes the tuples in their ar-
rival order without generating duplicate inputs and results
(R1). However, the migration activity needs synchroniza-
tion barriers among the splitter and the replicas. There-
fore, this support is neither able to achieve (R2), i.e. the
splitter is blocked waiting for the migration completion,
nor properties (R3) and (R4), because all the replicas are
blocked during the whole reconfiguration process. Analo-
gous is the case of the approach described in Ref. [5].

Substantial enhancements have been developed in
Ref. [24]. The migration is made less intrusive, as it in-
volves only the replicas that need to exchange state par-
titions (R3). Furthermore, the replicas that wait for the
acquisition of some state partitions can process the tuples
whose state is already available (R4), and the splitter does
not block until the migration has finished (R2). However,
this mechanism adds additional complexity because during
the reconfiguration the splitter transmits tuples of the mi-
grated keys to both the old and the new replicas, and the
merger filters duplicated results. Therefore, (R1) is not
achieved. Similarly, in the approach described in Ref. [4]
the splitter (or any upstream operator) has to deal with
the case of missing tuples not served during the migration,
which must be properly re-generated from the last check-
point. This phase affects the routing of new tuples in the
splitter, by adding a delay that depends on the number
of items to re-generate (R2). In contrast, in our approach
(see next section) the splitter transmits at most one mi-
gration message per replica, which represents a negligible
delay in the distribution activity.

Ref. [25] targets streaming applications in the MapRe-
duce framework. They have developed an asynchronous

checkpointing technique to efficiently migrate the state
partitions. As in other solutions, this approach allows
the state transfer to be executed asynchronously while the
replicas are working. A new replica acquires the updated
state partitions of the incoming keys using the last check-
point, and the splitter temporarily distributes duplicated
tuples to both the old and the new replica (as in Ref. [4])
until the state has been acquired successfully. Since du-
plicated tuples are generated during the reconfiguration
phase, property (R1) is not met. The same drawback char-
acterizes the solution described in Ref. [3].

Finally, the technique described in Ref. [23] is the most
similar to our approach. Besides the achievement of prop-
erties (R3) and (R4) common to many other solutions,
this approach gives a central role to the splitter, which is
in charge of buffering all the tuples of the moved keys in a
buffer. Such tuples will be delivered to the replicas as soon
as the migration is complete by quiesces the routing of new
fresh input tuples (not involved in the migration) to the
other replicas in the meanwhile. Therefore, although no
duplicated tuple/result is generated in this solution (R1),
property (R2) is not met. Tab. 4 summarizes the quali-
tative comparison among existing solutions. In the next
section we will present our migration protocol targeting
very low-latency applications.

Work R1 R2 R3 R4

[2, 5] Yes No No No

[24, 3, 25] No Yes Yes Yes

[4] No No Yes Yes

[23] Yes No Yes Yes

Our Yes Yes Yes Yes

Table 4: Qualitative comparison between migration protocols.

4.2.2. Migration protocol

After a reconfiguration decision, the controller trans-
mits a reconfiguration message to the splitter containing
the new routing table mτ . The splitter always receives
data non-deterministically from the input stream (new tu-
ples) and from the controller (reconfiguration messages),
the latter with higher priority. Once received a reconfigu-
ration message, the splitter recognizes the keys that must
be migrated and transmits to the involved replicas a se-
quence of migration messages:

• move out(k) is sent to the replica ri that held the state
of key k ∈ K before the reconfiguration but will not
hold them after it, i.e. mτ−1(k) = i ∧mτ (k) 6= i;

• move in(k) is sent to the replica rj that will hold
the data structures associated with key k after the
reconfiguration (and did not own them before), i.e.
mτ−1(k) 6= j ∧mτ (k) = j.

All the keys k ∈ K s.t. mτ−1(k) = i ∧ mτ (k) = i are
not involved in the migration and will be processed by the
replicas without interferences (R3). To reduce the number
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of migration messages, all the messages directed to the
same replica are packed into one single message with all the
keys that must be moved in/out to/from the destination
replica. It is worth noting that the splitter does not need
to wait for the completion of the migration activities by
the replicas and can always route new tuples to them (R2).

The splitter starts immediately to route the new input
tuples with the routing function mτ (R1). Let us suppose
that, as a result of the reconfiguration chosen by the con-
troller 1 , a key k ∈ K must be migrated from replica ri to
rj as depicted in Fig. 5. At the reception of a move out(k)
message by replica ri 2 , that replica knows that it will
not receive tuples with key k anymore. In fact, the replica
receives the move out(k) message through a pop() from the
same FIFO queue used for retrieving tuples distributed by
the splitter. Therefore, ri can safely save the state of that
key (denoted by sk) to a backing store (see Fig. 5) used
to collect the migrated state partitions and to synchronize
the pairs of replicas involved in the migration.

SPLITTER

thread

REPLICA j

thread

thread

Controller

Backing Store
(repository)

Key k

. . .

. . .
ri Key k

. . .

. . .

m⌧m⌧�1

rj

Key 0 State 0
. . . . . .

. . . . . .

Flags

. . .

. . .
Key k State kFlags

reconfiguration: new 
routing function.

1

move_in(k)

move_out(k) migrate state of key k

acquire state of key k

REPLICA i

thread
queue

SOURCE

DEST.

2

3

4

5

pending 
buffer tuples

Figure 5: Example of state migration between replica ri and
replica rj for key k.

The replica rj , which receives the move in(k) message
3 , may receive new incoming tuples for that key before

the state is ready. Only when the replica ri has properly
saved the state sk to the repository 4 , it can be acquired
by rj 5 . During this phase replica rj is not blocked but
accepts and processes new tuples (R4). All the tuples
with key k are enqueued in a pending buffer private of
that replica until the state sk is available. The availability
of sk in the backing store is periodically checked at each
reception of a new tuple. When the state becomes avail-
able, it is acquired by rj and all the pending tuples of key
k in the buffer are rolled out and processed in the same
order in which they were sent by the splitter.

The main enhancement with respect to Ref. [23] is that
the buffer of the moving keys received during the reconfig-
uration is not centralized in the splitter, causing a delay in
its activity after the end of the migration, but it is decen-
tralized in the replicas themselves (only the ones involved
in the migration). Therefore, the splitter is always able to

route tuples to the replicas without interruptions.
When replicas are executed on multiple distributed

nodes, the state migration requires copying the data struc-
tures to/from the repository. Instead, in our case the back-
ing store consists in a shared memory area in which repli-
cas exchange memory references to the data structures.
This avoids the copy overhead, and the synchronization to
check the state availability can be efficiently implemented
using spin-loops on boolean flags.

5. Experiments

In this section we evaluate our control strategies on a
kernel of a data stream processing application operating
in the high-frequency trading domain (HFT).

The code is compiled with gcc 4.8.1 and the −O3 opti-
mization flag. The architecture is a dual-CPU Intel Sandy
Bridge with 16 hyperthreaded cores with 32GB or RAM.
Each core has a private L1d (32KB) and L2 (256KB)
cache. Each CPU is equipped with a shared L3 cache of
20MB. The architecture supports DVFS with a frequency
ranging from 1.2GHz to 2GHz in steps of 0.1GHz.

5.1. Application

HFT computations ingest huge volume of data at a great
velocity with strict QoS requirements. The application
kernel is inspired by the work in Ref. [26], see Fig. 6.

Source Consumer

Algotrader

.

.

.
S M

Controller

Replica

Replica

windows

window

visualization

Figure 6: Kernel of a high-frequency trading application.

The source operator delivers a stream of quotes (buy
and sell proposals) represented by a record of attributes,
i.e. the proposed price, volume and the stock symbol (64
bytes in total). The algotrader operator processes the
quotes grouped by the stock symbol. A count-based win-
dow of size |W| = 1, 000 is maintained for each group.
After receiving δ = 25 new tuples of the same symbol,
the computation processes the buffered quotes. The logic
estimates the future price by performing two phases:

• aggregation: the quotes with a timestamp within the
same resolution interval (1 ms) are transformed into a
single tuple by averaging the values of the attributes;

• regression: the quotes (one per resolution interval) are
used as input of the Levenberg-Marquardt regression
algorithm that produces a polynomial fitting the ag-
gregated quotes. We use the C++ library lmfit [27].
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The consumer operator processes the results by producing
a representation in the form of candlestick charts. The
algotrader and the consumer are executed on the same
machine while the source is allocated on a different host.

We use a synthetic and a real dataset workload (see
Fig. 7). In the last we use a trading day (30 Oct 2014)
of the NASDAQ market3 with 2, 836 traded stock sym-
bols. The peak rate is near to 60, 000 quotes per second.
To stress the computation, we accelerate it by 100 times.
In the synthetic workload the arrival rate follows a ran-
dom walk model, and the key frequency distribution is
fixed and equal to a random time-instant of the NASDAQ
dataset. The execution of the synthetic workload and the
real dataset lasts 180 and 235 seconds respectively, the lat-
ter equal to about 6 hours and half of a whole trading day.

0

1.1x105

2.2x105

3.3x105

4.4x105

5.5x105

 0  20  40  60  80  100  120  140  160  180A
rr

iv
al

 r
at

e 
(q

uo
te

s/
se

c)

Time (sec)

Random walk workload.

Arrival rate.

(a) Random walk.

0

1.1x105

2.2x105

3.3x105

4.4x105

5.5x105

 0  30  60  90  120  150  180  210  235A
rr

iv
al

 r
at

e 
(q

uo
te

s/
se

c)

Time (sec)

Real NASDAQ dataset workload.

Arrival rate.

(b) Real dataset.

Figure 7: Arrival rate: synthetic workload and the real throt-
tled (100×) dataset of a NASDAQ trading day.

5.2. Evaluation of the Mechanisms
In the first set of experiments we analyze: i) the over-

head of our elastic support; ii) a comparison of different
migration protocols; iii) computational complexity aspects
of our control strategies.

5.2.1. Overhead of the elastic support

In this experiment we measure the maximum input rate
that the algotrader withstands with the highest CPU fre-
quency. The input tuples are generated with a fast con-
stant rate while the 2, 836 keys are uniformly distributed.
Fig. 8 compares the elastic implementation, with the con-
troller functionality and all the monitoring activities per-
formed with a sampling of 1 second, and the implementa-
tion without the elastic support.

3The dataset can be downloaded at the website: http://www.

nyxdata.com

0

1.6x105

3.2x105

4.8x105

6.4x105

8.0x105

1 2 3 4 5 6 7 8 9 10 11 12 24In
pu

t r
at

e 
(q

uo
te

s/
se

c)

Number of replicas

Overhead of the elastic support.

2-way hyperthreading
Unelastic. Elastic.

Figure 8: Comparison between the elastic and the unelastic
implementations.

The overhead is of 3 − 4% on average. The maximum
number of replicas without hyperthreading is 12, as four
cores are dedicated to the splitter, merger, controller and
consumer threads. We also report the case of 24 replicas
in which we map two replicas per core by exploiting hy-
perthreading. The scalability, i.e. the ratio between the
rate with 12 replica and with one replica, is 12.91 and
12.56 for the unelastic and the elastic case. This slight
hyperscalability is due to better temporal locality. In fact,
owing to key partitioning, with more replicas it is more
likely to find the needed window structure in one of the
private caches of a core (temporal locality). Furthermore,
we observe that with hyperthreading the operator sustains
higher rates. However, we do not use this feature in the
evaluation because its gain is not always easily predictable.
We will investigate the use and modeling of hyperthread-
ing in our strategies in our future work.

As a further experiment we study the maximum rate
by increasing the number of keys, see Fig. 9. In addition
to the previous case, we configure four experiments with
5K, 10K, 25K and 100K uniformly distributed keys. We
show for each case the maximum rate with one replica and
with 12 replicas, and we report over each bar the value of
the scalability. As we can observe, the maximum rate de-
creases with more keys, although the scalability remains
roughly similar. The main reason is that the higher the
number of keys the greater the processing time per tu-
ple, because less temporal locality can be exploited by the
replicas and more cache misses are on average generated
during the processing on each tuple.
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5.2.2. Analysis of migration protocols

In this section we compare our migration protocol (de-
noted by MP) with two alternatives that reproduce some of
the features of the protocols described in Sect. 4.2.1:

• a protocol (R-BLK) that achieves all the properties ex-
cept (R4). The protocol blocks the replicas involved
in the migration, which are not able to process the
input tuples until the state of all the incoming keys
has been acquired;

• a protocol (S-BLK) that achieves all the properties ex-
cept (R2). The protocol uses a centralized pending
buffer for the tuples belonging to the moving keys,
which are buffered by the splitter. Using a centralized
buffer implies that the splitter is involved in dequeu-
ing all the tuples from the buffer after the state has
been transferred. This activity delays the scheduling
of new input tuples because the splitter does not re-
ceive new tuples from the input stream during the
dequeuing phase. This approach is inspired to the
work presented in Ref. [23].

Other more intrusive protocols produce worse results and
are not considered for the sake of brevity.

We study a scenario in which the operator is not a bot-
tleneck and its workload is balanced until timestamp 30.
Then, we force the input rate to abruptly change from
3 × 105 tuples/sec to 4 × 105 tuples/sec. The strategy
triggers a reconfiguration at timestamp 31 by changing
the number of replicas from 6 to 8 with the same CPU
frequency. To perfectly balance the workload, the recon-
figuration moves about 80% of the keys. A low-latency
migration protocol has two goals: the tuples belonging to
non-migrated keys that are received during the migration
phase must be processed with low latency; furthermore,
after the migration completion the protocol must be able
to reach the new steady state quickly.

Fig. 10a shows the latency peaks. During the migra-
tion MP is always able to process tuples not belonging to
the migrated keys. The R-BLK protocol produces higher
latency peaks because almost all the replicas are blocked
during the migration. The S-BLK achieves lower latency
peaks than R-BLK. However, after the migration it delays
the splitter from the routing of new tuples of any key, and
the latency decreases more slowly than in MP.

Fig. 10b reports the number of results produced per
monitoring interval. In the first phase the protocol moves
the state partitions of the migrated keys. During this time
period our protocol produces more results than the other
two solutions. In the second phase all the tuples buffered
during the migration are finally computed. In R-BLK this
set of tuples comprises also tuples of non-migrated keys,
which are computed later and with greater latency than
in MP. S-BLK represents an intermediate solution that still
delays the splitter when all the buffered tuples can be pro-
cessed. In MP these tuples have been already distributed
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Figure 10: Impact of the migration protocol: latency and num-
ber of results of the algotrader operator.

and buffered by the corresponding replicas, and they are
computed in advance with lower latency.

This set of experiments shows that reconfigurations do
not come from free, but they produce latency peaks and
throughput drops due to the complex protocol needed to
handle the reconfiguration consistently.

5.2.3. Dealing with control complexity

The MPC controller may explore a potentially huge
number of states that grows exponentially with the hori-
zon length. This can rapidly make the computational bur-
den excessive for the real-time adaptation. Tab. 5 shows
the theoretical number of states that the control strategy
should explore with an exhaustive research and the ones
explored with the B&B solution described in Sect. 3.3.2.

States Explored % Time

h = 1 108 108 100 45.77 usec

h = 2 11,664 2,537 21.75 608 usec

h = 3 1,259,712 72,055 5.72 17 msec

Table 5: Number of explored states by the MPC controller.

Ideally, the execution of the MPC procedure should
cover a small fraction of the control step. According to
the results of the table, the B&B solution is capable of
reducing the number of explored states. The reduction is
of several orders of magnitude and makes it possible to
complete the online optimization in few milliseconds with
the longest length of the horizon used in this paper. How-
ever, we can note that the number of explored states still
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grows rapidly. Therefore, other solutions must be adopted
in cases with more reconfiguration options and longer hori-
zons (e.g., evolutionary algorithms).

5.3. Evaluation of Elastic Strategies

We study different MPC strategies listed in Tab. 6. Each
strategy is evaluated without switching cost (γ = 0) or
with the switching cost term and different lengths h ≥ 1 of
the horizon. Horizons longer than one step are meaningful
only with the switching cost enabled. Therefore, h = 1
is implicit in any NoSw strategy. The *-Node strategies
change the number of replicas using the maximum CPU
frequency, while the *-Power strategies change also the
CPU frequency.

QoS cost Resource cost Name alpha

throughput-

based (Expr. 11)

per node

(Expr. 13)
Th-Node

rw: 200

real: 200

throughput-

based (Expr. 11)

power cost

(Expr. 14)
Th-Power

rw: 200

real: 300

latency-

based (Expr. 12)

per node

(Expr. 13)
Lat-Node

rw: 2

real: 3

latency-

based (Expr. 12)

power cost

(Expr. 14)
Lat-Power

rw: 2

real: 4

Table 6: MPC strategies studied in the experiments.

The parameters α, β and γ require a careful tuning in
order to give the desired weight to the components of the
cost functions and to normalize properly their values. We
use β = 0.5 and γ = 0.4 for all the strategies, while we
need a different value of α for each workload scenario (see
Tab. 6). This choice of the parameters gives more priority
to the QoS cost, while the resource cost and the switch-
ing cost have a lower priority. We model in this way an
important case in which the controller tries to reduce QoS
violations by using minimal resources.

All the strategies perform statistical predictions of mea-
sured disturbances. We assume that:

• the arrival rate is predicted according to a Holt Win-
ters filter [28] able to capture trend and cyclic non-
stationarities of the time-series;

• the frequencies and the computation times per key are
estimated using the last measured values.

All the experiments have been repeated 25 times by col-
lecting the average measurements. The variance is very
small: in some cases we will show the error bars.

5.3.1. Reconfigurations

We study the effect of the switching cost on the number
of reconfigurations. Fig. 11 shows the replicas used by the
Th-Power strategy with the real dataset workload.

As we can observe, the switching cost acts as a brake that
slows the acquisition/release of resources. In particular:
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Figure 11: Number of used replicas per control step (1 sec).
Th-Power strategy with and without the switching cost.

• during phases in which the arrival rate is expected
to increase (increasing trends), the strategy without
switching cost acquires resources at each step. With
switching cost resources are acquired more slowly;

• the opposite behavior characterizes decreasing trends
of the arrival rate, where with the switching cost the
resources are released more slowly by the controller.

This is evident in Fig. 11a. The effect of the brake is very
intensive with a short horizon of one step, and as a result
from step 60 to 220 the controller uses more resources that
needed, because it has no convenience to release them.

The horizon length is used to mitigate the effect of the
brake. With a longer horizon of h = 2 (Fig. 11b) the con-
troller i) anticipates the acquisition of resources that will
be needed in future steps, and ii) anticipates the release
of resources that will be no longer needed in the future
steps. Qualitatively the reconfiguration sequence with a
longer horizon approximates the sequence of choices taken
without the switching cost (blue dashed line), however by
smoothing several reconfigurations that can be avoided.

Fig. ?? summarizes the results with the other strategies.
More reconfigurations are performed in the real workload,
due to a higher variability of the arrival rate. Furthermore,
more reconfigurations are performed with the strategies
Th-Power and Lat-Power with respect to Th-Node and
Lat-Node, because they use more reconfiguration options
(CPU frequency and the number of replicas).

These results allow us to clarify an important property
of our strategies, stated as follows:

Result 1. The switching cost allows the strategy to reduce
the number and frequency of reconfigurations (P1). This
is partially offset by increasing the horizon length.
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Figure 12: Number of reconfigurations per strategy: random
walk and real workload.

5.3.2. Resource and power consumption

For *-Node strategies we measure the number of repli-
cas used, while for *-Power we consider the power con-
sumption in watts collected through the RAPL (Running
Average Power Limit) interface [29]. We measure the core
power counters. Additional 25−30 watts per second must
be added to obtain the per-socket power consumption.

According to assumption (A1), the two chips of our mul-
ticore always use the same frequency. Fig. ?? shows the
watts consumed by the strategies without switching cost.
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Figure 13: Power consumption (watts) of the non-switching
cost strategies: random walk and real dataset workload.

The watts consumed with the *-Power strategies are
always below the consumption without frequency scaling.
The Th-Power strategy saves 13÷ 14 watts per second on
average compared with Th-Node, while Lat-Power saves
10÷ 11 watts than Lat-Node. The effect of the switching

cost with different horizon lengths is shown in Fig. ??. As
we can observe, the consumption with short horizons is
higher because the used configuration is often oversized.
The reason is that the controller is more conservative in
releasing already owned resources than in acquiring new
resources (this is a side effect of using a higher priority for
the QoS cost term in the optimization). By using longer
horizons this effect is partially mitigated and lower over-
shooting can be achieved. In conclusion we can state the
following result:

 2

 4

 6

 8

Random Walk Real

N
o.

 c
or

es

Th-Node strategy.

NoSw.
Sw (h=1).

Sw (h=2).
Sw (h=3).

 20

 30

 40

 50

Random Walk Real

W
at

ts

Th-Power strategy.

NoSw.
Sw (h=1).

Sw (h=2).
Sw (h=3).

 5

 7

 9

 12

 14

Random Walk Real

N
o.

 c
or

es

Lat-Node strategy.

NoSw.
Sw (h=1).

Sw (h=2).
Sw (h=3).

 30

 40

 50

 60

Random Walk Real

W
at

ts

Lat-Power strategy.

NoSw.
Sw (h=1).

Sw (h=2).
Sw (h=3).

Figure 14: Resources/power consumed per strategy: random
walk and real workload.

Result 2. The switching cost causes overshoot (P4). This
can be mitigated by using longer horizon lengths.

We can see that the Th-* strategies are less resource
demanding that Lat-*. In fact, throughput optimization
requires to find the minimum configuration achieving a uti-
lization factor less than one. Instead, the Lat-* strategies
need to find a configuration that properly minimizes the
utilization factor such that the waiting time (Expr. 6) is
small enough to meet the latency constraint.

Finally, to assess the importance of the elastic support
on multicores we have evaluated the power consumption
of the cores with a static peak-load configuration in which
the operator is configured to use the maximum number of
replicas (12) at the maximum frequency (2 Ghz) for all
the steps of the execution. The average consumption is of
68.25 watts per steps. The power saving of the elastic sup-
port is significant, i.e. 30.7% with the Lat-Power strategy
(NoSw) and 48.6% with Th-Power (NoSw), and obtained
with a limited increase in QoS violations (10− 20%).

5.3.3. Respecting the QoS constraints

The strategies have important effects in the accuracy
(P2) achieved by our elastic support. A QoS violation is
a deviation from the desired behavior defined as follows:

• for throughput-based strategies we measure the ratio
between the number of results produced per control
step Nout and the number of triggering tuples Nin
received. We detect a QoS violation if the ratio is
lower than a specified threshold θth;
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• for latency-based strategies we detect a QoS violation
each time the average latency measured during a con-
trol step is higher than a threshold θlat.

Fig. ?? shows the QoS violations under the random walk
workload with the Th-Power strategy. We detect a viola-
tion when the blue line crosses the red region (θth = 0.95).
The strategy without switching cost adopts the minimal
configuration to avoid being a bottleneck at each step. If
the arrival rate predictions are underestimated, the oper-
ator may likely be a bottleneck and the ratio Nout/Nin
assumes values lower than θth. The controller reacts by
changing the configuration in the future steps, and the en-
queued tuples can be processed when more resources are
allocated by producing peaks greater than 1 of the ratio.
This is the reason for the zig-zag pattern in the figure.
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Figure 15: Number of throughput violations: strategy
Th-Power (NoSw h = 1 and Sw h = 1, 2) and random walk.

The best accuracy is obtained by the strategy with
switching cost and horizon h = 1. This is an expected re-
sult, as this strategy uses more resources than necessary by
tolerating workload underestimations. With longer hori-
zons the accuracy worsens (26 violations with h = 2) but
resource consumption improves, consequence of a lower
overshooting. Therefore, in our approach longer horizons
are mainly useful to reduce resource/power consumption
without increasing too much the number of QoS violations
(which are minimum with a very over-provisioning strat-
egy like Sw h = 1). Fig. ?? shows a summary of the QoS
violations achieved by all the strategies under the synthetic
and the real dataset workload scenarios. The behavior can
be summarized by the following property:

Result 3. The switching cost allows the MPC strategy to
reach better accuracy (P2). This positive effect is partially
offset by increasing the horizon length.
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Figure 16: Number of QoS violations per strategy: random
walk and real workload.

5.3.4. Settling time

When the workload changes suddenly an effective strat-
egy should be able to reach rapidly the new configu-
ration that meets the QoS requirements. If the strat-
egy takes small reconfigurations (e.g., fews replicas are
added/removed each time), this negatively impacts the
settling time property. Fig. ?? shows the average recon-
figuration amplitude. It is the average Euclidean distance
between the vector u(τ) and the vector u(τ − 1) for each
τ . The admissible frequency values have been normalized
to obtain integers from 1 to 9.

As shown in Fig. ??, the strategy with switching cost
and h = 1 performs smaller reconfigurations. The highest
amplitude is achieved by the strategy without the switch-
ing cost. Therefore, we can conclude that:

Result 4. The switching cost reduces the average recon-
figuration amplitude. Better settling time (P3) can be
achieved by using longer prediction horizons.
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Figure 17: Reconf. amplitude of the strategies.

5.4. Comparison with Similar Approaches

We compare our work with a reactive strategy based on
policy rules and the heuristic presented in Ref. [2]. The
reactive strategy is based on event-condition-action rules

14



widely adopted in Autonomic Computing [30]. The strat-
egy increases/decreases the number of replicas if the oper-
ator utilization factor is over/under a maximum/minimum
threshold (θmax and θmin).

We have also implemented the algorithm in Ref. [2] de-
veloped for the SPL framework [31]. The strategy moni-
tors whether the operator is capable of sustaining the ac-
tual stream speed and evaluates a corresponding conges-
tion index. A congestion is detected if the index is over a
threshold. The strategy is throughput oriented and moni-
tors the number of input tuples served by the operator. It
changes the number of replicas based on the current con-
gestion index and the recent history of past actions. If
a past action did not improve throughput, the algorithm
avoids executing it again. To adapt to fluctuating work-
load, the authors introduce specific mechanisms to forget
the recent history if the congestion index or the throughput
change significantly. The algorithm uses a sensitivity pa-
rameter to determine when a significant change happens.
Further details can be found in Ref. [2].

Tab. ?? shows the results for the real dataset scenario.
Since the rule-based strategy and the heuristic one tar-
get throughput optimization without frequency scaling, we
compare them with Th-Node. We use a horizon of 2 steps
that, as we have seen, achieves the best SASO trade-off.
For the comparison we use a control step of 4 seconds be-
cause the SPL-strategy is very unstable with too frequent
steps. This is an important shortcoming that makes this
strategy unable to track the workload with a fine-grained
sampling. The best values for the congestion threshold
and sensitivity parameters are 0.1 and 0.9.

No. re-
conf.

QoS
viol.

Ampl. No.
replicas

Rule-based* 39.17 62 1.07 4.63

Rule-based** 29 59 1.06 4.58

SPL-strategy 40.18 58 1 4.63

Th-Node (4s) 11 56 1 4.51

Th-Node (2s) 24.77 54 1.04 4.50

Table 7: Comparison with existing works. * θmax = 0.9 and
θmax = 0.8. ** θmax = 0.95 and θmax = 0.8.

The results show that our approach is the winner. Fewer
reconfigurations are performed (stability) with fewer viola-
tions (accuracy). Our approach uses a smaller number of
replicas on average (overshoot) with a comparable ampli-
tude (settling time). This is a confirm of the effectiveness
of our predictive model-based approach.

6. Related Works

Stream Processing Engines (SPEs) are available both
as academia prototypes [3, 24, 4], open-source solu-
tions [32, 33] and industrial products [31, 34]. In their early

days SPEs managed dynamic situations either by over-
provisioning resources or by means of load shedding [1].
The first solution is not cost-effective, while the second
one consists in discarding a fraction of the input stream to
alleviate the stream pressure.

Elasticity is a recent feature of SPEs. Most of the ex-
isting works propose reactive strategies. In Refs. [3, 4, 5]
the authors use a set of threshold-based rules on the ac-
tual CPU utilization by adding or removing computing
resources accordingly. Other works use more complex met-
rics. In Ref. [14] the mean and standard deviation of the
service time and the inter-arrival time are used to reac-
tively enforce latency constraints. In Ref. [2] the strategy
measures a congestion index and the throughput achieved
with the current number of replicas. To the best of our
knowledge, this is the only work in addition to our that
targets the SASO properties. Our approach follows a dif-
ferent vision as we propose a model-based predictive ap-
proach instead of a heuristic-based reactive one.

Although predictive strategies have been applied to the
control of data centers and clouds [21], they are essentially
new in DaSP. As far as we know, the work in Ref. [6] is the
only one before this paper that tries to apply a predictive
approach in SPEs. It leverages the knowledge of the future
to plan a smart resource allocation. The approach has
been evaluated using oracles that give exact predictions.
Some experiments take into account possible prediction
errors, but they do not use real forecasting tools.

All the previous works except [14] are not optimized for
low latency. In contrast our strategy exhibits a high de-
gree of flexibility. Based on the mathematical formulation
of the MPC problem, we are able to address both through-
put and latency constraints. In Ref. [5] the authors study
how to minimize latency spikes during the state migration.
We have studied this problem in this paper, but we extend
this vision by making the strategy fully latency aware: the
MPC-based strategy is able to compare different configu-
rations in terms of their expected latency.

All the previous works take into account only the num-
ber of used nodes. Instead, our strategies address power
consumption on DVFS-enabled CPUs. Few works target
power consumption on stream processing, e.g., the work
in Ref. [35] provides a power-aware scheduler for stream-
ing applications. However, it does not propose any elastic
support to resource scaling.

7. Conclusions and Future Work

In this paper we studied a predictive approach to elastic
partitioned-stateful stream operators on multicores. Our
approach is based on MPC and is able to control power
consumption by accommodating throughput and latency
requirements. We evaluated our strategies in a high-
frequency trading application by showing the capability
to achieve good trade-offs among the SASO properties.

In the future we plan to extend our work in several
directions. The current development effort in FastFlow
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is targeting distributed-memory architectures. Therefore,
we plan to extend our work on clusters. Furthermore,
our future aim is to integrate the MPC strategy for sin-
gle partitioned-stateful operators in a complete context, in
which the strategies of different elastic operators or appli-
cations (executed on the same machine) need to coordinate
to find an agreement in their scaling decisions.
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man, R. Lax, S. McVeety, D. Mills, P. Nordstrom, S. Whittle,
Millwheel: Fault-tolerant stream processing at internet scale,
Proc. VLDB Endow. 6 (11) (2013) 1033–1044.

[35] D. Sun, G. Zhang, S. Yang, W. Zheng, S. U. Khan, K. Li, Re-
stream: Real-time and energy-efficient resource scheduling in
big data stream computing environments, Information Sciences
319 (2015) 92 – 112, energy Efficient Data, Services and Memory
Management in Big Data Information Systems.

16

ftp://download.intel.com/design/network/papers/ 30117401.pdf
ftp://download.intel.com/design/network/papers/ 30117401.pdf
ftp://download.intel.com/design/network/papers/ 30117401.pdf
ftp://download.intel.com/design/network/papers/ 30117401.pdf
http://apps.jcns.fz-juelich.de/lmfit
http://apps.jcns.fz-juelich.de/lmfit
http://apps.jcns.fz-juelich.de/lmfit

	Introduction
	Overview of Data Stream Processing
	Intra-operator Parallelism
	Motivations for Elastic Scaling
	SASO Properties
	Assumptions

	The Approach
	Disturbances
	Performance and Power Models
	Optimization Process
	Problem statement
	Search space reduction


	Runtime System
	Reconfiguration Mechanisms
	State Migration
	Qualitative comparison
	Migration protocol


	Experiments
	Application
	Evaluation of the Mechanisms
	Overhead of the elastic support
	Analysis of migration protocols
	Dealing with control complexity

	Evaluation of Elastic Strategies
	Reconfigurations


	Related Works
	Conclusions and Future Work

