
HAL Id: hal-01429691
https://hal.science/hal-01429691

Submitted on 9 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting Pattern-Based Dependability Engineering
via Model-Driven Development: Approach, tool-support

and empirical validation
Brahim Hamid, Jon Perez

To cite this version:
Brahim Hamid, Jon Perez. Supporting Pattern-Based Dependability Engineering via Model-Driven
Development: Approach, tool-support and empirical validation. Journal of Systems and Software,
2016, vol. 122, pp. 239-273. �10.1016/j.jss.2016.09.027�. �hal-01429691�

https://hal.science/hal-01429691
https://hal.archives-ouvertes.fr

To link to this article : DOI:10.1016/j.jss.2016.09.027
URL : http://dx.doi.org/10.1016/j.jss.2016.09.027

To cite this version : Hamid, Brahim and Perez, Jon Supporting Pattern-
Based Dependability Engineering via Model-Driven Development: Approach,
tool-support and empirical validation. (2016) Journal of Systems and
Software, vol. 122. pp. 239-273. ISSN 0164-1212

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17251

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Supporting pattern-based dependability engineering via model-driven

development: Approach, tool-support and empirical validation

Brahim Hamid
a , ∗, Jon Perez b

a IRIT, University of Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
b IKERLAN-IK4 Research Centre, Mondragon, Spain

Keywords:

Dependability

Safety

System engineering

Patterns

Meta-modeling

Model driven engineering

a b s t r a c t

Safety-critical systems require a high level of safety and integrity. Therefore, generating such systems in-

volves specific software building processes. Many domains are not traditionally involved in these types of

software problems and must adapt their current processes accordingly. Typically, such requirements are

developed ad hoc for each system, preventing further reuse beyond the domain-specific boundaries. This

paper proposes a solution for software system development based on the reuse of dedicated subsystems,

i.e., so-called dependability patterns that have been pre-engineered to adapt to a specific domain. We use

Model-Driven Engineering (MDE) to describe dependability patterns and a methodology for developing

dependable software systems using these patterns. Moreover, we describe an operational architecture for

development tools to support the approach. An empirical evaluation of the proposed approach is pre-

sented through its practical application to a case study in the railway domain, which has strong depend-

ability requirements, to support a pattern-based development approach. This case study is followed by a

survey to better understand the perceptions of practitioners regarding our approach.

1. Introduction

Safety-critical systems require a high level of safety and in-

tegrity. Therefore, the generation of such systems involves spe-

cific software building processes. These processes are often error-

prone because they are not fully auto- mated, even if some level

of automatic code generation or model-driven engineering sup-

port is applied. Furthermore, many critical systems also have as-

surance requirements, ranging from very strong levels involving

certification (e.g., EN-50,129 (CENELEC, 1999) for railway systems

and DO-178B (RTCA, 1992) for airborne systems) to reduced lev-

els based on industry practices. These systems can be found in

many application sectors such as automotive, aerospace, and home

control, and come with many common characteristics, includ-

ing real-time and temperature constraints, computational process-

ing, power constraints and/or limited energy and common extra-

functional properties such as dependability, security and efficiency

(Ravi et al., 2004; Kopetz, 2011).

The integration of various concerns, such as dependability, re-

quires the availability of both application development and ex-

pertise. Many domains not traditionally involved in this type of

software development and must adapt their current processes ac-

∗ Corresponding author. Fax: + 33 5 6150 4173.

E-mail addresses: hamid@irit.fr (B. Hamid), JPerez@ikerlan.es (J. Perez).

cordingly. Typically, such requirements are developed ad hoc for

each system, preventing further reuse beyond the domain-specific

boundaries. This is especially true for railway systems, as they ex-

ist in many use cases. Many of these systems belong to critical in-

frastructures, where other economic and social aspects are based

on. Hence capturing and providing this expertise via dependability

patterns (Daniels and Vouks, 1997; Powel, 2003; Tichy et al., 2004;

Radermacher et al., 2013) has become recently an area of research.

Dependability patterns enable the development of dependable ap-

plications and liberate the developer from having to address tech-

nical details. We believe that the specification and packaging of de-

pendability patterns can provide an efficient means of addressing

these problems, improving industrial efficiency and fostering tech-

nology reuse across domains (the reuse of models at different lev-

els), thus reducing the time and effort required to design a com-

plex system (McClure, 1997; Agresti, 2011). Model-driven engineer-

ing (MDE) (Selic, 2003; Atkinson and Ku ̈hne, 2003) also provides

a very useful contribution to the design of safety-critical systems

(Ziani et al., 2012; Panesar-Walawege et al., 2013) because it re-

duces the time/cost required for understanding and analyzing sys-

tem artifact descriptions due to the abstraction mechanisms. More-

over, it reduces the cost of the development process thanks to the

generation mechanisms. Hence, dependability pattern integration

must be considered during the MDE process.

In system and software engineering, design patterns (Gamma et

al., 1995; Henninger et al., 2007) are considered effective tools for

the reuse of specific information. They are widely used today to

provide architects and designers with reusable design knowledge.

They are triples that describe solutions for commonly occurring

problems in specific contexts. Indeed, pattern-based development

has recently gained more attention in software engineering by ad-

dressing new challenges that had not been targeted in the past

(Henninger et al., 2007). In fact, they are applied in modern soft-

ware architecture for distributed systems, including middleware

and real-time embedded systems (Schmidt and Buschmann, 2003).

There are patterns for generic architecture problems (Buschmann

et al., 1996, 2007), security (Schumacher, 2003 ; Fernandez, 2013),

safety (Alexander et al., 2007; Preschern et al., 2013) and other

non-functional requirements (Powel, 2003). The related approaches

promote the use of patterns via reusable design artifacts. How-

ever, a gap between the development of systems using patterns

and the information in the pattern representations remains (Zdun

and Avgeriou, 2008). This becomes even more observable when ad-

dressing specific concerns, such as dependability.

In this paper, we present a model-based approach for depend-

ability system and software engineering that uses patterns to rep-

resent dependability solutions and knowledge, which fosters reuse.

In such a vision, the dependability patterns derived from (resp. as-

sociated with) domain-specific models are designed to assist the

application developer integrate application models with depend-

ability building-block solutions. Dependability patterns are defined

from a platform-independent perspective (i.e., they are indepen-

dent of the implementation) and are expressed in a consistent

manner with domain-specific dependability models. Consequently,

they will be much easier to understand and validate by applica-

tion designers in a specific area. This work is conducted within

the context of a model-based security and dependability research

project, and our collaboration with safety-critical system suppliers

suggested a need for this work. The dependability solutions used

by safety-critical system developers are based on the application

domain and occasionally on the software development environ-

ment, including the design and coding stages. There is a need to

link these concepts to dependability, which will ease the certifica-

tion process. The lack of appropriate links between application do-

main concepts and dependability concepts poses three main chal-

lenges. First, the dependability engineer must re-engineer its exist-

ing solutions. Second, the application designer may not understand

domain-specific dependability solutions. Finally, it is very difficult

for the system developer to guarantee the availability of depend-

ability solutions to cover all the dependability requirements of the

targeted application using the application domain concepts.

To provide a concrete example, we introduce a railway case

study from the TERESA project 1 called Safe4Rail, which is a

simplified version of a real ETCS (European Train Control Sys-

tem) (UNISIG, 2009; Stanley, 2011). The main functionality of this

demonstrator is to ensure that the traveled speed and distance

do not exceed the authorized maximum values provided by the

railway infrastructure. To implement this functionality, the system

is composed of multiple subsystems, including the European Vi-

tal Computer (EVC), which executes the safety application, and a

set of odometry sensors and actuators. The odometry sensors pro-

vide the speed and acceleration of the train. With these values, the

system must be able to calculate accurate speed and position val-

ues (odometry). There is a family of products in the railway sector,

including regional trains, tramways, and high-speed trains. These

units share common parts, although they differ in distinct ways.

For example, consider the calculation of the actual speed and po-

1 http://www.teresa-project.org/ .

sition by Safe4Rail. The implementation varies according to each

type of train product, which depends on the safety level to be met

and the type and number of sensors and actuators that are in-

volved. These considerations greatly influence how each product

is implemented because several issues should be considered: the

number of channel redundancies, the diversity of the channels, the

monitoring of the channels, and the interaction with assorted data

(type, weight, etc.).

A proprietary embedded system has been designed to meet

stricter safety regulations. In our case, the SIL4 level is pursued.

To achieve this level, several design techniques from related stan-

dards, such as IEC-61,508 (IEC, 2010b) and EN-50,126 (CENELEC,

1999), are used, including redundancies, votations, diagnostics, and

secure and safe communications. Hence, capturing and providing

this expertise by means of a repository of dependability patterns

and models can enhance the development of embedded systems.

We seek mechanisms that allow a safer, easier and faster safety-

critical development process. To illustrate this statement, two dif-

ferent railway industry scenarios are described. The first takes

place within a railway manufacturing group, whereas second oc-

curs within an SME.

Scenario 1. Railway manufacturing group. The first scenario takes

place within a group of railway manufacturers. The group is di-

vided into subsidiary companies that specialize in the development

of train and railway infrastructure systems (e.g., traction, central

control, infotainment, railway signaling, interlocking, Communica-

tion Based Train Control (CBTC) (IEEE, 2004), etc.). The group in-

tends to develop its own safety-related subsystems instead of buy-

ing them from providers and competitors. The problem is that

the engineering cost associated with these safety-related systems

is relatively high; moreover, the number of qualified engineers is

limited. Additionally, safety concepts and design patterns are not

present in commonly used modeling languages (e.g., UML, SysML,

etc.), which leads to design ambiguity. The expected benefits for

this scenario are the following: (1) reduce product development

cost and time by reusing design patterns for other projects and

companies, and (2) reduce the probability of systematic faults by

reducing ambiguity.

Scenario 2. SME company. In the second scenario, an SME that de-

velops safety-related embedded systems is presented. This com-

pany has proven experience in the development of IEC-61,508-

based safety-related embedded systems, although the company has

little experience in the railway domain. If this company wants to

enter the railway market, it must overcome a great barrier and an-

alyze relevant railway standards, adapt the solutions it has been

using for years in other sectors, and be ready for success. Some of

the problems are the same as those that arise in the first scenario:

the development cost for safety-related systems is high, and the

number of qualified engineers is limited. Additionally, in this con-

text, systems are developed with different standards derived from

IEC-61,508 (the differences are well known). The expected benefits

for this scenario are the following: (1) reduce product development

cost and time, with the cross-domain reuse of design patterns be-

tween projects; (2) reduce the probability of systematic fault by

reducing ambiguity; and (3) provide a cross-domain arsenal of de-

sign patterns that can be used in new domains.

To address issues related to scenario 1, an infrastructure that al-

lows the reuse of the most common techniques used to achieve the

dependability requirements in most subsystems would allow these

subsidiaries to reduce efforts, and costs while also reducing the

number of required and scarce safety experts. With regard to the

issues related to scenario 2, we offer an infrastructure that allows

the cross-domain reutilization of the techniques used to achieve

the target safety level.

1.1. Solution overview

To address the above problem, we propose an approach that

combines model-driven technology and pattern-based develop-

ment to address the design of dependable applications. Our pro-

posed approach makes use of patterns as is primary technique:

Patten Based System Engineering (PBSE) . PBSE focuses on patterns;

from this perspective, it addresses two types of processes: pat-

tern definition and system development with patterns . Metamodeling

techniques are used to represent patterns at a greater level of ab-

straction. Therefore, patterns can be stored in a repository and can

be loaded for desired properties. As a result, patterns can be used

as bricks to build applications through a model-driven engineer-

ing approach. The associated framework promotes an infrastruc-

ture for the modeling of dependability patterns and provides spe-

cific transformation engines that can adapt and generate different

representations, where patterns are clearly related to domain mod-

els. Supported by an MDE tool suite, PBSE assists the dependable

system engineering process. The resulting tool-chain supports the

two categories of users: “reuse” consumers and “reuse” producers.

The former category comprises developers who reuse existing arti-

facts from the repository, whereas the latter comprises developers

of artifacts to be stored in the repository. Such an MDE tool suite

utilizes Domain-Specific Modeling Languages (DSMLs) (Gray et al.,

2007; Strembeck and Zdun, 2009) built on an integrated repository

of modeling artifacts that function as a group, where a pattern is at

the heart of development – its role should be specified in all life-

cycle stages of development. We use the open-source Eclipse Mod-

eling Framework (EMF) (Steinberg et al., 2009) and its extended

version, Eclipse Modeling Framework Technology (EMFT) 2 to build

the support tools for our approach. The EMF provides an imple-

mentation of the EMOF (Essential MOF), which is a subset of the

Meta-Object Facility (MOF) (OMG, 2008) called Ecore 3 . The EMF of-

fers a set of tools to specify metamodels in Ecore and to generate

other representations.

1.2. Intended contributions

In order to empirically assess the proposed approach and tool-

ing, we provide evidence of its benefits and applicability through

an example of a representative industrial case from the TERESA

project, i.e., the Safe4Rail application. The case study indicates that

our approach is feasible in a real industrial context and that it

can provide useful guidance in reusing existing solutions. This case

study is followed by a survey to better understand the percep-

tions of practitioners regarding our approach. The survey indicates

that practitioners agree on the benefits of adopting our approach

in a real industrial context. The new approach permits faster pro-

duction and reduces staff using proven solutions instead of hiring

expensive dependability engineers. Because the pattern conceptual

model can be applied to multiple problems through a simple ex-

tension, these results suggest our work has wider applicability and

usefulness. In summary, the work presented in this paper has the

following features: (1) a dependability pattern-based approach as

a new method for software system engineering based on the reuse

of patterns; (2) the design of a set of DSMLs to specify the patterns

that is independent of the end-user development applications and

execution platforms; (3) the development of a set of tools to sup-

port the proposed approach; (4) the application of the approach in

the context of railway systems; and (5) a survey to better under-

stand the perceptions of industry practitioners regarding our ap-

proach.

2 https://eclipse.org/modeling/emft/ .
3 Ecore is a meta-meta-model.

Fig. 1. Domain specific standards derived from IEC 61,508.

The basic formulation of the approach presented in this article

has been previously published in a research paper at the 16th In-

ternational System Design Languages Forum on Model-Driven De-

pendability Engineering (Hamid et al., 2013). This work extends the

ideas described in the earlier paper and presents a holistic ap-

proach to the modeling of pattern-based software systems with

strong dependability requirements. Specifically, we provide a more

comprehensive and complete description of our approach (Section

3) and tool support (Section 4), along with substantial new empir-

ical results to show the feasibility and usefulness of our approach

(Section 5).

1.3. Outline

The remainder of the paper is organized as follows. An

overview of the modeling framework, including the development

context, is presented in Section 2 . In section 3 , we present our

approach to support the pattern-based system and software de-

pendability engineering. Section 4 describes the architecture of the

tool suite and presents an example implementation. In Section 5 ,

we present an empirical evaluation of our approach through the

TERESA railway case study and a survey of key performance indi-

cators. In Section 6 , we discuss the contribution with regard to cer-

tification. Related work is discussed in Section 7 . Finally, Section

8 concludes and sketches future work directions. We investigate

a few open issues, primarily the issues of generalization and im-

plementation, including the usability of the proposed modeling

framework.

2. Background

The engineering of embedded systems with safety requirements

typically requires the certification of such products according to

generic (e.g., IEC-61,508 (IEC, 2010b)) or domain-specific standards

(e.g., EN-5012X (CENELEC, 1999)). System engineers must develop

a system that complies with required standards, implementing rec-

ommended techniques and measures. The cost-effective develop-

ment and certification of such products is a challenge, and the

reusability of proven solutions (design patterns) enables cost and

time-to-market reductions. Our work aims at providing a new en-

gineering approach that allows these solutions (techniques and

measures) to be reused for development within the same appli-

cation domain or in a cross-domain scenario.

Many domain-specific standards are derived from IEC-61,508,

as shown in Fig. 1 . The main characteristic of these standards

is that they all share several features (i.e., QM, V&V, life cycle,

techniques and measures, etc.) of the main standard, IEC-61,508,

whereas other specific parts are solely related to each application

domain itself. These standards provide a specific set of techniques

and measures that must be implemented to achieve the desired

level of safety integrity of an application (either to avoid system-

atic faults or to control random faults). To foster reuse, developers

must adapt the requirements and design solutions of these stan-

dards to the concepts of the application domain. As described be-

low, a subset of techniques and measures proposed in the stan-

Fig. 2. Reference safety engineering process for railway signaling.

dards can be used to define several dependability patterns used in

the demonstrator (Section 5).

Furthermore, most of these techniques and measures are pro-

vided in the form of design decisions targeting one stage of the

development lifecycle without effective realization. In addition, the

format in which the techniques and measures are presented must

be improved to ensure that the provided solutions are storable,

reusable and appropriate for the automation of software develop-

ment and analysis. An ontological approach for describing design

patterns and their relationships was proposed in (Girardi and Lin-

doso, 2006) to facilitate understanding and reuse during software

development.

Finally, development processes for system and software con-

struction are common knowledge and mainstream practice in

most development organizations. Fig. 2 shows major activi-

ties/deliverables associated with a reference railway safety engi-

neering process, where items in green are new or different com-

pared with the IEC-61,508 standard. Every phase receives input

documents and defines a set of activities to perform and a set

of output documents to generate. The activities are assigned with

roles and may require specialized tools. The items in green are

either not relevant (e.g., validate the system) or not considered

within the scope of our case study (e.g., hazard log). In addition,

there is a high level of compatibility between the IEC-61,508-3

and EN-50,128 software safety standards, especially regarding their

software lifecycles and safety techniques. The engineering of em-

bedded systems with safety has been well established (IEC, 2010b),

although methods and tools to support it are lacking.

Therefore, there are two main prerequisites to define the

pattern-based dependability engineering methodology. The first is

that it must be compatible with current development processes.

The objective is not to change the habits of the engineers; instead,

easing the acceptance of the approach in industry is the goal. The

second prerequisite is that it must be flexible enough to adapt to

other specific processes in other domains.

We seek a solution based on the reuse of software subsystems

that have been pre-engineered to adapt to a specific domain. The

approach described in Section 3 uses MDE techniques to handle

the issues described above. Fig. 3 shows the overall life-cycle for

a safety related system, from concept to disposal. This figure has

been extracted from the standard IEC-61,508. Compared to exist-

ing methodologies from relevant standards, our work enhances the

provided methodology only during the realization phase , although

it may have a positive impact in subsequent phases of the overall

product lifecycle, i.e., from concept to disposal.

3. Approach

A system architect must work at different levels. Integrating

all subsystems while considering the associated dependability re-

quirements in a seamless fashion is challenging given the vari-

ous critical requirements and uncertainties. We propose a solu-

tion for software system development based on the reuse of dedi-

cated subsystems, so-called dependability patterns that have been

pre-engineered to adapt to a specific domain. The patterns that

are at the heart of our system engineering process reflect design

solutions at the domain-independent and domain-specific levels.

We use Model-Driven Engineering (MDE) to describe dependability

patterns and a methodology for developing dependable software

systems using these patterns. The resultant modeling framework

reduces the time/cost related to understanding and analyzing sys-

tem artifact description due to the abstraction mechanisms, and it

reduces the cost of the development process due to the generation

mechanisms.

The proposed approach (as illustrated in Fig. 4) is composed of

six main steps (the numbers in parentheses correspond to those

in Fig. 4). The first step (step 1) is responsible for the creation

of the conceptual model of dependability patterns. The resulting

conceptual model is used to build a DSML to specify dependabil-

ity patterns (step 2). The dependability expert with the help of

the system and software engineering expert uses this DSML to de-

fine dependability patterns (step 3). Then, a domain process expert

adapts the dependability patterns into a version that is suitable in

its system development process (step 4). An example is adaptation

Fig. 3. Overall safety life-cycle (IEC-61,508).

Fig. 4. Methodology for the creation of the PBSE modeling framework.

for compliance with an appropriate standard. We then develop and

apply appropriate transformations of a pattern representation in a

suitable format for the development environment (step 5). Pattern

instantiation as the initial activity to apply a pattern is performed

during steps 4 and 5. Finally, the domain engineer reuses the re-

sulting adapted and transformed patterns for the given engineering

environment (development platform) to develop a domain appli-

cation (step 6). The pattern integration-application in the designs

activity is performed during this step.

The first two steps (1 and 2) are performed once for a set of do-

mains. The inputs of these steps are expertise, standards and best

practices from the dependability expert. Step 3 is performed once

for a set of domains. Step 4 is performed once per application do-

main. Performing step 3 requires knowledge of dependability engi-

neering, whereas step 4 requires knowledge of both dependability

engineering and the system development process for a specific ap-

plication domain. Step 5 is performed once for each development

environment. Step 6 is performed once for every system in the ap-

plication domain. This step requires the availability of knowledge

on the specific targeted system and dedicated tools that are cus-

tomized for a given development platform. In the rest of this sec-

tion, we present detailed descriptions of the six steps in our ap-

proach.

3.1. Step 1: conceptual model of dependability patterns

The idea of design patterns was introduced by an architect (Ur-

banist), Christopher Alexander (Alexander et al., 1977), not by a

software developer. The first objective was to enhance architec-

tural quality, beauty, elegance and harmony to avoid dehuman-

ization of the living environment. Design patterns have a certain

number of elements that must be captured by means of a pat-

tern specification language. In GoF (Gamma et al., 1995), a de-

sign pattern extracts the key artifacts of a common design struc-

ture that make it useful for creating a reusable object-oriented de-

sign. In our context, we refine the GoF specification to fit with the

non-functional needs. Adapting the security pattern definition of

(Schumacher, 2003), we define a dependability pattern as a descrip-

tion of a particular recurring dependability problem that arises in

specific contexts and presents a well-proven generic scheme for its

solution. Therefore, a system of dependability patterns is a collection

of dependability patterns and the relevant guidelines for their im-

plementation, combination and practical use in dependability en-

gineering.

Dependability patterns are defined from a platform-

independent perspective (i.e., they are independent of their

dedicated implementation mechanisms); they are expressed in

a consistent way with domain-specific models. Consequently,

they are much easier to understand and validate by application

designers in a specific area. To capture this vision, we introduce

the concept of the domain perspective , where a dependability

pattern at the domain-independent level exhibits an abstract

solution without specific knowledge of how the solution is im-

plemented with regard to the application domain. The objective

is to reuse the domain-independent model dependability patterns

for several application domains and allow them to customize

those domain-independent patterns with their domain knowledge

and/or requirements to produce their own domain-specific arti-

facts. Thus, the question of how to support these concepts should

be captured in the specification languages.

To foster the reuse of the best practices in software design

through patterns, patterns rely on describing the concepts in an

abstract way (i.e., domain-independent) and leave it to the soft-

ware developer to create an implementation. In contrast, our de-

pendability patterns support the software developer in the task of

exploiting existing implementations. The knowledge of specific im-

plementations using application domain constructs is captured in

domain-specific patterns and thus supports the refinement step.

Pattern refinement takes advantage of the fact that applications in

the same domain, such as railway systems, have common require-

ments/standards and perform comparable dependability functions.

The modeling framework presented in this paper provides sup-

port for three levels of abstraction: (i) a pattern specification meta-

model (SEPM), (ii) a domain-independent pattern model (DIPM),

and (iii) a domain-specific pattern model (DSPM). This decompo-

sition allows design applications within the context of depend-

ability by avoiding the extensive complexity that is normally in-

troduced when combining dependability and domain-specific arti-

facts. Moreover, this approach assists with overcoming the lack of

formalization related to the classical textual pattern form.

Definition 1. (Domain). A domain is a field or a scope of knowledge

or activity that is characterized by the concerns, methods, and mecha-

nisms employed in the development of a system. The actual clustering

into domains depends on the given group / community implementing

the target methodology.

In our context, a domain may include knowledge of protocols,

processes, methods, techniques, practices, OS, HW systems, mea-

surement and certification related to the specific domain. For ex-

ample, in the group of safety standards, IEC-61,508 is a domain-

independent standard, whereas EN-50,126, EN 81 and ISO-26,262

are a railway domain- specific standard, an elevator domain stan-

dard and an automotive domain standard, respectively.

To specify dependability patterns, we build on a metamodel for

representing these patterns in the form of a sub-system provid-

ing appropriate interfaces and targeting dependability properties

to enforce the dependability system requirements. The so-called

external interfaces are used to make the pattern’s functionality
available to the application, whereas the technical interfaces sup-
port interactions with dependability primitives and protocols of

the application domain, including HW platforms. We capture the

dependability capabilities of the pattern through a novel concept

called Dproperty .
With regard to the artifacts used in the system under develop-

ment, the first-class citizens of the domain are identified to spe-

cialize these artifacts. For example, the specification of a pattern in

the domain-independent perspective is based on software design

constructs. The specification of such a pattern for a domain uses

a domain protocol to implement the pattern solution (see the ex-

ample of a safety communication pattern given in Sections 3.3 and

3.4). For this purpose, we introduce two concepts: DIPattern and
DSPattern .

These concepts and their related observations are used as a

basis for our conceptual pattern modeling language (see Section

3.1.2). The following subsection describes an example to emphasize

the issues identified in this paper. Then, the first level of abstrac-

tion, namely, the metamodel, is described.

3.1.1. Motivating example: safety communication pattern

As an example of a commonly and widely used pattern, we

choose the safety communication pattern (IEC, 2010a). In the fol-

lowing, the terms safety communication pattern and black chan-

nel pattern are used interchangeably. Distributed safety systems re-

quire (safe) data communication between distributed safety func-

tions. For example, the presence of random failures in the transfer

of data within different levels of an application, such as transmis-

sion errors, repetitions, and deletions, can lead to a loss of infor-

mation or to improper delivery of information. In a safety-related

system or application, data communication is a vital part of their

development. This communication could occur at different levels,

i.e., on chips, inter-boards, or systems. A safety communication

pattern is required for safety-related systems, where the data com-

munication is directly involved in the implementation of its safety

function.

The main purpose of the safety communication pattern is to

provide a simple way to guarantee that the communication at dif-

ferent levels in a system is reliable and to provide the capability

to guarantee the correct transmission of information to the right

destination and at the right time through a standard communica-

tion mechanism. The functionality of this pattern is based on the

detection of a random software/hardware failure during communi-

cation. Safety standards let the designer use a standard commu-

nication mechanism to share the information in a safety function,

although the reliability of the information is guaranteed through

internal safety interfaces, which has the following connotations:

• The elements that share the information must be safety-

relevant.
• The platform must support the implementation of an Error De-

tection Code (EDC).

This strategy leaves the responsibility of this task (at the in-

terfaces of the elements participating in the communication) to

detect failures during communication at different levels, such as

chips, inter-boards, and systems. The safety communication pat-

tern provides specific interfaces to guarantee the reliability of the

information transfer and the authenticity of the participants in the

communication. More specifically, the participants in the commu-

nication could be independent hardware channels, internal mod-

ules, etc.

Let sender and receiver be two elements acting as communica-

tion participants. Let sender it f (resp. receiver it f) be a sender in-

terface (resp. receiver interface).

The sender it f offers the following services:

• Generate an identifier for establishing the sequence of the in-

formation to be sent.
• Generate an identifier for the source and receiver of the infor-

mation.
• Generate an EDC; to detect failures in the information transfer.
• Pack the information before sending it over the standard com-

munication mechanism. The receiver it f offers the following

services:
• Unpack the information.
• Check to package before to use the received information to ex-

amine the following aspects:

– the origin of the information (source),

– the destination of the information (receiver),

– the order of the information received and

– that the information has not been corrupted.
• Send the received information to the receiver.

It is important to ensure that the actions of sending and receiv-

ing the safety message are cyclical and periodical because elements

involved in the communication must always know when the mes-

sage should be sent and when it should be received. It is impor-

tant to synchronize both parts of the communication process. How

to protect elements that share the information and how to provide

the error detection code remain critical problems.

However, these safety communication patterns are slightly dif-

ferent with regard to the application domain. For example, a sys-

tem domain has its own mechanisms and means to serve the im-

plementation of this pattern, primarily the technique used to en-

able reliable delivery of data over unreliable communication chan-

nels. Depending on the type of failures to be detected and the di-

agnostic coverage to be achieved, the EDC can be implemented us-

ing a set of protocols, such as repetition codes, parity bits, check-

sums, Cycle Redundancy Checks (CRCs) and hash functions. To

summarize, they are similar in their goal and different in their im-

plementation issues, e.g., determining the level of communication

in which the pattern is used and the restrictiveness and efficiency

of the expected solution. Thus, the motivation is to handle the

modeling of patterns by the following abstraction. In what follows,

we propose using CRCs (Peterson and Brown, 1961) to specialize

the implementation of the safety communication pattern. This so-

lution is already used at the hardware and operating system levels

to detect failures.

3.1.2. Pattern specification metamodel (SEPM)

To foster the reuse of patterns in the development of critical

systems with dependability requirements, we extend a metamodel

from (Hamid et al., 2016) for representing dependability patterns

in the form of a subsystem that provides appropriate interfaces

and targeting dependability properties to enforce the dependabil-

ity system requirements. Interfaces are used to exhibit a pattern’s

functionality and to manage its application. In addition, interfaces

support interactions between dependability primitives and proto-

cols within a specific application domain. The principal classes of

the system and software engineering pattern metamodel (SEPM)

are described with Ecore notations in Fig. 5 . Their meanings are

explained in more detail in the following paragraphs.

• SepmPattern. This block represents a dependability pattern as

a subsystem that describes a solution for a recurring depend-

ability design problem arising in a specific design context. A

SepmPattern defines its behavior in terms of provided and re-

quired interfaces. Larger pieces of a system’s functionality may

be assembled by reusing patterns as components of an encom-

passing pattern or an assembly of patterns; the required and

provided interfaces are wired together. A SepmPattern may be

manifested by one or more artifacts.
• SepmDIPattern. This is a SepmPattern that denotes an abstract

representation of a dependability pattern at the domain- inde-

pendent level. This is the key entry artifact to model patterns

at the domain-independent level (DIPM).
• SepmInterface. A SepmPattern interacts with its environment

via SepmInterfaces, which are composed of operations. A Sepm-

Pattern represented the provided and required interfaces. A

provided interface highlights the services exposed to the envi-

ronment. A required interface corresponds to services required

by the pattern to function properly. We consider two interface

types:

- SepmExternalInterface. This allows the implementation of

interactions to integrate a pattern into an application model

or to compose patterns. It represents the application ele-

ment to be used during the pattern integration- application

in the designs. In other words, such a pattern element will

be replaced with one element from the application design,

or created if it exists in the pattern but not in the applica-

tion (as will be detailed in Section 3.6). Moreover, it will be

used to reason about the pattern properties and its provided

design solution.

- SepmTechnicalinterface. This allows the implementation of

interactions with dependability primitives and protocols,

such as error detection, and specialization for specific un-

derlying software and/or hardware platforms during the de-

ployment activity. It represents the platform element to be

used during the pattern integration-application in the de-

signs. In other words, such a pattern element will be re-

placed with one element from the application domain, or

created if it exists in the pattern but not in the application.

Please note that an SepmDIPattern does not have SepmTech-

nicalInterfaces.

Fig. 5. An overview of the SEPM.

For our example, one may identify the following external inter-

faces:

– send(S,d, t). The application sender S sends data d at time t .

– receive(R,d,t). The application receiver R receives data d at time

t .

– send(P,d,crc,n,t). The pattern sender participant P sends data d

at time t with certain CRC crc and a sequence number n

– receive(Q,d,crc,n,t). The pattern receiver participant Q receives

data d at time t with a certain CRC crc and a sequence num-

ber n .

• SeReference. This link is used to specify the relationship be-

tween patterns with regard to the domain and software lifecy-

cle stage in the form of a pattern language. For example, a pat-

tern at a certain software lifecycle stage uses another pattern

at the same or at a different software lifecycle stage. SeRefer-

enceKind contains examples of these links.
• seArtifact. We define a modeling artifact as a formalized piece

of knowledge for understanding and communicating ideas pro-

duced and/or consumed during certain activities of system en-

gineering processes. The modeling artifact may be classified in

accordance with engineering process levels.
• SeLifecycleStage. A SeLifecycleStage SeLifecycleStage defines the

development lifecycle stage in which the artifact is used. In our

study, we focus on dependability pattern models. In this con-

text, we use the pattern classification of Riehle and Buschmann

(Riehle and Züllighoven, 1996; Buschmann et al., 1996, 2007).
• SepmProperty. This is a particular characteristic of a pattern re-

lated to the concern of interest and is dedicated to capturing its

intent. Each property of a pattern is validated at the time of the

pattern validating process, and the assumptions are compiled

as a set of constraints that must be satisfied by the domain ap-

plication. Additionally, this concept will serve for pattern clas-

sification and identification. The dependability attributes from

(Avizienis et al., 2004) are categories of dependability proper-

ties. For our example, we define the following dependability

properties:

- integrity of data. When data d are received by the application

receiver R , those same data d are sent out by the application

sender S .

- data freshness. It is often desired that the transmitted data

d are recent. This property states that when an application

receiver R receives data d , the same data are sent by the

application sender S at most Delta t ago.

- non duplication. Given data that are sent by the application

sender S, a receiver R receives these data at most the same

number of times they were sent.
• SepmConstraint. This is a set of requisites of the pattern. If

the constraints are not met, the pattern is not able to deliver

its properties. For our example, we specify constraints on the

CRC computation/checking algorithms, on the correct/incorrect

transmission over the network and on the maximal network

delay.
• SepmInternalStructure. This constitutes the implementation of

the solution proposed by the pattern. Thus, the InternalStruc-

ture can be considered as a white box that exposes the de-

tails of the SepmDIPattern and the SepmDSPattern. To capture

all the key elements of the solution, the SepmInternalStructure

manifests two types of structures: static and dynamic. One pat-

tern can have several possible implementations, providing sup-

port for pattern variability.
• SepmDSPattern. This is a refinement of SepmDIPattern (as will

be detailed in Section 3.4). It is used to build a pattern at the

domain-specific level (DSPM). Furthermore, a SepmDSPattern

has Technical Interfaces to interact with the platform. This is the

key entry artifact to model the pattern at the DSPM.

3.2. Step 2: creation of a DSML from a conceptual model of

dependability patterns

To create model instances of the proposed metamodels, we

must provide concrete syntaxes. The DSML’s concrete syntax may

be described in any syntax type (textual, tree-structured, tabular,

diagrammatic, etc.), depending on the corresponding artifact. For

our purpose, we propose using the well-known approach in MDE:

a DSML that contains pattern-specific information for several soft-

ware and system modeling languages and different development

environments. This approach is useful because we are storing a li-

brary of design patterns in a common repository and are providing

one or more adaptations of each pattern to target several applica-

tion domains, e.g., the railway industry, and different development

environment domains, e.g., UML. However, our vision is not limited

to DSML. For example, in (Radermacher et al., 2013), we defined a

UML profile under the UML papyrus tool 4 to specify patterns.

In our context, we use a mixed syntax that combines

structured-tree syntax and a UML-based diagrammatic syntax to

describe the SEPM’s concrete syntax. The basic idea is that the

former defines problems, objectives and constraints, whereas the

diagrammatic part defines roles and solutions (SepmInternalStruc-

ture). The objective behind this separation is that a solution de-

fined in the pattern can be integrated (without losing information)

into the application architecture only if both are specified in the

same modeling language, e.g., UML. Conversely, the problem state-

ment and objectives are independent of the chosen modeling lan-

guage. The separation enables solutions defined in different model-

ing languages to share the same problem definition, which is use-

ful because we are storing design patterns in a common repository

where model specifications in the structured-tree syntax are sepa-

rately managed and stored. A pattern might eventually have multi-

ple solutions defined in different modeling languages. The pattern

discovery, i.e., the mechanisms to browse or search patterns within

the repository, are based on the non-diagrammatic part.

3.3. Step 3: definition of dependability patterns

Once we have developed the DSML’s concrete syntax in Step 2,

we can create the set of dependability patterns to share the de-

pendability expertise within the domain of interest. During this

step, the patterns are constructed such that they conform to the

metamodel description adopted in Step 1. To foster technology

reuse across domains, the patterns are stored in a repository, such

as the one described in (Hamid, 2014), thus reducing the amount

of effort and time needed to design a complex system.

Furthermore, in the context of our work, we use validation re-

ports and documentation generation techniques to validate each

pattern. If a pattern is correctly defined, i.e., it conforms to its

modeling language, then the artifact is ready for publication in the

repository. Otherwise, we can identify any issues from the report

and rebuild the pattern by correcting or completing the relevant

constructs. Additionally, each pattern is studied to identify its re-

lationships with other patterns belonging to the same application

domain based on the engineering process activity in which it is

utilized. The purpose of this activity is to organize patterns into a

set of pattern systems. Moreover, this step should include all activ-

ities that support pattern producers in managing the relationships

among these patterns, which can be defined in pattern relationship

model libraries. At each stage (phase) n of the system engineering

development process, the patterns identified in the previous stage

(phase) n − 1 can assist in the selection process during the cur-

rent phase. As a prerequisite, we specify model libraries for the

classification of patterns. At each stage of the system engineering

development process, the appropriate patterns are identified via a

classification process. Other work has adopted a similar conceptu-

alization of a pattern-based development approach in the scope of

safety engineering (e.g., (Hauge, 2014)), or in the scope of security

engineering (e.g., (Uzunov et al., 2013)).

After an initial analysis of the various artifact sources, including

standards and existing applications, the designer determines the

stage of the engineering process lifecycle (system concept, system

architecture, software architecture, and detailed module design) in

which each pattern can be defined; moreover, whether the pattern

is domain-independent or domain-specific can be determined. For

this purpose, we choose to use the pattern classification of Riehle

4 http://eclipse.org/papyrus/ .

and Buschmann (Riehle and Züllighoven, 1996; Buschmann et al.,

1996, 2007), who defined system patterns, architectural patterns, de-

sign patterns and implementation patterns to create the SeLifecy-

cleStage model library. In addition, a pattern may be linked with

other patterns and associated with property models using a prede-

fined set of reference types, on a very high level (Noble, 1998) or

including details on what part of a pattern is used, refined, or com-

bined (Hauge, 2014). Here, we create the SeReferenceKind model li-

brary to support the specification of relationships across artifacts

(e.g., refines, specializes and uses) as an extension of the relation-

ship classification proposed in (Noble, 1998).

In the context of our work, certain patterns have a meaningful

representation at the system level, at which general system blocks

are defined and domain concepts are expressed (e.g., system re-

dundancy). However, their representations might not be directly

refined in later phases because they represent concepts that are

meaningful at only the architectural level. In contrast, other pat-

terns might be meaningful only in later design phases as indirect

specializations of an architectural concept, e.g., a data agreement

software pattern is a specialization of an architectural system re-

dundancy pattern. In addition, the same pattern may have multiple

instantiations and specializations in each phase (e.g., a watchdog

driver is linked to a hardware component). Therefore, as shown

in Fig. 6 , a given design pattern (P2) in the repository might fol-

low a tree-shaped refinement and specialization flow, representing

different lifecycle phases, different refinements and specializations,

and new pattern representations in later phases. The following is

an example of specialization through the process:

1. P2 (at System Concept Specification phase): Black Channel

2. P22 (at System Architecture Design phase): Ethernet-Based,

Star-Topology Black Channel

3. P221 (at Software Architecture Definition phase): Ethernet-

Based, Star-Topology Black Channel with CRC and sequence

number monitoring

4. P2212 (at Module Detailed Design phase): Ethernet-Based, Star-

Topology Black Channel with CRC and sequence number moni-

toring

The target representation is the DIPM level, while still conform-

ing to the SEPM metamodel. At the DIPM level, this description

reveals the following elements: interfaces of type SepmExternalIn-

terface, dependability properties of type SepmProperty and solutions

of type SepmInternalStructure. Moreover, for classification (respec-

tively relationship) purposes, additional information may be de-

fined, e.g., lifecycle stages of type SeLifecycleStage (respectively re-

lationships of type SeReference).

The first task is to create a basic pattern subsystem as an in-

stance of the SepmPattern. The instance is given a name and a

set of attributes that correspond to the pattern. The description,

with varying levels of abstraction, is managed by inheritance. Once

the basic pattern subsystem is specified, interfaces are added to

expose some of the patterns functionalities. For each interface, an

instance of SepmExternaInterface is added to the patterns interface

collection. The next step after creating interfaces is the creation

of property instances. An instance is created in the patterns prop-

erty collection to specify every identified dependability property.

A property is given a name and an expression based on external

interfaces in a property language.

We continue our illustration using the example of the safety

communication pattern . For the sake of simplicity, we specify only

those elements related to both steps 2 and 3that are required to

explain our approach. As introduced in Section 3.1.1 , data commu-

nication must be safe, which leads to two possible approaches (IEC,

2010a):

1. White channel: Use of a safety communication channel that

is designed, implemented and validated according to the IEC-

Fig. 6. Tree-shaped pattern refinement and specialization.

Fig. 7. Safety communication pattern structure.

61,508 standard (IEC, 2010b) and the IEC-61,784-3 (IEC, 2003)

or IEC-62,280 (IEC, 2002) standards using a certified safety

communication channel, such as TTEthernet (TTE) 5 .

2. Black channel: Use of a communication channel that is not de-

signed or validated according to the IEC-61,508 standard, where

safety measures can be implemented either in the safety func-

tions or in interfaces with the communication layer in accor-

dance with the IEC-61,784-3 or IEC-62,280 standards. The latter

is called a safety communication layer (SCL) .

As shown in Fig. 7 , the safety communication pattern is an ap-

plication level service on top of a non-safety-related communica-

tion stack (“comms”) that enables “safe” data exchange between

safety functions. It must be defined according to a life cycle equiv-

alent to the highest safety level (SIL) in the application, requiring

the detection of all possible communication errors, such as corrup-

tion, incorrect message order, message outside temporal require-

ments, message lost, message duplicated, etc.

In our example, an instance of SepmPattern is created and

called SCL . Fig. 8 shows the SCL pattern for the software architec-

ture. An encapsulation unit is used to prepare the data message

to be sent and a de-encapsulation unit to extract the information

from the message once it has arrived. The receiver provides an in-

terface where some extra information is added in the sent mes-

5 http://www.tttech.com/products/ttethernet/ .

sage, which will be checked by the receiver. This information in-

cludes (1) a safety code for the receiver to verify the integrity of

the message and (2) a sequence number to ensure the correct ar-

rival order. The sender is also responsible for maintaining a mini-

mum transmission rate that is specified by the requirements of the

application. Moreover, the receiver provides an interface to check

the received message. This interface includes (1) a safety code to

ensure the integrity of the message, (2) a sequence number, which

guarantees that the received message is new and not a replica trav-

eling into the communication channel, and (3) a transmission qual-

ity checker to react if it falls below a predefined level.

3.4. Step 4: adaptation for a specific domain

At the DSPM level, the dependability pattern and some of its re-

lated elements are also created by inheritance. Once a SepmDSPat-

tern is created, every pattern external interface is identified and

modeled as a refinement of the DIPM’s SepmExternalInterface in

the pattern’s interfaces collection. Then, following the pattern’s de-

scription of the particular solution that is represented, each of the

pattern’s technical interfaces is identified and modeled by an in-

stance of SepmTechnicalInterface in the pattern’s interfaces collec-

tion.

In the context of our experiment, the railway domain-specific

pattern must be compliant not only with the generic safety stan-

dards but also with railway-specific safety standards. Fig. 9 shows

the SCL pattern for the software architecture. The encapsulation

and de-encapsulation units described in the domain-independent

perspective are refined into sequencer, CRC calculator and software

watchdog units. This combination of elements enables the detec-

tion of errors. A sequence number is added to the data message

to detect an incorrect order of messages and/or messages that are

lost. A CRC code is added to the data message to detect message

corruption. Each message has an associated period, and a watch-

dog is used to detect whether the message arrival time is within

the specified time range. Thus, the sender provides an interface

in which extra information is added to the sent message, which

will be checked by the receiver. This information includes (1) a

safety code (CRC) to detect message corruption and (2) a sequence

number to detect an incorrect order or lost messages. Moreover,

the receiver provides an interface to check the received message

through a CRC checker. To detect message corruption, the receiver

computes a CRC and compares it with the one provided by the

sender. However, there are other possible realizations, e.g., using

Fig. 8. Black channel for software architecture.

a sequence number checker or using a quality checker through a

software watchdog.

3.5. Step 5: adaptation for a specific domain development

environment

The final step (step 6) is performed to support the development

of a specific system in the application domain. As a prerequisite,

step 5 identifies appropriate patterns and creates tailored versions

that represent model concepts in the domain of interest and that

can be adapted to both the system development process and the

development environment. The selection of a pattern is primarily

the choice of the developer. There are various considerations that

may narrow and simplify this choice. The first is the purpose of

the pattern application. Although this purpose cannot be generally

formalized, certain patterns address requirements that are defined

by domain standards (e.g., safety). If these requirements are stored

in a model library and are referenced in the definitions of the pat-

terns, then the selection of patterns could be driven by the selec-

tion of (domain) requirements. The second consideration is that

patterns can be classified with respect to several properties. One

of which is the stage of the engineering process lifecycle discussed

in Section 3.3 – a pattern may be relevant to the system, its archi-

tecture, or to aspects of its design or implementation. Thus, it must

be possible to filter available modeling artifacts based on this clas-

sification.

In our context, the mappings from dependability pattern mod-

els, which are formalized in a SEPM description language, for

a specific domain development environment are supported via

model transformations. Once the repository is available 6 , patterns

can be imported/exported from the repository as XMI standard

files that are compatible with processes: Identification and Tailor-

ing .

Definition 2. (Identification). Identification activities support sys-
tem engineers in selecting appropriate solutions from the reposi-

tory. This activity makes it possible to search for and retrieve pat-

terns in accordance with the system requirements. The identifica-

tion activity consists of the following tasks:

1. Define needs.

2. Search for patterns in the repository.

3. Select the appropriate patterns from those proposed by the

repository.

Definition 3. (Tailoring). A tailoring activity involves the retrieval
of a pattern and its related model libraries from the repository and

their incorporation into the target development environment. This

activity enables the reuse of a pattern. The tailoring activity con-

sists of the following tasks:

1. Adapt the selected patterns for the domain-specific process of

interest.

2. Import the tailored patterns by transforming them into the

domain-specific development environment.

In the context of our work, the target domain development en-

vironment is IBM Rational Rhapsody 7 , and the descriptions of the

6 The repository system populated with modeling artifacts.
7 http://www-03.ibm.com/software/products/en/ratirhapfami .

Fig. 9. Railway black channel software architecture.

model transformations are based on the QVT operational language.

Therefore, the design of a given pattern can be regarded as a single

package that contains one sub-package per lifecycle phase of the

engineering process; each of these phases can contain design mod-

ules and additional sub-packages associated with particular spe-

cializations and refinements. Thus, imported patterns are stored in-

side a dedicated package that facilitates searching within the pack-

age tree of each design. Moreover, to foster reuse, the pattern arti-

facts related to that phase are instantiated from the repository to

the vehicular modeling tool as a reference package. As shown in

Fig. 10 , each pattern design package generally contains the follow-

ing items:

• Any information that is required by the end-user pattern in-

tegrator, e.g., a UML class or SysML block, with interfaces that

enable the interconnection of patterns with a given system de-

sign.
• Additional detailed information of interest, e.g., a “structure”

package that contains the static internal structure (e.g., class di-

agram) and the dynamic structure (e.g., sequence diagram).

3.6. Step 6: reuse for a specific system development

This section focuses on the use of patterns in a software devel-

opment process. The integration of a pattern involves the applica-

tion of a solution provided by that pattern in an existing applica-

tion architecture to take advantage of its benefits. We cannot sim-

ply copy such a solution into the architecture under development.

Instead, we must account for the interplay between elements that

already exist in the application and the elements of the pattern.

The challenge of this task is that the relationships (e.g., connec-

tions, associations or inheritances) defined between elements in

the pattern definition must also be established in the application

model. Currently, integrating a pattern requires adding new con-

nections, associations, and other factors, and the user must resolve

potential conflicts.

To address this issue, a specific activity called Integration , which

was already studied in (Hamid et al., 2012), is used herein.

Definition 4. (Integration). An integration activity is performed
within the development environment when a pattern and its re-

lated model libraries are introduced into an application design; it

allows the elements of the application to be organized for con-

sistency with the elements of the pattern. The integration activity

consists of the following tasks:

1. Preparation. The elements of the pattern are extracted in the

form of a role diagram to match/merge them with the elements

of the existing application model.

2. Elicitation. Connections between the application model and the

pattern based on the role diagram are constructed. This phase

is responsible for defining the elements of the application that

are used to fulfill the roles identified in the pattern.

3. Consolidation. The pattern is merged with the application. For

certain elements of the pattern, they may simply be replaced

with elements from the application or newly created elements

may be added as they exist in the pattern.

4. Adaptation. An optional phase that offers the opportunity for

tailored integration by allowing the user to refine the new ap-

plication is conducted.

Fig. 10. Pattern design deployed in packages using the IBM Rational Rhapsody tool.

In the context of our example, by executing a tailoring activity,

the pattern is exported in an XMI file. Then, it must be imported

from Rhapsody. This two-step approach is an intermediate solu-

tion for the purpose of demonstration. The envisioned future solu-

tion is to install a plug-in in the design tool so that patterns can

be imported without external software. As shown in Fig. 10 , once

the pattern is imported in Rhapsody as a package, a project tree is

generated and its artifacts are available in the project. Therefore, in

each phase, the system developer executes the search/select task

on the repository to tailor appropriate patterns for the modeling

environment using the identification and the tailoring processes

described in Section 3.5 . The developer then integrates them into

the application models following an incremental process. For ex-

ample, the process flow at the software architecture phase can be

summarized by the following steps:

1. The software architect searches for different specializations (at

the software architecture-definition level) of the patterns to

complement the design.

2. The software architect selects the appropriate set of identified

patterns.

3. The software architect imports the software architecture design

perspective of each pattern into the vehicular modeling envi-

ronment (Rhapsody) as a reference package. The application de-

veloper is responsible for linking the pattern interfaces to inte-

grate the pattern at that specific level.

4. The software architect integrates the pattern into the existing

software architecture design diagrams.

4. Tool support

In this section, we propose an MDE tool chain to support

the proposed approach and assist the developers of model- and

pattern-based dependable software systems. As discussed below,

the proposed tool chain is designed to support the proposed meta-

models; hence, the tool chain and the remainder of the activities

involved in the approach may be developed in parallel. Appropri-

ate tools for supporting our approach must fulfill the following key

requirements:

• Enable the creation of the UML class diagrams used to describe

pattern metamodel in our approach.

• Enable the creation of a concrete syntax.
• Support the implementation of a repository to store pattern

models and the related model libraries for classification and re-

lationships.
• Enable the creation of pattern models and the related model

libraries and publication of the results into the repository.
• Support the administration and the internal management of the

repository.
• Enable the creation of visualizations of the repository to facili-

tate its access.
• Enable the creation of application models.
• Enable transformations of the models from the repository for-

mat into the target modeling environment.
• Enable the integration of application models and imported pat-

terns.
• Support application-specific code generation.

To satisfy the above requirements, we define four integrated

sets of software tools:

• Toolset A for populating the repository,
• Toolset B for retrieval and adaptation from the repository,
• Toolset C to serve as the repository software, including its ad-

ministration and internal management, and
• Toolset D as the augmented target development environment.

There are several environments that can be used to build an

MDE tool chain. In this work, the open-source Eclipse Model-

ing Framework (EMF) and its extended version, Eclipse Modeling

Framework Technology (EMFT) are used to build the support tools

for our approach. All metamodels are specified using the EMF. The

design tools are semi-automatically generated from these meta-

models. Several enhancements are added to the generated code,

such as creation wizards, to guide the modeling artifact designer

in populating the repository. Visual enhancements are added to fa-

cilitate the recognition of different concepts as a first step toward

a future visual syntax. To describe the model transformations, the

QVT operational language (OMG, 2008) is used. The repository is

implemented using the Eclipse CDO 8 framework. However, our vi-

8 http://www.eclipse.org/cdo/ .

Fig. 11. Pattern designer schematic.

sion is not limited to the EMF platform. Other modeling tools con-

forming to the requirements of Section 4 can also be used. For ex-

ample, in (Radermacher et al., 2013), we investigated the use of

UML papyrus and its support for the definition of UML profiles to

provide tool support for the approach.

Our approach is successfully applied to a case study of PBSE.

Specifically, we develop Semcomdt 9 (SEMCO model development

tools) as an MDE tool chain to support all the steps in our ap-

proach. Semcomdt offers the following features:

• Gaya for specifying and implementing a repository to store

models,
• Arabion for specifying patterns that conform to SEPM , and
• Retrieval for repository access.

For populating the repository, we construct a pattern design

tool (Arabion) to be used by a pattern designer. Arabion interacts

with the Gaya repository for publication purposes. As described

below, and already described in Section 3.2 from a DSML construc-

tion perspective, design patterns are composed of two parts, as vi-

sualized in Fig. 11:

• Structured-tree component. Pattern definition that defines pat-

tern properties and attributes, such as safety properties, re-

source constraints, development phases, and relationships.

These data are used to ease pattern search and analysis (Hamid,

2015).
• UML-based diagrammatic component. Pattern internal structure

design files generated via additional tools, e.g., Rhapsody or Pa-

pyrus (UML editors), that are stored as XMI files and can be

attached to the pattern description file.

The pattern design environment is presented in Fig. 12 . There

is a design palette on the right, a tree view of the project on the

left and the main design environment in the middle. Furthermore,

Arabion includes mechanisms for verifying the conformity of the

pattern with the SEPM metamodel and for publishing the results

to the repository.

For access to the repository by a system engineer, the retrieval

tool provides a set of functions to assist in the search, selection

and sorting of patterns. For example, as shown in Fig. 13 , the tool

assists in selecting appropriate patterns through key word searches

and lifecycle stage searches. The results are displayed in the search

result tree as system, architecture, design and implementation pat-

terns. The tool includes features for export and tailoring using di-

alogs that are primarily based on model transformation techniques

to adapt pattern models to the target development environment.

With regard to Tool set D, IBM’s Rational Rhapsody Devel-

oper/Software Architecture 10 is used to provide tool support for

the other parts of our approach. Other modeling tools can be used

9 http://www.semcomdt.org .
10 http://www.ibm.com/developerworks/rational/products/rhapsody/ .

in accordance with the target application domain and/or model-

ing environment. In addition to meeting its expected requirements,

Rhapsody is a mature and well-established tool in the industry,

making it easier to provide support for our approach and making

our approach more likely to be adopted by practitioners, such as

those engaged in railway safety-related processes. Rhapsody also

allows for application-specific codes to be automatically generated

(except for some specific parts that are coded by hand).

Rhapsody is used as the domain-specific design software tool

to design (and implement) the system using UML/SysML modeling

languages. For example, it can be used to design systems based

on packages, where one package might contain design diagrams

and/or additional packages. Based on this approach, the design of a

given pattern can be considered a single package that contains one

sub-package per safety engineering process lifecycle phase; each

of these phases might contain design modules and additional sub-

packages associated with specializations and refinements. Thus, the

access tool provides the option to export patterns in a format that

can be imported by the Rhapsody tools. Therefore, a customized

access tool, such as the one shown in Fig. 14 , is developed to con-

struct connections between the railway development environment

and the repository of patterns. The access tool offers a GUI that

allows the user to search for and select patterns. When a pattern

is selected, the access tool instantiates the pattern in the domain-

specific tool. Because this task is performed during product devel-

opment, the selected pattern must be compliant with the current

phase of the domain process and with the user tools. By accessing

the repository, we introduce features based on model transforma-

tion techniques to adapt the pattern model to the target develop-

ment environment. In our work, the target format is a subset of

UML that can be imported using Rhapsody and the model transfor-

mations as developed using the Eclipse implementation of QVTO.

The left-hand side of Fig. 14 shows the main window of the

railway access user interface. This window has two panels: one

for searching and the other for display. The display panel on the

bottom shows the name of the selected pattern and its different

views, e.g., a graphic view with a class diagram of the pattern im-

plementation. Searching the repository is performed using either

the “Name” field to enter part of the name or “Keywords” to en-

ter the desired pattern characteristics. To import the selected pat-

tern into the development environment, as shown on the right-

hand side of Fig. 14 , the access tool creates a new representation of

the selected pattern as a UML package for Rhapsody using model

transformation techniques.

To assist in the integration step, we provide support for the var-

ious phases. However, certain development environments may al-

ready offer native integration support. As shown in Section 3.6 , a

binding must be established between elements of the application

architecture and the roles defined in the pattern. The integration

tool supports the developer in two different ways. The first is that

it enables a filtered selection of possible elements for binding to

be displayed. The second is that it provides the completely auto-

mated creation of bindings. If a role remains unbound during in-

tegration, the developer can indicate that it has no corresponding

element in the application and that a suitable element must be

created in the application model. For example, in (Radermacher et

al., 2013), we used UML collaborations (OMG, 2011a) for model-

ing patterns and for role binding to establish links between ele-

ments of the application architecture and the roles defined in a

pattern. Furthermore, every design pattern has certain constraints

that must be satisfied while allowing for a certain degree of mod-

ification. Thus, there is a need to ensure that the properties of the

pattern remain valid while not preventing acceptable modifications

(such as renaming). A verification rule associated with each pat-

tern ensures that the invariants of the pattern can be checked after

the pattern has been applied. These validation rules are currently

Fig. 12. Designing a pattern.

Fig. 13. Access tool.

implemented in the programming language of the target develop-

ment environment (e.g., C ++ , Java, etc.); alternatively, a constraint

language, such as Object Constraint Language (OCL) (OMG, 2010),

could be used. However, the realization of such rules is beyond the

scope of this paper.

5. Evaluation

In this section, we first report on an industrial case study per-

formed in the railway domain (Section 5.1), followed by a descrip-

tion of a survey performed among railway domain experts to bet-

ter understand their perceptions of our approach (Section 5.2). The

case study enables us to determine that the pattern-based ap-

proach leads to a reduced number or to a simplification of the

engineering process steps, whereas the survey assists in assess-

ing whether domain experts agree on the benefit of adopting the

pattern-based approach in a real industrial context.

5.1. Case study

In the context of the TERESA project, we evaluate our approach

in the construction of an engineering discipline that is adapted to

resource constrained systems by combining the MDE process and a

model-based repository of dependability patterns and their related

property models.

In this subsection, the adaptation of railway processes to incor-

porate the pattern-based approach is described. We test which of

the provided tools are able to support the pattern integration or

assist the engineering process. In this context, the extendibility of

the pattern repository with new patterns and the extendibility of

existing patterns are observed. Furthermore, we evaluate the use-

fulness of the patterns with respect to increasing engineering pro-

ductivity. In the presentation of the case study and its results, we

describe only a small portion of this system. We do not show the

complete resulting model because it contains proprietary informa-

tion from our industrial partner.

5.1.1. Nature of the case study

One of the case studies that serves as a TERESA demonstrator

is set in the railway domain. For confidentiality reasons, we do not

reveal the name of the collaborating partner. This is a very con-

servative domain in which dependability is a key requirement for

most subsystems. Thus, the railway domain is a highly appropriate

sector in which to apply our approach. It is not uncommon to find

Fig. 14. Railway access tool.

Fig. 15. ERTMS/ETCS diagram.

situations in this industrial domain in which the reuse of system

and software modeling artifacts by means of a repository could

accelerate and support the development of safety-related subsys-

tems. We demonstrate the applicability of our proposed frame-

work using the Safe4Rail demonstrator, which is a simplified ver-

sion of a real ETCS (European Train Control System) for signaling,

control and train protection (see Fig. 15). Additionally, for confi-

dentiality reasons, we use a small but realistic setting to illus-

trate the dependability pattern-based approach proposed herein.

The main functionality of this demonstrator is to ensure that the

speed and distance traveled do not exceed the authorized max-

imum values specified by the railway infrastructure. Safe4Rail is

responsible for emergency braking in a railway system. Its task

is to detect whether the brake should be activated. Most impor-

tantly, the emergency brake must be activated when something

goes wrong.

At every position, the braking curve provides three speed lim-

its, which are used to make decisions about when to activate the

brakes (see Fig. 16):

1. When the current speed exceeds the warning speed limit, the

system must activate a warning signal to advise the driver that

the train is approaching a dangerous speed.

2. If the driver does not take any action and the service speed

limit is exceeded, the system must activate the service brake.

Fig. 16. ERTMS/ETCS supervision limits and braking curves.

3. If the train continues accelerating and exceeds the final limit,

the system will deactivate the acceleration and activate the

emergency brake to stop the train completely.

The fundamental functionality of the system is based on a set

of inputs from the rail track, assorted sensors, balises, etc. Begin-

ning with these inputs, it performs various calculations to deter-

mine whether the emergency brake should be activated. An output

signal is sent if necessary. Fig. 17 provides an overview of the en-

tire system architecture; a description for each subsystem that con-

tributes to the system is also provided. Furthermore, the following

list provides the requirements to fulfill by these components:

1. Clock . Generates a periodic event that triggers the system to

estimate the current position and speed and to supervise the

train to ensure it complies with the current track restrictions.

2. Environmental conditions . Represent the physical interaction be-

tween the environment (train, track, etc.) and the sensors of the

system.

3. Balise . Represents a balise installed on the track that supplies

the train supervision system with new information regarding

the current position and the track conditions.

4. Safe Train Interface . Represents the actuators for the application.

5. Supervision system .

(a) Balise reader . Detect and read the information provided by

the balise on the rail.

(b) Supervision . The main component of the system responsible

for carrying out the functionality of the system.

(c) Sensors . Provide the system with the actual position and

speed of the train and the track conditions.

(d) User interface . The driver interacts with the system through

this interface.

A more complete description of these components can be found

in TERESA, (2013).

5.1.2. Description of the application

The safety requirements of the proposed case-study are ex-

tracted from a simplified analysis of the ERTMS/ETCS standard and

considering that the objective of the case study is not the devel-

opment of the complete certifiable and interoperable ERTMS/ETCS

system but the provision of a case study that is as realistic as

possible and can be developed within the scope our study. In the

Safe4Rail system, there are three main cases, which are described

below. Fig. 18 provides a diagram of the selected cases, illustrat-

ing their relationships and their classification as safety-relevant or

non-safety-relevant cases. These use cases can be described as fol-

lows:

1. Activate emergency brake and perform diagnostics (when the

system is in standby mode).

2. Supervise train speed and position (when the system is in su-

pervision mode).

Fig. 17. Safe4Rail system components.

Fig. 18. Part of a Safe4Rail use-case diagram.

(a) Estimate current position and speed.

i. Obtain sensor data.

ii. Obtain balise data.

iii. Calculate current position and speed.

(b) Supervise the current position and speed and activate warn-

ings and brakes accordingly.

i. Process release emergency brake command.

(c) Provide information to the user.

3. Switch between the standby and supervision modes.

Based on the previous analysis, the following safety require-

ments are specified and shown in Fig. 19 . The requirements de-

scribed below are a summary (with some revisited information) of

the safety requirements:

1. (SIL4) Supervise train traveling speed and distance. The sys-

tem shall ensure that the train’s traveling distance and travel-

ing speed do not exceed the maximum authorized safety val-

ues, which are the movement authority (MA) and speed pro-

files, respectively.

(a) (SIL4) Odometry. The system estimates the traveling speed

and distance with bounded absolute errors (ABS DIST ERR

MAX and ABS SPEED ERR MAX for a maximum distance

between DIST MAX BALISE and a maximum speed of

500 km/h).

(b) (SIL4) Mode. The system safely manages modes and their

transitions:

i. No power. The system remains in a safe state.

ii. Standby. The system remains in a safe state.

iii. Supervision: The system ensures that the train travel-

ing distance and traveling speed do not exceed the max-

imum authorized values for safety, namely, the move-

ment authority (MA) and speed profiles, respectively.

(This implies the execution of multiple sub-safety func-

tions, such as ’communicate with control centers’, ’limit

supervision’, etc.)

(c) (SIL4) Limit supervision: Limit supervision. The system up-

dates the maximum distance and maximum speed pro-

files with received commands and compares the estimated

traveling distance and speed (odometry) with these limits.

If any ’safe authorized limit’ is exceeded (distance and/or

speed), the safe state is activated.

Fig. 19. A portion of the Safe4Rail requirements (software).

Table 1

List of patterns.

Pattern Origin

Hypervisor EN-50,129 (Table E.4; Separation of safety-related sys-tems from non safety-related systems)

Watchdog EN-50 ,126, IEC-61,508–3 (Table A.11)

Triple Modular Redundancy (TMR) IEC-61 ,508-2 (Tables 2 and 3), EN-50,129 (Table E.4)

Majority Voter IEC-61,508-2 (Table A .2,A .3A .4)

Reciprocal Monitoring IEC-61 ,508–2 (Table A.4),EN-51,028 (Fault Detection & Diagnosis)

Data Agreement Book ”Real-Time Systems:Design Principles for Dis-tributed Embedded Applications”

Black Channel - Safety Com-munication Layer IEC-61 ,508–2 / IEC-61,784

(d) (SIL4) Rearm: Once the safe state is activated by the ’limit

supervision’ safety function, the system can be rearmed (re-

lease emergency brake) only when the ’train is stopped’ and

the ’driver commands rearm’.

2. The safe state is when the emergency brake is activated (which

means that the system is in the safe state, i.e., the train is

stopped).

5.1.3. Results

Here, we present the results of our case study. Because we ele-

ments of this study were discussed in Sections 3 and 4 to explain

our approach, we provide only an overview of the outcomes of the

case study (steps 3–6).

Definition of dependability patterns (step 3). In this step, the
system architects analyze system safety requirements and identify

possible safety patterns to be used. Table 1 presents the list of pat-

terns to be used in the railway demonstrator. This list populates

the repository of dependability patterns for the railway domain

through the MDE tool set presented in Section 4 .

The Arabion editor is used to create the corresponding set of

seven patterns. Arabion uses a set of property libraries to deter-

mine the type of the pattern properties. Then, pattern publication

into the repository is triggered by running the publication feature

of Arabion. However, the publication feature requires that the vali-

dation tool be executed to guarantee pattern design validity. In the

context of this study, we examine only conformance validity with

regard to the pattern metamodel. However, formal verification may

be applied using an additional verification framework (Rodano and

Giammarc, 2013; Hamid et al., 2016). Finally, the repository man-

agement tool is used to define the relationships between the pat-

terns.

Adaptation for a specific domain (step 4). The domain-specific
perspective of the pattern is dependent on the solution/product;

each (commercial) implementation provides different characteris-

tics and features. In the context of our work, a railway-specific

model is constructed based on previous patterns using the tool

suite. Here, we present a subset while focusing on the specific rail-

way realizations.

• Hypervisor. The hypervisor virtualizes the real platform hard-

ware to allow the application and the operating system (par-

tition) to “feel like” they are executed in a standalone manner

on real hardware. The commercial hypervisors are XtratuM, 11

RTS hypervisor, 12 and Lynx hypervisor. 13

• Watchdog. The watchdog checks whether the monitored appli-

cation or a particular (safety) application process is running

into its time base or executed in the correct order (Powel,

2003). Two possible watchdog architectures are possible: (1)

with a time window (or time range watchdog), which defines

two different time periods for the monitoring process (i.e., Tlow

and Thigh), and (2) without a time window, where a unique

time-out value is considered (Tmax).
• Triple Modular Redundancy (TMR). This is a fault-tolerant re-

dundant architecture in which three computational channels

11 www.virtical.eu .
12 www.caf.net .
13 www.alstom.com/power/renewables/wind/ .

perform a safety computation and the result is used to pro-

duce a single safe output. The domain-independent version is

defined according to the IEC-61,508-based fail-safe embedded

system that provides a single random hardware fault-tolerance

(HFT = 1; IEC-61,508-2, Table 3). The railway-specific version

is defined according to the EN-50,126-based fail-safe embed-

ded system with a “composite fail-safety” technique (EN-50,129

B.3.1 Effects of single faults, Table E.4).
• Majority Voter. According to IEC-61,508, the majority voter is a

safety technique that provides a safe output based on the ma-

jority principle (M out of N , e.g., 2 oo 3), masking failures in one

of at least three hardware channels. In the railway-specific ap-

plication, two new methods are added to represent two major

majority vote types, i.e., the bit-exact voter and the approxi-

mate voter. The bit-exact voter compares all input data bits,

considering only inputs that are bit-identical as being equal.

The approximate voter establishes a criterion to decide when

inputs are considered equivalent to attain majority voting re-

sults.
• Reciprocal Monitoring. Also known as “monitored redundancy”

(IEC-61,508), is a monitoring and checking pattern between N

data providers. If one of the providers is sending an erroneous

data stream the other entities will detect and accuse it of hav-

ing a fault. In our context, we consider the MooN reciprocal

monitoring which is based a MooN Majority Voter to have the

result of the voted data by the other computation units of the

system. Once the vote has concluded it compares its own data

and the data of the rest participants, if M or more computation

units had a coherent answer to the vote the system is running

in an acceptable way. If less than M computation unit have a

coherent answer the system is running in a not acceptable way,

or if the own computation unit has no coherent answer, the

computation unit is turned to a fault-safe state.

We use the same process flows as applied for the domain-

independent representation, although the appropriate features of

the toolset are used to create and deposit the corresponding

domain-specific representations of these patterns into the repos-

itory.

System developer perspective: reuse of existing dependabil-
ity patterns (steps 5 and 6). This process is relevant to both step 5
(patterns identification and tailoring) and step 6 (integration). The

first activity in this process is to construct an access tool for the

railway domain, such as the one presented in Fig. 14 . In our case,

the target format is a subset of UML that can be imported using

Rhapsody. Thus, the set of railway patterns is imported into the

Rhapsody environment as a set of packages using the railway ac-

cess tool (see Fig. 10).

In the safety railway process model, which is depicted in Fig.

20 , the developer begins with engineering requirements and sub-

sequent system specifications. In each phase, the system developer

executes the search/select task on the repository to tailor appro-

priate patterns for the modeling environment using the access tool

and integrates these patterns into the application models following

an incremental process. Fig. 21 shows the simplified flow for an it-

eration within a software architecture definition phase. Moreover,

the system developer can use the pattern designer tool (Arabion)

to develop custom solutions when the repository fails to yield ap-

propriate patterns during this phase.

The safety concept diagram (see Fig. 22) provides a high-level

architectural perspective in which major safety requirements, tech-

niques and concepts used to augment the safety of the system are

represented. The practical application of our approach begins at

this point, where the system architect and RAMS (Reliability, Avail-

ability, Maintainability, and Safety) architect open the access tool

and log in.

1. Both the system architect and the RAMS architect analyze the

system safety requirements and identify the possible architec-

tures and safety techniques to be used. They begin defining the

European vital computer (EVC). They identify triple modular re-

dundancy (TMR) as a design pattern of interest to reach a SIL4

via a “composite fail-safety” technique (EN-50,129 B.3.1 Effects

of single faults, Table E.4). As shown in Fig. 14 , they type and

search the TMR to find the most suitable design pattern instan-

tiation for this phase. They analyze all possible options, select

“TMR@System” and click “Export”. By clicking the “Export” but-

ton, the pattern is exported as a Rhapsody-referenced package

to the selected directory.

2. As shown in Fig. 14 , once the pattern is imported in Rhapsody

as a package, a project tree is generated and its artifacts are

available for use in the project

3. Both the system architect and the RAMS architect continue re-

fining the safety concept (see Fig. 22), searching for design pat-

terns in the access tools and importing them whenever a suit-

able design pattern is found:

(a) The TMR requires an external safety hardware majority

voter (its MajorityVoter) implemented with two indepen-

dent majority voters. Majority voters require six digital out-

puts of the TMR (three per majority voter, with each digi-

tal output controlled by a different computation channel) to

generate two independent emergency brake majority com-

mands to the train interface (see Fig. 22).

(b) The TMR is connected to the following safety and non-safety

related subsystems (see Fig. 22). It follows the “separation

of safety-related systems from non-safety-related systems”

technique described in EN-50,129 (Table E.4).

i. Odometry input sensors (its OdometrySensors SC): A

simplified odometry requires three (non-safety related)

encoders (itsEncoderSensor SC), each of them connected

end-to-end to a single computational channel

ii. The (safety) balise reader (itsBaliseReader SC)

iii. The (safety) DMI (itsDMI SC)

(c) Initial decisions regarding the internal structure of the TMR

(see Fig. 22):

i. A black channel is selected to enable communication

between the computation channels. Therefore, a safety

communication layer pattern is already integrated.

ii. A data agreement protocol can be used to reach an

agreement regarding the input values to be used by the

computation channels (input sensors are connected end-

to-end to a single computation channel). This enables

bit-exact execution of software to simplify diagnosis.

(d) As shown in Fig. 22 , the replicated software executes

the supervision safety function (Supervision-SystemPIM)

and safety techniques (“DataAgreement” and “SafetyComm-

Layer”). The system supervision function is based on three

main functionalities (sensor reading, supervision, interface

with balise reader and interface with the user (driver)).

The main safety techniques are “TMR software redundancy”,

“data agreement” and “safety communication layer”.

The system architecture shown in Fig. 23 specifies the Safe4Rail

system decomposition and the relationship between the different

blocks that compose the system. At this stage, the system architect

makes several architectural decisions (based on the safety concept

and requirements) and accesses the repository to search and im-

port suitable refined and specialized design patterns of interest:

1. The TMR is implemented with the following features:

(a) Three homogeneous nodes (“SupervisionNode”) connected

to two Ethernet switches in star topology and composed of

the following:

Fig. 20. An overview of the railway reference process model.

Fig. 21. Simplified process flow using our approach at the software architecture definition phase.

Fig. 22. Overview of the Safe4Rail safety concept.

i. a computing unit microcontroller (“ComputingUnit”, “Mi-

crocontroller”),

ii. an “FPGA” that provides safety and non-safety related in-

puts/outputs (“IO Safety” and “IO No Safety”),

iii. a watchdog as a pattern,

iv. a software application (“SupervisionApplication”) exe-

cuted at the computing unit that integrates the safety

communication layer as a pattern to support safe com-

munication between the replicated communication chan-

nels,

v. the use of a hypervisor (“DI SA BL Hypervisor”) as a pat-

tern to enable integration in a single software application

(“SupervisionApplication”) that contains the following:
• safety software, such as software functionalities and

safety techniques previously described in the safety

concept, and
• non safety-related application software such as the

communication stack of the black channel.

(b) Two Ethernet switches (“EthernetSwitch”) associated with a

black channel.

2. A single (safety) balise reader (“BaliseReader”).

3. A black channel communication protocol (Ethernet/EtherCAT).

During these phases, new design patterns are imported from

the repository based on the system architect decisions. For exam-

ple, the selection of a supervision node with a single microcon-

troller results in the use of a hypervisor to integrate safety and

non-safety-related software in a single microcontroller.

The software architect continues refining the software architec-

ture. The emergency supervision safety function shown in Fig. 23 is

refined, leading to the software architecture shown in Fig. 24 . Then,

additional software architectural decisions and analyses are made;

additional safety techniques are identified. The software architect

accesses the repository to search and import suitable refined and

specialized design patterns according to the identified techniques

and integrates them. Therefore, new patterns that are not repre-

sented in previous phases are initially introduced at this phase.

Fig. 23. Overview of the Safe4Rail system architecture.

This is the case of the reciprocal monitoring pattern, which is only

over interest at this stage. When the software architect must de-

fine how to monitor the nodes, he/she can use the access tool to

determine whether there is a pattern to implement this function-

ality. The reciprocal monitoring pattern is selected, imported and

integrated in the software architecture diagrams.

5.1.4. Discussion

This subsection has described the adaptation of railway pro-

cesses to incorporate the proposed approach centered around a

model-based repository of dependability patterns. The procedure

used for developing the case study closely followed the approach

described in Section 3 . Given the dependability pattern require-

ments, a conceptual model is built that fulfills these design re-

quirements. The next step is the creation of a Domain-Specific

Modeling Language (DSML) for the specification of pattern mod-

els. This work was done by the author. Then, the dependability

expert, with the help of the system and software engineering ex-

pert, defines the dependability patterns and begins populating the

repository. Then, a domain process expert adapts the patterns into

a format that is suitable for the system development process. Fi-

nally, a domain engineer reuses the resulting pattern models that

have been adapted and transformed for the given engineering en-

vironment to develop a domain application. For the purpose of

our study, we have developed Semcomdt (SEMCO Model Develop-

ment Tools) as an MDE tool chain to support all steps of our ap-

proach using EMFT. The repository is implemented using Java and

the Eclipse CDO framework.

The creation of the conceptual model of the dependability pat-

tern required approximately 4 person months. The creation of the

DSML for the dependability pattern took approximately 6 person

months. The implementation of the MDE tool chain took 12 per-

son months. The construction of the domain model (i.e., Safe4Rail

system model) took another 3 person months. The process of pop-

ulating the repository took one month. The proposed tool chain is

designed to support the proposed metamodels, and hence, the tool

chain and the remainder of the activities involved in the approach

may be developed in parallel. This activity needs to be performed

only once for a given set of domains. We expect the effort f or the

creation of a DSML and the development of tools to be less for fu-

ture applications, as we had to address several technical details in

relation to using EMFT and CDO in our first application. We tested

Fig. 24. Overview of the Safe4Rail software architecture.

which of the provided tools were best able to support pattern in-

tegration, thus assisting in the engineering process. In this context,

the extendibility of the pattern repository with new patterns and

the extendibility of existing patterns were observed. Furthermore,

we evaluated to what extent such patterns are useful in increasing

engineering productivity, as described in the following section.

5.2. Survey

After the completion of our case study, our approach and the

solution of our case study were presented to industry practition-

ers through a survey to collect feedback. This survey presents a

preliminary evaluation of the proposed approach using Key Per-

formance Indicators (KPIs). A performance indicator or key perfor-

mance indicator (KPI) is an industry term referring to a type of

performance measurement. KPIs are commonly used to evaluate

the success of a particular activity, project or company. The objec-

tive of the survey is to determine whether domain experts agree

on the benefits of adopting the pattern-based approach in a real

industrial context. In the following, we present and discuss the de-

sign and results of this survey.

5.2.1. Context and description of the methodology for experiment

The approach and the solution of our case study presented in

Section 5.1 were presented to the industry practitioners for evalu-

ation. The purpose of this survey is to provide an overview of the

software architecture for a small but sufficiently complex system

that can be used to illustrate our proposed approach. Therefore,

the estimations given for the railway domain provide two values

with associated argumentation:

1. Large and complex safety systems , such as on-board ERTMS/ETCS,

and

2. Intermediate safety systems , such as traction control safety su-

pervision.

Among the fifteen participants in the experiment, nine are

TERESA members from the railway domain. Moreover, five depend-

ability experts (DEPs) participated in the survey: three from the

railway domain and two from other domains. Six software engi-

neering (SENs) experts participated in the survey: four from the

railway domain and two from other domains. In addition, four

project managers (MGs) participated in the survey: two from the

railway domain and two from other domains.

The participants also knew that the experimenter did not have

any influence on their job evaluation scores or on their career

evolution and progress, as the experimenter was external to their

organizations. Statistical analyses, mainly for the averages of the

values provided by the participants, are performed by peers on

anonymized data (both subjects and scales) independently from

the experimenter. Moreover, the researcher agreed to use the sur-

vey only for research purpose as anonymized results.

We have created a questionnaire shown below, about the back-

ground of the subjects related to dependability in general. We

explained in the questionnaire that “dependability-related experi-

ence” covers the following: (1) participating in the development of

projects related to dependability; (2) constructing and reviewing

dependability project reports and deliverables; (3) attending tuto-

rials and workshops on dependability engineering processes and

standards; and (4) self-reading of dependability engineering stan-

dards.

Q1. Is dependability engineering an important aspect of your

job?
• Yes
• NO

Q2. How much experience do you have with dependability en-

gineering related activities?

• Less than 6 Months
• More than 6 months but less than 12 months.
• More than 1 year but less than 2 years
• More than 2 year

The purpose of our study is to address the following two re-

search questions:

• RQ1: Does the proposed approach reduce the effort involved in
developing a new application (design and implementation)?

• RQ2: Is the effort involved to engineer a new version of an ex-

isting application to add a dependability property acceptable?

To address these two questions, we consider KPIs as a collection

of metrics for quantifying the objectives of the approach, monitor-

ing the related activities and assessing the expected results. The

participants were asked to scale their estimation on a scale from

0% to 100%, 0% being the lowest and 100% the highest value of es-

timation regarding the different KPIs. The averages of the values

provided by the participants are calculated for the analysis. To an-

swer RQ1 , we evaluate whether the approach leads to a reduced
number of steps in the engineering process or to their simplifica-

tion, and we assess whether the domain experts agree on the ben-

efits of adopting the approach in a real industrial context for the

development of new applications. For RQ2 , we measure the ability
of the approach to integrate dependability solutions into existing

products.

In the following, KPIs are presented with an estimated target

value submitted at the beginning of the case studies, and real val-

ues are estimated upon completion of the case studies. Both val-

ues are averages because the individual values highly depend on

certain factors, such as the size of the project, the product require-

ments, the expertise of the engineering team, the use of the ap-

proach facilities and the availability of the appropriate patterns. In

both cases, KPIs are estimated based on previous knowledge of im-

plementing such systems or equivalents. A description of the con-

sidered constraints and assumptions is discussed below.

1. Development costs. Cost reduction is at the forefront of the chal-

lenges associated with system engineering. Nonetheless, meth-

ods to reduce costs differ greatly. Reducing the cost of con-

sumer electronics is typically bound to the hardware, whereas

cost reduction for industrial embedded systems is primarily re-

lated to the engineering times. In the context of our experi-

ment, the railway domain follows the second criterion because

only a few hundreds/thousands of devices are manufactured.

Two examples of KPIs that can be used to measure the reduc-

tion in cost are described as follows:
• (K1) Overall engineering cost. Cost to develop a new appli-

cation (design and implementation) with dependability re-

quirements using a target reduction of 10% to 20% (on aver-

age).
• (K2) Percentage of reused code. Amount of code reused from

existing patterns in a new development with dependability

requirements using a target reduction of 20% to 60% (on av-

erage).

2. Time to market. Market pressures are forcing a continuous evo-

lution of the systems present in the market. Consumer electron-

ics is a good example, where every other day a new product

appears. In general, there is a dual timing pressure, i.e., reduce

the time to market of systems and reduce the time to market of

new models of systems. Here, two example metrics to measure

this reduction are described:
• (K3) Engineering time. Time to develop a new application

(design and implementation) with dependability require-

ments using a target reduction of 10% to 25% (on average).
• (K4) Re-engineering time. Time to engineer a new version of

an existing application to add a dependability property with

an estimated target reduction of 40% (on average).

3. Product quality. Product quality is the degree to which customer

needs and expectations are satisfied. Here, product quality is re-

lated to the effectiveness and efficiency of the reused code from

prior patterns. We provide two examples of metrics to measure

this quality:
• (K5) Errors in reused code. Number of errors appearing in

code reused from patterns using a target value of 10 as a

factor of the probability of errors in reused code with re-

spect to new code.
• (K6) Code quality. Readability and compliance of the reused

code with the required standard with an estimated target

value of compliance of 100%.

4. Post-deployment support. The maintenance of the system while

it is in operation typically spans several years. Railway systems

are designed to be in operation for more than 20 years; thus,

there is a need to provide support and reduce maintenance

both effort and costs. There is a wide degree of diversity among

the different domains of interest. The maintenance expectations

are lower in consumer electronics, whereas they are critical in

the railway domain. The following describes two example met-

rics for post-deployment support:
• (K7) Maintenance cost. Total cost and effort associated with

bugs being detected after deployment using a target reduc-

tion of 10% to 20% (on average).
• (K8) Incident response. Time and effort for identifying af-

fected products from reused code/concepts with an esti-

mated target reduction of 30% to 50% (on average).

As discussed below, some of these categories are closely related

to each other. For example, every improvement in time to market,

product quality or post-deployment support has a positive impact

on cost.

5.2.2. Experimental validity

Threats to internal validity. To obtain scientifically sound re-
sults that enable comparison between metrics associated with a

standard development approach and those associated with our ap-

proach, it is necessary to perform a study in which comparable

systems are designed in parallel by equivalent engineering teams.

However, this method is not feasible within the scope of our work

or within the scope of the TERESA project because of a lack of re-

sources required to develop the system addressed in the case study

twice. Moreover, it is even less feasible to obtain such metrics from

the development of real products, such as ERTMS/ETCS, for which

the development and certification costs are several tens of mil-

lions of Euros and confidentiality is an issue. Therefore, metrics for

comparison are estimated based on previous knowledge of the im-

plementation of such systems or their equivalents. This estimation

is thoroughly elaborated and discussed, including descriptions of

the considered constraints and assumptions. Therefore, a notable

threat to the internal validity of this study is the possible lack of

a common understanding of concepts between the researchers in-

volved in the development of the approach and the participants. To

minimize this threat, the quality of certain elements of the train-

ing and preparation procedures could be improved. One would ex-

pect that in a real environment setting, an engineer using any en-

gineering method would have some experience with that method.

Another potential threat to the study’s internal validity is the in-

fluence of relationships between the researchers and the partici-

pants because both are involved in the TERESA project. This issue

is addressed by including six participants out of the TERESA con-

sortium. Finally, the definition of the target values of the KPIs may

influence the results because the participants may not respect the

evaluation context. This issue could be completely resolved only if

several evaluation methods are configured to define the target val-

ues.

Threats to external validity. As noted by the authors of
(Wohlin et al., 20 0 0), external validity may be used to measure

whether the results of a certain experiment can be generalized be-

Fig. 25. Subject dependability engineering background (Q1 and Q2).

yond the experimental context. Because the proposed approach is

targeted toward software engineers, one threat to external validity

lies in the skills of the participants. Most participants possess de-

pendability expertise. Therefore, it would be constructive to eval-

uate the approach using participants who are not experts in de-

pendability engineering. Nevertheless, six participants in the con-

ducted experiment possess high software engineering skills, and

the remaining participants previously participated in the devel-

opment of several software projects with a focus on dependabil-

ity. Therefore, all the participants may be considered to be at an

advanced stage in their practice as software engineers; therefore,

they can be regarded as comparable to the targeted software engi-

neering population. Other obvious external validity threats are the

size of the project, the product requirements, the use of the tool

facilities, and the availability of appropriate artifacts during devel-

opment. However, these issues are not relevant because the size

and context of the tasks addressed in the experiment are similar

to those of typical cases in the industry. In addition, the partici-

pants were required to complete their assigned tasks during the

time allotted for the experiment. However, in an industry context,

software engineers are typically provided sufficient time to address

the development of a software system. Finally, the significance of

each KPI and its related class of responses may differ between dif-

ferent domains. To minimize the influence of this concern, appro-

priate metrics must be defined and ranked for each application

domain. Thus, the collected metrics should be objective, measur-

able, relevant to the targeted project and comparable to the situ-

ation before using the proposed approach. Success is occasionally

defined in terms of making progress toward goals; however, more

often, success is simply the repeated achievement of some level

of an operational goal (e.g., zero defects, 10/10 customer satisfac-

tion, etc.). Accordingly, choosing the right KPIs depends on having

a good understanding of what is important to the domain of inter-

est or the organization.

5.2.3. Result and discussion

Fifteen people completed the questionnaire. A broad range of

industry sectors was represented, with respondents from railway,

automotive, metrology and software development sector. Based on

the responses obtained, depend- ability engineering was an impor-

tant aspect of the job for all but two participants (left part of Fig.

25). Among these two participants, one is working as project man-

ager and the other as software engineer. Both of them would be

engaged in dependability engineering activities in the future and

hence had started to develop their skills in this field. Overall, 60%

of the participants had over two years of dependability engineering

experience and a further 20% had at least one year of experience

with dependability engineering (right part of Fig. 25). All partici-

pants are familiar with modeling tools.

With regard to the overall engineering cost, we estimate that

the development of large and complex systems (ERTMS/ETCS), re-

spectively intermediate systems, is reduced by an average of 12.5%,

respectively 30% (left part of Fig. 26). The overall engineering cost

is reduced as follows. During the safety concept, system architec-

ture, software architecture and module detailed design phases, a

reduction in the time to formalize and document the design is

observed using already-developed design patterns that include all

necessary safety information and reducing the effort required to

document detailed descriptions by hand. Moreover, a reduction in

the time and effort associated with verification is also observed be-

cause the design patterns are already verified and provide a com-

mon understanding for both designers and verifiers. Finally, a re-

duction in the time and effort associated with RAMS analysis is

observed because the design patterns are already verified and pro-

vide a common understanding for both designers and RAMS engi-

neers.

The reduction in development cost at the implementation and

test phases may be justified by the fact that design patterns are al-

ready implemented as software (meeting all required coding stan-

dards), and unit tests are already implemented by means of gener-

ation mechanisms provided by the modeling tools. Therefore, each

design pattern is already tested (even unit test results are stored),

and guidelines for integration tests might be provided.

Finally, verification and validation activities must be extensively

tested in different implementations, assuming that design patterns

are already used in several applications. Therefore, the real test

unit coverage is higher, and the probability of finding an inte-

gration test or validation bugs associated with the design pat-

tern is very low. This reduces the verification or validation effort

where the correction of bugs is time- and effort-consuming. Note

that verification and validation consumes approximately 50% of

the overall project cost for high-integrity-level systems (e.g., SIL4).

Safety design patterns, such as those selected for the case study

(data agreement, safety communication layer, etc.), provide a safety

foundation that is difficult to verify and expensive to validate in

real system developments. They require the participation of multi-

ple replicated communication channels, temporal constraints, etc.,

as opposed to system-specific safety functions that commonly per-

form computations. Therefore, the availability of these key founda-

tional pre-verified safety design patterns can significantly reduce

the verification and validation effort for a given system.

With regard to the percentage of reused code, we estimate

that during the development of large and complex systems

(ERTMS/ETCS), resp. intermediate systems, code is reused at an av-

erage of 12.5%, respectively 43% (right part of Fig. 26). The selected

case study, namely, ERTMS/ETCS on-board railway signaling act-

ing as a large and complex safety system, is a representative SIL4

safety embedded system in which multiple design patterns can be

Fig. 26. Development costs (K1 and K2).

Fig. 27. Product quality (K3 and K4).

instantiated. However, ERTMS/ETCS is a highly complex system in

which most of the software application implements the safety and

functional requirements established by the standard for interoper-

ability. Selected and integrated design patterns provide the safety

skeleton and safety architectural foundation of the system (key

foundation), where the system-specific application is deployed and

executed. However, the ratio between system-specific software and

software that can be provided by design patterns is less than 0.1.

This is a paradox because other safety subsystems of the train

that perform intermediate complexity safety functions might be

developed with a much smaller set of design patterns, although

the ratio of design-pattern-based safety software compared to

system-specific safety software might be at least one to one. For

example, the safety function of a railway traction system (SIL2) act-

ing as an intermediate safety system has an intermediate complex-

ity. It must compare already acquired current, voltage and temper-

ature measurements with given minimum and maximum thresh-

olds and perform a small set of coherency checks on the measure-

ments.

With regard to engineering, we estimate that the development

of large and complex systems (ERTMS/ETCS), resp. intermediate

systems, is reduced by an average of 12.5%, respectively 30% (left

part of Fig. 27).

With regard to the re-engineering, we estimate that the devel-

opment of large and complex systems (ERTMS/ETCS), respectively

intermediate systems, is reduced by an average of 25%, respectively

33% (right part of Fig. 27).

In this study, product quality is measured by two metrics, i.e.,

errors in the reused code and code quality. For the first metric, it is

estimated that a reduction by a factor of 10 in the probability of er-

rors in re-used code with respect to new code can be achieved and

even surpassed if the design pattern is already extensively used in

multiple applications. Pre-engineered safety design patterns are al-

ready verified and probably being used extensively in multiple ap-

plications in which identified bugs have been previously corrected

and the design pattern has been updated. With regard to the code

quality, safety design patterns developed by/for an end-user should

be 100% compliant with the required standards.

After developing the demonstrator and considering the previous

estimation of K2 (percentage of reused code), we estimate that the

maintenance cost is reduced in large and complex (ERTMS/ETCS),

resp. intermediate systems, by an average of 12.5%, respectively,

25% (left part of Fig. 28). An example is the reduction of complex

incident responses associated with the operation of safety replicas

(e.g., data agreement, safety communication layer, etc.) that require

a considerable amount of time to be analyzed and solved.

After developing the demonstrator and considering the previ-

ous estimation of K2 (percentage of reused code) and that safety

design patterns provide key foundational patterns for the develop-

ment of safety systems, we estimate that the time and effort for

incident response is reduced in large and complex (ERTMS/ETCS)

systems, resp. intermediate systems, by an average of 20%, respec-

tively, 40% (right part of Fig. 28). An example is the reduction

of complex incident responses associated with the operation of

safety replicas (e.g., data agreement, safety communication layer,

etc.) that require a considerable amount of time to be analyzed

and solved.

A comparison of the resulting KPIs in the two cases is shown in

Fig. 29 , where the estimated KPI values for the newly proposed ap-

proach at the end of the case study are presented. From this com-

Fig. 28. Post-deployment support (K7 and K8).

Fig. 29. Intermediate, large&complex safety systems.

parison, it appears that using the dependability pattern-based ap-

proach brings significant advantages in dependability engineering,

especially for intermediate safety systems.

Embedded system development projects in the railway domain

are commonly developed by multidisciplinary teams that can be

geographically dispersed. Therefore, the existence of a repository

with pre-engineered patterns (designed and verified) can reduce

the time to market (and overall project cost), ease the complex-

ity management, reduce the probability of systematic faults and

increase the robustness of the developed products. Such effects

are primarily related to each design pattern providing a concise

representation of a concept (e.g., redundancy, as specified by IEC-

61,508), and/or well-known and pre-engineered solutions that fit

naturally within the company’s engineering lifecycle.

The selected design patterns defined in the context of this case

study target the development of (railway) safety embedded sys-

tems and provide either common IEC-61,508-based safety tech-

niques (e.g., majority voter) or representative safety solutions (e.g.,

hypervisor). Instantiating and thereby reusing existing patterns re-

duces the cost to develop an application. Therefore, it becomes

possible to produce results faster and to reduce staff efforts using

proven solutions and reusing test cases instead of hiring expensive

dependability engineers. Furthermore, by producing results faster,

the time to market is reduced. In addition, to increase the chances

of reducing development costs and the time to market in the fu-

ture, additional patterns should be defined to extend existing pat-

terns. It becomes possible to respond to the needs of customers

and provide the desired patterns. Furthermore, the potential to ex-

ploit the approach over a long period of time becomes feasible.

6. Certification

Depending on the application requirements, different levels of

assurance can be involved, including the most stringent certifica-

tion (e.g., EN-5012 for railway systems and DO-178B for airborne

systems). The certification process is required in all application

sectors in which a safety function is included. The safety certifi-

cation of a given safety system requires a demonstration that the

system is safe for its purpose according to a given safety certifi-

cation standard, e.g., EN-50,129 for the railway domain. This pro-

cess requires at least the demonstration that the system has been

developed according to a safety engineering process lifecycle that

is compliant with the relevant standard. This lifecycle reduces the

probability of systematic faults and ensures that the developed sys-

tem is safe for its purpose using state-of-the-art techniques and

measures that mitigate, detect and tolerate random and systematic

faults.

6.1. Supported safety techniques

The safety techniques recommended by the IEC-61,508 (IEC,

2010b) safety standard, which can also generally be used in other

domains, such as EN-5012X railway safety standards. The following

provides a brief explanation of the given support for each tech-

nique:

1. Fault detection and diagnosis. As described by the relevant stan-

dard (IEC, 2010b), the goal is to detect faults in a system that

might lead to a failure, thus providing the basis for counter-

measures that can minimize the consequences of failures. This

approach is supported by safety techniques described by the

standard (e.g., redundancy TMR) (IEC, 2010b) and state-of-the-

art research (Kopetz, 2011), which provide well-known solu-

tions to well-known problems that are suitable to be developed

as safety patterns. Within our approach, the following cross-

domain fault detection and diagnosis safety patterns are devel-

oped: TMR, majority voter, reciprocal monitoring, data agree-

ment and watchdog.

2. Modular approach (see Table B.9 in (IEC, 2010b)) . It is assumed

that safety patterns are developed using a safety engineering

process lifecycle, thus meeting the given recommendations for

a modular approach (software module size limit, software com-

plexity control, information encapsulation, etc.).

3. Use of trusted / verified software modules and components (if avail-

able). As described by the relevant standard (IEC, 2010b), the

goal is to avoid the need for software designs and elements to

be extensively revalidated or redesigned for each new applica-

tion and to take advantage of a pre-existing software elements

that are verified for a different application and for which a body

of verification evidence exists. Safety patterns directly support

this safety technique, providing trusted/verified software mod-

ules. Safety patterns should be developed according to an ap-

propriate safety engineering process and safety integrity level,

delivered with a body of verification and, whenever possible, a

use/verification history (based on systems that have previously

demonstrated successful usage).

4. Semi-formal methods (see Table B.7 in (IEC, 2010b)) . It is as-

sumed that safety patterns are developed using at least semi-

formal methods, such as UML modeling, finite-state machines

and sequence diagrams.

5. Computer-aided design tools (see B.3.5 in (IEC, 2010b) . As de-

scribed by the relevant standard, the goal is to perform the de-

sign procedure more systematically and to include appropriate

automatic construction elements that are already available and

tested. It is assumed that safety patterns are developed using

a safety engineering process lifecycle and associated computer-

aided design tools.

Dependable embedded systems with safety requirements that

are designed with a semi-formal method, such as UML (that might

also use trusted/verified software), typically require a complemen-

tary text description to explain the relevant safety concepts and

techniques used in the design to be verified by an independent

team. The use of safety patterns should reduce the probability of

systematic faults by enabling the representation of safety concepts

and techniques in such a way that the probability of misunder-

standing between the design and verification team is reduced. For

this purpose, safety patterns should clearly represent a safety con-

cept/technique, be self-contained and be verified by dependability

experts.

6.2. Certification scenarios

It is assumed that the end user has a safety engineering process

lifecycle that is compliant with the relevant standard and a set of

qualified safety engineers, which are the minimum requirements to

proceed with the development and certification of a safety prod-

uct. As a result, two basic scenarios are defined for the certifi-

cation of safety embedded systems that use dependability design

patterns:

1. In-house-constructed dependability design patterns and repos-

itory. The end user develops and reuses safety patterns de-

veloped with the same safety engineering process and tools

used in the development of safety embedded systems. Al-

ready developed and verified safety patterns can be reused as

trusted/verified software modules and components to develop

certifiable products, reusing the design, development and unit

test. Safety patterns can also be certified with a modular cer-

tification approach (Rushby, 20 07; Althammer et al., 20 08) if

feasible (e.g., black channel safety communication layer (SCL)).

2. Third-party dependability design patterns and repository. The

end user integrates and reuses safety patterns developed by

a trusted third party (commercial, open-source, etc.) using a

safety engineering process compliant with the safety standard.

The integration can include defining a modeling perspective

that is compatible with the end-user safety engineering pro-

cess (encapsulating the details) or integrating the safety pat-

tern as is in the design if both processes are sufficiently com-

patible. For example, the first approach (compatible model per-

spective) can be used for generic patterns, such as real-time

operating systems and hypervisors. The decision is dependent

on the specific project and should consider meeting constraints

associated with the safety technique that addresses the reuse

of trusted/verified software modules and components and effi-

ciency/compatibility criteria from the engineering process per-

spective. The end user assumes the responsibility of demon-

strating that integrated design patterns are safe for their pur-

pose, which can require a large effort if integrated design pat-

terns are not certifiable.

The availability of safety patterns that have been previously cer-

tified (certifiable or, if possible, modular certification) can further

improve the development and certification effort by reducing the

associated cost and effort to a minimum. If the safety pattern has

already been certified (modular certification), the end user requires

a modeling representation to be used in the design (compatibility

of engineering process), verifies the appropriate use of the safety

pattern (meeting constraints and hypotheses stated in the modular

certification) and defines/executes the necessary integration tests.

However, the internal design, development and unit test that are

part of the modular certification can potentially be taken ’as is’,

and the provider should provide the required documentation to

support the certification and additional test frameworks to be ex-

ecuted and passed in each certification project (e.g., to check soft-

ware correctness for a given processor). For example, this is appli-

cable to certifiable real-time operating systems and safety patterns

developed within the scope of our experiment (e.g., safety commu-

nication layer (SCL)).

7. Related work

The ideas of system architecture and dependability modeling

and analysis are not new. However, to the best of our knowledge,

the combination of model-based and pattern-based dependability

engineering is new. In this section, we describe our vision in these

areas and discuss their relationship to software system engineer-

ing and pattern-based engineering. The pattern concept was first

introduced by Alexander et al. (1977). A pattern addresses a spe-

cific, recurring problem in the design or implementation of a soft-

ware system. It captures expertise in the form of reusable archi-

tecture design themes and styles that can be reused even when

algorithms, component implementations, or frameworks cannot.

7.1. Incorporating dependability in system and software engineering

Over the past two decades, the need for formally defined safety

lifecycle processes has emerged because the inevitable require-

ment for better processes eventually pushed control systems to

a level of complexity in which sophisticated electronics and pro-

grammable systems became the optimal solution for control and

safety protection (Smith and Simpson, 2004). With these emergent

requirements, many safety lifecycles have been proposed by dif-

ferent associations, such as IEC and ANSI/ISA. These safety lifecy-

cles have been adopted by different domains or companies with

some modifications to adapt different requirements (for example,

domain-specific requirements). However, because the fundamental

differences between a traditional development process and a safety

lifecycle are immense, e.g., different types of safety checks and

the safety relationships between these checks and phases, model-

ing these different saf ety lif ecycles with traditionally used process

metamodels is not simple and direct.

In system engineering, dependability may be compromised in

several system layers. Dependability is typically considered when

design decisions are made, leading to potential conflicting sit-

uations. The integration of dependability features requires the

availability of simultaneous system architecture expertise, domain-

specific application knowledge and dependability expertise to

manage the potential consequences of design decisions on the de-

pendability of a system and on the remainder of the architec-

ture. For example, at the architectural level, incorporating depend-

ability means having a mechanism (which may be a component

or integrated into a component). Development processes for sys-

tem and software construction are common knowledge and main-

stream practice in most development organizations. Unfortunately,

these processes offer little support for meeting dependability re-

quirements. Over the years, research efforts have been invested in

methodologies and techniques for dependable software engineer-

ing, although dedicated processes have been proposed only re-

cently (Bernardi et al., 2012; Panesar-Walawege et al., 2013; Ni et

al., 2015).

7.2. Pattern-based development

The supporting research activities in PBSE examine three dis-

tinct challenges: (a) mining (discovering patterns from existing

systems), (b) hatching (selection of the appropriate pattern), and

(c) applying (effective use during the system development pro-

cess). These three challenges often involve broad core expertise, in-

cluding formal logic, mathematics, stochastic modeling, graph the-

ory, hardware design and software engineering. In our work, we

study only the last two challenges, targeting the (i) development

of an extendible design language for modeling patterns in depend-

able distributed embedded systems (Hamid et al., 2016) and (ii)

a methodology to improve existing development processes using

patterns (Hamid et al., 2013). The language must capture the core

elements of the pattern to support its (a) precise specification, (b)

appropriate selection and (c) seamless integration and use. The

first aspect is related to pattern definition, whereas the second

and third aspects are more related to problem definition. From

the pattern-based system and software engineering methodolog-

ical perspective, only a few works (Abowd et al., 1995; Soundara-

jan and Hallstrom, 2004; Zdun and Avgeriou, 2008) have addressed

this concern. They are harmonized with the use of patterns in each

system and software development lifecycle stage. However, exist-

ing approaches using patterns often target one stage of develop-

ment (architecture, design or implementation) due to the lack of

formalisms ensuring (1) the specification of a pattern at different

levels of abstraction, (2) relationships that govern their interactions

and complementarity and (3) the relationship between patterns

and other artifacts manipulated during the development lifecycle

and those related to the assessment of critical systems.

Several approaches exist in the dependability design pattern lit-

erature (Giacomo et al., 2008; Daniels and Vouks, 1997; Tichy et

al., 2004). They allow solutions to very general problems that ap-

pear frequently as sub-tasks in the design of systems with secu-

rity and dependability requirements. These elementary tasks in-

clude safety communication and fault tolerance. In developing

fault-tolerant software applications, the use of patterns leads to

well-structured applications; (Daniels and Vouks, 1997) described

a hybrid set of patterns to be used in the development of fault-

tolerant software applications. These patterns are based on clas-

sical fault-tolerant strategies, such as N-version programming, re-

covery blocks, consensus, and voting. In addition, the hybrid pat-

tern structure can be constructed through a recursive combina-

tion of N -version programming and others. They also addressed

the power of the technique in support of advanced software vot-

ing techniques. Extending this framework, (Tichy et al., 2004) pro-

posed a framework for the development of dependable software

systems based on a pattern approach. They reused proven fault-

tolerant techniques via fault-tolerant patterns. They demonstrated

their framework using an application to guide the self-repair of a

system after the detection of a node crash.

In Kodituwakku et al. (2003), a mathematical structure was pro-

posed for the organization of patterns depending on several cate-

gories. An ontological approach for selecting design patterns was

proposed in Girardi and Lindoso (2006) to facilitate understanding

and reuse during software development. In their paper, the authors

presented an ontology that describes the design pattern format

and their relationships. They used a pattern system/language to fa-

cilitate the design, integration, selection and reuse of these pat-

terns. A multidimensional classification based on architectural lev-

els, concerns, stages, and other aspects was described in VanHilst

et al. (2009). Another aspect that has been considered is sys-

tem perspectives. Based on the idea of the Zachman framework

(Zachman, 1987) (classification based on system perspectives and

interrogatives), the Microsoft patterns and practices group classi-

fication (Trowbridge et al., 2004) distinguishes the following ele-

ments: (a) merits (clearly identifies the context of each pattern and

helps identify missing patterns), (b) flaws (more dedicated to func-

tional patterns; non-functional patterns tend to cover many levels

of system development and many interrogatives), and (c) improve-

ment (add icons in each pattern to provide classifications).

In the context of patterns in dependable software system devel-

opment, (Serrano et al., 2008) explained how pattern integration

can be achieved using a library of precisely described and formally

verified solutions. Conceptually, our modeling framework is similar

to that proposed in Serrano et al. (2008). Nevertheless, they used a

rigid structure (a pattern was defined as a quadruplet), and conse-

quently, their approach is not usable for capturing specific char-

acteristics of patterns for several domains. Another attempt was

made by Boussaidi and Mili (2005), who created a metamodel for

both the problem and the design pattern. Then, using a mapping

between the two models, they were able to create an integrated

model using model transformations. Although we found similari-

ties between this approach and ours, we wanted to go further than

the transformation by defining a full process for a proven integra-

tion and be able (within this defined process) to allow the user

to freely alter the automatic result while always checking the final

correctness.

Usually, these design artifacts are provided as a library of mod-

els (sub-systems) and as a system of patterns (framework) in the

more elaborate approaches. However, there remains a lack of mod-

eling languages and/or formalisms dedicated to specifying these

design artifacts and understanding their reuse in software devel-

opment automation. More precisely, a gap between the develop-

ment of systems using patterns and the pattern information re-

mains. Most patterns are expressed in a textual form, as informal

indications on how to solve individual design problems. Some of

them use more precise representations based on UML diagrams,

although these patterns do not include sufficient semantic descrip-

tions to automate their processing and to extend their use. Fur-

thermore, the correct application of a pattern is not guaranteed

because the description does not consider the effects of interac-

tions, adaptation and combination, making them inappropriate for

automated processing within a tool-supported development pro-

cess. Finally, due to manual pattern implementation, the problem

of incorrect implementation (the most important source of safety

issues) remains unresolved.

Recently, Hauge, (2014) presented a pattern-based approach

called Safe Control Systems (SaCS) for the development of concep-

tual safety designs. The SaCS provides three artifacts: (1) a pro-

cess for the systematic application of patterns as development sup-

port; (2) a set of patterns in the form of a library; and (3) a pat-

tern language to define patterns and to specify the application of

patterns for safety design conceptualization. This work is similar

to our work in its goal, e.g., determining the level of abstraction

and life-cycle stage in which the pattern is used and how to de-

fine relationships between patterns in order to efficiently com-

bine them. These two works are complementary and their integra-

tion should improve the existing pattern-based development ap-

proaches. A successful application of our framework attempts to

demonstrate the resulting opportunity for applying pattern-based

development combined with the benefits of model-based engineer-

ing.

7.3. Model-driven engineering and domain-specific language

The modeling concept is becoming a major paradigm in sys-

tem engineering, particularly in system software engineering (Selic,

2003; Schmidt, 2006; France and Rumpe, 2007). Its use represents

a significant advance in terms of the level of abstraction, continu-

ity, and generality. It offers tools to address the development of

complex systems, improving their quality and reducing their de-

velopment cycles (Liebel et al., 2014). Modeling languages based

on precise metamodels and transformations are key elements of

MDE (Atkinson and Ku ̈hne, 2003). With the use of modeling lan-

guages, software engineering models a particular system with the

goal to be complete and accurate in the context of the system re-

quirements. If done properly, model-driven engineering allows this

model to be verified using formal analysis or execution and, later,

to generate the source code required to implement the system via

transformations (Selic, 2003; France and Rumpe, 2007). Domain-

specific languages (DSLs) (France and Rumpe, 2005; Gray et al.,

2007) are languages that are specifically tailored to the needs of a

particular problem or application domain. Domain experts can un-

derstand, validate, modify, test, and sometimes even develop such

languages. DSLs are frequently used in MDE (Selic, 2003).

The importance of models and MDE in dependability engineer-

ing was highlighted by Gran et al. (2007); Hamid et al. (2008) and

Biehl et al. (2010), and confirmed in a recent empirical study on

the state of modeling in the embedded domain (Bernardi et al.,

2012; Panesar-Walawege et al., 2013; Liebel et al., 2014; Ni et al.,

2015) because code generation and simulation are heavily used;

the use of modeling in that field has been reported as highly pos-

itive. In this context, (Bernardi et al., 2012) proposed a UML pro-

file compliant with MARTE (OMG, 2011b) to address dependabil-

ity analysis and modeling. Such a profile allows one to conduct

a quantitative dependability analysis of software systems mod-

eled with UML. They focus on the following facets of dependabil-

ity: reliability, availability and safety. In Hamid et al., (2008), we

proposed a methodology that associates a model-driven approach

with component- based development to design distributed appli-

cations with fault-tolerant requirements. UML-based modeling is

used to capture application structure and related non-functional

requirements thanks to the complementary profile called the FT

profile, which is an extension of a subset of QoS&FT and uses the

NFP (non-functional properties) sub-profile of MARTE (profile for

modeling and analysis of real-time embedded systems). Stereo-

types dedicated to fault tolerance specify the fault-detection pol-

icy, replication management style and replica group management.

From this model descriptor, files are generated (according to the

deployment and configuration standard (D&C)) to build boot code

(static deployment) that instantiates, configures and connects com-

ponents and to load configured components. Within this process,

component replication and FT properties are declaratively specified

at the model level and are transparent for the component imple-

mentation.

7.4. Pattern modeling languages

The first attempt to model patterns is the GoF (Gamma et al.,

1995), where each pattern is described by UML diagrams. However,

there are only natural texts and a few examples to link the dia-

grams together and explain the integration. This is not sufficient

for our objectives. Therefore, UMLAUT was proposed by Guennec

et al., (20 0 0) as an approach to formally model design patterns by

proposing extensions to the UML metamodel 1.3. They used OCL

language to describe structural and behavioral constraints. These

constraints are defined using metamodels of specified UML ele-

ments via meta collaboration diagrams. The mechanisms of asso-

ciation of these meta-level diagrams to their instance levels (in-

stances of design patterns) are then defined, allowing one to model

design patterns accurately via the UML language. This work is il-

lustrated through two examples of design patterns: visitor and ob-

server.

By specifying design patterns as metamodels and defining a set

of features to handle the models, the RBML (role-based metamod-

eling language) proposed by Kim et al., (2003) attempts to bridge

the gap between the pattern and its use. The RBML formalism,

which is based on UML, is able to precisely capture various design

perspectives of patterns, such as static structure, interactions, and

state-based behavior. Each one is characterized by a specific RBML

metamodel type: (1) SPS (static pattern specifications) is a struc-

tural design pattern specification that allows one to express the

static view, (2) IPS (interaction pattern specification) represents the

design pattern in terms of possible interactions between different

roles, and (3) SMPS (state machine pattern specifications) can add

a behavioral perspective to describe the various states in which a

pattern may lie in its execution. However, the integration by itself

remains not clearly defined.

Another issue raised in DPML (design pattern modeling lan-

guage) (Mapelsden et al., 2002) and in LePUS (Gasparis et al.,

2008) is visualization. These languages both use a combination

of modeling and metamodeling. In Gasparis et al., (2008), a for-

mal and visual language called LePUS was presented for specify-

ing design patterns. It defines a pattern in an accurate and com-

plete based on a formula in Z with a graphical representation. A

diagram in LePUS is a graph whose nodes correspond to variables

and whose arcs are labeled with binary relations. The framework

promoted by LePUS is interesting, although the degree of expres-

siveness proposed to capture the intent and abstract the solution

of a pattern is too restrictive. In addition, there is a lack of rela-

tionship between the pattern and its instantiation. With regard to

the integration of patterns in software systems, the DPML (design

pattern modeling language) (Mapelsden et al., 2002) allows the in-

corporation of patterns in UML models.

The recently completed FP6 SERENITY project has introduced a

new notion of security and dependability (S&D) patterns. SEREN-

ITY’s S&D patterns are precise specifications of validated S&D

mechanisms including a precise behavioral description, references

to the S&D properties, constraints on the context required for de-

ployment, information describing how to adapt and monitor the

mechanism, and trust mechanisms. The S&D SERENITY pattern is

specified following several levels of abstraction to bridge the gap

between abstract solution and implementation. These abstraction

levels are S&D classes, S&D patterns and S&D implementation.

Such validated S&D patterns and the formal characterization of

their behavior and semantics can also be the basic building blocks

for S&D engineering in embedded systems. Serrano et al. (2008)

explained how this can be achieved using a library of precisely

described and formally verified security and dependability (S&D)

solutions, i.e., S&D classes, S&D patterns, S&D implementation and

S&D integration schemes. Moreover, Giacomo et al. (2008) reported

an empirical experience regarding the adoption and elicitation of

S&D patterns in the air traffic management (ATM) domain, demon-

strating the power of using patterns as guidance to structure the

analysis of operational aspects when used at the design stage.

Existing formalization attempts for patterns (Mikkonen, 1998;

Soundarajan and Hallstrom, 2004) fall short in handling the inher-

ent variability in pattern descriptions (Zdun and Avgeriou, 2008),

and they focus primarily on a very limited design and architecture

pattern scope. They do not yet address specific domains, such as

security and safety. For the first type of approach (Gamma et al.,

1995), design patterns are usually represented by diagrams with

specific notations, such as UML object diagrams, that are accompa-

nied by textual descriptions and examples of code to complete the

description. Furthermore, their structure is rigid (context, structure,

solution, etc.). Unfortunately, the use and/or application of a pat-

tern can be difficult or inaccurate. In fact, the existing descriptions

are not formal definitions and sometimes leave ambiguities regard-

ing the exact meaning of the patterns. There are some promising

and well-proven approaches (Douglass, 1998) based on Gamma et

al., (1995). However, this type of technique does not afford the

high degree of flexibility in the pattern structure that is required to

reach our objectives. Thus far, patterns have been used in system-

atic engineering approaches for various tasks, such as classification

and organization, pattern selection based on security requirements

(Weiss and Mouratidis, 2008), analyzing and modeling security re-

quirements (Cheng et al., 2003), and measuring the introduced se-

curity level (Fernandez et al., 2010). A similar situation is prevalent

for safety patterns, which are surveyed in Preschern et al. (2013,

2014) and formalized in Armoush, (2010). In Daniels and Vouks

(1997) and Tichy et al. (2004), the pattern specification consists of

a service-based architectural design and deployment restrictions in

the form of UML deployment diagrams for different architectural

services. Conceptually, our modeling framework is similar to that

proposed in the SERENITY project. Nevertheless, the pattern struc-

ture is rigid (a pattern is defined as quadruplet) and is thus un-

usable for capturing specific characteristics of S&D patterns. How-

ever, the SERENITY project proposes several levels of abstraction

to bridge the gap between abstract solution and implementation,

which intends to not capture a common representation of patterns

for several domains.

From a different point of view, we agree with the argumenta-

tions given in Zdun and Avgeriou, (2005) to justify why the pre-

cise specification and formalization of a pattern by definition re-

stricts its “degree of freedom for the design”, and hence there are

no success stories of works dealing with pattern development. This

is not only related to dependability patterns. Note however, that

these works do not address the validation activity which is an im-

portant issue in any design activity and more particularly in de-

pendability engineering. We claim that dependability is subject to

rigorous and precise specification and the proposed literature (to

the best of our knowledge) fails to meet these two objectives. To

remedy these contradictory needs, we support the specifications

of dependability patterns at two levels of abstractions, domain-

independent and domain-specific, in a semi-formal representation

through metamodeling techniques. This allows to support some

variability of the pattern, and hence to foster reuse.

8. Conclusion

In this paper, we propose a pattern-based development ap-

proach to address dependability through a model-driven engineer-

ing approach. The approach is composed of several steps and is

based on metamodeling techniques that enable the specification

of dependability patterns. It is also based on model transforma-

tion techniques for the purposes of generation. The defined meta-

model points to a common representation for several contexts of

use. First, this approach aims to allow design automation through

the reuse of a dependable application. Second, it aims to overcome

the lack of formalism in a conventional text-based approach. The

approach empowers system and software engineers to reuse so-

lutions for dependability without specific knowledge of how the

solution is designed and implemented. This feature enables one to

work at a higher abstraction level, which may significantly reduce

the cost of engineering a particular system.

We begin by specifying a conceptual model of the desired pat-

terns and proceed by designing modeling languages that are ap-

propriate for the content. The results of these efforts are then used

to specify and define the dependability as a pattern (e.g., in the

form of properties, design diagrams, etc.). Developing an applica-

tion using pattern-based development processes and thus reusing

existing patterns requires finding and tailoring suitable patterns

into a form that is appropriate for the targeted development en-

vironment. The integration phase of our approach allows a do-

main engineer to reuse the resultant patterns that have been pre-

viously adapted and transformed for a given engineering environ-

ment (development platform) to develop a domain-specific appli-

cation. Thus, we provide an overall pattern- based system engi-

neering (PBSE) framework and an operational architecture for a

tool suite to support the proposed approach. An example of such a

tool suite, called Semcomdt, is constructed using EMFT and a CDO-

based repository and is currently provided in the form of Eclipse

plugins. In addition, the tool suite promotes the separation of con-

cerns during the development process by distinguishing the stake-

holder roles. Access to the repository is customized with regard

to the development phases, the stakeholders domain and system

knowledge

Furthermore, we evaluate the usefulness of the patterns for in-

creasing engineering productivity. The dependability captured in a

pattern (e.g., in the form of properties, design solutions, etc.) is

based on its generality, i.e., we determine whether the same de-

sign solution can be successfully used to instantiate the railway

safety sector engineering processes and whether they can be used

to instantiate other processes. We intend to demonstrate that the

dependability pattern-based approach leads to a reduced number

or to a simplification of the engineering process steps. The design

solutions that are provided should support the developer regarding

dependability issues and reduce the error frequency. We demon-

strate that the application of the proposed approach brings impor-

tant benefits to development engineers. This statement is demon-

strated via the implementation of the demonstrator. First evidence

from the case study and the key performance indicator survey in-

dicates that users are satisfied with the pattern-based approach.

The approach paves the way to allow users to define their own

road-maps based on the PBSE methodology. The first evaluations

are encouraging. However, they also highlight one of the main

challenges, i.e., the automatic search for the user to derive those

“dependability patterns” from the requirement analysis. However,

being aware of all functionality benefits requires years of experi-

ence in the practical industry. Because model-driven engineering

is not yet common in all embedded domains, it becomes more dif-

ficult to find acceptance among companies accustomed to manu-

ally implementing software solutions. However, this methodology

will become increasingly common, and our approach contributes

to the exploitation of this engineering methodology in future. The

practical case study in this paper shows that the developed tools

can be successfully used to support the entire engineering process.

The SEMCO tools can be adapted to a domain’s engineering pro-

cesses, and the provided transformation techniques make it possi-

ble to support several target platforms. The extension to industry

companies in different domains is given by the extendibility and

flexibility of the tools offered by the SEMCO tool suite. The follow-

ing steps aim to garner acceptance in the industry and to extend

our approach to industry companies.

Finally, we discuss the pattern-based approach for certification

support, arguing that our approach may provide artifacts to ease

the certification and sketching future directions in this regard. Pat-

terns have supported application engineers in generating the doc-

uments required by the certification authority. Even the certifica-

tion phase may profit from our approach. For the evaluator, the

use of well-structured and formally validated patterns and their di-

rect contribution to development process documentation can has-

ten the evaluation work.

In our future work, we plan to study the automation of the

model search and tailoring tasks, and a framework allowing a sim-

pler specification of constraints would be beneficial. Our vision is

for patterns to be inferred from the browsing history of users and

constructed from a set of previously developed applications. As we

look to the future, we can use existing work on reuse scenarios and

design space exploration (Tomer et al., 2004; Hegedu ̈s et al., 2015;

Hamid, 2015). We would also like to study the integration of our

tools with other MDE tools. The objective is to show the process

flow and the integration of the tools in the domain tool chains,

whereas the intention is not to resolve the low-level details of the

approach integration. For that purpose, we must implement other

types of software and means of generating validated artifacts, such

as programming language code and certification artifacts, that are

capable of producing a restrictive set of artifacts that comply with

domain standards. The required pattern representation at the same

level may differ from one domain to another; thus the access tool

is responsible for providing the information in the required format.

The layout of the access tool depends on the sector particularities;

thus, a new “skin” must be defined every time a new sector is con-

sidered. Moreover, the access tool must be extended with a trans-

formation capability for different toolsets. We would also like to

study the preservation of design decisions through modeling ar-

tifacts (That et al., 2014). Concurrently, more sophisticated tech-

niques to derive artifact relationships can be implemented, possi-

bly using different domains, to reduce the complexity of designing

systems of modeling artifacts. Additionally, we will seek new op-

portunities to apply the proposed approach to other domains. This

requires an instantiation of the full software engineering tool and

method and an evaluation across the experiences of many users

across many domains. Finally, we would like to enhance the pro-

posed integration process by automating the detection of conflicts

between the modeling artifact structure and the existing applica-

tion architecture and propose solutions in a manner similar to that

in which the merging tools operate.

Acknowledgments

This work was initiated within the context of the SEMCO

project. It was supported by the European FP7 TERESA project and

by the French FUI 7 SIRSEC project. Particular thanks go to Adel

Ziani and Jacob Geisel for their valuable assistance in the imple-

mentation and development of the SEMCO tools. In addition, we

would like to thank the TERESA consortium members for their par-

ticipation in the survey and the implementation of the case study.

References

Abowd, G. , Allen, R. , Garlan, D. , 1995. Formalizing style to understand descriptions
of software architecture. ACM Trans. Softw. Eng. Methodol. 4 (4), 319–364 .

Agresti, W. , 2011. Software reuse: developers’ experiences and perceptions. J. Softw.
Eng. Appl. 4 (1), 48–58 .

Alexander, C. , Ishikawa, S. , Silverstein, M. , 1977. A pattern language. Center for En-
vironmental Structure Series, 2. Oxford University Press ISBN 9780195019193 .

Alexander, R., Kelly, T., Kurd, Z., McDermid, J., 2007. Safety Cases for Advanced Con-
trol Software: Safety Case Patterns. Final Report, NASA Contract FA8655-07-1-
3025. Tech. rep., University of York.

Althammer, E. , Schoitsch, E. , Sonneck, G. , Eriksson, H. , Vinter, J. , 2008. Modular cer-
tification support - the decos concept of generic safety cases. In: Proceedings
of 6th IEEE International Conference on Industrial Informatics (INDIN). IEEE,
pp. 258–263 .

Armoush, A., 2010. Design Patterns for Safety-Critical Embedded Systems. Disser-
tation, Embedded Software Laboratory - RWTH Aachen University, [Accessed:
December-2013]. URL http://aib.informatik.rwth-aachen.de/2010/2010-13.pdf

Atkinson, C. , Ku ̈hne, T. , 2003. Model-driven development: a metamodeling founda-
tion. IEEE Softw 20 (5), 36–41 .

Avizienis, A. , Laprie, J.-C. , Randell, B. , Landwehr, C. , 2004. Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Depend. Secure Comput.
1, 11–33 .

Bernardi, S. , Merseguer, J. , Petriu, D. , 2012. Dependability modeling and analysis of
software systems specified with UML. ACM Comput. Surv 45 (1), 1–2 248 .

Biehl, M. , DeJiu, C. , To ̈rngren, M. , 2010. Integrating safety analysis into the Mod-
el-based development toolchain of automotive embedded systems. SIGPLAN Not
45 (4), 125–132 .

Boussaidi, G.E. , Mili, H. , 2005. Representing and applying design patterns: what
is the problem? In: Proceedings of the ACM/IEEE 8th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS). Springer,
pp. 186–200 .

Buschmann, F. , Henney, K. , Schmidt, D. , 2007. Pattern-Oriented software ar-
chitecture. A Pattern Language for Distributed Computing, 4. Wiley ISBN
978-0470059029 .

Buschmann, G. , Meunier, R. , Rohnert, H. , Sommerlad, P. , Stal, M. , 1996. Pattern-Ori-
ented Software Architecture: a system of patterns, 1. John Wiley and Sons ISBN
978-0471958697 .

CENELEC, 1999. EN 50129: railway applications. Communication, signalling and pro-
cessing systems. Safety related electronic systems for signalling.

Cheng, B.H.C. , Konrad, S. , Campbell, L.A. , Wassermann, R. , 2003. Using security pat-
terns to model and analyze security. In: Proceedings of IEEE Workshop on Re-
quirements for High Assurance Systems, pp. 13–22 .

Daniels, K.K.F. , Vouks, M.A. , 1997. The reliable hybrid Pattern: a generalized soft-
ware fault tolerant design pattern. In: Proceedings of the Pattern Language of
Programs (PLoP), pp. 1–9 .

Douglass, B.P. , 1998. Real-time UML: Developing Efficient Objects for Embedded Sys-
tems. Addison-Wesley ISBN 0-201-32579-9 .

Fernandez, E.B. , 2013. Security patterns in practice: Building secure architectures
using software patterns. Software Design Patterns. Wiley ISBN 978-1-119-
99894-5 .

Fernandez, E. , Yoshioka, N. , Washizaki, H. , VanHilst, M. , 2010. Measuring the level of
security introduced by security patterns. In: Proceedings of International Con-
ference on Availability, Reliability, and Security (ARES). IEEE Computer Society,
pp. 565–568 .

France, R. , Rumpe, B. , 2007. Model-driven development of complex Software: a re-
search roadmap. In: Future of Software Engineering (FOSE). IEEE Computer So-
ciety, pp. 37–54 .

France, R.B. , Rumpe, B. , 2005. Domain specific modeling. Softw. Syst. Model. 4 (1),
1–3 .

Gamma, E. , Helm, R. , Johnson, R.E. , Vlissides, J. , 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley ISBN 978-0-470-05902-9 .

Gasparis, E. , Nicholson, J. , Eden, A.H. , 2008. LePUS3: an object-oriented design de-
scription language. In: Diagrammatic Representation and Inference. Springer,
Berlin Heidelberg, pp. 364–367 .

Giacomo, V.D. , Felici, M. , Meduri, V. , Presenza, D. , Riccucci, C. , Tedeschi, A. , 2008.
Using security and dependability patterns for reaction processes. In: Proceed-
ings of the 2008 19th International Conference on Database and Expert Systems
Application. IEEE Computer Society, pp. 315–319 .

Girardi, R. , Lindoso, A.N. , 2006. An ontology-based knowledge base for the repre-
sentation and reuse of software patterns. ACM SIGSOFT Softw. Eng. Notes 31
(1), 1–6 .

Gran, B.A. , Fredriksen, R. , Thunem, A.P.-J. , 2007. Addressing dependability by apply-
ing an approach for model-based risk assessment. Reliab. Eng. Syst. Safety 92
(11), 1492–1502 .

Gray, J. , Tolvanen, J.-P. , Kelly, S. , Gokhale, A. , Neema, S. , Sprinkle, J. , 2007. Do-
main-Specific modeling. In: Fishwick, P. (Ed.), Handbook of Dynamic System

Modeling. Chapman & Hall/CRC, pp. 1–20. Ch. 7 .
Guennec, A.L. , Sunye ́, G. , Je ́ze ́quel, J.-M. , 20 0 0. Precise modeling of design pat-

terns. In: Proceedings of the Unified Modeling Language: Advancing the Stan-
dard Third International Conference. Springer-Verlag, pp. 4 82–4 96 .

Hamid, B. , 2014. A model-driven methodology approach for developing a repository
of models. In: Proceedings of the 4th International Conference Model and Data
Engineering - (MEDI). Springer, pp. 29–44. Vol. 8748 of LNCS .

Hamid, B. , 2015. Interplay of security&dependability and resource using Model–
driven and Pattern-based development. In: Proceedings of IEEE International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom). IEEE Computer Society, pp. 254–262 .

Hamid, B. , Geisel, J. , Ziani, A. , Bruel, J. , Perez, J. , 2013. Model-Driven engineering for
trusted embedded systems based on security and dependability patterns. In:
Proceedings of the 16th International SDL Forum. Springer, pp. 72–90. Vol. 7916
of LNCS .

Hamid, B. , Gu ̈rgens, S. , Fuchs, A. , 2016. Security patterns modeling and formaliza-
tion for pattern-based development of secure software systems. In: Innovations
in Systems and Software Engineering, 12. Springer, pp. 109–140 .

Hamid, B. , Percebois, C. , Gouteux, D. , 2012. A methodology for integration of pat-
terns with validation purpose. In: Proceedings of European Conference on Pat-
tern Language of Programs (EuroPlop). ACM DL, pp. 1–14 .

Hamid, B. , Radermacher, A. , Lanusse, A. , Jouvray, C. , Ge ́rard, S. , Terrier, F. , 2008. De-
signing fault-tolerant component based applications with a model driven ap-
proach. In: Proceedings of IFIP Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems (SEUS). Springer, pp. 9–20. Vol. 5287 of
LNCS .

Hauge, A., 2014. SaCS: A Method and a Pattern Language for the Development
of Conceptual Safety Design. University of Oslo Doctoral thesis[Accessed:
June -2016]. URL https://www.duo.uio.no/bitstream/handle/10852/41717/
1/dravhandling-Hauge.pdf .

Hegedu ̈s, A . , Horva ́th, A . , Varro ́, D. , 2015. A model-driven framework for guided
design space exploration. Autom. Softw. Eng. 22 (3), 399–436 .

Henninger, S. , Corre ̂a, V. , 2007. Software pattern Communities: current practices
and challenges. In: Proceedings of the 14th Conference on Pattern Languages of
Programs. PLOP ’07, 14. ACM, pp. 1–14. 19 .

IEC, 2002. IEC 62280: railway applications - Communication, signalling and process-
ing systems. Safety related communication in transmission systems.

IEC, 2003. IEC 61784: industrial communication networks.
IEC, 2010a. IEC 61508-2: Functional safety of electrical/electronic/programmable

electronic safety-related systems Part 2: Requirements for electrical / electronic
/ programmable electronic safety-related systems.

IEC, 2010b. IEC 61508: functional safety of electrical/electronic/programmable elec-
tronic Safety-related systems.

IEEE, 2004. IEEE 1474.1-2004: standard for communications-based train control
(CBTC) performance and functional requirements.

Kim, D. , France, R.B. , Ghosh, S. , Song, E. , 2003. A role-based metamodeling ap-
proach to specifying design patterns. In: Proceedings of the 27th Interna-
tional Com- puter Software and Applications Conference (COMPSAC): Design
and Assessment of Trustworthy Software-Based Systems. IEEE Computer Soci-
ety, pp. 452–457 .

Kodituwakku, S.R. , Saluka, R. , Bertok, P. , 2003. Pattern Categories: a mathemati-
cal approach for organizing design patterns. In: Revised papers from the Third
Asia-Pacific Conference on Pattern Languages of Programs (KoalaPLoP). ACS,
pp. 63–73. Vol. 13 of CRPIT .

Kopetz, H. , 2011. Real-Time Systems - Design Principles for Distributed Embedded
Applications. Springer ISBN 978-1441982360 .

Liebel, G. , Marko, N. , Tichy, M. , Leitner, A. , Hansson, J. , 2014. Assessing the
State-of-Practice of model-based engineering in the embedded systems domain.
In: Model-Driven Engineering Languages and Systems. Springer International
Publishing, pp. 166–182. Vol. 8767 of LNCS .

Mapelsden, D. , Hosking, J. , Grundy, J. , 2002. Design pattern modelling and instanti-
ation using DPML. In: Proceedings of the Fortieth International Conference on
Tools Pacific. Australian Computer Society, Inc, pp. 3–11 .

McClure, C. , 1997. Software Reuse Techniques: Adding Reuse to the System Devel-
opment Process. Prentice-Hall, Inc .

Mikkonen, T. , 1998. Formalizing design patterns. In: Proceedings of the 20th In-
ternational Conference on Software Engineering (ICSE). IEEE Computer Society,
pp. 115–124 .

Ni, S. , Zhuang, Y. , Cao, Z. , Kong, X. , 2015. Modeling dependability features for real–
time embedded systems. IEEE Trans. Depend. Secure Comput. 12 (2), 190–203 .

Noble, J. , 1998. Classifying relationships between object-oriented design patterns.
In: Proceedings of the Australian Software Engineering Conference (ASWEC).
IEEE Computer Society, pp. 98–107 .

OMG, 2008. Meta Object Facility (MOF) 2.0 query/view/transformation (QVT), Ver-
sion 1.0. http://www.omg.org/spec/QVT/1.0/ . [Accessed: January-2013].

OMG, 2010. Object Constraint Language (OCL), Version 2.2. http://www.omg.org/
spec/OCL/2.2 . [Accessed: January-2013].

OMG, 2011a. UML Profile for Modeling and Analysis of Real-Time and Embed-
ded Systems (MARTE), Version 1.1. http://www.omg.org/spec/MARTE/1.1/ , [Ac-
cessed: January-2013].

OMG, 2011b. Unified modeling language (UML), version 2.4.1. http://www.omg.org/
spec/UML/2.4.1 . [Accessed: January-2013].

Panesar-Walawege, R.K. , Sabetzadeh, M. , Briand, L. , 2013. Supporting the verifica-
tion of compliance to safety standards via model-driven engineering: Approach,
tool-support and empirical validation. Inf. Softw. Technol. 55 (5), 836–864 .

Peterson, W. , Brown, D. , 1961. Cyclic codes for error detection. Proc. IRE 49 (1),
228–235 .

Powel, D.B. , 2003. Real-time design patterns : robust scalable architecture for real–
time systems. Object Technology Series. Addison-Wesley ISBN 978-0201699562 .

Preschern, C. , Kajtazovic, N. , Ho ̈ller, A. , Kreiner, C. , 2014. Pattern-based safety de-
velopment Methods: overview and comparison. In: Proceedings of the 19th Eu-
ropean Conference on Pattern Languages of Programs (EuroPLoP), 28. ACM DL,
pp. 1–28. 20 .

Preschern, C. , Kajtazovic, N. , Kreiner, C. , 2013. Building a safety architecture pattern
system. In: Proceedings of the 18th European Conference on Pattern Languages
of Program (EuroPLoP), 17. ACM DL, pp. 1–17. 55 .

Radermacher, A. , Hamid, B. , Fredj, M. , Profizi, J.-L. , 2013. Process and tool support
for design patterns with safety requirements. In: Proceedings of European Con-
ference on Pattern Language of Programs (EuroPlop), 8. ACM DL, pp. 1–8. 16 .

Ravi, S. , Raghunathan, A. , Kocher, P. , Hattangady, S. , 2004. Security in embedded
systems: design challenges. ACM Trans. Embed. Comput. Syst. 3 (3), 461–491 .

Riehle, D. , Züllighoven, H. , 1996. Understanding and using patterns in software de-
velopment. Theor. Pract. Object Syst. 2 (1), 3–13 .

Rodano, M. , Giammarc, K. , 2013. A formal method for evaluation of a modeled sys-
tem architecture. Procedia Comput. Sci. 20, 210–215 .

RTCA, 1992. DO-178B: Software Considerations in airborne Systems and Equipment
Certification.

Rushby, J. , 2007. Just-in-time certification. In: Proceedings of 12th IEEE Interna-
tional Conference on Engineering Complex Computer Systems (ICECCS 2007).
IEEE, pp. 15–24 .

Schmidt, D. , 2006. Model-Driven engineering. IEEE Comput. 39 (2), 41–47 .
Schmidt, D. , Buschmann, F. , 2003. Patterns, frameworks, and middleware: their syn-

ergistic relationships. In: Proceedings of 25th International Conference on Soft-
ware Engineering. IEEE, pp. 694–704 .

Schumacher, M. , 2003. Security engineering with patterns - Origins, theoreti-
cal Models, and new applications. Lecture Notes in Computer Science, 2754.
Springer ISBN 978-3-540-45180-8 .

Selic, B. , 2003. The pragmatics of model-driven development. IEEE Softw. 20 (5),
19–25 .

Serrano, D. , Mana, A . , Sotirious, A .-D. , 2008. Towards precise and certified secu-
rity patterns. In: Proceedings of 2nd International Workshop on Secure Systems
Methodologies Using Patterns (Spattern). IEEE Computer Society, pp. 287–291 .

Smith, D. , Simpson, K. , 2004. Functional Safety. Routledge ISBN 978-0-08-047792-3 .
Soundarajan, N. , Hallstrom, J. , 2004. Responsibilities and Rewards: specifying design

patterns. In: Proceedings of the 26th International Confer- ence on Software En-
gineering. IEEE Computer Society, pp. 666–675 .

Stanley, P. , 2011. ETCS For Engineers. EurailPress ISBN 978-3777104164 .
Steinberg, D. , Budinsky, F. , Paternostro, M. , Merks, E. , 2009. EMF: Eclipse Modeling

Framework 2.0, 2nd Edition Addison-Wesley Professional ISBN 0321331885 .
Strembeck, M. , Zdun, U. , 2009. An approach for the systematic development of do-

main-specific languages. Softw.: Pract. Exp. 39 (15), 1253–1292 .
TERESA, 2013. Specification of Platform. Deliverable D6.1 – TERESA/WP6/D6.1, IST

Project IST-248410. [Accessed: January-2013].
That, M.T. , Sadou, S. , Oquendo, F. , Fleurquin, R. , 2014. Preserving architectural deci-

sions through architectural patterns. Automated Softw. Eng. 23 (3), 427–467 .
Tichy, M. , Schilling, D. , Giese, H. , 2004. Design of self-managing dependable systems

with UML and fault tolerance patterns. In: Proceedings of the 1st ACM SIGSOFT
workshop on Self-managed systems. ACM, pp. 105–109 .

Tomer, A. , Goldin, L. , Kuflik, T. , Kimchi, E. , Schach, S. , 2004. Evaluating software
reuse Alternatives: a model and its application to an industrial case study. IEEE
Trans. Softw. Eng. 30 (9), 601–612 .

Trowbridge, D. , Cunningham, W. , Evans, M. , Brader, L. [Accessed: December-2015] .
UNISIG, 2009. Safety requirements for the technical interoperability of ETCS in lev-

els 1 & 2, issue 2.5.0.
Uzunov, A.V. , Fernandez, E.B. , Falkner, K. , 2013. Engineering security into distributed

Systems: a survey of methodologies. J. Univ. Comput. Sci. 18 (20), 2920–3006 .
VanHilst, M. , Fernandez, E.B. , Braz, F. , 2009. A multidimensional classification for

users of security patterns. J. Res. Pract. Inf. Technol. 41 (2), 87–97 .
Weiss, M. , Mouratidis, H. , 2008. Selecting security patterns that fulfill security re-

quirements. In: Proceedings of the 16th IEEE International Requirements Engi-
neering Conference. IEEE Computer Society, pp. 169–172 .

Wohlin, C. , Runeson, P. , Ho ̈st, M. , Ohlsson, M. , Regnell, B. , Wessle ́n, A. , 20 0 0. Ex-
perimentation in Software Engineering: An Introduction. Kluwer Academic Pub-
lishers, Norwell, MA, USA .

Zachman, A. , 1987. A framework for information systems architecture. IBM Syst. J.
26, 276–292 .

Zdun, U. , Avgeriou, P. , 2005. Modeling architectural patterns using architectural
primitives. In: Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications. ACM,
pp. 133–146 .

Zdun, U. , Avgeriou, P. , 2008. A catalog of architectural primitives for modeling ar-
chitectural patterns. J. Inf. Softw. Technol. 50 (9-10), 1003–1034 .

Ziani, A. , Hamid, B. , Bruel, J. , 2012. A model-driven engineering framework for fault
tolerance in dependable embedded systems design. In: EUROMICRO-SEAA. IEEE,
pp. 166–169 .

Dr Brahim HAMID is an associate professor at the University of Toulouse Jean-Jaurès (France) and he is a member of the IRIT-MACAO team. He got his Ph.D. degree in 2007
in the area of dependability from the University of Bordeaux. He has been an assistant professor at ENSEIRB. Then he worked as a post-doc in the modeling group at the
CEA. His main research topics are software languages engineering, at both the foundations and application level, particularly for resource constrained systems. He works on
security, dependability and software architecture. Furthermore, he is an expert in model-driven development approaches both in research and teaching.

Dr. Jon Pérez is a researcher at IKERLAN research centre since 2002 who works in the design and development of SIL4 safety-critical embedded systems for railway signaling
(ERTMS/ETCS). He has received a M.Sc. in Electronics & Electrical Engineering at the University of Glasgow and completed his PhD in Computer Science at TU WIEN in the
field of safety-critical embedded systems. He has previously worked for Motorola Semiconductor in the field of multicore DSPs. Research interests focus on distributed
real-time and safety-critical embedded systems. He is leading the Electronics Department and the Embedded Systems Research Group in Ikerlan from June 2011.

