
Automatic verification and validation wizard in web-centred

end-user software engineering

David Lizcano 

a,  ∗, Javier Soriano 

b,  Genoveva López 

b,  Javier J. Gutiérrez 

c

a Universidad a Distancia de Madrid, UDIMA, Madrid, Spain
b Universidad Politécnica De Madrid, Madrid, Spain
c Universidad de Sevilla, Spain

Keywords:

End-user software engineering

Web engineering

Reliability

End-user programming

visual programming

human-computer interaction

a b s t r a c t 

This paper addresses one of the major web end-user software engineering (WEUSE) challenges, namely, how to 

verify and validate software products built using a life cycle enacted by end-user programmers. Few end-user 

development support tools implement an engineering life cycle adapted to the needs of

end users. End users do not have the programming knowledge, training or experience to perform devel- opment 

tasks requiring creativity. Elsewhere we published a life cycle adapted to this challenge. With

the support of a wizard, end-user programmers follow this life cycle and develop rich internet applica- tions (RIA) 

to meet specific end-user requirements. However, end-user programmers regard verification and validation activities 

as being secondary or unnecessary for opportunistic programming tasks. Hence, although the solutions that they 

develop may satisfy specific requirements, it is impossible to guarantee the quality or the reusability of this 

software either for this user or for other developments by future end-user programmers. The challenge, then, is to 

find means of adopting a verification and validation workflow and adding verification and validation activities to the 

existing WEUSE life cycle. This should

not involve users having to make substantial changes to the type of work that they do or to their priori- ties. In 

this paper, we set out a verification and validation life cycle supported by a wizard that walks the user through test 

case-based component, integration and acceptance testing. This wizard is well-aligned with WEUSE’s characteristic 

informality, ambiguity and opportunisticity. Users applying this verification and validation process manage to find 

bugs and errors that they would otherwise be unable to identify. They also receive instructions for error correction. 

This assures that their composite applications are of

better quality and can be reliably reused. We also report a user study in which users develop web soft- ware with 

and without a wizard to drive verification and validation. The aim of this user study is to confirm the applicability 

and effectiveness of our wizard in the verification and validation of a RIA.

1

 

a  

p  

t  

A  

t  

w  

s  

f  

T  

s  

s

 

a  

p  

m  

C  

s  

l  

t  

e  

a

r
G

. Introduction

The number of end-user programmers (people who program to

chieve the result of a program primarily for personal rather than

ublic use) ( Ko et al., 2011 ) grows year by year and is much greater

han the number of professional developers ( Scaffidi et al., 2005 ).

ccording to the US Bureau of Labor and Statistics, compared with

hree million professional programmers in the United States, there

ere more than 60 million end-user programmers (EUPs) using

preadsheets and databases at work in early 2014, many writing

ormulas and dashboards to support their job ( Cao et al., 2014 ).

his has spawned a lot of interest in research into all aspects of
∗ Corresponding author.

E-mail addresses: david.lizcano@udima.es (D. Lizcano), jsoriano@fi.upm.es (J. So- 

 

i  

t  

2  iano), glopez@fi.upm.es (G. López), javierj@us.es (J.J. 
utiérrez).
oftware development by end-user programmers and user-centred

oftware engineering. 

At the start of our research, we defined a model designed to en-

ble EUPs to handle components tailored to their experience and

roblem domain knowledge ( Lizcano et al., 2011a ). The defined

odel is based on components of different levels of abstraction.

omponents and connectors, that is, elements that can be used to

et up a data flow among components of the same level, become

ess detailed as we move up the hierarchy. We analysed the fea-

ures required by a visual EUP-centred development environment

mpowering EUPs to effectively handle the defined components

nd connectors in ( Lizcano et al., 2011b ). 

The next step was to define web end-user software engineer-

ng (WEUSE) and to specify the analysis, design and implementa-

ion stages of a RIA life cycle as enacted by an EUP ( Lizcano et al.,

013 ). We proposed suitable mechanisms for supporting the activ-

http://dx.doi.org/10.1016/j.jss.2016.11.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.11.025&domain=pdf
mailto:david.lizcano@udima.es
mailto:jsoriano@fi.upm.es
mailto:glopez@fi.upm.es
mailto:javierj@us.es
http://dx.doi.org/10.1016/j.jss.2016.11.025


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

l  

B  

w  

i  

s  

c  

t  

w  

s

 

t  

a  

R  

s  

p  

t  

t  

o  

t  

o  

I  

t  

t  

a

2

v

 

E  

E  

t  

c  

(  

o  

g  

s

 

T  

t  

a  

l  

i  

B  

m  

i  

t  

p  

T

 

p  

g  

e  

s  

i  

t  

n

 

n  

o  

w

 

ities of the RIA life-cycle phases. The aim was to empower EUPs

to successfully compose the component graph and help them to

rapidly build a RIA adapted to a specific problem that they need to

solve. The reported WEUSE achieves this goal using a development

wizard (DW) composed of well-defined and structured tasks. This

wizard provides users with guidance to develop RIAs, which is out-

side the realms of their knowledge. The DW, implemented within

an end user-centred visual development environment, called FAST,

walks EUPs through these life-cycle stages. FAST is an EUP-centred

integrated development environment developed as part of a 7th

European framework programme project. 

A RIA built by an EUP is an application composed of a set of

components with inputs and outputs. The bottom-level compo-

nents are able to invoke services and access web resources. They

are designed and then published in repositories shared by the pro-

prietors of the services/resources that are to be made visible. In or-

der to promote the end-user development (EUD) philosophy, they

are made accessible to EUPs or third parties. Users use EUD tools

(like Yahoo! Pipes and Dapper, Kapow, JackBe, FAST, and so on) to

access the above repositories and create personal compositions by

connecting up some of these bottom-level components with others

and/or building composite applications. 

Even though EUPs run some tests to check the goodness of the

RIA that they have developed, they do not really perform a system-

atic verification and validation process in order to reliably check

that the built RIA is error free. 

In this paper, we describe a WEUSE verification and validation

stage as a combination of test case generation and test case exe-

cution for testing a RIA at component, integration and acceptance

level. This verification and validation process assures that the de-

veloped RIA conforms to the end-user specification and meets the

needs for which it was built. During this stage, the users are as-

sisted by a What You See Is What You Test testing wizard (TW)

that walks untrained users through the implementation of a user-

centred component, integration and acceptance testing plan. 

Note that the aim of the testing process is to find and locate

as many defects as possible, whereas the aim of the debugging

process is to fix and remove the detected defects. In traditional

software engineering, the testing team is responsible for testing,

whereas the development team carries out debugging. In the case

of WEUSE, however, the EUP performs both tasks. To do this, the

EUP first executes the TW and then fixes the bugs that the wizard

has detected and not automatically corrected. In the last analysis,

the aim of the WEUSE verification and validation process described

in this paper is to check that the software system meets the spec-

ifications and serves its intended purpose by applying the testing

and debugging processes. 

Effective verification and validation should prevent errors be-

ing compounded by the reuse of buggy software. Therefore, EUPs

need to have access to an automatic system to validate their devel-

opments. Verification and validation should not, however, take too

much time or effort because EUPs view it as being an unnecessary

and unimportant process. 

The WEUSE verification and validation stage includes three lev-

els of testing: component, integration and acceptance testing. The

unit components published in the catalogues have been built by

specialised software providers and should, in principle, work cor-

rectly. However, EUPs may publish parameterisations and composi-

tions based on these unit components, and these new ad-hoc com-

ponents should be tested. Component and integration tests are run

by the TW automatically to check that end-user software is error

free. Inputs are the endpoints of the range of each of the expected

data types. The TW runs acceptance tests based on data requested

from users. It uses black-box testing to check how the data flow

through the RIA. The TW displays the intermediate and final data

in tabular format, indicating whether or not the processed internal
nd external data reach their destination. End users, who are prob-

em domain experts, should then have no trouble with data checks.

ased on the execution of the test cases that it generates, the TW

ill analyse components that generate any erroneous data items

dentified by users and ask the DW to suggest an alternative de-

ign (based on data flows among components or other equivalent

omponents published in the catalogue). The RIA component, in-

egration and acceptance tests are further divided into two stages:

izard-driven test case generation and test case execution, as de-

cribed in Section 3 . 

The remainder of the article is divided as follows. Section 2 in-

roduces research on the provision of support for the verification

nd validation of EUDs. There is no support for such tasks in the

IA field, but we have used earlier proposals in other EUD fields,

uch as spreadsheets, in our research. Section 3 reports the pro-

osed verification and validation process for WEUSE, defining the

ypes of test cases to be executed at each level and implementa-

ion details of how the TW supports EUPs. Section 4 documents

ur working hypotheses and the user study conducted to examine

he evaluation criteria. This section includes detailed information

n the user study to assure that it can be replicated in other fields.

t also includes a statistical study of the results. Section 5 discusses

hreats to validity. Finally, Section 6 reports our conclusions, set-

ing out the major contributions of our research to the state of the

rt and future lines of research that we intend to undertake. 

. Related work: end-user PROGRAMMER VERIFICATION and

alidation

Spreadsheets were the first real examples of developments by

UPs in the field of EUD ( Rothermel et al., 2001; Chambers and

rwig, 2009 ). Over recent years errors made by EUPs have led

o huge financial losses and defective quality at small and large

ompanies alike (losses that were documented up to 20 years ago

 Panko, 1995 ) and are still occurring). In response, research focused

n What You See Is What You Test has been conducted in order to

ive users access to systematic testing procedures to validate their

preadsheets ( Burnett et al., 2002 ). 

Surprise-Explain-Reward is one What You See Is What You

est strategy ( Wilson et al., 2003 ). This strategy employs surprise

o draw the user’s attention to software engineering tasks. Users

re then encouraged, through explanations and rewards, to fol-

ow through with appropriate actions. This strategy has its roots

n three areas of research—research about curiosity (psychology),

lackwell’s model of attention investment (psychology/HCI), and

inimalist learning (educational theory, HCI)—and has been used

n work on model-driven methods ( Burnett, 2009 ). We have used

his strategy to provide users with visual guidance on the testing

rocedure in order to check that the right RIA has been built right.

he procedure is explained in Section 3 . 

As mentioned in the introduction, we regard verification as a

rocess of checking that the RIA conforms to the specifications

iven by the analyst and designer, roles played in this case by the

nd user. This process checks that the program implements all the

entences specified by the user to define the RIA (each sentence

s a use case). On the other hand, validation, also performed by

he user, checks that the result of executing the RIA satisfies user

eeds. 

In the following, we summarise the end-user software engi-

eering verification and validation activities identified in the state

f the art, the problems that EUPs face within each activity and

hat solutions are now available for these problems. 

• Generation of test cases for RIA use case verification and vali-

dation:



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R  

n  

2  

i  

i

 

i  

c  

I  

s  

a  

t

3

 

v  

p  

a  

e  

p  

D  

w  

m

 

d  

t  
End-user developers do not usually specify or describe require-

ments. They regard this as unnecessary effort because they are

going to do all the developing themselves. This causes prob-

lems throughout the remainder of the development process

( Costabile et al., 2006; Fischer and Giaccardi, 2006; Mørch and

Mehandjiev, 20 0 0; Segal, 20 07 ). RIAs should be verified and

validated by generating and executing test cases to check that

the RIA conforms to the requirements specified by the user.

EUPs require guidance for specifying such requirements. 

It is common practice in software engineering to define the

functionality of an application by means of use cases. For

this purpose, some end-user software engineering experts use

special-purpose questions or a similar mechanism to elicit use

cases ( Ko and Myers, 2004; Obrenovic and Gasevic, 2009; Bur-

nett et al., 2002 ). RIA use cases are defined in the requirements

analysis phase (in our approach by the DW), but at present

there are no approaches for creating test cases from end-user

use cases. 
• Provision of traceability for components, connections and com-

positions for each use case:

Users should have a record of the elements that they decide to

use in each use case, how they are connected and how they

are composed during the analysis, design and implementation

phases. However, EUPs do not have a record of how these ele-

ments trace back to the use cases or potential errors.

Some authors propose the use of coloured Petri nets to plot the

graph elements used in each use case and illustrate how they

are connected and composed ( Cai et al., 2011 ). Graph naviga-

bility assures that requirements are traceable for design, imple-

mentation and testing. Therefore, this paper uses coloured Petri

nets to provide support for traceability. These coloured Petri

nets are used not for interaction with the user but internally

by a wizard (TW). This wizard provides step-by-step guidance

on testing, storing the manner in which the data flows are pro-

duced and giving users visual instructions that track the input

data through their conversion into application output data.
• Component testing:

Web components not tested by providers may later cause the

RIA to fail. On the other hand, access to the source code of the

components is not open, and black-box testing is the only op-

tion. Users have no knowledge of programming, flow-control

structures or data types. Neither do they know how to run

black-box tests on components with whose internal workings

they are unfamiliar.

There are alternatives for component testing based on the use

of systematic testing tools in the EUD spreadsheets field ( Davis,

1996; Chambers and Erwig, 2009 ). They propose black-box tests

for spreadsheets. This idea can be applied in the WEUSE field,

as suggested in this paper.
• Integration testing:

For these tests, EUPs would need to be acquainted with the

technical specifications of the components, data types and syn-

tax used to define the component inputs and outputs for con-

nection with other components. End-user software engineering

gives EUPs recommendations on which components to connect

to others and how, but this basic knowledge is not enough to

analyse whether the source of the error is the component, the

connection or the data processing.

Existing approaches propose isolating white-box components

(which they regard as mere functions) and analysing the data

flow between components and the target flow of data types

( Yoon and Garcia, 1998 ). This idea has been used to support

TW integration testing.
• Acceptance testing:

EUPs do not know how to properly validate an RIA built for

a specified purpose ( Mackay, 1990 ). As soon as they find that
their application works properly in any particular case, EUPs

get their program up and running without bothering to run any

further tests. One of the major causes of poor quality end-user

developments is end-user overconfidence in the solution, which

ends up generating other errors ( Chambers and Erwig, 2009 ). 

Rothermel et al. (2001), Burnett et al. (2002 ), Igarashi et al.

(1998), Clermont (2003), Fischer and Giaccardi (2006 ) propose

What You See Is What You Test black-box testing or partial

prototype validations using boundary value analysis. We use

Surprise-Explain-Reward. This strategy employs colours to illus-

trate the final and intermediate data, thereby offering guidance

on how to correct any errors. It also provides internal compo-

nent traceability, which is helpful for identifying the source of

the error. 

Chambers and Erwig (2009) suggest automatically comparing

the solution specification against the result generated by the

complete end-user composition using unit inference and check-

ing systems. 
• Error correction:

Users without programming skills cannot perform this activity

properly ( Sutcliffe and Mehandjiev, 2004 ). EUPs are not specif-

ically trained to perform tests and detect errors, and they are

even less qualified to identify the possible causes of and cor-

rect a detected error.

Several researchers propose using an iterative hypothe-

sis/confirmation/refutation process to correct errors in each

component or element used ( Keijiro et al., 1991 ). This is the

approach used by our prototype. This approach generates a hy-

pothesis on which component or connector might be causing

each detected error. A wizard then puts forward an alternative

using a different yet functionally equivalent element. The user

then has to accept or reject the respective change. Other au-

thors suggest using a wizard to manage control and data de-

pendencies ( Janner et al., 2009 ). Another proposed option is for

a community of EUPs sharing debugging problems, solutions

or parts of solutions to afford social and collaborative support

( Fischer et al., 2006 ).

If the user wants to add the TW-tested RIA to the catalogue, the

IA must pass crowdsourced testing by different testers (a tech-

ique that has proven its potential as reported by Brambilla et al.,

012 ). To do this, it is provisionally added to the catalogue for test-

ng and is made permanent when it passes the crowdsourced test-

ng. 

There is no specific proposal of a tool or process to verify, val-

date and debug end-user software engineering web compositions,

ontaining a formalised schedule of activities, tasks, artefacts, etc.

n this paper, we propose a specific solution for this problem. To

olve the problems that EUPs will face at each testing level, we use

 wizard providing guidance for EUPs. This wizard exploits most of

he ideas specified above. 

. User-centred verification and validation in WeUSE

In this section we present our approach to the verification and

alidation of composite web applications built by EUPs. The pro-

osed WEUSE published elsewhere ( Lizcano et al., 2013 ) sets out

n iterative and incremental life cycle. User-performed tasks cat-

gorised by disciplines (requirements, analysis, design and com-

osition) are executed at each iteration, driven by the DW. The

W provides guidance on how to perform these tasks and decides

hen to start a new iteration that increases the set of require-

ents to be addressed. 

During the requirements discipline , the DW prompts users to

raft a natural language description of the problem that they want

o solve. To do this, they use short sentences expressing simple



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

d

3

 

d  

t  

d  

i  

e  

i  

w  

a  

w  

d  

R  

p

 

t  

t  

t

 

a  

g  

d  

a  

t

 

t  

…  

q  

t  

i  

a  

v  

c  

t  

s  

t  

o  

o  

d  

u  

o  

u  

e  

l  

b  

e  

fl  

y  

i  

c  

c  

e

 

o  

d  
system functionalities (e.g., display tourist information about a

particular destination). The DW parses this natural language to

identify keywords. If accepted by users, these keywords are used

as input for searching for catalogued components that the EUP

community has tagged in the same way. Component catalogues

are repositories with associated tag sets. These repositories make

up a dynamic folksonomy collaboratively tagged by providers and

users. They can be searched using the retrieved keywords in order

to find the required components. 

In the analysis discipline , users are given a list of possible com-

ponents for use based on the requirements and DW-driven search.

At this point, the DW offers information on what each component

does, and what its inputs and outputs are. 

In the design and composition discipline , the DW provides visual

aids to help users link the selected components using connectors

that set up valid data flows. End users have problems with this

( Kuttal et al., 2013 ). The DW highlights inputs and outputs that are

compatible depending on the respective data type. Also, the DW

stores successful connections used in satisfactory designs by other

users. These are used to recommend component interconnections.

The visual aids rely on data type checking, valid component uses

recorded in previous EUP designs, etc. If users so wish, they can

add new requirements to increase web application functionality by

reiterating the life cycle. At the end of the process, EUPs can man-

ually test their RIA using application data to check its goodness.

Users tend not to spend very much time on this manual testing

activity. 

EUPs have two testing options after DW execution. They can

test the developed RIA manually or they can use the TW. The TW

is an optional, semiautomatic feature for verifying and validating

that the RIA operates correctly. 

Like the DW, the TW is based on an interactive and incremental

approach. It is governed by the activity diagram illustrated in Fig. 1

and explained step by step throughout this paper. First, the TW

prompts users to briefly state their problem. The TW applies nat-

ural language processing to the above problem statement in order

to retrieve sentences that it converts into test cases. The sources of

information used by the TW are: a domain ontology, the database

generated by the DW and the component folksonomy associated

with the problem domain (this process is detailed in ( Lizcano et al.,

2013 ). After test case generation, the TW drives component, in-

tegration and validation tests, prompting user interaction using a

visual interface implementing Surprise-Explain-Reward techniques.

At the end of the testing phase, users are taken through the appli-

cation publication process. 

The TW switches between two activities: test case generation

and test execution based on the generated test cases. Test cases

are generated in the background by the TW without direct user

intervention. In this activity, the TW receives information from the

DW (use cases, keywords, components, component aggregations

and connections). During test execution, the TW automatically ex-

ecutes the component and integration test cases generated in the

respective iteration. It then interacts with the user to run accep-

tance testing, the only point on which the TW is not transpar-

ent. When the DW starts another iteration in order to add func-

tionality to the RIA, another TW iteration reruns the (automatic)

component, (automatic) integration and (visual user) acceptance

tests. 

Fig. 2 shows an overview of the iteration of the WEUSE life cy-

cle. In this process, the TW is fed uses cases, keywords, lists of

used components, component aggregations and component con-

nections in order to prepare the test cases and run component,

integration and acceptance tests for the respective iteration as fol-

lows. 

The detected errors are recorded in a log file. This log can be

queried later by conversion to either a plain text file or tabular list
n csv format or by viewing a sequence of screens illustrating each

etected error and its status. 

.1. Test case generation 

EUPs specify natural language requirements as sentences that

efine specific concepts for development. Each sentence is a sys-

em functionality and matches a use case. In order to design and

evelop the target RIA, the DW parses these requirements spec-

fied in a natural language to define the use cases (each sentence

nding in a full stop will represent a use case) and keywords. Pars-

ng relies on problem domain ontologies used to locate the key-

ords, plus keyword synonym dictionaries and social tags used to

nnotate the catalogued components and compare the target key-

ords with tags. These ontologies must be developed by problem

omain experts and will be dependent on the domain of the target

IA. Keywords are retrieved by an engine built as part of the FAST

roject and documented in ( Lizcano et al., 2013 ). 

The DW generates one RIA use case for each sentence of the

extual description and stores the component identifiers of each of

he identified use cases stated by the user. Table 1 describes how

his activity works. 

Suppose that a user wants to build a RIA to search for flight and

ccommodation options for an event scheduled in his personal or-

aniser. The DW will prompt the user to give a natural language

escription of requirements, describing each requirement in a sep-

rate sentence. An example of part of the natural language descrip-

ion of the target RIA might be: 

[…] 

P0. Mashup as personal organiser for events 

S1. Search a flight and hotel for an event entered in the organiser. 

S2. Display tourist information on the target destination. 

[…] 

Running through the sentences of the requirements description,

he parser will come across sentence S1: “Search a flight and hotel

in the organiser ”. The DW will generate a use case for this re-

uirement. Analysing the keywords, the algorithm implemented by

he DW will recognise “search”, “flight”, “hotel, “event” and “organ-

ser”. The system will compare these keywords with the syntactic

nalysis ontology (capable of analysing direct objects for entered

erbs and identifying these verbs in order to search the catalogued

omponents for target functionalities), domain folksonomies and

he DW database. The current prototype has folksonomies for very

pecific domains (travel/leisure services, banking, office automa-

ion, etc.), especially designed by expert domain ontologists with

ur guidance. Nevertheless, other more general and more varied

ntologies and folksonomies are to be adopted in the future. Ad-

itionally, the DW stores data on each design, implementation and

se of the EUP, data on the components that have been used more

ften (and in combination with which other components) and the

se of each component depending on the keyword searches. At the

nd of this process, it will search the catalogue for components re-

ated to “event”, “organiser”, “flight search”, “hotel search” to be

uilt into the RIA. The DW will use these inputs to locate sev-

ral components in the catalogue, including personal organisers,

ight search engines, hotel search engines, etc. The user will anal-

se these components and select (based on their functional def-

nitions, inputs and outputs) which to use. For example, he may

hoose the Rumbo flight and the Expedia hotel search engines to

ompose a data flow. This entire process is documented in ( Lizcano

t al., 2013 ). 

Supposing that the organiser has been used in previous devel-

pment iterations and is therefore already part of the partial RIA

eveloped by the user before analysing sentence S1, the user will



Fig. 1. Activity diagram of the developed TW.

Table 1

Operation of test case generation in TW.

User inputs TW inputs from DW TW processing Outputs

Natural language problem

description Sentences analysed by the DW

as use cases

Keywords retrieved from the

description entered and

validated by users

Lists of used components

List of alternative components

Links between components

Aggregations of components

TW analyses the components,

links and aggregations built by

the user using the DW.3

TW generates several test cases

for each use case.

Three outputs for each use

case:

• List of components

(catalogued component id

and URL)
• Graph of component

aggregations
• Coloured Petri net with

data flows among

components

These elements are used to

produce the test cases.

l  

n  

c  

c  

c  

t  

u

 

t  

w  

w  

u  

t  

in this sentence. 
ink the above organiser to the new (Rumbo and Expedia) compo-

ents following DW recommendations. The user will make these

onnections by simply clicking on the visual representations of the

omponents in the EUD tool IDE. These representations include

heckboxes for component inputs and outputs. The visual links be-

ween these checkboxes will be generated when specified by the

ser ( Lizcano et al., 2014 ). 
The partial prototype of already linked components is attached

o sentence S1 of the original natural language description, key-

ords and other alternative components offered to the user (and

ill be used as an alternative if the tests reveal a component to be

nsuitable). The TW will use the design existing in the partial pro-

otype to build a test case covering the requirements that appear



Fig. 2. Overview of an iteration of the WEUSE life cycle with testing.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

g  

fl  

t  

c  

e  

T  

o  

m  

w  

i  

c

 

a  

o  

u  

i  

p

3

 

t  

p

3

 

i  

p  

o  

o  

d  

e

 

a  

T  

a  

w  

a  

t  

i  

v  

g  
For each use case, the TW receives all the above information:

the sentence that was the source of the use case, the processed

keywords, a list of components used, aggregations and connections

illustrating how components are linked and related, and a list of al-

ternative components (with the same types of inputs, outputs and

functionality) as the components selected by the user during de-

sign, and moves on to the second activity. 

The TW will run automatic component and integration tests

and user-driven acceptance tests on these components. For accep-

tance testing, it will request from the user three values for each

input of each component that is part of the architecture satisfying

the use case: the minimum and maximum data items, and a stan-

dard or customary data item in the respective problem domain of

each input. The maximum and minimum values that the program-

ming language is capable of representing for the respective data

types will be displayed for the user, and the user can either ac-

cept these values or specify different maximum and minimum val-

ues that make more sense in the problem domain (for example,

a minimum value for flight date might be today’s date instead of

the minimum date that can be represented in the programming

language date and time format). Rather than default values, these

are the maximum and minimum values dictated by the data type

used to represent the variable. The user may accept these values

or assign others. They are the endpoint values for the data type in

question. 

An example will clarify this mechanism for selecting the three

specified values: the TW will request the three data for “out-

bound flight date”, “return flight date”, “flying from”, “flying to”

and “number of passengers” for the Rumbo flight search engine,

plus three test data for “check-in date” and “check-out date”, as

well as “number of rooms” and “room type” for the Expedia ho-

tel search engine. For dates, the TW uses the first and last date

that can be represented (in standard date and time format), but

the user can modify these default values. For destinations, the

end-user components have checklists including all the possible air-

ports to which airlines operate with alphabetically sorted values,

although geographical coordinates can also be used. In this case,

the maximum and minimum coordinates that can be represented

in the cardinal system are used. Finally, positive integers are used

for the number of rooms: the system would recommend 0 as the

minimum and 2 n -1 as the maximum, where n is the number of

bits used. However, users might consider 10 to be a better max-

imum value for the maximum number of rooms for a single ho-

tel booking. Another noteworthy point is that the TW does not
nalyse the data semantics. For example, it will never be able to

uess that the return flight date must be later than the outbound

ight date. The component published by the service provider (the

ravel agency) is responsible for the semantics. Therefore, if the

onstraint is not met, the component should output an on-screen

rror message or disable the respective data item at run time. The

W will use these three data to generate five exhaustive test cases:

ne using all minimum data, one using data just above the mini-

um (calculable by the TW), one with all the standard data, one

ith data just under the maximums and, finally, one with all max-

mum data. This process is explained in detail throughout the arti-

le. 

The boundary value-based testing technique that we propose is

 well-established technique. As the combinatorial characteristics

f the input parameters of each component participating in the

ser-built RIA are not known, we ruled out a combinatorial test-

ng techniques (t-way, pairwise testing) as a possible option for the

roposed TW. 

.2. Test case execution 

The TW then runs three types of test. Two of these tests are au-

omatic and a third requires end-user intervention. These are com-

onent, integration and acceptance tests, respectively. 

.2.1. Component tests 

Component tests are run fully automatically without EUPs hav-

ng to intervene. They have two goals: a) check that the com-

onents used in the RIA do not produce any run-time exception

r error, and b) check that the components built by aggregating

ther less abstract components conform to the constraints (precon-

itions and postconditions) of the lower-level components. Table 2

xplains how component testing works. 

The TW traverses the graph of use case components running

utomatic tests using unit testing with parameter value coverage.

o do this, the component input used by parameter value cover-

ge covers all the possible standard values for a data parameter

ithin the range of the target input type. Parameter value cover-

ge then checks that the resulting output is within the range of

he target output data. For example, if the component input is an

nteger for which an integer-type output is generated, parameter

alue coverage tests are run automatically for the range of inte-

ers: a positive integer, a negative integer, zero, int.maxvalue and



Table 2

Operation of component testing.

User inputs Inputs from earlier TW stages Support elements TW processing Outputs

None List of test cases Ontology of used components

describing inputs and

outputs

TW generates test data banks for each

basic and aggregated component,

generating data across the entire

input range and checking that the

outputs are within the target output

range

List of components that generate

unexpected data

List of components (catalogued

component id and URL)

Definition of EUD tool data

type ranges

List of keywords associated with the

component that failed in order to

search the repository for equivalent

components, i.e. components with

the same associated tags

Graph of component

aggregations

Table 3

Operation of integration testing.

User inputs Inputs from earlier TW stages Support elements TW processing Outputs

None List of test cases Ontology of used components

describing inputs and

outputs

TW traverses the coloured Petri net. It

generates test data banks for each

component starting a data flow

across the input range and checks

that the generated output is within

the target output range.

List of components that generate

unexpected data

List of components (catalogued

component id and URL)

Definition of EUD tool data

type ranges

List of data flows that generate

unexpected data

Coloured Petri net with data

flows among components

List of keywords associated with the

component that failed in order to

search the repository for equivalent

components

i  

a  

t  

t

 

p  

a  

l

 

s  

a  

r  

k  

f  

p  

v  

S  

t  

r  

t  

s  

o  

w

 

w  

p  

i

3

 

v  

l  

fl  

t  

r  

i

 

c  

fl  

(  

o  

t  

p  

p

 

w  

t  

c  

c

3

 

fl  

r  

n  

d  

i  

p  

a

 

a  

d

 

o  

c  

t  

t  

r  
nt.minvalue, checking that a value in the integer range is gener-

ted in each case. If the EUD tool outputs an exception or error,

he TW captures the resulting exception and transfers control back

o the EUD tool. 

Parameter value coverage lists were created for each data type

rocessed by the prototype. For example, the list to be tested for

 string is: a null string, an empty string or “”, spaces, tabs, a new

ine, a valid string, an invalid string and unicode characters. 

Components may execute external invocations that can have

tateful effects on other systems. It is not always acceptable to

utomate such operations during component testing. The platform

unning the TW (for example, FAST or the Yahoo Pipes dashboard)

nows which external accesses to services can have stateful ef-

ects on other systems during component execution, as the com-

onent uses the platform as a proxy for these requests. These in-

ocations, which typically use HTTP verbs on REST service URIs,

OAP invocations or similar, are not externally redirected; they are

ested locally by analysing the structure of the invocation for cor-

ectness based on regular expressions and ontologies used to check

he invocation for validity. External service testing is beyond the

cope of this automatic process. The current prototype is capable

f analysing whether a text string is a valid email address and

hether a HTTP request is valid. 

Any user intending to run this type of test without the TW

ould have to instantiate the component in the sandbox of the IDE

rovided by the mashup platform and manually test each possible

nput data value one by one. 

.2.2. Integration tests 

Integration tests are also run automatically without end-user in-

olvement. Their aim is to check that components of the same

evel of abstraction that have been linked to each other using data

ows interact correctly. Integration tests check the data flow be-

ween components for the use cases defined in the requirements
ather than their aggregations. Table 3 details how integration test-

ng works. 

The TW traverses the graph of connections between the use

ase components that are being tested and generates the data

ows for each test case. In this process, it simulates input values

using the parameter value coverage approach) to check that the

utputs conform to target data types for each connection across

he range of target data types. Again these automatic tests use the

arameter value coverage lists that have been created for each type

rocessed by the prototype. 

Any user intending to run this type of test without the TW

ould have to instantiate each component pair in the sandbox of

he IDE provided by the mashup platform and test (for data type

onsistency) each possible valid data flow one by one in order to

heck whether the elements have been correctly integrated. 

.2.3. Acceptance testing 

The automatic component and integration tests check that data

ows between components and internal data processing do not

aise exceptions. Once these tests are complete, the entire RIA

eeds to be tested to check that the intermediate and final output

ata conform to the semantics expected by the user for particular

nput data. To do this semantic checking, the user has to partici-

ate in the tests that are driven by the TW. Table 4 details how

cceptance testing works. 

The TW analyses the RIA inputs and prompts the EUPs to enter

 typical data set for each input. This prompt consists of a form

isplayed by the TW, shown in Fig. 3. 

For each case, the TW asks users to enter the lowest feasible

r acceptable value, the highest feasible value and a frequent or

ommon value for the above data item depending on the purpose

o which the RIA is to be put. These data will be used to run

he above five test cases. These TW settings can be modified to

equest more data if the tests suggest a posteriori that further



Table 4

Operation of acceptance testing.

User inputs

Inputs from earlier TW

stages Support elements TW processing Outputs

List of test data

(minimum, standard

and maximum)

List of test cases Ontology of used components

describing inputs and

outputs

The TW uses test cases to run five

acceptance tests for each input data

item (minimum, standard and

maximum value of the data item in

the use case). The data type test

ranges are specified by the

ontologies associated with the

respective data type. The TW builds

tables containing outputs and

intermediate data for each data flow.

Data items or data flows containing

detected errors will be coloured red.

Void data items will be coloured

amber. The TW queries users and

launches the analysis phase of the

DW using a list of alternative

components if they detect errors.

Partial or total RIA validation

or reiteration of the DW

analysis phase

Identification (on_click

event) of erroneous

final or intermediate

outputs

List of components

(catalogued

component id and

URL)

Definition of the range of each

data type used (parameter

value coverage lists created

for each data type)

List of keywords associated

with the failed component in

order to search the

repository for equivalent

components

Coloured Petri net with

data flows among

components

List of components that

generate unexpected

data

List of data flows that

generate unexpected

data

Fig. 3. TW test data input prompt for each use case to be tested.



Fig. 4. WYSIWYT tables displayed to users.

a  

s  

b  

i  

p  

l  

b  

p  

(  

a  

v  

i  

r  

b  

d  

n  

v  

t  

f  

t  

U  

v  

2  

t  

t  

s  

s  

g  

b  

m  

P  

t  

l  

a

 

p  

f  

t  

a  

f  

i  

i  

s  

f  

a  

E  

u  

t

 

t  

m  

r  

b  

i  

o  

fi  

S  

t  

i  

c  

a  

i  

i  

w  

t  

t  

w  

n  

m  

m  

t  

i  

m  

s

cceptance tests are required. Besides, many semantic constraints,

uch as what type of numbers or strings are allowed, are specified

y the domain ontology underlying the TW, as well as by the

nternal component code provided by the software or service

rovider, such as, for example, the return flight date must be

ater than the outbound flight date, a standard check performed

y the component without user invention. The TW is currently a

rototype, applicable to components whose inputs are numerical

integers or decimals), dates, text strings and geolocations. Bound-

ry value analysis is applicable to all these data types. Boundary

alue analysis, described in ( Pressman, 2010 ), proved to be useful

n the tests conducted using the prototype. In order to test a

ange of values, boundary value analysis checks how the program

ehaves at the edges of the valid partitions containing the selected

ata set. Boundary value analysis is mostly used to check ranges of

umbers and dates. Therefore, we used boundary value analysis to

alidate each test case also using standard data input (representa-

ives of routine RIA use for the EUP). There are several approaches

or running boundary value analysis tests on text strings. Some au-

hors advocate converting the alphanumerical parameters to their

TF-8 or ASCII alphanumerical codes and running the boundary

alue analysis tests as on any numerical parameter ( Jain et al.,

010 ). We take a similar approach, albeit based on the features

hat are usually troublesome in web component executions: we

est the null string, a minimum length string, a maximum length

tring, a string containing one character less than a maximum

tring, and a standard string input by the user. And for two-value

eolocations (latitude and longitude), we use the North Pole as the

aseline, and test the minimum latitude-longitude values (0,0), the

aximum globally meaningful values, a location close to the North

ole located in the Northern Hemisphere and a location close to

he opposite pole in the Southern Hemisphere, a user-specified

ocation, plus the current location of the TW if the browser has

ccess to this contextual information. 

Therefore, the TW uses five RIA input values as application in-

uts and runs the application. It generates a visual table showing,

or each input combination, the final visual result of the execution,
he outputs and the intermediate values that they generate. For ex-

mple, Fig. 4 shows an acceptance test that uses standard values

or each component. The user visualises tables with the final and

ntermediate values in order to validate the test case. If the data

tem does not match the target data type, the TW colours the re-

pective item red. Correct data types with a “suspect” value (like,

or example, a null data item) are coloured amber. These colours

re what constitute the surprise within the deployed Surprise-

xplain-Reward system. Users, acting as RIA developers and end

sers, should either accept validated test cases or check the box at

he side of any error that they detected. 

The TW only generates the five acceptance test cases related

o the above five options; however, it can be configured to run

ore acceptance tests. These are the minimum five combinations

un as part of a standard boundary value analysis test for black-

ox testing programs with numerical inputs in software engineer-

ng ( Pressman, 2010 ). Although this is only a subset of the universe

f possible combinations, the tests were representative enough to

nd most of the bugs during prototype testing (as described in

ection 4 ). The same philosophy applies to boundary value analysis

echniques designed for both numerical inputs and non-numerical

nputs. The procedure for our string attributes is: a) if they are

haracter strings subject to a finite set of possibilities (for example,

 list of months of the year or a list of destination airports located

n Europe), the applicable endpoint values will be the first and last

tem of the ordered list (January and December in the first case

here there is an established order and Amsterdam and Zurich in

he second where the order is alphabetical); b) if they are arbi-

rary strings, the user will have to accept the data flows generated

ith the endpoint values used in the component tests, that is, a

ull string, a minimum non-null string (a character) and a maxi-

um string. In any case, the TW could be configured to run many

ore than just these five combinations. The problem in this case is

hat the Surprise-Explain-Reward mechanism may not be reward-

ng enough for the user to actively engage in visually analysing so

any data combinations, considering that EUPs are generally ca-

ual programmers. 



Table 5

Comparative analysis of RIA verification and validation by EUPs with and without the TW.

Stages Without TW With TW

Problems Benefits Drawbacks

Test case generation Users are not usually experienced enough

to generate test cases. Users tend to run

unsystematic acceptance tests of one or

two complex, common or prototypic

cases. This may be insufficient.

The TW systematically

generates test cases from the

problem natural language

description. The test cases

account for the entire range

of RIA functionalities.

The user is obliged to

spend time and effort

on use cases that

may be uncustomary

in the RIA domain.

Test case

execution

Component tests Users are generally unfamiliar with

component data and maximum and

minimum data. Neither do they know

how to use scripting to systematise or

automate tests. They would have to

manually test data using each

component at run time and check the

results against the benchmark. It is very

time-consuming for EUPs to have to

perform this repetitive task manually,

and they end up losing interest and do

not run the tests.

TW runs these tests

automatically and is capable

of identifying errors in

software components which

are regarded as black boxes.

Some boundary data

errors may lead to a

component not being

used even though

the user had no

intention of using the

respective data in the

application domain.

It is only valid for

standard data types

in the current

prototype.

Integration tests Users are unfamiliar with syntactic and

semantic data flows between web

components. Therefore, all they can do is

unsystematically perform imprecise

acceptance tests for small groups (or

prototypes) of interconnected

components. Generally, EUPs find

integration testing for complex RIAs

(more than five components) hard to do,

because it involves building and testing

partial prototypes.

The TW automatically tests

each pair of components

belonging to a partial or total

RIA prototype, discovering

integration errors that could

otherwise remain hidden.

It involves

pre-processing

components in order

to tag their inputs

and outputs and thus

identify possible data

flows.

It is only valid for

standard data types

in the current

prototype.

Acceptance testing Users are able to perform full acceptance

tests that may indicate that there is an

error. However, they will not be able to

identify the source of the error. Users do

not usually have enough information to

trace the source and cause of and correct

the error (by altering a data connection

or replacing a component), as they do

not have the intermediate execution

data.

The TW includes a

Surprise-Explain-Reward

mechanism that walks the

user through structured data

input for each test case and

displays visual information

on the intermediate and final

data, as well as

recommendations or tips for

solving the identified

problem.

The TW uses visual

aids which may be

insufficient for RIAs

containing a lot of

components. The

acceptance testing

mechanism is time

consuming, and may

be viewed by users

as a waste of time.

The help may be

unsuitable if the

component generates

an erroneous

intermediate data

item for which there

is no alternative in

the catalogue.

 

 

 

 

 

 

 

 

 

i  

t  

S  

a  

m  

a  

t  

a  

I  

e  

t  

o  

t  
3.3. Comparative analysis of RIA verification and validation by EUPs 

with and without the TW 

As shown by the user study conducted according to the evalu-

ation criteria reported in Section 4 , EUPs are unable to develop re-

liable RIAs. This is a significant barrier to efficient job performance

and their participation in Web 2.0. The proposed system aims to

overcome this obstacle. 

Table 5 describes the problems of verifying and validating a

RIA without the TW. It also summarises the benefits and draw-

backs of using the TW. As illustrated in Table 5 , both test case

generation and execution is troublesome for EUPs because they

are unfamiliar with testing methodology. The big advantage of us-
ng the TW, whose positive results are reported in Section 4 , is

hat it automates component and integration testing and uses the

urprise-Explain-Reward methodology for acceptance testing. EUPs

re asked to visually inspect the displayed input, output and inter-

ediate data generated by each component and check that they

re consistent, that is, Surprise is used to get the user to iden-

ify and correct errors. The TW marks any detected inconsistency

mong target data types by means of a red visual warning sign.

t shades any out-of-range or null values amber. If users detect an

rror, they are asked to click on the first intermediate value that

hey suspect to be erroneous or wrong. The TW uses the graph

f components and internal coloured Petri net built by the TW

o infer which component or components are related to the data



i  

t  

t  

a  

t  

D  

s  

u  

a  

g  

i  

o  

m  

r  

t  

p  

h  

b  

d  

I  

o  

a  

q  

p  

w  

c

4

 

s  

f  

t  

e  

p  

a  

t  

a  

T  

(

 

p  

e  

o  

W  

o  

a  

i

 

r  

o  

i  

m  

a  

o  

t  

a

 

r  

g  

p  

u  

a  

l  

h  

s  

s  

N  

f  

t  

w  

l  

w  

b  

t  

t  

o  

f  

t  

i  

2  

t  

m  

e

 

p  

t  

s  

a  

p  

(  

r  

q  

w  

fi  

t

 

b  

t  

p

 

v  

t  

d  

e  

(  

e  

t  

e

 

f  

p  

(  

w  

v  

fl  

l  

t  

i  

s  

p  
tem. This is the Explain part of the system. It helps users to trace

he surprise data item by inferring the components that generated

his item. The TW notifies the DW, the component is reanalysed,

nd users are asked to check its parameters and components. If

he user is unable to detect or explain a component error, the

W uses the catalogue to suggest other elements that perform the

ame function (meet the requirement inferred from the user’s nat-

ral language description). If a component fails, its associated tags

re used to run another search of the folksonomy, and users are

iven a new list of components retrieved by the search to exam-

ne. As each component includes its description, tags, inputs and

utputs, users can choose the one that best meets their needs. Re-

ember that there are countless end-user components available in

epositories like Programmable Web or Github and many alterna-

ives for all possible components. Additionally, the component in-

uts and outputs and behaviour are again visually highlighted. This

elps users to understand which intermediate data they should get

ased on the final data destination. Then the TW is activated in or-

er to run the component, integration and acceptance tests again.

f the error is not corrected (there is no other similar component

r the problem is not detected), the iteration ends. The user is

sked to reiterate the WEUSE life cycle in order to refine the re-

uirements description and component analysis conducted in the

revious iteration. If the error is corrected, users then have the Re-

ard of having corrected the error, clearly indicated by the green-

oloured final and intermediate data. 

. User study: analysis and discussion

Elsewhere ( Lizcano et al., 2013, 2012 and 2011a, 2011b ) we pre-

ented a framework (FAST) supporting a WEUSE life cycle. This

ramework has a built-in wizard (DW) that walks EUPs through

he activities and phases of this software life cycle and empow-

rs EUPs to develop a solution that meets their needs. In this pa-

er, we present the WEUSE verification and validation stage using

 wizard (TW) that drives this stage. This TW helps to debug solu-

ions, which is especially important for users intending to publish

 good quality solution in a catalogue for future use by other users.

his user study aims to examine the following evaluation criteria

EC): 

◦ EC1: Are EUPs that develop RIAs without the verification and

validation stage led by the TW able to produce reliable RIAs?

What errors do they make? Do these errors compromise the

solution to their particular problem or reuse by future users?

◦ EC2: Are EUPs that undertake the verification and validation

stage led by the TW as outlined in this paper able to produce

reliable RIAs? Are they able to detect and correct errors, bugs

and design and implementation complications for a particular

problem?

In order to check the above criteria, we stated a relatively com-

lex typical problem (about 22–24 components) and asked two

quivalent samples of EUPs to solve the problem. One sample used

nly the DW, which is part of the FAST framework that drives the

EUSE reported in ( Lizcano, 2012; Lizcano et al., 2013 ), and the

ther used the combination of DW and TW in the FAST framework

s described in this paper. Both samples received comparable train-

ng on the tool that they were to use, as detailed later. 

We aim to list, characterise and observe the severity of the er-

ors and failures found in the reported results for both samples in

rder to check the two evaluation criteria. This way, we can check,

n response to EC1, how many errors the sample not using the TW

ade and whether the errors compromised component execution

nd reuse. Similarly, we check, in response to EC2, whether the

ther sample managed to elude such errors thanks to the verifica-
ion and validation system driven by the TW and whether testing

nd debugging took a lot longer. 

The size of the selected sample is 120 EUPs, and it is divided

andomly into two homogeneous groups that are not biased by

ender, age, educational attainment, previous employment or ex-

erience, as shown in Table 6 . As shown in Table 6 , none of the

sers have programming skills, except for four that are knowledge-

ble about mashup tools (in this case iGoogle) and two with high-

evel Enterprise Service Bus (ESB) knowledge. Table 5 also shows

ow the sample was divided into the two sets of users under

tudy (60 that did not use the TW and 60 that used the TW). The

ample was recruited by the FP7 Fast project consortium and the

ESSI (Networked European Software and Services Initiative) plat-

orm through an informative web portal and invitations sent out

o work and research centres, magazines, etc. A very large sample

as gathered, from which 120 end users were selected. The se-

ected end users resembled typical web-active EUPs. These users

ere invited to two events sponsored by the NESSI platform and

y the Service-Front End Alliance led by the FAST project (a coali-

ion of over 10 FP7 projects). They were offered free registration

o attend the events and an entitlement to later beta use licences

f the presented software products. These licences are attractive

or small and medium-sized enterprises and end users related to

he ICT world. A total of 64 people attended the Madrid meeting

n 2012 and another 56 attended the meeting held in Brussels in

013. These 120 separate users thus had the opportunity to par-

icipate in the hackathon targeting end users rather than program-

ers. The same training, instrumental and procedural steps were

nacted at both English-language meetings. 

An important step in this study was to validate the sam-

le, statistically testing that the user characterisation of neither

he entire sample nor the two groups was skewed. An ANCOVA

tudy ( Appendix B, Table B.1 ) confirms that the groups are not at

ll skewed with respect to the descriptive variables of the sam-

le composed of the two groups. Additionally, a second ANCOVA

 Appendix B, Table B.2 ) was conducted to analyse whether the er-

ors made by each user were similar or depended on any of the

ualitative or quantitative user characteristics. If they did, users

ithin the sample of 120 individuals that had the respective pro-

le could cause a bias. Again we did not detect any bias at all in

he selected sample. 

All EUPs were asked to build a web application to search and

ook transport and hotels, and gather tourist information for des-

inations entered in a personal organiser. Appendix A reports the

roposed statement. 

Fig. 5 shows an example of one of the successful solutions de-

eloped by users during the user study. Fig. 5 (top) is a RIA with

wo separate tabs. The left-hand tab (primary tab) shows a calen-

ar workspace, with a personal calendar manager, a business cal-

ndar manager and information on each event. The right-hand tab

secondary tab) displays information for managing a trip to any

vent in the primary tab. This information is shown in Fig. 5 (bot-

om), which includes a map, a flight search engine, a hotel search

ngine, and a tourist information component. 

As stated above, the requested application requires the use of

rom 22 to 24 components. Components include two mashups im-

lemented as two different tabs for managing dates and times

calendar workspace) and managing the actual trip (organiser

orkspace), widgets, visual components, operators, backend ser-

ices, etc. Component assembly requires the creation of 20 data

ows among components. Users had access to component cata-

ogues containing 650 components of different levels of abstrac-

ion. Therefore, they found it hard to locate the right components,

ntegrate these components properly (there are over 200 possible

yntactically correct data flows for the 22 to 24 components) and

ut together a valid solution. For a full and detailed description of



Table 6

Sample characterisation.

Characterisation EUPs (120) Without TW Group With TW Group

Gender

Male 62 31 31

Female 58 29 29

Age

< 20 years 22 12 10

20–34 years 28 15 13

35–49 years 26 12 14

50–64 years 24 11 13

> 65 years 20 10 10

Educational attainment

Secondary school 29 14 15

Vocational training 31 16 15

Bachelor’s degree 29 15 14

Master’s degree 31 15 16

Employment

Student 33 16 17

Researcher 35 18 17

Employee 52 26 26

Experience and previous knowledge

Mashup platforms 4 2 2

Web services (SOAP, ESB, BPEL, etc.) 2 1 1

HTML, CSS 0 0 0

Java, J2EE 0 0 0

JavaScript, AJAX 0 0 0

Php, ASP 0 0 0

OO programming 0 0 0

C, C ++ , C# 0 0 0

Scripting, Perl 0 0 0

Haskell, Prolog 0 0 0

Fig. 5. Example of a final solution of the problem.



Table 7

Statistical data about development time taken with and without TW.

Development time (minutes)

Tool used N Min. 1st Qu. Median Mean 3rd Qu. Max. σ

Without TW 53 82 .00 118 .97 128 .72 136 .06 140 .65 297 .00 8 .86

With TW 54 85 .00 122 .50 140 .00 154 .40 202 .50 310 .00 9 .17

Table 8

Errors detected by experts in RIAs developed by users that did not use TW.

Test level at which errors were identified by experts

Error type N

Component

testing

Integration

testing

Acceptance

testing

User-detected

errors

Auxiliary output errors 12 12 0

Components requiring

parameterisation

3 3 0

Output constraint 8 8 0

Malfunction for

negative latitudes

24 24 0

Total 47 24 8 15 0

t  

e  

s

4

v

e

t

 

w  

w  

t  

u

 

 

 

E  

r

 

p  

T  

a

 

d  

5  

t  

t  

d  

a  

a  

b  

(  

p  

p  

w  

r

 

t  

t

 

 

 

 

 

 

 

 

 

 

provider in the USA).
hese components and data flows and the development processes

nacted by the sample of users using or not using TW guidance,

ee ( Lizcano, 2016 ). 

.1. EC1: are EUPs that develop RIAs without the verification and 

alidation stage led by the TW able to produce reliable RIAs? What 

rrors do they make? Do these errors compromise the solution to 

heir particular problem or reuse by future users? 

The 60 non-TW users received basic training in end-user soft-

are engineering and specifically WEUSE. Of these 60 users, 32

ere recruited in Madrid and 28 in Brussels, and the materials and

eaching staff were the same in both sessions. The training sched-

le was: 

– Theory session (4 h): introduction to and familiarisation with

widget and mashup development, intercommunication technol-

ogy, component validation using boundary value analysis-based

black-box testing and application validation using standard in-

put data.

– Practical session (4 h): solution development using the DW (2 h

and 30 min) and manual testing (90 min)

– Case study (variable): hands-on laboratory experience of devel-

oping the proposed composite application.

After a development time of on average 130 min, 53 of the 60

UPs managed to output a composite application that met the set

equirements. 

Table 7 shows the times taken by the normally distributed sam-

le to develop this RIA. The times taken by the group that used the

W, whose work plan, training and activity is explained later, are

dded for interpretability. 

A group of three experts, who were not involved in the study

esign and planning, ran structural and functional analyses of the

3 composite applications built by the EUPs. In order to reduce

he workload and assure a detailed and conscientious analysis,

he experts, computer scientists with extensive knowledge of RIA

evelopment, shared out the 53 applications, and each inspected

bout 18 applications. They conducted component, integration and

cceptance testing ( Lizcano et al., 2013 ). They also used white-

ox tests to inspect the source code and off-the-shelf components

taken from a component catalogue supplied by external software

roviders) used in each application. Although applications worked

roperly for the set requirements, several different types of errors
ere detected. Table 8 shows the statistical data on how many er-

ors were identified in the RIAs built by this group of 53 EUPs. 

As shown in Table 8 , experts detected up to 47 hidden errors in

he 53 RIAs that appeared to work properly. The list below charac-

erises the 47 detected errors: 

(a) Errors in auxiliary outputs that are not detected because

they are not the main target output: 12 errors. They were

detected in acceptance testing. They are outputs that are

generated incidentally and not directly used by users. These

outputs may be necessary if the component is reused in the

future, and they could generate an unexpected error.

(b) Components that require parameterisation and are incor-

rectly configured by users: three errors were detected. They

were also detected in acceptance testing. One of these errors

occurred when a filter operator was applied. This operator

processes a set of RSS inputs and either produces or deletes

outputs containing items related to a keyword. One user

set up the component to do the opposite to what he really

wanted it to do. Another two errors were due to the com-

ponent configuration. The component was set up to use a

different date input than other sample users used. The com-

ponent expected a YY-MM-DD format, whereas users used a

DD-MM-YY value. The solution is either to set up the com-

ponent to change the format or use an intermediate opera-

tor to perform this operation. This is not however something

that users can do unaided.

(c) Component refinement to conform to an output constraint

which had to be an integer and output a floating-point num-

ber. Eight errors were detected during integration testing by

the group of experts. The result is correct, but does not con-

form to the element constraint type. This may lead to errors

in future developments.

(d) Google maps-based component found to malfunction at neg-

ative latitudes. Twenty-four errors were detected in compo-

nent tests conducted by the group of experts. It is an ele-

ment that visualises a particular region of a map. Intensive

tests detected that the map displays a mirror region of the

Northern Hemisphere in the Southern Hemisphere because

it processes the signs incorrectly. This incident had not been

identified because users were located in Europe (and the



Table 9

Statistical study examining EC1.

Detected errors

N a) Wrong aux. out b) Configuration error c) Data type error d) Data semantics error Were there any undetected errors?

26 - - - - No errors were detected in 26

applications

8 - - - Yes

8 Yes - - Yes

6 - - Yes Yes 27 applications had at least one

detected error

2 Yes Yes - -

2 Yes - Yes Yes

1 - Yes - -

Total 12 3 8 24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

s  

R

i

 

o  

s  

l  

T  

v  

B  

t  

C  

T

 

E

 

 

 

 

 

p  

s  

e  

s  

s  

t

 

r  

t  

b  

t  

r

 

w  

r

 

i  

t  
Therefore, the 47 detected errors can be divided into one of the

above four error types: a) wrong auxiliary output, b) configuration

error, c) output data type error or d) semantic errors in special

data types. Table 9 shows the distribution of these errors across

the 53 applications. 

Of the 53 applications, no errors were detected for 26 appli-

cations, and 27 applications had at least one of the above errors.

Looking at the failures, we wondered: 

• How many applications could produce semantic or functionality

errors in future uses? Applications containing error a), totalling

12 RIAs.
• How many of the 27 applications with detected errors will mal-

function for their end user? Applications containing fault b), to-

talling three RIAs.
• How many of the 27 applications with detected errors could

produce potential integration errors in future uses after pub-

lication by the user? Applications containing fault c), totalling

eight RIAs.
• How many of the 27 applications with detected errors could

produce more errors and bugs in future uses after publication

by the user? Applications containing fault d), totalling 24 RIAs.

In conclusion, 24 out of the 53 applications appeared to op-

erate properly for the purpose that they had been built by users

(as they did not contain faults that would prevent the application

from running). Nevertheless, they did contain errors. After a thor-

ough study, therefore, only 26 were apparently error-free applica-

tions that could be safely published for future use (49% of the 53

applications that were examined), whereas a non-negligible 45% of

applications pose problems for future use by other users. This sug-

gests that the WEUSE development process requires a wizard to

help EUPs remove errors. This is the aim of the TW-led verifica-

tion and validation stage in WEUSE. 

We found that a fair number of errors appear to be related to

the poor quality of the components used in the composition, which

end-user programmers can do nothing about. Also quite a few er-

rors are related to a single component: Google Maps. This raises

the question of whether the catalogue might have had an impact

on the results of the study. As we will see in Section 5 , the cata-

logue is, according to the Programmable Web visits and use rank-

ing, fed by the most commonly used components in the field of

EUP and is the most popular catalogue resource in the domain of

EUP tools. 
.2. EC2: are EUPs that undertake the verification and validation 

tage led by the TW as outlined in this paper able to produce reliable

IAs? Are they able to detect and correct errors, bugs and design and 

mplementation complications for a particular problem? 

The next step in the statistical user study is to check the results

f the reported TW. In order to assure the validity of the later re-

ults, we first have to check that the group using the TW is equiva-

ent (not statistically skewed) to the group that did not use the TW.

o do this, we conducted an ANCOVA of the user group dependent

ariable against the descriptive variables for each user. Appendix

 reports the results of this ANCOVA, which shows the validity of

he division into two groups. Note that the data output by the AN-

OVA has no need of further validation, for example using post-hoc

ukey HSD tests. 

The 60 users of the TW group received the same training in

UD and specifically web EUD. The training schedule was: 

– Theory session (4 h): introduction and familiarisation with wid-

get and mashup development, intercommunication technology

and component validation using boundary value analysis-based

black-box testing and application validation using standard in-

put data values.

– Practical session (4 h): solution development on the DW (two

and a half hours), and TW tutorial explaining how to interact

with the TW, illustrating its interface, how and where to en-

ter the requested data and how to interpret the colours used to

indicate surprise in our What You See Is What You Test mech-

anism (90 min).

– Case study (variable): hands-on laboratory experience of devel-

oping the proposed composite application.

This group of 60 users were set the task of solving the same

roblem using the TW. The task was completed by exactly the

ame percentage of users as in the experiment without TW. How-

ver, it took these 54 users substantially longer to do the job, as

hown in Table 7 . This increase in development time is caused, as

tatistically proven later, partly by the interaction of the user with

he TW. 

Again the same group of three experts thoroughly analysed the

esulting products in search of errors. This does not pose a threat

o the study, as the fact that they were already acquainted with

oth the problem and the application type was immaterial. In ac-

ual fact, it would be less time-consuming for them to detect er-

ors, which is their only goal. 

Table 10 shows the errors detected by the TW in each phase,

hich are exactly the same as the errors that it managed to cor-

ect. 

On this occasion the experts found no more than two errors

n the RIAs built by the users. The TW had detected almost all

he errors made by users, and the application was distributed and



Table 10

Statistical data about TW performance during the user study.

Errors in the development

Testing level

Support tool N Component Integration Acceptance Detected Corrected

With TW 50 26 7 17 48 48

Table 11

One-way ANOVA test for development time (in minutes).

One-way ANOVA α = 0 .05

Summary statistics

Groups N Sum Mean Variance

Without TW 53 416 66 .06 10 .14040816

With TW 54 423 84 .40 11 .8044898

Source of variations Sum of Squares (SS) df Mean Square F P-value F critical

Between group 0 .49 1 0 .49 8 .3307426 0 .00446573 3 .938110878

Within group 1075 .3 93 10 .97244898

Total 1075 .79 94

p  

b  

w  

i  

m  

t  

e  

i  

d  

t  

g  

i  

u  

h  

p  

h  

o  

p  

A  

i  

t  

r

 

o  

(  

s  

i  

l  

d  

t  

a  

d

 

g  

n  

t  

o  

v  

c  

c  

a  

r  

p  

t  

w  

u

 

b  

t  

t  

c  

u  

o  

w  

w

 

e  

a  

b  

i  

(  

w

 

g  

c  

v  

6  

w  

e  

4

4

a

 

v  

t  

r  

2  

c  

v

 

 

 

ublished. The two undetected errors were both related to date-

ased data types, where the user linked outputs using YY-MM-DD

ith DD-MM-YY data types, causing a similar number of errors as

n the experiment without the TW. The TW displayed the inter-

ediate data generated in the boundary value analysis tests, but

he users did not notice the problem. The number (48) and type of

rrors detected by the TW was actually very similar to the bugs

dentified according to EC1 (where EUPs made 47 errors). For a

escription of this study, see ( Lizcano, 2012 ). This time, however,

he TW corrected bugs automatically during component and inte-

ration testing (detecting internal component errors and suggest-

ng alternative components that did pass the tests) and helped the

ser to detect and correct errors during acceptance testing. This

igh TW success rate has been confirmed in real EUP development

ortals. Preliminary data from the field applications to which we

ave had access suggest that around 90% of the errors appearing in

ther similarly complex applications, components, data flows and

roblems tend not to appear if the TW is used ( Hoyer et al., 2013 ).

dditionally, the two undetected errors could have been put right

f the end users had looked at the erroneous data flow caused by

he mistaken date format. Subsequent versions of the TW should

emedy this weakness. 

To conclude this part of the study, we need to check the devel-

pment times with a t -test or ANOVA. We conducted an ANOVA

 Table 11 ) in order to compare the development time taken to

olve the proposed problem with and without the TW and see the

mpact of TW use on development. The first step was to conduct a

inear correlation study of the quantitative variable measuring the

evelopment time with and without the TW, and this study re-

urns a value cor = 0.95254468 (close to 1). The correlations, which

re close to 1, suggest that development time is statistically depen-

ent on the tool used. 

Looking at Table 11 , we find that the F value 8.33 is much

reater than its critical value of 3.9381. This means that, at a sig-

ificance level of α = 0.05, the variation of the mean development

imes can be said to be due to the specific tool used (with or with-

ut TW), and this variation is statistically significant. The mean de-

elopment time is almost 20 min longer, which is a near 28% in-

rease with respect to the original RIA built without the TW. To

heck whether this increase is statistically correct and common to

ll developments using the TW, we would have to tackle a wide

ange of different problems. This is beyond the scope of this pa-

er. Suffice it to say that there is a significant increase in the time

aken by EUPs. However, the high error rate suggests that users

ill find it worth their while to assume the additional workload of

sing the TW in order to build quality products. 
Users sometimes need to get the job done as quickly as possi-

le, even if they make mistakes along the way. For example, even

hough it might prevent reuse in the future, a bug in an applica-

ion may be tolerable as long as it has no impact under the present

ircumstances. If so, users would put off finding and fixing the bug

ntil later. Therefore, the FAST tool offers users the option of using

r not using the TW: the user can apply just the DW in situations

here speed is paramount or use the TW as well in circumstances

here errors would not be tolerable. 

Note that users who did not have access to the TW did not ex-

cute a big enough set of tests and test cases to detect the errors,

s most (over 90% of the sample) only used a single validation test

ased on a standard value entered as input for each generated RIA

nput port. This is the standard test enabled by countless EUP tools

Yahoo! Pipes and Dapper, Kapow Katalyst software, and so on),

hich this study proves to be insufficient. 

Finally, note that the proposed TW is a prototype that is under-

oing improvement for inclusion in the FP7 WireCloud as part of a

luster of FI-WARE projects ( FI-WARE Project, 2012 ). This will pro-

ide for further validation. Note that the two unbiased samples of

0 users used in this study are significant in both cases. It is note-

orthy that the users who did not use the TW failed to detect 47

rrors, whereas the users who used the TW detected and corrected

8 errors. 

.3. Opinions of users and experts about the proposed verification 

nd validation process 

At the end of the evaluation, we conducted a qualitative sur-

ey of each of the two samples of 60 users that participated in

he evaluation [Lizcano 16]. This survey included five items to be

ated on a five-point Likert scale (0—totally disagree, 1—disagree,

—neither agree nor disagree, 3—agree, 4—totally agree), plus a

ouple of open questions about their general impressions of the

erification and validation process. The items were: 

1. I found it easy to detect errors using component tests.

2. I found it easy to detect errors using integration tests.

3. I found it easy to detect errors using acceptance tests.

4. I was qualified enough to enact the RIA verification and vali-

dation process with all the training I received before the ex-

periment (theory session—4 h), including (for TW users) the in-

structions given by the TW during the user study.

5. End-user software requires verification and validation.



Table 12

Subjective survey completed by both samples.

#item Users without TW (60) Users with TW (60)

Mean Std. Dev Std. Error Mean Std. Dev Std. Error

1 1 .00 0 .222 0 .010 3 .75 0 .631 0 .095

2 0 .85 0 .470 0 .038 3 .85 0 .779 0 .050

3 0 .05 0 .345 0 .015 3 .05 0 .114 0 .419

4 1 .85 0 .644 0 .774 3 .35 0 .054 0 .748

5 2 .90 0 .015 0 .080 3 .90 0 .453 0 .734

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

i  

h

 

u  

p  

u  

t  

p

5

 

t  

m

 

 

 

 

 

 

 

 

 

Table 12 shows the results for each item. 

As Table 12 shows, the EUPs who did not use the TW found

it almost impossible to perform component, integration and ac-

ceptance tests. Neither did they consider themselves to be qual-

ified enough to enact the verification and validation process (as

shown by the results for item 4). On the other hand, TW users

found it much easier to perform all the tests (component and in-

tegration tests were, of course, simpler to execute than acceptance

tests, whose difficulty level was rated as acceptable, because com-

ponent and integration tests require less user intervention). Finally,

the experience appears as a whole to have had a positive impact

on the sample using the TW, as they consider it to be important

to perform verification and validation. A possible explanation for

this is that they realised just how many errors they managed to

detect and correct thanks to the TW. On the other hand, the sam-

ple that did not use the TW does not consider testing to be as

important, perhaps because they were unaware during testing of

how many uncorrected errors there were in the RIA (they did not

learn about these errors until the experts analysed the RIAs after

they had taken the survey). 

Regarding open questions, each sample was asked about the

strengths and weaknesses of the proposed RIA development pro-

cess that they were asked to apply during the experiment: 

• The majority of the sample that did not use the TW stated that

the listed tests were too hard to perform unaided. With respect

to the strengths, they pointed out that the DW had been very

useful for building the RIA, and component-based software ap-

peared to be easier to test than monolithic software.
• The majority of the sample that used the TW stated that the

visual system prompting test data and colouring the final and

intermediate data output in response to the data inputs is very

useful for testing purposes. They also mentioned that the DW

was helpful for developing the RIA. With respect to the biggest

weakness, the majority stated that it took too long to perform

acceptance tests and suggested that they should be automated.

(A priori this does not appear to be feasible as it is hard to pre-

dict the operation of a RIA composed of unspecified parts se-

lected from a catalogue containing hundreds of available com-

ponents.)

These results are not statistically significant enough to conduct

ANOVAs to check whether there are differences of opinion with

regard to each item. They do, however, illustrate the strengths and

acceptance of the proposed TW. 

Additionally, we consulted a panel of five WEUSE experts (from

among the partners of the FP7 projects in which the proposed

TW is to be adopted) to gather their opinion on the proposed TW

system. Beforehand, we detailed how the system was structured

and worked and presented the results of the experiment. The ex-

perts agreed that the Surprise-Explain-Reward-based system with

the built-in TW is well aligned with web end-user development

needs. One expert stated that EUPs should be given even more vi-

sual and textual help for RIA acceptance testing after component

integration. The experts also positively rated the implementation
f the TW for each testing level, but suggested that data type test-

ng should be more aligned with the problem domain. These issues

ave been taken up as future research lines. 

Additionally, the results of the user survey were, they thought,

nderstandable. With respect to the results for item 5, they

ointed out that the fact that users who did not use the TW were

naware of the need for proper program verification and valida-

ion and were keen to have instant use of a program to solve their

roblem, led them to consider this activity as unimportant. 

. Discussion on threats to validity

This discussion of threats to automatic verification and valida-

ion in WEUSE refers to five aspects of validity, which can be sum-

arised as follows: 

- Construct validity: This aspect of validity reflects the extent to

which the operational measures that are studied really repre-

sent what the researcher has in mind and really meet the eval-

uation criteria. The threat would be that the research failed to

demonstrate that the use of the TW to automatically verify and

validate a RIA produced a highly reliable product. This threat

is mitigated by the type of statistical studies conducted and

the fact that the collected data have normal distributions. This

guarantees the applicability of these studies.

- Internal validity: This aspect of validity is of concern when ex-

amining causal relations. When the researcher is investigating

whether a factor affects an investigated factor, there is a risk

that the investigated factor is also affected by a third factor.

There is a threat to internal validity when the researcher is not

aware of the third factor and/or does not know to what extent

it affects the investigated factor. User recruitment is the source

of this type of threat: in this case, the participants are end users

recruited via the web portals of the partners of the projects and

platforms set to use the TW in the near future. As it was not

possible to bring the 120 users face to face at a single event,

there is a threat that the group of 64 users in Madrid received

different training or experienced different conditions than the

56 users in Brussels. We tackled this threat by having the same

people conduct exactly the same experiment at both venues,

providing the same training and using the same material, same

organisation and same tools. There is also the possibility of the

64 users from one venue having interacted with the 56 at the

other, as the experiments were not simultaneous. According to

the results of the ANCOVA study ( Table 1 ) in Appendix B, char-

acterised with respect to the detected errors, the sample was

found not to be biased, which it would have been if there had

been such an interaction. Additionally, we believe that the re-

ward offered to users for participating in the study (free user

accounts for the beta version of FAST and beta licences for all

the software presented at the congresses, as well as free reg-

istration for the event) was proportionate. This counteracts the

threat of compensation causing selection bias and potentially

invalidating the study. Another possible threat in this respect

is of the training received by study participants closely resem-

bling the tasks that they have to do. In order to rule out this

threat, the participants were given general-purpose training on

the tool and were not asked to develop solutions similar to the

problems that were used in the study.

- External validity: This aspect of validity is concerned with the

extent to which the findings are generalisable and how inter-

esting the findings are to other people outside the investigated

case. This is a possible threat because the user study is based

on a single web application and, considering the success of the

TW, the stated problem type, which is typical of web applica-

tions, is well adapted to the wizard philosophy. As explained



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

E  

t  

(  

b

 

b  

m  

v  

t  

a  

v  

T  

p  

t  

c  

a  

n

 

p  

v  

r  

l  

r

 

i  

i  

t  

E  

p  

c  

r  

b  

a  

a  

p  

i  

p  

t  

t  

d  

h  

r

 

P  

t  

c  

c  

fi  

p  

m  

b  

t  

e  

p  

q  

o  

1  

g  

o  

w

 

t  

(  

i  

2  

s  

E  

w  

o  

o  

o  

u  

t  

t  

i  

e  

c

 

e  

w  

t  

t  

m  

a  

p  

a  

f  

m  

b  

a  

c  
under future research, findings will be more generalisable in

the future, as the research project using the TW will provide

more quality and error-free information gathered from real-

world developments using the presented prototype in the com-

ing years. Another possible external validity threat is that fu-

ture TW users will not receive the training that the users par-

ticipating in the experiment were given. To prevent this validity

threat, we published a free 30-min tutorial on TW (which was

used in our study) on the YouTube channel of the FP7 projects

related to this paper. We also posted 8 h’ worth of seminars by

means of recorded hangout sessions to provide potential TW

end users with all the information that they require. 

- Reliability: This aspect is concerned with the extent to which

the data and the analysis are dependent on specific researchers.

There is the threat of fewer errors being detected than if more

than one expert analysed the RIAs (each expert analysed 20

RIAs) using more demanding coverage types than parameter

variable coverage. In this respect, note that we selected accred-

ited experts with lengthy experience in the sector that were not

directly involved in this study or concerned with its working

hypotheses in order not to condition the data and data analyses.

Additionally, the catalogue and components were not developed

by the work group that conducted this research. Therefore, the

testing environment is representative of what an EUP using

such a development tool will come across. These catalogues are

maintained by third parties (like Programmable Web), fed by

service and resource providers and ranked by popularity and

use. Thus, the research group has had no bearing on this possi-

ble reliability threat.

- Potential use: there is a trade-off between the time taken using

or not using the TW and the resulting quality. We decided to

make TW use optional, but this poses the following question:

Will users continue to use a technique that is more time con-

suming? It is unlikely to be used unless users are aware of the

satisfaction and benefit to be gained from using the TW to cor-

rect existing or potential errors. We will discuss this issue in

the conclusions.

. Conclusions, limitations and future lines

In previous articles concerning WEUSE we have shown that

UPs have need of a development wizard to take them through

he analysis, design and implementation stages to build their RIAs

 Lizcano et al., 2012, 2013 ). This paper presents two main contri-

utions. 

First, it notes that one of the key weaknesses of RIAs built

y EUPs is that they are not thoroughly verified and validated by

eans of prescribed testing activities. EUPs do not understand the

erification and validation process and have need of support to tell

hem how to go about testing. A testing wizard is unquestionably

 useful tool for users without programming skills. This paper pro-

ides evidence that applications built by EUPs are prone to errors.

hese errors affect the RIA that they have built and, if they are

ublished in a catalogue, compromise future reuses of the solu-

ion by other users. As component and application reuse and so-

ial sharing is the cornerstone of the network effect empowering

ll EUD approaches, it is vital to assure that the catalogue compo-

ents are error free. 

Second, the paper puts forward an automatic framework to sup-

ort verification and validation that has been demonstrated to be

alid. The reported user study shows that the better results with

espect to EC2 can be attributed to the adoption of this TW tai-

ored for EUPs. It is the TW that makes the difference between the

esults for EC1 and EC2. 

The results in the field of WEUSE are promising. Proof of this

s that the DW used in combination with the TW has been built
nto the FAST tool and is being used by Spanish public administra-

ions to promote digital spaces of interaction with citizens using

UD technologies. Saragossa citizens and visitors have access to a

ortal that they can use to build their own composite web appli-

ation and organise their leisure activities in the city, book hotel

ooms, museum tickets, put together their personal tourist guide,

ook entertainment, etc. ( Tejo-Alonso et al., 2015 ). There is a cat-

logue of components for locating addresses on the city map, and

ccessing tourist, historical, hotel and restaurant information. This

ortal has about 500 components, over half a million total vis-

ts and composite web applications and receives about 100 visits

er day. There are no quantitative statistical studies, but qualita-

ive surveys suggest that acceptance by citizens is very satisfac-

ory ( Lizcano, 2016 ). Thanks to the reported TW, the error rate has

ropped sharply, whereas the quality of the developed elements

as increased significantly. This improves the prospects for future

eusability. 

On the other hand, Andalusia’s Regional Government ( FI-WARE

PP, 2012 ) has set up a portal enabling public administration users

o use FAST to build their own web applications. It has about 600

omponents, and citizens can build a web application in order to

omplete public administration formalities, such as tax payments,

ne and traffic management, and official document, census, em-

loyment record management, city or intercity road traffic infor-

ation, etc. With about 50 visits per day, it has been well received

y citizens ( Lizcano, 2016 ). They have used the TW presented in

his article to build good quality web applications, as reported by

xternal experts in ( Lizcano, 2016 ). It is true that most of the ap-

lications built are very simple, as these users are not well ac-

uainted with portal use. Most of the applications (76%) are based

n at least five interrelated components. But 18% have as many as

0 components, and 6% include from 15 to 20 components, inte-

rated by a host of error-prone data flows. This portal includes an

ptional 4-h massive open online course (MOOC) to acquaint users

ith the portal and with end-user programming. 

Additionally, we are using and testing the proposed TW within

wo on-going FP7 research projects: 4CaaSt ( 4CaaSt Project, 2012 )

Building the Platform-as-a-Service of the Future) as part of

ts Mashup-as-a-Service solution, and FI-WARE ( FI-WARE Project,

012 ) (Future Internet Core Platform) as part of its applications and

ervices ecosystem and generic delivery framework enablers for

UPs to build application mashups. The project users are experts in

ide-ranging domains and are proficient users of the Internet and

ffice automation software. However, they have very little technical

r programming knowledge. So we expect to study users as part

f these projects in order to update and refine our approach. The

se of FAST as part of the technology foundation (FI-WARE) behind

he European public-private partnership on the Internet of the Fu-

ure ( FI-PPP, 2012 ) extends the life cycle to R&D projects cover-

ng areas as far apart as the transportation of goods and people,

nergy efficiency or bank management in the framework of smart

ities. 

The presented verification and validation mechanism has sev-

ral weaknesses. First, it is a prototype that handles components

hose possible inputs are confined to numerical data, locations,

ext strings and dates. Second, automatic component and integra-

ion testing coverage is based on the parameter value coverage

ethod, and acceptance testing coverage relies on boundary value

nalysis, where users are asked to input standard data for the

roblem to be solved. The proposed RIA acceptance testing mech-

nism uses five test cases—all minimum values (feasible minimum

or this problem established by the user), all standard values, all

aximum values (feasible maximum for this problem established

y the user), and values just above and just below the minimum

nd maximum—, but this testing coverage is unquestionably small

ompared with all the possible combinations of a high number n of



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

s

a

 

t  

c  

s  

v  

e  

o  

h  

e  

l  

a  

v  

u  

a  

n  

d  

T  

s  

a  

d

 

i  

s  

s

 

t  

o  

e  

q  

t  

t  

g  

d  

M  

c  

D  

t  

t  

W  

s  

i  

t  

f

 

A  

t  

0  

a  

E  

t  

a  

g

components (5 n ). Finally, automatic testing implies an added work-

load for EUPs not used to spending time on RIA validation. The de-

cision to use the TW is a trade-off between EUP development time

and product quality. All these weaknesses, plus the fact that data

type testing should, as far as possible, be aligned with the prob-

lem domain, require further research. We are now taking steps to

try to reduce their impact on the automatic EUSE verification and

validation process. 

But the main line of future research is to study the feasibility

of building a framework to support an integral life cycle (including

both development and testing tasks) for other end-user ap-

proaches (apart from RIAs and web-based composite applications)

and applying the life cycle to other fields such as spreadsheets,

mail filtering, What You See Is What You Test web content devel-

opment applications, etc., to enable users to build non-trivial and

quality solutions. 

The proposed TW is a prototype that, we believe, works well.

However, further statistical studies with larger samples are re-

quired to better identify the strengths and weaknesses of this wiz-

ard. 

Acknowledgements 

The authors would like to thank the 120 EUPs of the user

study for their interest, participation and time. This work has been

partially supported by the EU co-funded IST projects FAST : Fast

and Advanced Storyboard Tools ( GA FP7-216048 ), FI-WARE: Fu-

ture Internet Core Platform (GA FP7-285248), and 4CaaSt: Build-

ing the Platform as a Service of the Future (GA FP7-258862); and

by the Pololas project (TIN2016-76956-C3-2-R) and by the Soft-

PLM Network (TIN2015-71938-REDT) of the Spanish the Ministry of

Economy and Competitiveness. We would like to thank Fernando

Alonso Amo for his support for and collaboration in the reported

research, which has been very helpful for drafting this paper. 

Appendix A. Statement of problem 1 for evaluation according 

to EC1 and EC2 

As part of a R&D project in which he is participating, a higher

education worker has to make numerous national and interna-

tional trips. The project has several partners of different types and

origins. 

The R&D project has a web-based general agenda shared by all

the project partners. All face-to-face meetings are posted in this

agenda, specifying the meeting date and time, venue and agenda.

The higher education institution employing the user actively co-

operates with two travel agencies, one specialised in high-speed

trains and the other in long-distance flights, and both manage all

the travel and accommodation options at the full range of hotels. 

1. The user consults the shared R&D project agenda every day to

check whether there is a new meeting that he should attend.

2. If there is to be a meeting, he checks his personal organiser

to find out whether he can attend the meeting and fills in the

details of the new meeting, the meeting agenda, etc.

3. The user looks up the meeting venue, and searches for it on a

map. Then, he accesses the travel agency services and checks

what travel options they offer, as well as price. Normally he

compares two options and chooses one agency or the other de-

pending on the travel options, length of stay and price.

4. If the trip is to last longer than a day, the user searches hotels

near to the meeting venue and checks the prices per room and

night offered by the travel agencies.

5. The department employing the user has a spreadsheet-based

software program that manages the department-run R&D

project budget. It contains spreadsheets that can be used to
check the travel budget currently available for each project and

manage new expenses. It is the user’s job to calculate how

much the travel and chosen accommodation will cost, add this

up, check that there is enough money available for the trip and

deduct it from the project budget. 

6. Then the user makes the bookings one by one.

7. Finally, the user checks the Internet for information about his

destination, demographic characteristics, weather forecast, etc.

ppendix B. ANCOVA statistical study in order to validate the 

ample and its division into two equivalent unskewed groups 

nd to analyse the impact of EUP characteristics on errors 

Analysing Table B.1 , we find that the coefficient of determina-

ion R 

2 is very low (0.103). This suggests that there is a high per-

entage of variability in the modelled mean variable (user group)

o that gender, age, educational attainment, employment and pre-

ious experience (the quantitative and qualitative variables for

ach individual) are equally random in the two groups. This value

f R 

2 and adjusted R 

2 suggests that the division into groups is

ighly independent of the user characteristics (98.6%). The model

rror values, MSE (mean squared error) and MAPE (mean abso-

ute percentage error), are very high (well above the ideal value 0),

gain suggesting that the model does not precisely explain the di-

ision into groups. Additionally, DW (Durbin-Watson statistic) val-

es are not close to 0. This implies that there is no autocorrelation

mong the qualitative variables, without which the study would

ot be valid. Finally, Cp (Mallows’s Cp statistic) suggests that the

ivision should not be biased at all in 118 out of 120 observations.

he model results for all the variables taken together validate the

ample, indicating that there is no bias related to the qualitative

nd quantitative variables characterising the users and the group

ivision for the study. 

In the following we discuss the statistical study conducted to

nvestigate whether or not there is a correlation between the de-

criptive characteristics of the EUPs and the errors during the

tudy. 

Analysing Table B.2 , we find that the coefficient of determina-

ion R 

2 is very low (0.098). Therefore, there is a high percentage

f variability in the modelled mean variable so that gender, age,

ducational attainment, employment and previous experience (the

uantitative and qualitative variables for each individual) appear

o explain only 9.8% of detected errors. The other values are due

o other unknown variables. This value of R 

2 and adjusted R 

2 sug-

ests that the errors made by EUPs are largely (96.4%) indepen-

ent of the user characteristics. The model error values MSE and

APE are very high, again suggesting that the model does not pre-

isely explain the behaviour of the errors variable in the sample.

W values are not close to 0 so there is no autocorrelation among

he qualitative variables. Finally, Cp suggests that the model is able

o exactly explain the results of only one of the 120 individuals.

e have conducted a Type I and Type III sum of squares analy-

is. Taken together, the model results validate the whole sample,

ndicating that there is no bias related to the qualitative and quan-

itative variables characterising all 120 users and their recruitment

or the study. 

Looking at the Pr > F values of the Type I sum of squares of the

NCOVA model, we find that the characteristic that is most related

o the user errors is age (the greatest Pr > F in the study, equal to

.372). We examined user age and found no statistical evidence of

 direct correlation between age and the errors found according to

C1 and EC2, as Pr > F is still much lower than 1. In any case, as

he sample and subgroups are balanced with respect to age, there

re no problems of bias if the percentage of individuals in each age

roup is equivalent. 

http://dx.doi.org/10.13039/501100003097


Table B.1

ANCOVA to validate the 60–60 division of the sample.

Goodness of fit statistics

Observations Sum of weights df R ² Adjusted R ² MSE MAPE DW Cp

120 120 64 0 .103 0 .014 5 .421 4 .751 1 .235 2

Analysis of variance

Source df Sum of squares Mean squares F Pr > F

Model 34 5 .932 0 .169 1 .184 0 .251

Error 65 9 .072 0 .142

Corrected Total 99 15 .004

Table B.2

ANCOVA of errors against sample characterisation.

Goodness of fit statistics

Observations Sum of weights df R ² Adjusted R ² MSE MAPE DW Cp

120 120 69 0 .098 0 .036 6 .241 3 .998 1 .247 1

Analysis of variance

Source df Sum of squares Mean squares F Pr > F

Model 39 6 .421 0 .175 1 .289 0 .251

Error 65 10 .112 0 .139

Corrected Total 119 14 .001

Computed against model = Mean(Y) 

Type I sum of squares analysis:

Source df Sum of squares Mean squares F Pr > F

2.- Gender 1 0 .027 0 .013 0 .284 0 .178

3.- Age 1 0 .214 0 .125 0 .935 0 .372

4.1- Education 3 0 .841 0 .352 0 .984 0 .287

4.2-Employment 2 0 .211 0 .100 0 .589 0 .269

5.- Experience and previous knowledge 28 4 .274 0 .205 1 .417 0 .169

Type III sum of squares analysis:

Source df Sum of squares Mean squares F Pr > F

2.- Gender 1 0 .027 0 .013 0 .174 0 .154

3.- Age 1 0 .214 0 .125 0 .857 0 .241

4.1- Education 3 0 .841 0 .352 0 .872 0 .112

4.2-Employment 2 0 .211 0 .100 0 .687 0 .125

5.- Experience and previous knowledge 28 4 .274 0 .205 1 .588 0 .158

R

4

B

B

B  

Y

C

C

C  

C

C

D

F
 

 

 

F

F

H  

 

I

J  

J

A

K  

24-29 .
eferences 

CAAST PROJECT. Official web site .

rambilla, M. , Tokuda, T. , Tolksdorf, R. , 2012. Crowdsourced web site evaluation with

crowdstudy. In: ICWE 2012, LNCS, vol. 7387. Springer-Verlag, Berlin, Heidelberg,
pp. 4 94–4 97 .

urnett, M. , 2009. What is end-user software engineering and why does it Matter?
In: Proceeding IS EUD ’09 Proceedings of the 2nd International Symposium on

End-User Development. Springer-Verlag, Berlin, Heidelberg, pp. 15–28. ©2009
ISBN: 978-3-642-00425-4, doi:10.1007/978-3-642-00427-8_2 .

urnett, M. , Sheretov, A. , Ren, B. , Rothermel, G. , 2002. Testing homogeneous spread-

sheet grids with the “what you see is what you test” methodology. IEEE Trans.
Software Eng. 28 (6), 576–594 .

oon, B. , Garcia, O. , 1998. Cognitive activities and support in debugging. In: Fourth
Symposium on Human Interaction with Complex Systems, HICS, p. 160 .

ai, L. , Zhang, J. , Liu, Z. , 2011. A CPN-based software testing approach. J. Software,
North Am. 6, 468–474 .

ao, J. , Fleming, S. , Burnett, M. , Scaffidi, C. , 2014. Idea garden: situated support for
problem solving by end-user programmers. Interact Comput. 29 May 2014, doi:

10.1093/iwc/iwu022 .

hambers, C. , Erwig, M. , 2009. Automatic detection of dimension errors in spread-
sheets. J. Vis. Lang. Comput. 20 (4), 2009 .

lermont, M. , 2003. Analyzing large spreadsheet programs. In: Proceedings of
the 10th Working Conference on Reverse Engineering,. Victoria, B.C., Canada,

pp. 306–315. November 13-16 .
ostabile, M.F. , Fogli, D. , Mussio, P. , Piccinno, A. , 2006. End-user development:

the software shaping workshop approach. In: Lieberman, H., Paternò, F.,

Wulf, V. (Eds.), End User Development. Springer, Dordrecht, The Netherlands,
pp. 183–205 .
avis, J.S. , 1996. Tools for spreadsheet auditing. Int. J. Hum. Comput. Stud. 45,
429–442 .

ischer, G. , GiaccardI, E. , 2006. Meta-design: a framework for the future of end user
development. In: Lieberman, H., Paternò, F., wulf, V. (Eds.), End User Develop-

ment Empowering People to Flexibly Employ Advanced Information and Com-
munication Technology. Kluwer Academic Publishers, Dordrecht, The Nether-

lands, pp. 427–457 .
i-Ware Project, 2012, Official web site. http://www.fi-ware.eu .

I-WARE PPP Office, 2012, Official web site. http://www.future-internet.eu/home/

future- internet- ppp.html .
oyer, V., Fuchsloch, A., Kramer, S., Moller, K. and López, J. 2013. Eval-

uation of the FAST implementation. Technical Report D6.4.1, FAST Con-
sortium February 2013. https://files.morfeo-project.org/fast/public/M24/D6.4.1 _

ScenarioEvaluation _ M24 _ Final.pdf .
garashi, T. , Mackinlay, J.D. , Chang, B.-W. , Zellweger, P.T. , 1998. Fluid visualization of

spreadsheet structures. In: Proceedings of the 1998 IEEE Symposium on Visual

Languages. Halifax, NS, Canada, pp. 118–125. September 1-4 .
ain, A. , Sharma, S. , Seema, S. , Juneja, D. , 2010. Boundary value analysis for non-nu-

merical variables: strings. Orient. J. Comput. Sci. Technol. 3 (2), 323–330 .
anner, T. , Siebeck, R. , Schroth, C , Hoyer, V. , 2009. Patterns for enterprise mashups in

B2B collaborations to foster lightweight composition and end user development.
In: Proceedings of the IEEE 7th International Conference on Web Services. Los

Angeles, CA, pp. 976–983. July 6-10 .

raki, K. , Furukawa, Z. , Cheng, J. , 1991. A general framework for debugging. IEEE
Software 8 (May(3)), 14–20 .

o, A.J. , Myers, B.A. , 2004. Designing the Whyline: a debugging interface for ask-
ing questions about program failures. In: Proceedings of the ACM Conference

on Human Factors in Computing Systems. Vienna, Austria, pp. 151–158. April

http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0021
http://www.fi-ware.eu
http://www.future-internet.eu/home/future-internet-ppp.html
https://files.morfeo-project.org/fast/public/M24/D6.4.1_ScenarioEvaluation_M24_Final.pdf
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0040


K

L  

 

L

L

L

M

O  

R

 

S

 

S

W

Ko, A.J. , Abraham, R. , Beckwith, L. , Blackwell, A. , Burnett, M. , Erwig, M. , Scaffidi, C. ,
Lawrance, J. , Lieberman, H. , Myers, B. , Rosson, M.B. , Rothermel, G. , Shaw, M. ,

Wiedenbeck, S. , 2011. The state of the art in end-user software engineering. J.
ACM Comput. Surv. 43 (April(3)) Article 21 .

uttal, S.K. , Sarma, A. , Rothermel, G. , 2013. Debugging support for end user mashup
programming. In: Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (CHI ’13). ACM, New York, NY, USA, pp. 1609–1618. doi:
10.1145/2470654.2466213 http://doi.acm.org/10.1145/2470654.2466213 .

izcano, D. , Alonso, F , Soriano, J. , Lopez, G. , 2014. A component- and connec-

tor-based approach for end-user composite web applications development. J.
Syst. Software 94 (1), 108–128 .

Lizcano, D, Alonso, F, Soriano, J, Lopez, G., 2013. A Web-centred approach to end-
user software engineering. ACM Trans. Software Eng. Methodol 22 (October(4)).

Article 36, 29 pages. doi: 10.1145/2522920.2522929 http://doi.acm.org/ .
Lizcano, D. 2012, Description of the development process enacted by surveyed users.

Technical Report. http://apolo.ls.fi.upm.es/eud/solution _ development _ method.

pdf .
izcano, D. 2016, Technical reports about EUSE and EUD. Available at http://apolo.ls.

fi.upm.es/eud .
izcano, D. , Alonso, F. , Soriano, J. , Lopez, G. , 2011a. A new end-user composition

model to empower knowledge workers to develop rich internet applications. J.
Web Eng. 3 (10), 197–233 .

izcano, D. , Alonso, F. , Soriano, J. , Lopez, G. , 2011b. End-user development success

factors and their application to composite web development environments. In:
Proceedings of the Sixth International Conference on Systems, ICONS 11. St.

Maarten, The Netherlands Antilles, pp. 99–108. January 23–28 .
Mackay, W.E. , 1990. Patterns of sharing customizable software. In: Proceedings of

the ACM Conference on Computer-Supported Cooperative Work. Los Angeles,
USA, pp. 209–221. October 7–10 .
ørch, A., , Mehandjiev, N.D. , 20 0 0. Tailoring as collaboration: the mediating role of
multiple representations and application units. J. Comput. Support. Cooperative

Work 9 (1), 75–100 .
brenovic, Z. , Gasevic, D. , 2009. Mashing up oil and water: combining heteroge-

neous services for diverse users. IEEE Internet Comput. 13 (6), 56–64 .
Panko, R. , 1995. Finding spreadsheet errors: most spreadsheet models have design

flaws that may lead to long-term miscalculation. Information Week (May) 100 .
Pressman, R.S. , 2010. Software Engineering: A Practitioner’s Approach, fourth ed.

McGraw-Hill Higher Education. R. S. Pressman & Associates, Inc, Columbus, USA

ISBN: 0073375977 .
othermel, G , M., Burnett , LI, L , C., Dupuis , Sheretov, A. , 2001. A methodology for

testing spreadsheets. J. ACM Trans. Software Eng. Methodol. 10 (1), 110–147 .
Scaffidi, C., Shaw, M., and Myers, B. 2005. The "55M end user Programmers" esti-

mate revisited. Technical Report CMU-ISRI-05-100, Carnegie Mellon University.
egal, J. , 2007. Some problems of professional end user developers. In: Proceedings

of the 2007 IEEE Symposium on Visual Languages and Human-Centric Comput-

ing. Coeur d’Alene, Idaho, USA, pp. 111–118. September 23–27 .
utcliffe, A. , Mehandjiev, N. , 2004. End-user development: tools that empower users

to create their own software solutions. Commun. ACM 47 (9), 31–32 .
Tejo-alonso, C., Fernandez, S., Berrueta, D., Polo, L., Fernandez, M.J., and Morlan,

V. 2015. EZaragoza, a tourist promotional mashup. Technical Report. http://idi.
fundacionctic.org/eZaragoza/ezaragoza.pdf .

ilson, A. , Burnett, M. , Beckwith, L. , Granatir, O. , Casburn, L. , Cook, C. , Durham, M. ,

Rothermel, G. , 2003. Harnessing curiosity to increase correctness in end-user
programming. ACM Conference on Human Factors in Computing Systems. ACM,

New York .

http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0048
http://doi.acm.org/
http://apolo.ls.fi.upm.es/eud/solution_development_method.pdf
http://apolo.ls.fi.upm.es/eud
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0050
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0051
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0064
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0064
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0064
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0066
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0066
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0067
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0067
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0071
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0071
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0071
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0071
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0071
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0071
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0073
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0073
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0077
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0077
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0077
http://idi.fundacionctic.org/eZaragoza/ezaragoza.pdf
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0081
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0081
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0081
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0081
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0081
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0081
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0081
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0081
http://refhub.elsevier.com/S0164-1212(16)30227-8/sbref0081

	Automatic verification and validation wizard in web-centred end-user software engineering
	1 Introduction
	2 Related work: end-user PROGRAMMER VERIFICATION and validation
	3 User-centred verification and validation in WeUSE
	3.1 Test case generation
	3.2 Test case execution
	3.2.1 Component tests
	3.2.2 Integration tests
	3.2.3 Acceptance testing

	3.3 Comparative analysis of RIA verification and validation by EUPs with and without the TW

	4 User study: analysis and discussion
	4.1 EC1: are EUPs that develop RIAs without the verification and validation stage led by the TW able to produce reliable RIAs? What errors do they make? Do these errors compromise the solution to their particular problem or reuse by future users?
	4.2 EC2: are EUPs that undertake the verification and validation stage led by the TW as outlined in this paper able to produce reliable RIAs? Are they able to detect and correct errors, bugs and design and implementation complications for a particular problem?
	4.3 Opinions of users and experts about the proposed verification and validation process

	5 Discussion on threats to validity
	6 Conclusions, limitations and future lines
	 Acknowledgements
	Appendix A Statement of problem 1 for evaluation according to EC1 and EC2
	Appendix B ANCOVA statistical study in order to validate the sample and its division into two equivalent unskewed groups and to analyse the impact of EUP characteristics on errors
	 References




