
A comparison framework for runtime monitoring approaches

Rick Rabiser a, ∗, Sam Guinea

b, Michael Vierhauser a, Luciano Baresi b, Paul Grünbacher
a

a Christian Doppler Laboratory MEVSS, Institute for Software Systems Engineering, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria
b Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza L. Da Vinci 32, 20133 Milano, Italy

abstract

The full behavior of complex software systems often only emerges during operation. They thus need to be monitored at run

time to check that they adhere to their requirements. Diverse runtime monitoring approaches have been developed in various

domains and for different purposes. Their sheer number and heterogeneity, however, make it hard to find the right approach

for a specific application or purpose.

The aim of our research therefore was to develop a comparison framework for runtime monitoring approaches. Our framework

is based on an analysis of the literature and existing taxonomies for monitoring languages and patterns. We use examples from

existing monitoring approaches to explain the framework.

We demonstrate its usefulness by applying it to 32 existing approaches and by comparing 3 selected approaches in the light of

different monitoring scenarios. We also discuss perspectives for researchers.

1. Introduction

The full behavior of a complex software system often only

emerges during operation. As a result, testing is not sufficient to

determine its compliance with the defined requirements. Instead,

e f

a

t

s

r

-

-

c

m -

p -

t

f -

i ,

2

(;

P

a

r

m

(

Existing approaches are very diverse. Some provide end-

user tool support (Robinson, 2006; Ehlers and Hasselbring,

2011), while others require expert domain knowledge by their

users (Viswanathan and Kim, 2005); some cover specific architec-

tural styles (Baresi and Guinea, 2013), while others are general-

p -

t

p -

p ,

1 r

o

o ,

a

-

p -

i

t

g

w

b

t

r

a

l

a

d

(

ngineers and maintenance personnel must always keep track o

 system’s behavior during operation and check the interactions

hat occur between its components, as well as between the

ystem and its environment. This is commonly referred to as

untime monitoring.

Many research communities have developed monitoring ap

proaches for various kinds of systems and purposes. Examples in

lude requirements monitoring (Maiden, 2013; Robinson, 2006),

onitoring of architectural properties (Muccini et al., 2007), com

lex event processing (Völz et al., 2011), and runtime verifica

ion (Calinescu et al., 2012; Ghezzi et al., 2012), to name but a

ew. The desired runtime behavior is often formally expressed us

ng temporal logic (Viswanathan and Kim, 2005; Gunadi and Tiu

014; Bauer et al., 2006), or through the use of domain-specific

constraint) languages (Robinson, 2006; Baresi and Guinea, 2013

han et al., 2008; Vierhauser et al., 2015). Defined constraints

re checked based on events and data collected from systems at

untime, e.g., through instrumentation (Mansouri-Samani and Slo-

an, 1993).

∗ Corresponding author. Fax: +4373224684341.

E-mail addresses: rick.rabiser@jku.at (R. Rabiser), sam.guinea@polimi.it

S. Guinea).
©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecom
Published Journal Article available at: http://dx.doi.org/10.1016/j.jss.2016.12.034
urpose (Robinson, 2006); some automatically generate moni

ors based on models (Robinson, 2006), while others require that

robes be manually developed (Vierhauser et al., 2016b). Ap

roaches also differ regarding their expressiveness (Dwyer et al.

999), e.g., the degree of support to check the occurrence and/o

rder of runtime events (temporal behavior), the interactions

ccurring between different (sub-)systems (structural behavior)

nd/or the properties held by certain runtime data (data checks).

This variety makes it hard to analyze and compare existing ap

roaches. While some effort s have been made to discuss exist

ng work on runtime monitoring – e.g., to create a taxonomy of

ools (Delgado et al., 2004) and of (property specification) lan-

uages (Dwyer et al., 1999) – there is still no systematic (and easy)

ay to analyze and compare existing approaches. The main contri-

ution of this paper is, therefore, a comparison framework for run-

ime monitoring approaches. We have developed it based on the

e- sults of a systematic review of existing literature (Vierhauser et

l., 2016a), building on existing taxonomies for monitoring

anguages and patterns (Delgado et al., 2004; Dwyer et al., 1999),

nd taking inspiration from comparison frameworks from other

omains such as software architecture or software product lines

 Medvidovic and Taylor, 20 0 0; Matinlassi, 20 04).
mons.org/licenses/by-nc-nd/4.0/

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.12.034&domain=pdf
mailto:rick.rabiser@jku.at
mailto:sam.guinea@polimi.it

Fig. 1. Research approach.

.

s

o

s ,

2 f

t

(

i r

r

a

a o

a

a

s s

m

R

f f

s

e

t

S

d

b f

t s

a

a

d /

e r

a r

each of these publications if it describes work that supports
Specifically, we claim the following contributions: (i) we pro-

pose a framework that supports analyzing and comparing runtime

monitoring approaches using different dimensions and elements;

(ii) we demonstrate how the framework can be applied to ana-

lyze existing monitoring approaches found in the literature, and

to compare them in detail; and (iii) we discuss perspectives and

potential future applications of our framework, e.g., to support the

selection of an approach for a particular monitoring problem or

application context.

The remainder of this paper is structured as follows. In

Section 2 we describe our research approach for developing the

comparison framework. In Section 3 we describe the framework

by referring to existing runtime monitoring approaches to motivate

and explain its different dimensions and elements. In Section 4

we demonstrate the feasibility of the framework by applying it to

analyze 32 existing approaches, and by comparing 3 selected

approaches in detail in the light of different monitoring scenarios

We conclude by discussing our evaluation results and perspective

for future applications of the framework in Section 5.

2. Research approach

Fig. 1 depicts our research approach, we conducted the

research described in this paper in five phases:

(1) Literature review. The authors have performed research on

runtime monitoring for several years: specifically, three of the

authors developed an approach for monitoring requirements

of systems of systems in the automation software domain
(Vierhauser et al., 2016b), while the other two authors devel-
c

ped approaches supporting runtime monitoring of multi-layered

ervice-based systems (Baresi and Guinea, 2013; Seracini et al.

014). As part of their research on runtime monitoring, three o

he authors recently conducted a systematic literature review

SLR) following existing guidelines (Kitchenham, 2007), to

dentify, describe, and classify existing approaches fo

equirements monitoring of software systems at runtime. The

ims of this SLR, published 2016 in the Journal on Information

nd Software Technology (Vierhauser et al., 2016a) were (i) t

nalyze the characteristics and application areas of the monitoring

pproaches that have been proposed in different domains, (ii) to

ystematically identify frameworks supporting requirement

onitoring according to the framework definition provided by

obinson (2006), and (iii) to analyze the extent to which these

rameworks support requirements monitoring in systems o

ystems.

In the SLR, searching the digital libraries of IEEE, ACM, Sci-

nceDirect, and Springer (search string: (“run-time” OR “run-

ime”) AND (“monitor” OR “monitoring”); cf. the appendix of the

LR (Vierhauser et al., 2016a) for detailed search strings split by

igital library targeted) resulted in 2201 publications published

etween 1994 and 2014. When reading the titles and abstracts o

he 2201 papers, the authors of the SLR first excluded duplicate

nd clearly out-of-scope papers, e.g., hardware monitoring

pproaches, resulting in 1235 publications to be inspected in more

etail. The three authors of the SLR then voted on inclusion

xclusion for the 1235 publications based on reading thei

bstracts applying different criteria. Specifically, they assessed fo
ontinuous requirements

m

T

l

f

E

P

s

m

-

t

p

a

a r

m

a

m

c

r

c -

g -

t

i

p

f

s

c

t

i

p

l

d

m

f

e

t

a

v

W

p

p

a

s

f

a

i

n

5

w .

A s

p /

m

t

a

t

e

d

n

d

t

v

c

p

m

r

n

s

v

a

f

a

e

d

m

3

f

3

m

(

m

p

3

m

p

a l

s

a f

t

a

e

n

p

e

h -

p -

p

1

p .

F

a

c t

f r

g

v r
onitoring of software systems at runtime (inclusion criterion).

hey excluded publications on offline analysis and debugging, pub

ications that have not been peer-reviewed, that are not available

or download, or that are written in a language other than

nglish.

ublications were only excluded when all authors agreed on exclu-

ion. All 2:1 voting cases were discussed among all authors before

aking a decision. While voting, the authors also indicated when

they were unsure about a vote, which also led to a discussion. Ul-

timately voting resulted in a selected set of 356 contributions on

runtime monitoring of software. The authors then analyzed these

remaining papers and selected 65 publications, describing 50 dis-

tinct approaches considering at least two of the monitoring frame-

work layers discussed by Robinson (2006). For these 65 publica

tions, the authors extracted detailed information for the SLR. While

the SLR assessed and discussed existing support for monitoring in

he specific context of systems of systems, the purpose of this pa-

er is to present a general comparison framework for monitoring

pproaches. We only use the 65 publications identified in the SLR

s a basis to develop and assess our comparison framework fo

onitoring approaches, i.e., both, the SLR and this paper, share

 common data set, but report completely different results. For

ore details on the SLR, we refer the reader to the respective arti-

le (Vierhauser et al., 2016a).

(2) Initial development of the framework. To develop ou

comparison framework we took inspiration from existing

omparison frameworks for architecture description lan

uages (Medvidovic and Taylor, 20 0 0) and product line archi

ecture design (Matinlassi, 2004). Specifically, we read the 65

dentified papers to determine candidate elements for the com-

arison framework, guided by the dimensions used in Matinlassi’s

ramework (Matinlassi, 2004). This led to an initial list of dimen-

ions (e.g., user, content) and elements (e.g., monitoring language,

onstraint patterns, trigger, tool support).

(3) Framework refinement and initial application. To consolidate
hese suggestions, we conducted multiple meetings to discuss and

teratively refine the dimensions and elements. This lead to a first

rototype comparison framework. We then re-read the 65 pub-

ications and tried to categorize and describe the 50 approaches

iscussed therein using the prototype comparison framework’s di-

ensions and elements. This effort allowed us to further refine our

ramework, and led to a final set of 4 dimensions and 21

lements (cf. Section 3).

(4) Population of the framework with approaches covering manda-

ory elements. We were not able to assess all 50 approaches against

ll 21 elements of our framework. This was due to a lack of rele-

ant information in the approaches’ publications and web pages.

hile this may be acceptable for some elements – e.g., an ap-

roach does not necessarily have to come with end-user tool sup-

ort for defining the properties/constraints to be checked – the

bsence of information about key elements can render it impos-

ible to reasonably compare approaches with each other. There-

ore, through discussion, we identified 7 elements that we regard

s mandatory for a useful comparison: goal and scope, approach

nputs, approach outputs, language, mapping to underlying tech-

ology, constraint patterns, and nature of validation. 30 out of the

0 approaches covered all these mandatory main elements and

e thus used our framework to analyze and compare these 30

n overview of the results can be found in the appendix of thi

aper, more details can be found at http://tinyurl.com

oncompfw. Dur- ing a revision of this paper we also contacted

he developers of 28 of these 30 approaches (the two remaining

pproaches were our own) via E-Mail and asked them to check

he online spreadsheet regarding the information we had

xtracted on their approach. We also attached our framework

imensions and elements including a short explanation. We could
ot reach all approach developers, e.g., because they were

eceased or had left academia. Overall, we sent
e

s

he E-Mail to 84 people, 19 (23%) of which replied. They were in-

olved in the development of 17 different approaches (61%). Most

onfirmed the extracted information as correct, but some (13 peo-

le) additionally suggested minor textual corrections of the infor-

ation about their approaches. Two also suggested to add their

ecent approaches. In the revision of the paper we thus made mi-

or textual corrections to the information we had extracted on

ome of the 30 approaches as requested by the approach de-

elopers and also added two additional approaches resulting in

 final list of 32 approaches covering the main elements of our

ramework.

(5) Application of the framework. We demonstrate the use of our

framework by describing an in-depth comparison of 3 selected ap-

proaches regarding their usefulness in different monitoring sce-

narios (cf. Section 4), to provide the reader with a full under-

standing of the framework’s capabilities. We selected the three ap-

proaches from the mentioned 30 through a formal concept anal-

ysis (Ganter and Wille, 2012), a technique based on mathemati-

cal order theory, which allows to derive a concept hierarchy from

a collection of objects and their properties. Each concept in the

hierarchy represents the set of objects that share the same val-

ues for a certain set of properties; and each sub-concept in the

hierarchy contains a subset of the objects in the concepts above

it. The end result of a formal concept analysis can be visualized

s a concept lattice. We mapped approaches and framework el-

ments to produce such a concept lattice, and used it to un-

erstand which approaches provided information on which ele-

ents of our comparison framework. This allowed us to select the

 approaches covering the most elements from our comparison

ramework.

. Comparison framework

Table 1 presents our comparison framework; it covers four di-

ensions – context, user, content, and validation – and 21 elements

7 of which are mandatory). We now discuss the framework’s four

ain dimensions, using examples from existing monitoring ap-

roaches to illustrate the elements in each dimension.

.1. Context

This section contains the elements that describe how the

onitoring approach relates to the application’s context. More

recisely, these elements tell us the goal and scope of an

pproach: whether it is tied to a specific domain, architectura

tyle, technical setting, or bound to a specific phase in the

pplication’s life-cycle. Further, it covers the inputs and outputs o

he approach, and its level of intrusiveness. The goal and scope

nd the inputs and outputs of the approach are mandatory

lements, as for a comparison one

eeds to at least understand the intention of the approach, the in-

uts needed to work with it, and the outputs it produces.

 A monitoring approach’s specific goal and scope (mandatory

lement of our framework) describes the purpose for which it

as been developed. For example, ReqMon (Robinson, 2006) sup

orts requirements monitoring, primarily in the domains of enter

rise information systems and electronic commerce, while Kieker-

 (Ehlers and Hasselbring, 2011) supports failure diagnosis and

erformance anomaly detection primarily in Java-based systems

rom a high-level perspective, most of the 32 monitoring

pproaches we analyzed aim at monitoring the runtime

ompliance of a system to its specification, however, differen

orms of specifications are used. Some approaches describe thei

oal and scope in more detail: examples include monitoring and

erification of business constraints (Montali et al., 2014) o
nforcing program safety and security properties in service-based

ystems (Aktug et al., 2008).

http://tinyurl.com/moncompfw

Table 1

Comparison framework: 4 dimensions and 21 elements to analyze and compare monitoring approaches.

Dimension/Element (∗ ...mandatory) Question and examples

1: Context

1a: Specific goal and scope ∗

1b: Life-cycle support

1c: Application domain(s)

1d: Architectural style(s)

1e: Approach inputs ∗

1f: Approach outputs ∗

1g: Intrusiveness and overhead

2: User

2a: Target group

2b: Motivation

2c: Needed skills

2d: Input guidance

2e: Output guidance

3: Content

3a: Language ∗

3b: Reasoning and checking ∗

3c: Constraint patterns ∗

3d: Data and event manipulation

3e: Trigger

3f: Meta-information

3g: Variability and evolution

4: Validation

4a: Nature of validation ∗

4b: Availability and support

(see Section 3.1)

What is the specific goal and scope of the approach?

What phases of the software engineering life-cycle does the approach support?

What is/are the application domain(s) of the approach?

For what type(s) of architecture(s) is the approach intended?

What is the starting point for the approach?

What are the results of the approach?

How strong is the approach’s impact on the system (e.g., does it run within the system or in parallel)?

(see Section 3.2)

Who are the stakeholders addressed by the approach?

What are the user’s benefits when using the approach?

What capabilities does the user require to apply the approach?

How does the approach guide the user while defining inputs such as constraints?

How does the approach guide the user while managing outputs such as detected violations of constraints?

(see Section 3.3)

What type of language is used to define constraints (e.g., formal language, DSL, high-level representation)?

What underlying technology supports reasoning on and checking of constraints (e.g., OO language, CEP engine,

solver)?What patterns, e.g., by Dwyer et al. (1999) (event ordering, occurrence, data checks, support for fuzzy

checks, ...) are covered by the language?

Does the language support runtime data manipulation (accessing, aggregating, or analyzing data)?

How is the instantiation and evaluation of constraints triggered?

Does the approach allow to specify meta-information on constraints (e.g., severity, grouping)?

Can constraints be configured in different ways? Is the co-evolution with the monitored system supported?

(see Section 3.4)

How has the approach been validated (industrial case studies, formal proof/scientific evaluation, (toy) examples)?

Is the approach (still) available and how is it supported?

-

,

s

-

-

-

e

C

i

(

o

s

f

a

a

m

i

2

f

u

a ,

o

j

t

a

w

3

The life-cycle support element describes the phases of the soft-

ware engineering life-cycle in which a monitoring approach will

be primarily used. For instance, some approaches detect and diag

nose deviations from requirements during maintenance and

operation (Robinson, 2006; Spanoudakis and Mahbub, 2004)

while others focus on the requirements engineering phase

(Robinson, 2006).

Yet others aim at performance analysis and code (instrumenta-

tion) (Ehlers and Hasselbring, 2011), and thus focus more on the

implementation phase.

Many monitoring approaches have been developed for a

particular application domain, such as enterprise information

systems (Robinson, 2006), service-based systems (Baresi and

Guinea, 2013), or systems of systems (Vierhauser et al.,

2016b). Others are more generally applicable in different do-

mains (Montali et al., 2014), or are reported as being applicable in

multiple domains, although they have been used in only one do-

main so far, e.g., mobile systems developed in Android (Gunadi and

Tiu, 2014). Of the 32 approaches we analyzed most were devel-

oped for service-based systems, followed by approaches supporting

business process monitoring.

The architectural style(s) element defines the type(s) of archi-

tecture(s) a monitoring approach can be used with. Depending on

how this element is described, it allows us to derive the types of

technologies the approach might work for. For example, many

approaches we analyzed were developed for service-based sys-

tems. However, some are centered on Service-Oriented Architec-

tures (SOA) using the Business Process Execution Language (BPEL),

e.g., (Spanoudakis and Mahbub, 2004), while others use the Service
Component Architecture (SCA), e.g., (Baresi and Guinea, 2013).

 The mandatory element approach inputs addresses the kind

of inputs expected by the monitoring approach. Often, the input

is a specification, e.g., written in BPEL, which is used to gener

ate monitors for service-based systems (Spanoudakis and Mah

bub, 2004). Other approaches require monitors to be specified

in their own language, e.g., existing languages such as the Ob

ject Constraint Language (OCL) (Robinson, 2006) or custom-made
domain-specific languages (Vierhauser et al., 2016b). Recorded
vent traces (Faymonville et al., 2014) or goal models (Ramirez and

heng, 2011) can also serve as an input.

The mandatory element approach outputs addresses the

kinds of outputs the monitoring approach provides to

ts users. For approaches that focus on runtime verification

Faymonville et al., 2014), the output can be simply TRUE

r FALSE. Other approaches (Jeffery et al., 2004; Ehlers and Has-

elbring, 2011) generate code that is used to instrument systems

or monitoring. For instance, FORMAN (Jeffery et al., 2004) gener-

tes C code from behavior specifications (event grammar). Some

pproaches visualize system behavior (Robinson, 2006), perfor-

ance characteristics (Ehlers and Hasselbring, 2011), or provide

nformation on the violations of requirements (Vierhauser et al.,

016b).

The element intrusiveness and overhead describes the impact o

sing a monitoring approach on a (running) system. While many

pproaches run within the system they monitor (Robinson, 2006)

thers run in parallel (Montali et al., 2014). Some approaches are

ust listening (Vierhauser et al., 2016b), while others aim to ac-

ively adapt the running system (Baresi and Guinea, 2013). Many

pproaches measure the overhead for the monitored system as a

ay to demonstrate their feasibility.

.2. User

This dimension covers the elements that describe the targeted

stakeholders as well as their required skills and capabilities for us-

ing the approaches. While user focus and guidance are essential to

make an approach useful, information about such user elements is

not required to understand how approaches work in general. Thus,

this dimension of our framework does not contain any mandatory

elements.

The target group element captures which stakeholder roles, e.g.,

software developers, testers, software architects, or even end users,

are supported by the approach. Unfortunately, the papers we ana-

lyzed were typically not very specific in this regard, and often we

could only define software engineers or service engineers as the

intended users of the approach.

t

e .

O s

d

M

s

l

l

m

2

2

m

F

t

a

c

r

n s

m

r

(;

F ,

e t

a

s

e r

e

u

M -

i s

a s

f

a

e

c

o

e

a s

(t

a

s .

V

s ,

2 r

d

3

n

m

t

i

m .

A l

l t

l -

t

 -
q t
L

M t
C

t

f

n

(

p

D

t

d

s

f

c

t

g

w

t

r

2

t

t

e

c

a -

q -

i

,

2

a

v

e

d -

u -

t -

a)

p -

M

fi l

a

-

,

i

o

p

a

i

-

s -

m -

P r

c

u

e

s

i

a

n

b

t .

B

t

s

(

p

The motivation for applying the approach is an importan

lement; it describes the users’ benefits when using the approach

ur review revealed a wide range of reported benefits, such a

etecting Service-Level Agreement (SLA) violations (Contreras and

ahbub, 2014), detecting compliance issues in service-based

ystems (Holmes et al., 2011), discovering performance

eaks (Ehlers and Hasselbring, 2011), detecting security prob-

ems (Gunadi and Tiu, 2014), checking business process confor-

ance (Poppe et al., 2013), checking safety properties (Kim et al.,

001), monitoring constraints on business processes (Montali et al.,

014), checking program behavior (Jeffery et al., 2004), detecting

ismatches in service interactions (Baouab et al., 2012), etc.

ORMAN (Jeffery et al., 2004) has recently also been extended

o support system and software executable architecture modeling

nd is also the basis for a business process modeling framework

alled Monterey Phoenix (Auguston et al., 2015).

The needed skills element refers to the capabilities that a use

eeds to possess to properly apply an approach and perform it

onitoring tasks. Typically, the approaches we investigated

equire user skills in several areas including formal background

e.g., LTL, Event Calculus) (Contreras and Mahbub, 2014

aymonville et al., 2014; Spanoudakis and Mahbub, 2004)

xperience with different domain-specific languages (Holmes e

l., 2011; Paschke, 2005; Aktug et al., 2008), the capability to

pecify rules (Ehlers and Hasselbring, 2011) or queries (Baouab

t al., 2012), programming skills for writing probes (Vierhause

t al., 2016b), or modeling skills (Ramirez and Cheng, 2011).

 Our framework also addresses how the approaches guide the

sers in defining constraints, i.e., through element input guidance.

onitoring approaches, for example, may provide text-based ed

tors for defining rules and constraints (Aktug et al., 2008; Ehler

nd Hasselbring, 2011; Conforti et al., 2013), or graphical language

or defining the expected behavior (Montali et al., 2014). Few

pproaches propose or discuss specific tool support (Faymonville

t al., 2014; Jeffery et al., 2004; van Hoorn et al., 2012).

Similarly, through element output guidance, our framework

onsiders how approaches guide the users in managing the

utputs of the runtime monitoring approach, e.g., by visualizing

valuation results or providing diagnosis support. Some

pproaches provide web-based interfaces or dashboard

Robinson, 2006; Kumar Tripathy and Patra, 2010; van Hoorn e

l., 2012). More advanced techniques support adaptations of the

ystem (e.g., by switching services) (Contreras and Mahbub, 2014)

isualizations include calling context trees, responsiveness time

eries (Ehlers and Hasselbring, 2011), or violations (Montali et al.

014). Again, the majority of the approaches do not propose o

iscuss specific tool support.

.3. Content

The content dimension contains elements describing more tech-

ical aspects of the monitoring approaches. It contains three

andatory elements one must understand to compare approaches:

he used monitoring language, the underlying reasoning and check-

ng mechanism, and the supported constraint patterns.

The language an approach uses to define the properties to

onitor is an important mandatory element of our framework

pproaches provide a variety of languages, including forma

anguages (Faymonville et al., 2014), domain-specific constrain

anguages (Vierhauser et al., 2016b), and model-based representa

ions such as UML sequence diagrams (Simmonds et al., 2009).

 Some approaches rely on existing languages or formalisms: Re
Mon (Robinson, 2006), for example, uses the Object Constrain
anguage while MORPED (Contreras and Mahbub, 2014) and
obucon EC (Montali et al., 2014) are based on the Even

alculus. Of the 32 monitoring approaches we analyzed, almost one

hird propose their own Domain-Specific Language (DSL) for speci-
ying properties or constraints; typically these are tailored to the

eeds of the users and the types of constraints and properties

 Kumar Tripathy and Patra, 2010; Kim et al., 2001). Our own ap-

roaches (Vierhauser et al., 2015; Baresi and Guinea, 2013) also use

SLs.

The reasoning and checking mechanism is a mandatory elemen

escribing the actual engine used to validate the monitored con-

traints. This could be a high-level programming language or a

ormal verification framework, hidden from the user through a

onstraint definition language. In the domain of service-based sys-

ems and business processes, Complex Event Processing (CEP) en-

ines (Luckham, 2011) such as Drools Fusion and Esper are

idely used (Holmes et al., 2011; Inzinger et al., 2013). However,

here are also many custom-tailored mechanisms for evaluating

ules and constraints (Vierhauser et al., 2016b; Gunadi and Tiu,

014; Jeffery et al., 2004; Faymonville et al., 2014).

Depending on the application area, the target domain, and

he designated users of the approach, different constraint pat-

erns (Dwyer et al., 1999) are typically supported – a mandatory

lement of our framework. For instance, approaches check spe-

ific sequences of events that have to occur, the presence and

bsence of a specific event, or data/performance properties. Re

Mon (Robinson, 2006), for example, provides support for defin

ng the expected order and occurrence of certain events using

real-time temporal operators, while Kieker-1 (Ehlers and Hassel-

bring, 2011) allows checking performance characteristics. When

aiming at system adaptation, some approaches (Inzinger et al.

013; Contreras and Mahbub, 2014) also use event-condition-

ction (ECA) rules to directly react to certain events or constraint

iolations.

 Monitoring approaches can also provide support for data and

vent manipulation. This can include capabilities for aggregating

ata from different events (e.g., calculating sums or average val

es), defining arbitrary user-specific functions, performing statis

ical analyses, as well as analyzing complex event data. For ex

mple, YAWL (Conforti et al., 2013) and MaC (Kim et al., 2001

rovide means for defining additional auxiliary variables. Req

on (Robinson, 2006) and RBSLA (Paschke, 2005) allow defining

lters and data aggregators, which can be used for statistica

nalysis.

The trigger element describes the mechanisms used to ini

tiate constraint evaluation. Most approaches are event-based

.e., constraint evaluation is triggered when a specific event

ccurs (Kim et al., 2001; Holmes et al., 2011). Other ap-

roaches (Conforti et al., 2013; Ehlers and Hasselbring, 2011) use

 periodic trigger, or become active when a monitored component

s started (Simmonds et al., 2009).

The meta-information element provides additional info on con

traints, e.g., describing the severity of a violation or its assign

ent to a particular component of a system. For instance, MOR

ED (Contreras and Mahbub, 2014) allows users to define use

on- text models in addition to constraints.

The variability and evolution element refers to the config-

rability and adaptability of an approach and its constraints. Co-

volution of the monitoring infrastructure with the monitored

ystem is often necessary to react to newly emerging or chang-

ng requirements, or to changes that occur in the structure and

rchitecture of the monitored system. This may include adding

ew constraints dynamically, activating or deactivating constraints

ased on certain monitoring scenarios, and modifying or parame-

erizing constraints to match the system variant to be monitored

ased on our observations, most approaches have not considered

his issue so far. Exceptions are, e.g., Kieker-1 (Ehlers and Has-

elbring, 2011), Kieker-2 (van Hoorn et al., 2012) and REMINDS

 Vierhauser et al., 2016b), which allow activating and deactivating

robes dynamically.

s

-

.

,

,

s

,

.

,

,

f

r

t

t

.

)

t

-

-

-

-

,

r

;

,

g

p

t

r

i

c

a

K

s

m

n

r

p

E

l

t

p

r

c

i

w

t

a

u

M

c

e

a

c

p

o

a

r

t

t

p

t

O

t

I

i

K

v

m

b

l

(

fi

t

i

c

v

I

g -

g

t

i

d

f

w

q

fi
3.4. Validation

This framework dimension contains information about how a

monitoring approach has been validated, and to what extent it i

publicly available. This dimension is essential to understand the

potential impact of an approach on practice. At least the nature

of the validation must be understood in order to compare

monitoring approaches, which is why this element is mandatory.

 The mandatory nature of validation element assesses the degree

and rigor of the scientific validation of the monitoring approach.

Most tools provided by monitoring approaches are research

oriented prototypes and thus their validation must be framed in

this context. Many approaches have only been assessed through

simple examples or through systems that are “friendly enough”

Only in a few cases did cooperations with industry (Montali et al.

2014) and/or EU-sponsored projects (Robinson, 2006; Paschke

2005) help create proper sandboxes for the proposed monitoring

solutions.

Regarding the availability and support element, most of the tool

and frameworks discussed in the papers we analyzed are not avail-

able (anymore) to the public. Many papers do not provide infor-

mation about the availability of the artifacts in the paper itself

requiring a web search or to contat authors. In some cases, the

tools are no longer available, since they are no longer maintained

In a few exceptional cases, the tools are still available, or at least

the code can be retrieved from personal web pages (Poppe et al.

2013), open repositories like GitHub or sourceforge (Robinson

2006; Ehlers and Hasselbring, 2011), or they require some special-

purpose license (Montali et al., 2014; Vierhauser et al., 2016b).

4. Evaluation: applying the comparison framework

One of our framework’s main goals is to enable the

comparison of existing approaches, with the objective o

establishing which can be deemed applicable, and/or bette

suited, given a specific monitoring scenario. In this section we

shall demonstrate how this can be achieved, with regard to two

specific scenarios. In the first scenario, we assume tha

maintenance personnel are interested in monitoring even

sequences in service-based systems to investigate a reported issue

This scenario requires an approach through which they can (i

instrument service-based systems, (ii) specify constraints on even

sequences, and (iii) receive valid end-user support. In the second

scenario, we assume that engineers are interested in monitoring

the performance of a Java-based application to identify

performance leaks. This requires an approach through which they

can (i) instrument Java-based systems, (ii) specify performance

checks, and (iii) visualize the monitored performance.

 From the 32 monitoring approaches we analyzed (cf. appendix),

we selected 3 approaches to demonstrate the use of our compar

ison framework. As previously mentioned, we performed a for

mal concept analysis (Ganter and Wille, 2012) to identify the ap

proaches that covered the most elements of our framework. To

avoid bias, we excluded our own approaches and the two addi

tional approaches suggested by the approach authors we

contacted (cf. research method). We then selected three

approaches with different goals and application areas. Specifically

we selected the Mobucon-EC approach (Montali et al., 2014) fo

the runtime verification and monitoring of business processes; the

ReqMon approach (Robinson, 2006), which focuses on

requirements monitoring of enterprise information systems

and the Kieker-1 approach (Ehlers and Hasselbring, 2011), which

supports application performance monitoring.

Regarding their context and scope – i.e., runtime verification

requirements monitoring, and performance monitoring – both

ReqMon (monitoring of enterprise information systems) and
Mobucon-EC (process monitoring) have a clear focus, while

Kieker-1 is more
enerally applicable. ReqMon and Mobucon-EC would both sup-

ort distributed systems with a service-oriented architecture. The

hree approaches expect very different inputs, i.e., OCL monitoring

ules (Kieker-1), constraints (Mobucon-EC), and requirements spec-

fications (ReqMon). The outputs also differ significantly and in-

lude violations (Mobucon-EC), performance anomalies (Kieker-1),

nd generated monitors (ReqMon). Regarding intrusiveness, both

ieker-1 and Mobucon-EC run mostly in parallel to the monitored

ystem using existing event streams, while ReqMon can have a

ore significant impact depending on the instrumentation tech-

ology applied (instrumentation is generated but then potentially

uns within the monitored system).

All three approaches are intended to support engineers as their

rimary user group. Regarding the required skills both Mobucon-

C and ReqMon require the user to learn a domain-specific

anguage, while Kieker-1 utilizes OCL. All three approaches provide

ool support to ease writing constraints. Kieker-1 and ReqMon also

rovide rather sophisticated means for visualizing the monitoring

esults, i.e., monitored performance information and detected

onstraint violations.

Regarding the content dimension, Kieker-1 links its OCL mon-

toring rules to an underlying (aspect-oriented) instrumentation,

hile ReqMon maps it to a domain-specific event sink provided by

he Microsoft Instrumentation Framework. While both approaches

re extensible, existing implementations mainly focus on a partic-

lar technology, i.e., Java (AspectJ) for Kieker-1 and .NET for Req-

on. Mobucon-EC is more generic and maps its DSL to Event Cal-

ulus, allowing the use of existing solvers. A key distinguishing el-

ment are the types and patterns of constraints supported by the

pproaches. For example, Kieker-1 mainly focuses on performance

alculations (even though OCL can be used to express more general

atterns), while ReqMon supports checks on event ordering and

ccurrence as well as data checks and ECA rules. Constraint evalu-

tion is triggered by events in Mobucon-EC and ReqMon, and pe-

iodically in Kieker-1. Kieker-1 and ReqMon provide support to ac-

ivate and deactivate probes based on monitored information, e.g.,

o reduce the monitoring overhead.

All three approaches have been validated; however, the re-

orted case studies and examples focus mainly on demonstrating

he general feasibility and on assessing the monitoring overhead.

ther aspects, e.g., the usefulness of their constraint language and

he provided tool support have not been scientifically evaluated.

n terms of availability, Kieker-1 has the biggest community and

s frequently updated, which eventually led to the new version

ieker-2 (van Hoorn et al., 2012).

Our comparison summarized in the appendix of this paper re-

eals that ReqMon could be useful in the first scenario, to support

aintenance personnel in monitoring event sequences in service-

ased systems, even though it might not appear so from a first

ook at the context dimension. While ReqMon’s goal and scope

requirements monitoring) is more general than the goal of the

rst scenario (monitoring event-sequences in service-based sys-

ems), and its application domain (enterprise information systems)

s not necessarily service-based systems, a closer look at the ar-

hitectural style (SOA) and approach inputs (policies) elements re-

eals that it could be actually useful for service-based systems.

n the first scenario maintenance personnel are the target user

roup. While ReqMon is more targeted towards (requirements) en

ineers, the provided input guidance (probes are generated from

emplates and a RequisitePro tool extension allows specifying mon-

toring goals) and output guidance (ReqMon’s Presenter provides a

igital dashboard presenting monitoring results in a way suitable

or requirements analysts) would allow maintenance personnel to

ork with it. Furthermore, the constraint patterns supported by Re-

Mon include occurrence and ordering of events as required in the

rst scenario, and the trigger of ReqMon’s constraint engine are

e

a

b

s

g

p

c

m

c

p

a

p

s

(

t

a

p

n

s

s

c

a

v

w

q

t

f

i

t

o

i

t

o

q

p

i

o

e

i

p

g

a

i

m

g

t

1

w

t

t

m

t

e

v

l

5

–

r

t

t

i

t

g

i

e

b

w

f

d

w

l

a

a

r

r

b

u

i

i

b

r

a

s

a

t

I

p

t

t

i

l

i

d

e

i

q

P

s

t

i

t

l

p

t

t

g

d

m

a

a

t

s

e

t

i

t

b

o

r

l

l
vents. While ReqMon’s evaluation demonstrates its low overhead

nd principle feasibility, a detailed, scientific evaluation has not

een conducted, particularly not in the domain of service-based

ystems.

Mobucon-EC could also be used in the first scenario. Its main

oal and scope is runtime verification and monitoring of business

rocesses during operation, which matches with the need to check

onstraints on event sequences. Its application domain (process

onitoring) and architectural style (sets of systems enacting pro-

esses) would be suitable for the first scenario, because business

rocesses are often realized as services and service-based systems

re indeed sets of (distributed) systems. Mobucon-EC provides in-

ut guidance in the form of a graphical notation for defining con-

traints in Event Calculus; it is also capable of visualizing violations

 output guidance). However, the approach still requires experience

o specify constraints, and output guidance is not as sophisticated

s the one provided by ReqMon. In terms of supported constraint

atterns Mobucon-EC supports quantitative time constraints and

on-atomic, durative activities, i.e., it can be used to monitor event

equences. The trigger of its underlying Event-Calculus-based rea-

oning engine are also events. Mobucon-EC has been evaluated in a

ase study about maritime safety and security. Mobucon-EC could

lso be used in the first scenario. Its main goal and scope is runtime

erification and monitoring of business processes during operation,

hich matches with the need to check constraints on event se-

uences. Its application domain (process monitoring) and architec-

ural style (sets of systems enacting processes) would be suitable

or the first scenario, because business processes are often real-

zed as services and service-based systems are indeed sets of (dis-

ributed) systems. Mobucon-EC provides input guidance in the form

f a graphical notation for defining constraints in Event Calculus; it

s also capable of visualizing violations (output guidance). However,

he approach still requires experience to specify constraints, and

utput guidance is not as sophisticated as the one provided by Re-

Mon. In terms of supported constraint patterns Mobucon-EC sup-

orts quantitative time constraints and non-atomic, durative activ-

ties, i.e., it can be used to monitor event sequences. The trigger

f its underlying Event-Calculus-based reasoning engine are also

vents. Mobucon-EC has been evaluated in a case study about mar-

time safety and security.

Kieker-1 would definitely be the most suitable of the three ap-

roaches when it comes to the second scenario. For instance, its

oal and scope are performance anomaly detection and failure di-

gnosis during operation. While no particular application domain

s emphasized by Kieker-1, component-based architectures (imple-

ented in Java) are the mainly supported architectural style . En-

ineers are the target group and are supported with a rule edi-

or (input guidance). Visualizations that can be provided by Kieker-

, such as calling context trees and responsiveness time series,

ould definitely help engineers to monitor the performance of

heir Java-based applications. Kieker-1’s support can easily be in-

egrated into an engineer’s development environment. Further-

ore, Kieker-1 also automates instrumenting Java-based applica-

ions through aspect-orientation and it requires writing (and gen-

rating) OCL monitoring rules, which suits our second scenario

ery well. Supported constraint patterns include performance calcu-

ations. The approach has been evaluated in multiple case studies.

. Discussion and perspectives

The application of our framework to 50 monitoring approaches

32 of which we analyzed in detail and 3 of which we compared

egarding their usefulness for different scenarios – demonstrates

hat our framework can be adopted by researchers and practi-

ioners. The framework made it easier for us to extract relevant

nformation from the papers we were analyzing, by emphasizing
he important aspects of runtime monitoring and by clearly distin-

uishing the context, user, content, and validation dimensions.

While our framework is an informal and qualitative approach,

ts dimensions and elements provide a structure to the knowl-

dge that is hidden within the papers, making them more accessi-

le and more easily comparable. The framework especially shines

hen the user is interested in finding an approach that is suitable

or her/his domain, architectural style, or technical setting, as we

emonstrated in Section 4.

The framework also helped us to uncover several issues that

e believe should be known by the monitoring community at

arge. Specifically, we noticed that most approaches do not provide

 proper validation, but have only been assessed through simple ex-

mples or through systems that are “friendly enough”. Clearly, most

esearch prototypes cannot be evaluated on complex, real cases al-

eady at the very beginning of a research project; nevertheless, we

elieve that more attention should become customary when eval-

ating a produced solution. When it comes to practitioners seek-

ng for a runtime monitoring approach for their system or domain,

t becomes hard for them to estimate the actual value or applica-

ility of an approach without proper knowledge of its limitations

egarding performance and/or scalability.

Most of the tools and frameworks discussed in the papers we

nalyzed are not available (anymore) to the public/community. This

ounds quite odd. We believe that the reader should be granted

ccess to the artifacts that are discussed within a paper; if not,

here should be a credible reason (e.g., non-disclosure agreements).

n the long run, by making the tools open source, and by publicly

roviding its artifacts via some form of repository, we can ensure

hat valuable knowledge about the approach is preserved. This is

rue even if the approach is, in itself, no longer maintained. If this

s not done, many excellent approaches and lessons that were once

earned will be lost, often leading the community to have to “re-

nvent the wheel” over and over again.

Another observation is that only few approaches we analyzed

iscussed variability and evolution . In practice, supporting the co-

volution of the monitoring solution and the monitored system

s essential, as modern systems are often highly variable and fre-

uently change as requirements and context parameters change.

ractical use of monitoring solutions requires adding new con-

traints dynamically, activating or deactivating constraints at run-

ime to support particular monitoring tasks or users, and modify-

ng or parameterizing constraints according to the system variant

hat is being monitored.

While most approaches require that one learns some kind of

anguage (BPEL, XPath, a custom-developed DSL, etc.), many ap-

roaches do not provide much end-user tool support for working with

he languages and generally only very few provide fully-fledged

ools with visualizations and guidance for users. The target user

roup seems to be mainly (experienced) engineers. This again hin-

ers the adoption of the proposed monitoring approaches, and also

akes it difficult for other researchers to experiment with existing

pproaches.

We also learned from our analysis that service-based systems

nd business processes are the application domains of most moni-

oring approaches . One could argue that research on service-based

ystems has lost momentum in the last few years, and that smart

nvironments (e.g., spaces, buildings, and even cities) have become

he current trend. Given the complexity of these environments, it

s obvious that they will also require suitable monitoring and run-

ime adaptation solutions. Curiously, however, the actual software

ackbones for these smart environments often employ service-

riented architectures and technology. This means that, even if

esearch on monitoring and adapting service-based systems has

ost momentum, the adoption and contextualization of existing so-

utions can still be considered in its infancy. We advocate that

f

s

-

f

t

ll

,

,

r

r

i

r

t

-

-

-

f

T
ab

le

2

C
o

m
p

a
ri

so
n

fr

a
m

e
w

o
rk

:
a

p
p

li
ca

ti
o

n

to

3

2

a

p
p

ro
a

ch
e

s
(c

f.

T

ab
le

1
):

1

–
5

.

#
A

g
e

n
t

m
o

n
it

o
ri

n
g

a
P

ro
a

th
e

n
a

B
a

ck
m

a
n

n
_C

E
P

B
P

E
L4

W
S

1
a
 ∗

b
e

h
av

io
r

a
n

a
ly

si
s

a
ss

e
ss

co

m
p

li
a

n
ce

to

g

o
a

ls

b

a
se

d

o

n

K

P
Is

re
q

u
ir

e
m

e
n

ts

m

o
n

it
o

ri
n

g
b

u
si

n
e

ss

p

ro
ce

ss

m

o
n

it
o

ri
n

g
co

rr
e

ct
n

e
ss

o

f
B

P
E

L
p

ro
ce

ss
e

s

1
b

te
st

in
g

&

o

p
e

ra
ti

o
n

b
u

si
n

e
ss

p

ro
ce

ss

li

fe
cy

cl
e

re
q

u
ir

e
m

e
n

ts

&

o

p
e

ra
ti

o
n

o
p

e
ra

ti
o

n
re

q
u

ir
e

m
e

n
ts

&

o

p
e

ra
ti

o
n

1
c

m
u

lt
i-

a
g

e
n

t
sy

st
e

m
s

b
u

si
n

e
ss

p

ro
ce

ss

m

o
d

e
ls

a
d

a
p

ti
v

e

sy

st
e

m
s

b
u

si
n

e
ss

p

ro
ce

ss
e

s
se

rv
ic

e
s

1
d

m
u

lt
i-

a
g

e
n

t
a

rc
h

it
e

ct
u

re
s

e
v

e
n

t-
b

a
se

d

a

rc
h

it
e

ct
u

re
s

u
n

cl
e

a
r

S
O

A
/C

E
P

S
O

A
/B

P
E

L

1
e
 ∗

a
ct

io
n

la

n
g

u
a

g
e

B
P

M
N

m

o
d

e
l

&

K

P
Is

g
o

a
l

m
o

d
e

l
e

x
te

n
d

e
d

/a
n

n
o

ta
te

d

B

P
M

N
B

P
E

L
&

e

x
te

rn
a

l
a

n
n

o
ta

ti
o

n
s

1
f ∗

in
fo

w

h
e

th
e

r
sy

st
e

m

b

e
h

av
e

s
a

s

p
la

n
n

e
d

C
E

P

re

su
lt

s
&

d

iv
.

g
e

n
e

ra
te

d

(p

ro
b

e
s,

ru

le
s,

e
tc

.)

v
a

lu
e

s
o

f
u

ti
li

ty

fu

n
ct

io
n

s
C

E
P

re

su
lt

s
n

o
ti

fi
ca

ti
o

n
s

to

u

se
r

1
g

ru
n

s
w

it
h

in

th

e

sy

st
e

m
ru

n
s

w
it

h
in

th

e

sy

st
e

m
u

n
sp

e
ci

fi
e

d
u

n
sp

e
ci

fi
e

d
ru

n
s

in

p

a
ra

ll
e

l

2
a

te
st

e
rs

se
rv

ic
e

e

n
g

in
e

e
rs

&

b

u
si

n
e

ss

u

se
rs

e
n

g
in

e
e

r
e

n
g

in
e

e
rs

se
rv

ic
e

e

n
g

in
e

e
rs

2
b

u
n

d
e

rs
ta

n
d

sy

st
e

m

b

e
h

av
io

r
a

la
rm

s
o

n

g

o
a

l
v

io
la

ti
o

n
s

ch
e

ck

sa

ti
sf

a
ct

io
n

o

f
rq

ts

a

t
ru

n
ti

m
e

m
o

n
it

o
r

K
P

Is
fi

n
d

v

io
la

ti
o

n
s

2
c

a
ct

io
n

la

n
g

u
a

g
e

s
B

P
M

N

&

a

P
ro

n

o
ta

ti
o

n
g

o
a

l
m

o
d

e
li

n
g

&

fu

zz
y

lo

g
ic

K
P

Is
E

v
e

n
t

ca
lc

u
lu

s
&

fl

u
e

n
ts

2
d

a
g

e
n

ts

&

a

ct
io

n

la

n
g

u
a

g
e

s
fo

rm
u

la

la

n
g

.
e

d
it

o
r

n
o

n
e

n
o

n
e

u
n

cl
e

a
r

2
e

u
n

cl
e

a
r

d
a

sh
b

o
a

rd
,

a
n

a
l.

co

m
p

.
&

d

a
ta

w

a
re

h
o

u
se

h
is

to
ri

ca
l

v
a

lu
e

s
u

n
cl

e
a

r
u

n
cl

e
a

r

3
a
 ∗

a
ct

io
n

la

n
g

u
a

g
e

m
o

d
e

ls

b

a
se

d

o

n

B

P
M

N

&

a

n
n

o
ta

ti
o

n
s

R
E

L
A

X
e

d

K

A
O

S

g

o
a

l
m

o
d

e
ls

A
n

n
o

ta
te

d

B

P
M

N

m

o
d

e
ls

p
ro

p
ri

e
ta

ry

la

n
g

u
a

g
e

b

a
se

d

o

n

e

v
e

n
t

ca
lc

u
lu

s
&

fl

u
e

n
ts

3
b
 ∗

M
A

S
P

e
tr

i
n

e
ts

&

C

E
P

fu
zz

y

&

co

n
v

e
n

ti
o

n
a

l
lo

g
ic

s
C

E
P

e

n
g

in
e

in
te

g
ri

ty

co

n
st

ra
in

ts

3
c ∗

b
e

h
av

io
r

ch
e

ck
s

o
f

a
g

e
n

ts
ti

m
in

g

se

q
u

e
n

ce
s

e
v

e
n

t
o

cc
u

rr
e

n
ce

,
e

v
e

n
t

o
rd

e
r,

d

a
ta

ch
e

ck
s

&

fu

zz
y

lo

g
ic

e
v

e
n

t
o

cc
u

rr
e

n
ce

,
e

v
e

n
t

o
rd

e
r,

&

d

a
ta

ch
e

ck
s

e
v

e
n

t
o

cc
u

rr
e

n
ce

,
e

v
e

n
t

o
rd

e
r,

&

d

a
ta

ch
e

ck
s

3
d

n
o

th
ro

u
g

h

C

E
P

th
ro

u
g

h

K

A
O

S
th

ro
u

g
h

C

E
P

u
n

cl
e

a
r

3
e

m
e

ss
a

g
e

s
e

x
ch

a
n

g
e

d

a

m
o

n
g

a

g
e

n
ts

e
v

e
n

ts
u

n
cl

e
a

r
e

v
e

n
ts

e
v

e
n

ts

3
f

n
o

n
o

n
o

n
o

n
o

3
g

n
o

re
g

e
n

e
ra

te

ru

le
s

R
E

L
A

X

g

o
a

ls

a

re

a

d
a

p
ta

b
le

n
o

n
o

4
a
 ∗

e
x

a
m

p
le

re
se

a
rc

h

a

n
d

in

d
.

e
x

a
m

p
le

s
e

x
a

m
p

le
e

x
a

m
p

le
e

x
a

m
p

le
,

u
se

d

in

d

iv
.

p
ro

je
ct

s

4
b

N
/A

co
m

m
.

to
o

l
N

/A
U

n
ic

o
rn

N
/A
our framework can provide valuable insights on alternatives when

looking for an appropriate solution, or at least shed light on what

the appropriate ingredients for a new tailored approach might be.

Overall, our key observation from analyzing 50 monitoring ap-

proaches is that a lot of useful work has been done over the years,

and that many interesting approaches have been developed. To

preserve the knowledge and artifacts that have been developed,

and to not render the researchers’ effort s meaningless, we believe

that the community should spend some additional effort. The com-

munity needs to go beyond publishing papers. Our comparison

framework is a first step in this direction; it allows researchers

to extract and preserve information about existing approaches in

a structured way.

In our future work, we aim to continue our work and include

more approaches. Of course we are interested in the feedback o

the monitoring community. We already contacted the developer

of the approaches and asked them to validate the information we

have extracted. We also plan to involve additional people from

the community in populating and maintaining a living library of

compared approaches. For this purpose, we are interested in cre

ating a virtual meeting place for the community, independent o

editorials, books, and universities. Our on-line spreadshee

(http: //tinyurl.com/moncompfw) is a good starting point. It wi

make our framework widely available, and allow us to collect and

share materials and tools in a more meaningful way. Additionally

dedicated web communities in social networks such as LinkedIn

ResearchGate, or Mendeley could be created. To make ou

framework more easily applicable by others, we also plan to

develop guidelines for extracting information from papers. Ou

framework could even be used to create a tool for selecting an

existing approach, e.g., by creating a variability model (Czarneck

et al., 2012) from the populated spreadsheet and using existing

product line configuration tools (Rabiser et al., 2012).

Acknowledgments

This work has been partially supported by project EEB

- Edifici A Zero Consumo Energetico In Distretti Urbani In-

telligenti (Italian Technology Cluster For Smart Communities)

- CTN01_0 0 034_594053, the Christian Doppler Forschungsge-

sellschaft Austria, and Primetals Technologies.

Appendix. Comparison framework: application to 32 selected

approaches

Tables 2–8 present an overview of the results of applying ou

comparison framework to 32 selected approaches. Please refer to

http://tinyurl.com/moncompfw for more details. Please note tha

for each approach, in the tables, we only link one representative

publication (a click on the approach name leads to this publi

cation). Please also note that for 4b (availability), for some ap

proaches, we integrated hyperlinks. Three approaches are high

lighted because we used them in Section 4 to demonstrate the

use of our framework in an in-depth comparison of approaches re-

garding their usefulness in different monitoring scenarios. Please

also note that two of the authors of this paper are developers o

the EcoWare approach (Baresi and Guinea, 2013) and the

three other authors of this paper are developers of the

REMINDS approach (Vierhauser et al., 2016b).

http://tinyurl.com/moncompfw
http://tinyurl.com/moncompfw
https://bpt.hpi.uni-potsdam.de/UNICORN/UNICORNDevelop

Table 3

Comparison framework: application to 32 approaches (cf. Table 1): 6–10.

Choreographies Structure Trees CHOReOS ConSpec ECE Rules EcoWare

1a ∗ service composition monitoring service composition monitoring program safety & security monitoring process property monitoring collecting, aggregating, & analyzing runtime

data

1b operation operation maintenance & policy specification maintenance operation

1c business processes & services services services & program verification processes services

1d Event-driven arch. SOA SOA SOA & Event-driven arch. SOA

1e ∗ service composition & events external rules written in DSL annotated programs transformed to automata expectations and properties event bus (Siena P/S Bus)

1f ∗ CEP queries & violations violations alerts violations & recovery actions KPIs & aggregated/analyzed data

1g unspecified runs within the system unspecified unspecified runs in parallel

2a service engineers engineers (service) engineers engineers (service) engineers

2b detect mismatches in service

interactions

monitor service compositions detect security violations detect violations & repair system analyze behavior of multi-layered systems

2c no specific skill needed Drools programming language skills engineering skills & Drools rules DSL (mlCCL)

2d no constraints are defined manually unclear ConSpec Editor & Monitoring Pattern

Repository

none templates for generating adapters &

aggregators

2e dashboard none notification module none dashboard

3a ∗ CEP queries DSL Policy Specification Language ECE Rules/Drools CEP-based DSL (mlCCL)

3b ∗ CEP engine CEP engine automata & Drools rules Drools fusion & CEP CEP engine

3c ∗ occurrence/ordering of events occurrence/ordering of events & data checks occurrence/ordering of events occurrence/ordering, custom functions event occurrence & data checks

3d unclear unclear unclear Drools (data access, functions, ...) aggregation & analysis of arbitrary data

3e events events defined by ’scope’-method or variable events events

3f no no no expectation meta-model no

3g no no no no no

4a ∗ example example information services case study,

implementation

use case of clinical support system examples

4b POC developed within EU project EU project, tools & code in github N/A researchers still active

Table 4

Comparison framework: application to 32 approaches (cf. Table 1): 11–15.

HIT Kieker-1 Kieker-2 MaC Mobucon EC

1a ∗ workflow monitoring generic monitoring execution sequence correctness

monitoring

runtime verification & business process

monitoring

1b maintenance & operation operation, profiling & re(verse) engineering unspecified operation

1c workflows & business processes generic reactive systems processes

1d stream processing applications component-based and OO systems reactive systems systems enacting processes

1e ∗ event streams Code instr. or models to generate inst. requirement specifications constraints defined in Declare

1f ∗ constraint violations measurements & arbitrary analyses deviations from expected event

sequences

violations

1g runs in parallel dep. on instr. approach runs in parallel runs in parallel

2a engineers engineers and sys. ops. engineers engineers & business process designers

2b detect workflow deviations check safety properties check business constraints

2c DSL MEDL/PEDL language Declare language

2d none none graphical notation

2e none none visualization of violations & functions

3a ∗ DSL to query event stream DSL with events & conditions (graphical) Declare notation

3b ∗ custom impl. formal Event Calculus

3c ∗ complex temporal checks, causality &

data checks

event sequences, safety properties &

alarms & data checks

business constraints, quantitative time

constraints & non-atomic, durative

activities

3d no auxiliary variables Prolog version implemented in Java

3e events events events

3f no no no

3g no no no

4a ∗ running example; formal semantics formal discussion & case studies case study about maritime safety &

security; benchmark

4b CEA

failure diagnosis & performance anomaly

detection

operation
not discussed

component-based systems

measuring points

performance anomalies

runs in parallel

engineers
detect performance problems

OCL
editor to write rules

call context trees & responsiveness time series
OCL monitoring rules

inference engine

performance checks

no
time intervals

no
probes can be (de)activated

case study on performance overhead

kieker-monitoring.net

div. analyses

programming skills

Eclipse IDE Plug-In

GUI for Trace Analysis/Diagnosis & WebGUI
arbitrary via analysis plug-ins

arb. via analysis plug-ins

arb. via analysis plug-ins

arb. via analysis plug-ins

events or time intervals

no
probes can be (de)activated

lab experiments & ind. case studies

kieker-monitoring.net author can provide download personal homepage

http://www.aniketos.eu/
http://davis.wpi.edu/dsrg/PROJECTS/CEA/
http://kieker-monitoring.net/
http://kieker-monitoring.net/
http://www.inf.unibz.it/~montali/tools.html

Table 5

Comparison framework: application to 32 approaches (cf. Table 1): 16–20.

Monina MOP MORPED MORSE MSL

1a ∗ error detection & adaptation compliance monitoring

1b maintenance maintenance

1c SOA SOA

1d SOA SOA

1e ∗ BPEL specifications, annotations &

event calculus

process execution engine

1f ∗ EC formulae & adaptations violations

1g runs within the system runs in parallel

2a engineers not specified

2b detect SLA violations/adaptation check compliance

2c formal background MSL

2d none Web page

2e sys. adaptation web page

3a ∗ Event Calculus Monitor Specification Language (MSL)

3b ∗ Java MSL compiler

3c ∗ timing sequences, occurrence & data

aggregations

Boolean, temporal &

numerical/statistical formulae

3d functions & event generation statistical formulae

3e events events

3f yes, in separate files though no

3g no no

4a ∗ (scientific) experiment using simulators examples

4b

monitoring & adaptation

deployment
virtual service platforms

virtual services

monitoring queries & adapt. rules in

Monina
deployment considers av. resources
runs in parallel

engineers
specify adaptation rules

Monina language

Eclipse Plugin to create Monina rules
none
Monina DSL

CEP engine

facts & events, actions, components,

monitoring queries & adaptation rules
aggregation, basic stat. anal. & event

generation

events

no

no
example from FP7 project

GitHub.io

monitoring-oriented prog.
development & operation
arbitrary
Java-based systems

formal specs & logical statements

monitors
runs within the system
programmers
improve reliability

annotation language

logic plugins

none
JASS or JML annotations

arbitrary via logic plug-in modules
depends on logic plugin

can be done in host language

logic statements in PL

no

no

benchmarks

GitHub N/A; researchers still around

compliance monitoring
development & maintenance
SOA

SOA
models of services and processes

info on compliance

runs within the system
engineers
check compliance

EPL, XPath & (WS)-BPEL
Runtime Client

root cause analysis

EPL/Xpath
CEP engine

timing sequences & occurrence

depends on the CEP engine

events
compliance meta-data model
variability in service models, VCS
(fictitious) case study

download N/A

Table 6

Comparison framework: application to 32 approaches (cf. Table 1): 21–25.

MuloEtAl_DSL PLTL RBSLA REMINDS ReqMon

1a ∗ compliance monitoring runtime verification contract performance monitoring monitoring systems of systems requirements monitoring

1b development & maintenance maintenance & testing maintenance operation, requirements specification

& evolution

requirements specification &

maintenance

1c SOA not specified service-based systems distributed, component-based systems enterprise information systems

1d SOA not specified SOA systems of systems SOA

1e ∗ event patterns/DSL event traces event streams requirements, event & scope model requirements specs, policies & ebXML

1f ∗ info on compliance verification result adaptation evaluation results monitors

1g runs within the system runs in parallel unspecified runs in parallel runs within the system

2a engineers engineers engineers engineers & service staff (requirements) engineers

2b check compliance verification monit SLAs & adaptation detect deviations from requirements detect req. violations/perf. leaks

2c DSL formal background RuleML/RBSLA languages programming skills for probes programming skills & DSLs

2d MDD tool none none monitoring IDE several

2e reports none none monitoring IDE dashboard

3a ∗ DSL formal language (PLTL) DSL based on RuleML DSL MSL based on KAOS & OCL

3b ∗ Esper engine custom impl. RuleML engines custom impl. domain-specific

3c ∗ event ordering, occurrence & data

checks

event occurrence & ordering event ordering, event occurrence & data

checks

event ordering, event occurrence &

data checks

event ordering, event occurrence, data

checks & ECA rules

3d filters no data in attachments, new events can be

generated

data attached to events, aggregated

via processors

data aggregations, functions &

statistical analyses

3e events events events events events

3f activities & filters LTL monitoring schedule requirements & constraint attribs scopes, groups & responsibilities

3g no no no via decision models ReqMon Configuration API

4a ∗ experiment with example programs &

ind. case studies

experiments examples industrial use case & performance example & experiment

4b N/A; researchers still around N/A N/A

evaluation
research license researcher still active

http://indenicatuv.github.io/releases/
https://github.com/runtimeverification/javamop
http://www.infosys.tuwien.ac.at/prototyp/morse/
http://mevss.jku.at/reminds

T
a

b
le

7

C
o

m
p

a
ri

so
n

fr

a
m

e
w

o
rk

:
a

p
p

li
ca

ti
o

n

to

3

2

a

p
p

ro
a

ch
e

s
(c

f.

T

a
b

le

1
):

2

6
–

3
0

.

#
R

M
T

L
S

e
re

n
it

y
S

im
m

o
n

d
s1

S
im

m
o

n
d

s2
S

p
a

ss
-M

e
te

r

1
a
 ∗

se
cu

ri
ty

p

o
li

cy

m

o
n

it
o

ri
n

g

se
cu

ri
ty

&

d

e
p

e
n

d
a

b
il

it
y

ch

e
ck

in
g

sa
fe

ty

&

li

v
e

n
e

ss

ch

e
ck

in
g

b
e

h
av

io
ra

l
a

n
a

ly
si

s
p

e
rf

o
rm

a
n

ce
/r

e
so

u
rc

e

m

o
n

it
o

ri
n

g

&

ru

n
ti

m
e

a
d

a
p

ta
ti

o
n

1
b

m
a

in
te

n
a

n
ce

m
a

in
te

n
a

n
ce

o
p

e
ra

ti
o

n
o

p
e

ra
ti

o
n

d
e

si
g

n
,

im
p

l.
,

te
st

in
g

&

o

p
.

1
c

m
o

b
il

e

a

p
p

s
d

is
tr

ib
u

te
d

sy

st
e

m
s

W
e

b

se

rv
ic

e
s

b
u

si
n

e
ss

p

ro
ce

ss
e

s
d

o
m

a
in

&

p

la
tf

o
rm

in

d
e

p
e

n
d

e
n

t

1
d

m
o

b
il

e

(A

n
d

ro
id

)
O

S
d

is
tr

ib
u

te
d

sy

st
e

m
s

S
O

A
B

P
E

L
p

ro
ce

ss
e

s
a

n
y

1
e
 ∗

in
st

ru
m

e
n

ta
ti

o
n

o

f
A

n
d

ro
id

O

S

k

e
rn

e
l

in
st

ru
m

e
n

ta
ti

o
n

u

si
n

g

S

E
R

E
N

IT
Y

fr

a
m

e
w

o
rk

se
q

u
e

n
ce

d

ia
g

ra
m

s
B

P
E

L
p

ro
ce

ss

d

e
f.

,
se

rv
ic

e

co

n
d

it
io

n
s

&

co
rr

e
ct

n
e

ss

p

ro
p

e
rt

ie
s

in
st

ru
m

e
n

ta
ti

o
n

1
f ∗

d
e

te
ct

e
d

se

cu
ri

ty

p

o
li

cy

v

io
la

ti
o

n
s

d
e

te
ct

e
d

se

cu
ri

ty

o

r
d

e
p

e
n

d
a

b
il

it
y

v

io
la

ti
o

n
s

e
v

a
lu

a
ti

o
n

re

su
lt

s
fo

rm
a

l
m

o
d

e
l/

m
o

n
it

o
rs

su
m

m
a

ry
,

sn
a

p
sh

o
ts

&

A

P
I

1
g

ru
n

s
w

it
h

in

th

e

sy

st
e

m
ru

n
s

w
it

h
in

th

e

sy

st
e

m
ru

n
s

in

p

a
ra

ll
e

l
ru

n
s

w
it

h
in

th

e

sy

st
e

m
ru

n
s

w
it

h
in

th

e

sy

st
e

m

2
a

A
n

d
ro

id

u

se
rs

e
n

g
in

e
e

rs
e

n
g

in
e

e
rs

e
n

g
in

e
e

rs
e

n
g

in
e

e
rs

&

o

p
s

2
b

d
e

te
ct

se

cu
ri

ty

v

io
la

ti
o

n
s

d
e

te
ct

se

cu
ri

ty

&

d

e
p

e
n

d
a

b
il

it
y

v

io
la

ti
o

n
s

u
n

cl
e

a
r

b
e

h
av

io
ra

l
m

o
n

it
o

ri
n

g
a

n
a

ly
ze

a

n
d

im

p
ro

v
e

p

e
rf

o
rm

a
n

ce

2
c

fo
rm

a
l

b
a

ck
g

ro
u

n
d

fo
rm

a
l

b
a

ck
g

ro
u

n
d

m
o

d
e

li
n

g

sk

il
ls

fo
rm

a
l

b
a

ck
g

ro
u

n
d

p
ro

g
.

e
x

p
.

&

u

si
n

g

a

n
n

o
ta

ti
o

n
s

o
r

X
M

L

2
d

n
o

n
e

te
m

p
la

te
s

fo
r

X
M

L-
b

a
se

d

E

C
-A

ss
e

rt
io

n

ru

le
s

G
ra

p
h

ic
a

l
se

q
u

e
n

ce

d

ia
g

ra
m

to

o
l

m
o

n
it

o
ri

n
g

a

u
to

m
a

ta
E

A
S

y
-P

ro
d

u
ce

r
e

d
it

o
r

2
e

n
o

n
e

u
n

cl
e

a
r

fa
u

lt
y

e

x
e

cu
ti

o
n

tr

a
ce

s
u

n
cl

e
a

r
te

x
tu

a
l

re
p

o
rt

/A
P

I

3
a
 ∗

R
M

T
L,

e

x
te

n
si

o
n

o

f
M

T
L

X
M

L-
b

a
se

d

E

C
-A

ss
e

rt
io

n

la

n
g

u
a

g
e

b

a
se

d

o

n

e
v

e
n

t
ca

lc
u

lu
s

Te
m

p
o

ra
l

Lo
g

ic

P

ro
p

e
rt

y

P

a
tt

e
rn

s
W

S
C

o
L

&

d

e
te

rm
in

is
ti

c
fi

n
it

e

a

u
to

m
a

ta
IV

M
L,

in

sp
ir

e
d

b

y

O

C
L

in

E

A
S

y
-P

ro
d

u
ce

r

3
b
 ∗

cu
st

o
m

im

p
l.

cu
st

o
m

im

p
l.

W
e

b
S

p
h

e
re

W
e

b
S

p
h

e
re

cu
st

o
m

im

p
l.

3
c ∗

e
v

e
n

t
o

rd
e

ri
n

g

&

o

cc
u

rr
e

n
ce

e
v

e
n

t
o

cc
u

rr
e

n
ce

,
e

v
e

n
t

o
rd

e
r

&

d

a
ta

ch

e
ck

s
e

v
e

n
t

o
cc

u
rr

e
n

ce

&

o

rd
e

r
e

v
e

n
t

o
cc

u
rr

e
n

ce

&

o

rd
e

r
d

a
ta

ch

e
ck

s

3
d

b
lo

ck
in

g

o

f
a

p
p

li
ca

ti
o

n

ca

ll
s

n
o

n
o

W
S

C
o

L:

p

re
-

&

p

o
st

-c
o

n
d

it
io

n
s

v
ia

a

n
n

o
ta

ti
o

n
s

&

A

P
I

3
e

ca
ll

fr

o
m

A

n
d

ro
id

a

p
p

in

te
rc

e
p

te
d

e
v

e
n

ts
st

a
rt

-u
p

o

f
a

p

ro
ce

ss

in

st
a

n
ce

se
rv

ic
e

in

v
o

ca
ti

o
n

s
v

ia

A

P
I

o
r

v
ia

E

A
S

y
-P

ro
d

u
ce

r

3
f

se
v

e
ri

ty
n

o
n

o
n

o
ty

p
e

d

a

n
n

o
ta

ti
o

n
s

3
g

v
ia

p

o
li

cy

sp

e
c.

a

n
d

h

o
o

k
s

n
o

n
o

n
o

v
ia

E

A
S

y
-P

ro
d

u
ce

r

4
a
 ∗

e
x

a
m

p
le

s
p

e
rf

o
rm

a
n

ce

e

x
p

e
ri

m
e

n
ts

e
x

a
m

p
le

s
e

x
a

m
p

le
s

4
b

Lo
g

ic
D

ro
id

n
o

d

o
w

n
lo

a
d

b

u
t

re
se

a
rc

h
e

rs

a

ro
u

n
d

u
n

cl
e

a
r

u
n

cl
e

a
r

e
x

p
e

ri
m

e
n

ts
,

sc
ie

n
ti

fi
c

e
v

a
l.

w
it

h

in
d

u
st

ry
 S

p
a

ss
-M

e
te

r,

E
A

S
y

Table 8

Comparison framework: application to 32 approaches (cf. Table 1): 31–32.

UFO/FORMAN YAWL

1a ∗ software monitoring & runtime

verification

task performance checking

1b maintenance design & execution

1c reactive systems / real-time general-purpose

1d component-based systems business processes

1e ∗ behavioral properties annotated YAWL model

1f ∗ monitoring code runtime evaluation results

1g unspecified runs in parallel

2a engineers process analysts/owners

2b check program behavior assess risks of faults

2c writing assertions YAWL

2d none YAWL editor extension with

Sensor editor & risk

templates

2e unclear unclear

3a ∗ assertion language DSL inspired by Java (syntax) &

SQL (semantics)

3b ∗ generated C code custom implementation

3c ∗ event occurrence, event order

& data checks

event occurrence, event order,

data checks & fuzzy checks

3d access to system properties simple arithmetic + functions

3e events or time-based periodic or event-based

3f no no

3g no no

4a ∗ examples performance analysis &

usability evaluation

4b N/A in next release of YAWL

References

A el-

A

M

P

B

Q ,

B
I
B
I

C
a
(

C
2 Syst.

C c-

C l
f .

D
s

D

E o-

F al

G
f
G
c
E
G

ktug, I., Dam, M., Gurov, D., 2008. Provably Correct Runtime Monitoring. In: Cu

lar, J., Maibaum, T., Sere, K. (Eds.), FM 2008: Formal Methods. In: LNCS, vol.5014.
Springer, pp. 262–277.

uguston, M., Giammarco, K., Baldwin, W.C., Crump, J., Farah-Stapleton,

. , 2015. Modeling and verifying business processes with monterey phoenix.

rocedia Comput. Sci. 44, 345–353.

aouab, A., Perrin, O., Godart, C., 2012. An Optimized Derivation of Event

ueries to Monitor Choreography Violations. In: Liu, C., Ludwig, H., Toumani, F., Yu

Q.(Eds.), Service-Oriented Computing. In: LNCS, vol.7636. Springer, pp. 222–

236.
aresi, L., Guinea, S., 2013. Event-based multi-level service monitoring. In: 20th

EEE Int’l Conf. on Web Services. IEEE, pp. 83–90.
auer, A., Leucker, M., Schallhart, C., 2006. Monitoring of Real-time Properties.

n: FSTTCS 2006: Foundations of Software Technology and Theoretical Computer

Science. Springer, pp. 260–272.

alinescu, R., Ghezzi, C., Kwiatkowska, M.Z., Mirandola, R., 2012. Self-
daptive software needs quantitative verification at runtime. Commun. ACM 55
9), 69–77.

onforti, R., Rosa, M.L., Fortino, G., ter Hofstede, A.H., Recker, J., Adams, M.,
013. Real-time risk monitoring in business processes: a sensor-based approach. J.

Softw. 86 (11), 2939–2965.

ontreras, A., Mahbub, K., 2014. MORPED: Monitor rules for proactive error dete
tion based on run-time and historical data. In: Fifth Int’l Conf. on the Applica-
tions of Digital Information and Web Technologies. IEEE, pp. 28–35.

zarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wasowski, A., 2012. Coo
ea- tures and tough decisions: A comparison of variability modeling approaches

In: 6th Int’l Workshop on Variability Modelling of Software-Intensive

Systems. ACM, pp. 173–182.

elgado, N., Gates, A.Q., Roach, S., 2004. A taxonomy and catalog of runtime
oftware-fault monitoring tools. IEEE Trans. Softw. Eng. 30 (12), 859–872.

wyer, M., Avrunin, G., Corbett, J., 1999. Patterns in property specifications

for finite-state verification. In: Int’l Conf. on Software Engineering. IEEE, pp.
411–420.

hlers, J., Hasselbring, W., 2011. A Self-adaptive Monitoring Framework for Comp
nent-based Software Systems. In: Crnkovic, I., Gruhn, V., Book, M. (Eds.), Soft-
ware Architecture. In: LNCS, vol.6903. Springer, pp. 278–286.

aymonville, P., Finkbeiner, B., Peled, D., 2014. Monitoring Parametric Tempor
Logic. In: McMillan, K.L., Rival, X. (Eds.), Verification, Model Checking, and

Abstract Interpretation. In: LNCS, vol.8318. Springer, pp. 357–375.

anter, B., Wille, R., 2012. Formal concept analysis: Mathematical
oundations. Springer.
hezzi, C., Mocci, A., Sangiorgio, M., 2012. Runtime monitoring of
omponent changes with Spy@Runtime. In: 34th Int’l Conf. on Software
ngineering. IEEE, pp. 1403–1406.
unadi, H., Tiu, A. , 2014. Efficient Runtime Monitoring with Metric Temporal

Logic: A Case Study in the Android Operating System. In: Jones, C., Pihla-
jasaari, P., Sun, J. (Eds.), FM 2014: Formal Methods. In: LNCS, vol.8442. Springer,
pp. 296–311.

http://www.ntu.edu.sg/home/atiu/logicdroid
https://github.com/SSEHUB/spassMeter
https://github.com/SSEHUB/EASyProducer
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0016

OAs

eploy-

,

7–552

e
M
M
N

-

M for
,

M itor-

M
P
E
P e

,

P at-

P ork-

nce

R or
,
.

R
s
S
2

S s-

v ion

V e-

V el, H.,

V -

V is-

R ng an y

L ractic /

m

S re En

n Ph.D.

p

M oring
L epler

L ngine ,
P cnico

P ustria
o lds a r

m

Holmes, T., Mulo, E., Zdun, U., Dustdar, S., 2011. Model-aware Monitoring of S
for Compliance. In: Service Engineering. Springer, pp. 117–136.

Inzinger, C., Satzger, B., Hummer, W., Dustdar, S. , 2013. Specification and D

ment of Distributed Monitoring and Adaptation Infrastructures. In: Ghose, A.,
Zhu, H., Yu, Q., Delis, A., Sheng, Q., Perrin, O., Wang, J., Wang, Y. (Eds.), Ser-
vice-Oriented Computing - ICSOC 2012 Workshops. In: LNCS, vol.7759. Springer
pp. 167–178.

Jeffery, C., Auguston, M., Underwood, S., 2004. Towards Fully Automatic

ExecutionMonitoring. In: Wirsing, M., Knapp, A., Balsamo, S. (Eds.),
Radical Innovations of Software and Systems Engineering in the Future.
In: LNCS, vol.2941. Springer, pp. 204–218.

Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M., 2001. Java-Mac: a
runtime assurance tool for java programs. Electron Notes Theor. Comput. Sci. 55
(2), 218–235.
Kitchenham, B.A., 2007. Guidelines for performing Systematic Literature Reviews
in Software Engineering. Technical Report. Version 2.3, EBSE Technical Report, UK.
Kumar Tripathy, A., Patra, M., 2010. An event based, non-intrusive
monitoringframework for web service based systems. In: Int’l Conf. on Computer

Information Systems and Industrial Management Applications. IEEE, pp. 54

Luckham, D.C., 2011. Event processing for business: Organizing the real-time
nterprise. Wiley.
aiden, N., 2013. Monitoring our requirements. IEEE Software 30 (1), 16–17.
ansouri-Samani, M., Sloman, M., 1993. Monitoring distributed systems. IEEE
etw. 7 (6), 20–30.

Matinlassi, M., 2004. Comparison of software product line architecture design meth
ods: COPA, FAST, FORM, KobrA and QADA. In: 26th Int’l Conf. on Software Engi-
neering. IEEE, pp. 127–136.

edvidovic, N., Taylor, R., 20 0 0. A classificiation and comparison framework
software architecture description languages. IEEE Trans. on Softw. Eng. 26 (1)

70–93.

ontali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P., 2014. Mon
ing business constraints with the event calculus. ACM Trans. Intell. Syst. Tech-

nol. 5 (1), 17:1–17:30.

uccini, H., Polini, A., Ricci, F., Bertolino, A., 2007. Monitoring Architectural
roperties in Dynamic Component-based Systems. In: Component-Based Software
ngineering, LNCS 4608. Springer, pp. 124–139.
aschke, A., 2005. RBSLA a declarative rule-based service level agreement languag

based on RuleML. In: Int’l Conf. on Computational Intelligence for Modelling
Control and Automation and Intelligent Agents, Web Technologies and Internet
Commerce. IEEE, pp. 308–314.

han, H., Avrunin, G.S., Clarke, L.A., 2008. Considering the Exceptional: Incorpor
ing Exceptions into Property Specifications, 1003. Department of CS, Univ. of
Massachusetts, Amherst, MA.

ick Rabiser is a Senior Researcher at the Christian Doppler Lab for Monitori

inz, Austria. He holds a Ph.D. in Business Informatics and the Habilitation in P

evss.jku.at/rabiser for more detailed information.

am Guinea is an Assistant Professor at the DEpendable Evolvable Pervasive Softwa
eria, Politecnico di Milano, Italy. He studied Computer Engineering and holds a

olimi.it/guinea/ for more detailed information.

ichael Vierhauser is a Researcher at the Christian Doppler Laboratory for Monit
inz, Austria. He received a Ph.D. in Computer Science in 2016 from the Johannes K

uciano Baresi is a Full Professor at the DEpendable Evolvable Pervasive Software E

olitecnico di Milano, Italy. He holds a Ph.D. in Information Engineering from Polite

aul Grünbacher is an Associate Professor at Johannes Kepler University Linz, A

f Very-Large-Scale Software Systems. He studied Business Informatics and ho

ore detailed information.

.

oppe, O., Giessl, S., Rundensteiner, E.A., Bry, F., 2013. The HIT Model: W
flow-aware Event Stream Monitoring. In: Hameurlain, A., Küng, J., Wagner,
R., Amann, B., Lamarre, P. (Eds.), Trans. on Large-Scale Data- and Knowledge-
Cen- tered Systems XI. In: LNCS, vol.8290. Springer, pp. 26–50.

Rabiser, R., Grünbacher, P., Lehofer, M., 2012. A qualitative study on user guida
capabilities in product configuration tools. In: 27th IEEE/ACM Int’l Conf. on

Au- tomated Software Engineering. ACM, pp. 110–119.

amirez, A.J., Cheng, B.H., 2011. Automatic Derivation of Utility Functions f
Monitoring Software Requirements. In: Whittle, J., Clark, T., Kühne, T. (Eds.)
Model Driven Engineering Languages and Systems. In: LNCS, vol.6981
Springer, pp. 501–516.

obinson, W.N., 2006. A requirements monitoring framework for enterprise
ystems. Requirements Eng. 11 (1), 17–41.
eracini, F., Menarini, M., Krueger, I., Baresi, L., Guinea, S., Quattrocchi, G.,
014. A

comprehensive resource management solution for web-based systems. In: 11th
Int’l Conf. on Autonomic Computing. USENIX, pp. 233–239.

Simmonds, J., Gan, Y., Chechik, M., Nejati, S., O’Farrell, B., Litani, E.,

Waterhouse, J., 2009. Runtime monitoring of web service conversations. IEEE Trans.

Serv. Comp. 2 (3), 223–244.
panoudakis, G., Mahbub, K., 2004. Requirements monitoring for service-based sy

tems: towards a framework based on event calculus. In: 19th Int’l Conf. on Au-
tomated Software Engineering. ACM, pp. 379–384.

an Hoorn, A., Waller, J., Hasselbring, W., 2012. Kieker: A framework for applicat
performance monitoring and dynamic software analysis. In: 3rd ACM/SPEC Int’l
Conf. on Performance Engineering. ACM, pp. 247–248.

ierhauser, M., Rabiser, R., Grünbacher, P., 2016. Requirements monitoring fram
works: a systematic review. Inf. Softw. Technol. 80, 89–106.

Vierhauser, M., Rabiser, R., Grünbacher, P., Egyed, A., 2015. Developing a DSL-
based approach for event-based monitoring of systems of systems: Experiences

andlessons learned. In: 30th IEEE/ACM Int’l Conf. on Automated Software Engineer-

ing. ACM, pp. 715–725.

ierhauser, M., Rabiser, R., Grünbacher, P., Seyerlehner, K., Wallner, S., Zeis
2016. Reminds: a flexible runtime monitoring framework for systems of sys-
tems. J. Syst. Softw. 112, 123–136.

iswanathan, M., Kim, M., 2005. Foundations for the Run-time Monitoring of Re
active Systems: Fundamentals of the MaC Language. In: Theoretical Aspects of
Computing. Springer, pp. 543–556.

ölz, M., Koldehofe, B., Rothermel, K., 2011. Supporting strong reliability for d
tributed complex event processing systems. In: 13th Int’l Conf. on High Perfor-

mance Computing & Communication. IEEE, pp. 477–486.

d Evolution of Very-Large-Scale Software Systems at Johannes Kepler Universit

al Computer Science, both from Johannes Kepler University Linz. Refer to http:/

gineering (DEEP-SE) group at Dipartimento di Elettronica, Informazione e Bioingeg-
in Information Engineering from Politecnico di Milano. Refer to http://home.deib.

and Evolution of Very-Large-Scale Software Systems at Johannes Kepler University
University Linz. Refer to http://mevss.jku.at for more detailed information.

ering (DEEP-SE) group at Dipartimento di Elettronica, Informazione e Bioingegneria

di Milano. Refer to http://home.deib.polimi.it/baresi/ for more detailed information.

 and the head of the Christian Doppler Laboratory for Monitoring and Evolution

Ph.D. from the Johannes Kepler University Linz. Refer to http://mevss.jku.at fo

http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30261-8/sbref0044

	A comparison framework for runtime monitoring approaches
	1 Introduction
	2 Research approach
	3 Comparison framework
	3.1 Context
	3.2 User
	3.3 Content
	3.4 Validation

	4 Evaluation: applying the comparison framework
	5 Discussion and perspectives
	 Acknowledgments
	Appendix Comparison framework: application to 32 selected approaches
	 References

